
Advances in Concurrent Engineering —CE97, Aug. 20-22, 1997, pp. 83-90

Fourth ISPE International Conference on Concurrent Engineering: Research and Applications

EXPLORING INTEGRATIVE MECHANISMS WITH A

VIEW TOWARDS DESIGN FOR INTEGRATION

Tyson R. Browning
Technology, Management, and Policy Program

Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT
The integrated product development (IPD) paradigm has

gained recognition as a preferred approach to product
development. In complex system development programs, the
concurrent engineering aspect of IPD is often approached
through the use of integrated product teams (IPTs), each
assigned to develop various components of the overall system.
Many have struggled to determine the characteristics of highly
effective IPTs and the circumstances in which particular
perspectives should be incorporated within an IPT. However,
much less research has addressed the nature and management of
the relationships between IPTs—the integration of IPTs within
a program. While many have lamented that coordination
problems have played a large part in diminishing the
performance of their overall programs, a systematic approach
for considering these issues a priori in program design is
lacking. This paper presupposes a familiarity with interteam
integration issues and (1) describes a framework for thinking
about organization integration within a program, (2) presents
integrative mechanisms (IMs) useful for managing IPT
interfaces, and (3) begins to develop a systematic approach for
designing programs that explicitly considers integration
needs, design for integration (DFI).

INTRODUCTION
For several years now, the integrated product development

(IPD) paradigm has been gaining recognition as a preferred
approach to complex system product development. When
developing a complex system, no single person or small group
is able to provide all the necessary perspectives. Furthermore,
competition and shrinking budgets are forcing product
development schedule compression, leading to task
overlapping, or concurrent engineering. This aspect of IPD
has been approached through the use of integrated product and
process development teams—integrated product teams (IPTs)

for short—each consisting of a cross-functional,
upstream/downstream representation and assigned to various
subsystems or components of the overall system. Many have
struggled to determine the characteristics of highly effective
IPTs and the circumstances in which particular perspectives
should be incorporated within an IPT. However, much less
research has addressed the relationships between IPTs. While
integration problems continue to play a large part in
diminishing program performance, a systematic approach for
considering these complications a priori in program design is
lacking.

Program integration challenges stem from systems
architecting and engineering issues. Complex systems derive
their value from the relationships among their parts. These
interactions make a system much greater than its parts.
Therefore, as Rechtin (1991) notes, “The greatest leverage in
system architecting is at the interfaces” (p. 29). While true for
a system architecture, it also applies to the IPTs that develop a
system’s constituent components. A well integrated
development organization can provide a significant source of
competitive advantage. Furthermore, organization and system
architecture are linked. Recognizing this connection enables
the discerning organization to exploit architectural decisions
to enhance interteam integration. Where possible, the
organization structure should mirror the system product
architecture (Grady, 1994). Thus, the efficiency of the
organization will to an extent depend on the nature of the
interfaces within the system architecture.

Program design becomes increasingly difficult as system
complexity increases. (Complexity here implies numerous,
highly-coupled components.) The IPTs working together to
develop such a system face a daunting task. Team A needs to
know what values team B has set for parameters x and y ; team B
needs to know what values team C is using for parameters w and
z; but team C needs to know the result of team A’s activities to
determine w and z. Coupled “chicken and egg” problems may

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/19878795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

imply a slow, iterative development process. Without cautious
system partitioning, the number of required interfaces and thus
the number of iterations required to converge to an acceptable
design can increase exponentially with system complexity.
As the amount of task and IPT interdependence increases, the
traffic on inter-IPT communication channels increases. A
study by Tausworthe adds the following caution: “A team
producing at the fastest rate humanly possible spends half its
time coordinating and interfacing” (Qtd. in Rechtin, 1991, p.
284).

