A Next Generation Launch Capacity Model For the U.S. Eastern Range

> 2nd NRO/AIAA Workshop on Space Launch Integration May 2-4, 2000

> > Presented By: David H.W. Steare TSO Team steared@mit.edu

> > > Research Sponsored By LAI

Background of USAF Range Capacity Modeling Effort

- Scope of Range "Capacity"
- Advanced System Dynamics Modeling Effort

Range Capacity Model (RCM) Background

The current USAF RCM is a power tool! (v8.2)

- Created to assist Air Force planning personnel and policy makers (March 1998)
- Spreadsheet equations model key launch and range operations variables
- It has contributed to:
 - Lt. General Henry IPT Report, 1998
 - Congressional National Launch Capabilities Study, 1999
 - White House IAWG Study, 1999

...but it <u>can</u> & <u>should</u> be enhanced!

Capacity Model Boundaries

• Outer Boundary= ER

 Incorporates notion of down range stations and assets

• Inner Boundary

• Multiple launch pads

Lean Basic Concept of Aerospace Range Launch Operations

Eastern Range Support Requirements

*Nominal Times-- Not including scrubs, slips, or crew limitations, Data Source: ER Ops Directives, 45SW and Launch Program Interviews

Example of USAF Past RCM Projections

Lean Aerospace

Accepted USAF Model

• Spreadsheet methods

- Launch capacity derived from time requirements of the following cumulated factors:
 - Durations of Ops Support
 - o Scheduling Changes
 - Minor Ops Impact
 - Maintenance Impact
 - Range Downtime
 - Personnel Limitations

	FY-2000	
MAJOR OPS	Number/Launch	Range Days/Launch
Launches	1.00	0.57
Sims/Wet Dress	2.44	0.58
STS Landings	0.28	0.12
Landing Scrubs	0.03	0.01
F-1s	1.13	0.67
Launch Scrubs	0.53	0.30
	5.41	2.25
SCHEDULING CHANGES*	Number/Launch	Range Days/Launch
Customer Reschedules	4.41	1.91
Range Reschedules	0.26	0.11
Other Reschedules	0.44	0.19
	5.11	2.21
MINOR OPS IMPACT	Days Impact	Range Days/Launch
365 Day Operations	7.56	0.18
MAINTENANCE DOWNTIME	Days Impact	Range Days/Launch
365 Day Operations	3.36	0.08
RANGE PMI/DOWNTIME	Days Impact	
Non-Launch Programs Support	10	
Holiday	5	
Modernization	15	
ROCC Downtime	5	
Additional Downtime	5	
	40	
PERSONNEL LIMITATIONS		Range Days/Launch
RTS Personnel Crew Rest		3.04
TOTAL COMMITMENTS	365.92	7.76
TOTAL RANGE CAPACITY	42	Launches

TSO Steare 05/03/00 - 8 © 2000 Massachusetts Institute of Technology

System Dynamics? A Quick Background

• Definition-

- A modeling methodology that combines <u>theory</u> and <u>computer</u> <u>simulation</u> with a practical application to real-world problems
- Field was founded in 1956 by Jay Forrester at MIT
- Focuses on the way internal feedback-loop relationships cause a system to change through time

Motivation

• Understanding why a system behaves as it does permits redesign of *structure* and *policies* to improve *behavior*

Advanced Modeling Approach Using System Dynamics

For each simulated hour of the year, the model:

- 1) Determines current time
- 2) Checks range status for ops restrictions
- 3) Calculates need for crew rest
- 4) Accounts for rescheduling effects
- 5) Performs range systems maintenance as necessary
- 6) Prioritizes and allocates support for launch ops

- Current version accommodates up to 14 launch pads (simultaneous launch flows)
- ~2,000 Unique visible variables
- ~70,000 Total unique variables
- ~40 minute maximum run time to simulate a single year hour by hour (Pentium II, 300Mhz)
- ~600M explicit values calculated during a simulation

Model Section Example: Launch Vehicle Operations

Real World Behavior

 2 types of launch operations requiring range support: <u>Major</u> & <u>Minor</u> Ops

- Major ops require significant range support resources
- Range can only support one *Major op* at a time
- Minor ops require lower amounts of range support
- Range can support simultaneous *Minor ops*

Modeling Approach

 Incorporate nominal "launch span" characteristics for each type of launch vehicle

Comparison of Launch Operations Fidelity

- **USAF Accepted Model**
- Major Ops
 - Duration
- Minor Ops
 - Aggregate Duration

Advanced Model

- Major & Minor Ops
 - Name
 - **O** Duration
 - o Sequence
 - Timeline

Example Plot: Launch Pad 'A' Support Requests

Lean Aerospace Initiative Example Plot: Launch Pad 'A' Request Wait Times

Model Section Example: Crew Rest

Real World Behavior

- o *Contracted single range crew
- Workload restrictions (OSHA, range safety, unions)

Modeling Approach

- Directly incorporate the three workload "guidelines"
 - No more than 12 hours per day
 - No more than 60 hours per workweek
 - No more than 14 consecutive workdays without a 24-hour break

*pending implementation of a reconfiguration "core crew"

Lean Aerospace Initiative Example Plot: Range Crew Weekly Launch-related Workload

Example Plot: Range Crew Daily Launch-related Workload

Lean ,

Aerospace

Initiative

TSO Steare 05/03/00 - 21 © 2000 Massachusetts Institute of Technology

TSO Steare 05/03/00 - 22 © 2000 Massachusetts Institute of Technology

National Launch Forecast = 44

USAF Range Capacity Modeling Approach = 45

*20 runs

Example Plot: Vehicle 'X' Cumulated Launches

TSO Steare 05/03/00 - 25 © 2000 Massachusetts Institute of Technology

- Model development *primarily completed
- Initial phase of analysis
- Soliciting feedback from
 - Eastern Range and other government interests
 - Launch programs
- Produce recommendations and complete thesis by August

BACKUP MATERIAL

Some Advantages of System Dynamics

- Units are required for all values
 - Increases comprehension
 - Verifies equations

• Helpful comments are readily available onscreen

- Displays definitions, units...
- Used for verifying logic
- Constantly updated documentation of variables

 Probability distributions can be assigned to reflect confidence levels and uncertainty

• Applicable to scrub rates, rescheduling rates, launch manifest...

Software offers built-in sensitivity and optimization tools

Additional Strengths of System Dynamics Approach

System Dynamics modeling:

Provides a visual map for tracing cause & effects

- Accounts for feedback relationships and completes the "open loops"
- Conducive to running "what if" scenarios

 Excellent tool for decision makers, business planners, and policy analysts

• Aids the understanding of complex systems

Generic Launch Timeline