The necessity of so much coordination points to the
management facets of the program integration issue. The
design of complex system products involves hundreds or
thousands of individuals making millions of design decisions
over months or years. Couplings within the system
architecture imply these activities require personal interaction
among the designers: design choices involve tradeoffs which
affect many other design, process, cost, risk, manufacturing,
and operational parameters. Managers’ “primary development
challenge is to integrate the many sub-problem solutions into
a well-designed system. … The trouble is that such interactions
are often poorly understood and are rarely known in advance”
(Eppinger et al., 1994). Teams are seen as a means of
achieving cross-functional integration, but, as Cole (1995)
notes, “Integration of teams’ activities can … be a nightmare.
Like functionally oriented organizations, teams can get tunnel
vision and forget that there are other missions and reasons for
an organization’s existence.” In managing the interactions, it
helps to have a design process and an organization in place
that has been designed to make this effort as straightforward as
possible. In any case, better understanding the issues
underlying IPT interfaces would seem to hold great potential
for improving the product development process.

The keys to managing IPT interfaces effectively lie in
ensuring the proper interactions between well-partitioned IPTs
and functional groups followed by facilitating the smooth
transfer of information across these interfaces. First, the right
teams must be formed. Second, the right interfaces must be
arranged between them. Then, the right coordinating
mechanisms must streamline the necessary transfers across
those interfaces.

A few authors have described how designing the design
process on the basis of intelligent task partitioning and
information flow can improve product development
effectiveness and competitiveness (von Hipple, 1990;
Whitney, 1990). Following this lead, this paper presupposes
a familiarity with multi-team coordination issues and (1)
describes a framework for thinking about integration within a
program, (2) presents integrative mechanisms (IMs) useful for
managing IPT interfaces, and (3) outlines a systematic
approach for designing programs that explicitly considers
integration needs, design for integration (DFI).

While organization design in a program and the
application of IMs may be handled implicitly, an explicit,
informed, systematic approach has several advantages.
Systematic methods which serve as a baseline for—not as a
substitute for—intuitive judgments are prized because they lend
themselves to comparison and benchmarking. Change

becomes measurable along dimensions of interest.
Furthermore, systematic methods provide an orientation
framework that the varied perspectives addressing the issue can
agree on and work from.

Throughout, this paper draws from research conducted
largely in the American defense aircraft industry.1 While many
aspects of this industry make it unique, the framework
presented here applies to complex system product development
projects in other contexts (e.g., commercial aircraft,
spacecraft, ocean vessels, etc.). In all such programs, the
necessity of integrating the perspectives of the groups
developing the various subsystems has been noted as acutely
problematic.

A FRAMEWORK FOR PROGRAM INTEGRATION
This section presents a hierarchical framework for

program integration. The hierarchy reflects the fact that not
only must product teams be cross-functionally integrated as
IPTs, but also the IPTs themselves must be integrated on a
higher level. Hence, there exists at least a second level of
integration within each program. Furthermore, large, complex
system development programs experience great difficulties
integrating all functions into small IPTs. Often, this is not
practical or even feasible. Various functional support groups
(FSGs) such as test labs remain outside IPTs’ jurisdictions.
Such situations challenge an IPT approach to IPD. Yet certain
IMs can successfully integrate these groups at a higher level in
the program. For programs with many IPTs and FSGs,
integration-oriented organization structures are useful ways to
partition the organization and include disparate groups.

Thus, it is convenient to think of integration as necessary
at at least three levels within a program. McCord and Eppinger
(1993) distinguish IPTs and “system teams”—sets of IPTs and
FSGs pulled together because of mutual, high traffic
interfaces.2 IPTs represent a first level of integration; system
teams exemplify a second. Considering the overall program as
yet another level, an organization integration framework must
consist of at least three levels. Figure 1 illustrates a three level
framework: IPT level (first level), system team level (second
level), and program level (third level). Individual IPTs (and
FSGs, if applicable) can be aggregated in system teams, which,
along with other IPTs (and FSGs) and system teams, comprise a
program. Other IPTs and FSGs, not fitting within system
teams, are tied into the organization at higher levels (here, the
program level). Arrows in Figure 1 represent the most
significant information exchange needs. (Less intense
information dependencies are not shown.) Dashed ovals
distinguish system team groupings.

1 This paper draws from material in (Browning, 1996a).
2 Technically, it is probably more correct to refer to these groupings as
“subsystem teams,” since the organizational entity formed often consists
of a group of IPTs working on the respective components of a particular
subsystem—one of many in the overall system which the program as a
whole is developing. Alas, the system team designation is already
prevalent in industry.

FSG

IPT

IPT
Level 1

IPT
Level 1

IPT
Level 1

System
Team

grouping
Level 2

IPT
Level 1

IPT
Level 1

FSG
Level 1

IPT

Program Level
Level 3

FIGURE 1: THREE LEVELS OF INTEGRATION

Note that the three level structure provides only a
minimum amount of hierarchical distinction. Complex system
development programs often require additional levels between
one and three—i.e., different levels of system teams. For
example, the F/A-18E/F program expands the hierarchy to four
or five levels to capture finer distinctions between system team
sizes and/or priorities. Note also that the hierarchical nature of
the proposed framework is intended to mirror the hierarchy of
the product architecture, not the power structure of the
company or program organization—although these may
correlate to an extent.

Figure 2 shows an example system team composition.
This system team serves to integrate four IPTs and two FSGs as
well as a couple of functional perspectives not inserted at the
IPT level. This system team is composed of representatives
from the IPTs (here, the team leaders, although this need not be
the case) and FSGs, additional functional representatives, and
one or more system team leaders (who also likely represent the
system team at the program or higher system team level).

Integrating at the various levels reveals tradeoffs. For
example, should a given functional representative be made
available to and integrated within a particular IPT? or will
some resources have to be shared by many IPTs and instead
integrated at level two or three? The addressing of these
tradeoffs and the appropriate application of IMs to facilitate
inter-IPT and system team integration are the subject of the
proposed DFI process.

Leader

Leader

Leader

Leader

IPT #1

IPT #4

IPT #2

IPT #3

System Team

IPT
Leader

#1

IPT
Leader

#2

IPT
Leader

#4

IPT
Leader

#3

System
Team

Leader(s)

FSG #1

FSG #2

e.g., vibration test lab

FSG #1
Rep.

FSG #2
Rep.

e.g.,
subsystem

guru

e.g.,
finance

rep.

FIGURE 2: EXAMPLE SYSTEM TEAM
COMPOSITION 3

INTEGRATIVE MECHANISMS FACILITATING
COORDINATION AT LEVELS 2 AND 3

Integrative mechanisms (IMs) are strategies and tools for
effectively coordinating actions between multiple IPTs and

3 This diagram is adapted from PRTM’s illustration of what they call
Interlocking Development Teams. While the illustration is useful here,
the related methodology is different.

FSGs. IMs are catalysts, facilitating information flow across
organizational, locational, cultural, traditional, and other
barriers. They must regulate information flow such that it is
available but not overwhelming. The categories of IMs listed
below represent the tools in an integrator’s “tool kit.”
Elsewhere (Browning, 1996a; Browning, 1996b; Browning,
1997; McCord and Eppinger, 1993; Susman, 1992, pp. 140-
156), the IMs in Table 1 have been discussed and explored in
varied contexts. For the purposes of DFI, IMs are presented as
the type of coordinating mechanisms available for integrating
IPTs, FSGs, and system teams in programs.

TABLE 1: INTEGRATIVE MECHANISMS

1. Systems engineering and interface optimization—
designing the organization to mirror the system
product architecture. An intelligently decomposed and
partitioned architecture (such that interfaces between
subsystems are minimized) will facilitate interteam
interface management.

2. Improved information and communication
technologies—linked CAD/CAM/CAE systems, e-
mail, tele- and videoconferencing, common databases
(easily accessed and shared), common nomenclature,
etc.

3. Training—especially in team-building (and “system
team-building” and “program-building”); raising
awareness about integration needs and roles

4. Co-location—physical adjacency of IPT, FSG, system
team, and/or program members

5. Traditional meetings—face-to-face gatherings for
information sharing and/or decision making

6. “Town meetings”—not to share technical information,
but to boost camaraderie and to increase awareness of
program-wide issues

7. Manager mediation—“up-over-down” (hierarchical)
issue mediation schemes; heavyweight product
managers (HPMs) or integrators

8. Participant mediation—liaisons, engineering liaisons,
conflict resolution engineers

9. Interface “management” groups—integration teams
tasked with ensuring ongoing or incident-specific
mediation of interface issues

10. Interface contracts and scorecards—explicit
delineation of interface characteristics and metrics for
evaluating interface effectiveness

TOWARDS A SYSTEMATIC APPROACH TO
DESIGNING PROGRAMS FOR INTEGRATION

In the efforts to create effective interfaces between teams
and insure the proper flow of information, a systematic

approach aids in coordinating the endeavors and helps
guarantee the inclusion of important considerations.
Mohrman et al. (1995), having looked at team-based
organizations extensively, note that “the most effective teams
we saw used systematic planning processes for determining
responsibilities and for scheduling and integrating their work”
(p. 178). Systematic approaches introduce rigor and structure
to the decision-making process. Planning and forethought
regarding IPT interfaces likewise facilitates effective program
execution. This section outlines the key steps in a proposed
approach to design for integration (DFI) that explicitly
considers interteam integration issues. DFI applies to the
design of the design process itself. While additional details,
unique to a given program, will provide constraints and
guidance in this process, the general steps shown in Figure 3
apply to the majority of situations. Note, then, that the
process proposed below is not the DFI process, but a DFI
process. The strawman process herein is intended to illustrate
the link between considerations important to incorporate into
one’s DFI efforts. Hopefully, one will also discern from the
process the necessity of planning a development organization
while explicitly and systematically contemplating integration
issues.

As the control loop implies, a DFI process is iterative.
The dashed portion of the feedback loop indicates changes that
will most likely take effect on a subsequent project, whereas
the solid line portion represents easier opportunities to modify
projects already underway. Each of these steps is elaborated
below, along with suggestions for implementation.

 1) Know System Architecture
Gulati and Eppinger (1996) explore the coupling of

product architecture to development program organization
structure, noting that decisions in one realm affect and even
constrain opportunities in the other. Thus, as one considers
organization integration issues, one must first look at the
system architecture that organization will be charged to
develop. Figure 4 shows their proposed relationship:
architecture and organization are linked through the process of
problem decomposition and system integration.

Decomposition and integration are generalized inverse
problems. Therefore, the first step in the DFI process is to
understand as completely as possible (or practical) the nature
of the system architecture, especially its decomposition and
internal interfaces, for these will directly affect the
organization and the ease of integrating the teams working on
the various subproblems.

How, specifically, does a product architecture and its
associated task set affect the organization and its
communication patterns? Morelli et al. (1995) investigate the
extent to which coordination-type communication between
project groups is predictable given a known task set. With the
proposed tasks before them, project participants were able to
predict 81% of the communication that in fact took place. This
result signifies the possibility of designing an organization
on the basis of a proposed system architecture and its
associated task set.

Understand
system

architecture

Assign IPTs to
system elements

Systematically
group IPTs

Apply
IMs

Manage
interfaces

Reassess
status

FIGURE 3: THE DESIGN FOR INTEGRATION PROCESS

Decomposition

Product
Architecture

Organization
Design

Integrationsubproblems

FIGURE 4: ARCHITECTURE TIED TO
ORGANIZATION THROUGH

DECOMPOSITION/INTEGRATION PROBLEM
(GULATI AND EPPINGER, 1996)

Given an unprecedented or revolutionary system,
however, possessing a thorough understanding of the
architecture and the tasks to develop it is understandably
difficult. The need to better understand system specifications
has thus brought the recent focus on requirements management
and on systems engineering as a discipline. Knowledge of
tasks and their duration is essential to the creation of the
statement of work (SOW),work breakdown structure (WBS), and
integrated master schedule (IMS). This knowledge is likewise
crucial for interface planning and management. For upgrades
and other largely precedented systems, it is much easier
(although not necessarily easy) to outline tasks and their
information requirements. Where the architecture and/or tasks
are yet to be determined, organization designers must build in
flexibility so the organization can adjust once the
characteristics of the required IPT and system team interfaces
settle out. Baseline organization designs for programs
developing unprecedented systems will have to be the most
flexible of all. (This requires an incentive system that
encourages organization flexibility.)

The issues of systems architecting are crucial as inputs to
any design process. The importance of intelligently grouping
functional requirements and decomposing architectural
elements to meet those requirements cannot be overstated. It is
here that DFI begins, for it is here that much of the difficulty of
the remaining integration tasks is determined. However, this
paper will not address the tenets of intelligent decomposition
or systems architecting, which several authors have discussed.
(See, for example, Alexander, 1964; Altus et al., 1995; Kusiak
and Wang, 1993; Michelena and Papalambros, 1995; Pimmler
and Eppinger, 1994; Rechtin, 1991,.) Leaving aside the
notion that product architectures can be designed with a

consideration of organization integration concerns, the
remainder of this paper will focus on how, given an
architecture, one might proceed to design an organization to
develop it.

 2) Assign IPTs to system components
Once architectural subsystems and components have been

decomposed and defined to the extent possible, an IPT is
assigned to the development of each component. Ideally, each
IPT would include all of the cross-functional and other
resources necessary over the life of its component
development project. However, resource constraints limit this
possibility and will create the need for additional external
interfaces. Also, depending on the size of the program, and
realizing that IPTs should be kept to a small size, one must
determine what scale of component the IPT will develop.
These issues and others combine to make the IPT assignment
problem nontrivial.

IPT size is an important assignment consideration, one
that directly constrains integration efforts. Since IPTs have a
cross-functional, upstream/downstream (time phase),
customer, and supplier representation, they require more
people than an equivalent, non-cross-functional team. Klein
and Susman (1995) have found the average size of an IPT in the
defense aircraft industry to be 26 full-time members (40
including part-timers). However, Katzenbach and Smith
(1993) set the size of an ideal team at close to ten people,
within a range from two to 25 people (p. 45). Peters (1995)
notes how the reorganized Space Station program uses IPTs of
8-12 members. Sheard and Margolis (1995) cite D. Quinn
Mills as putting the “ideal” team size at 5-7 people. These
numbers represent the optimal number of people who can
usually work together as an effective team “should.” Larger
groups can still be called teams, of course, but they will find it
difficult to achieve the same level of intimate teamwork
espoused by the proponents of “teaming.” As Cole (1995)
understands, “Group dynamics being what they are, groups of
say, 30 or more, tend to break themselves down into smaller
groups anyway.” Certainly, teams with 70 or 100 members
will not be able to perform as IPTs should, and should not be
termed as such. Therefore, given the size limits for effective
IPTs, one is automatically constrained to assign them to a task
of approximately subassembly level development scope.

Table 2 shows in its first column the architectural
hierarchy nomenclature used in space systems development
(Rechtin, 1991; Shishko et al., 1995). The second column
exhibits an example mapping to organization structures.

Large programs will require all of the architectural hierarchy
listed, while smaller projects will not. Note that there is quite
a bit of flexibility as to the level correspondence of IPTs and
system teams. Larger programs will likely require multiple
levels of system teams. In this case, the distinction between
system teams and IPTs begins to blur in many programs. Since
many resources and perspectives can only be integrated at
higher levels, sometimes system teams get called IPTs. While
the distinction does not have to be made, one should keep in
mind the spirit of the IPT is to integrate cross-functionally and
upstream/downstream at the lowest level possible. Also, the
step of assigning IPTs to appropriate level tasks precedes the
step of grouping those IPTs into system team organization
structures. As DFI Step 3 describes, system team structures
should stem from known IPT task assignments and the
interfaces that can then be predicted between them.

TABLE 2: ARCHITECTURE TO ORGANIZATION
HIERARCHY MAPPING (EXAMPLE)

Architecture Organization
System Program

Segment
Element

Subsystem System Team
Assembly

Subassembly IPT
Part

Additional insight into IPT assignment can be gained by
directly examining the tasks required to develop particular
components. The information flow required between tasks (a
time-based consideration) can also inform the composition of
IPTs and the level of resource or perspective integration vis-a-
vis the levels proposed above. Note that different levels of
task complexity between interdependent teams can lead to
interface difficulties. For example, one team might have a “big
picture” perspective while its sibling IPT dwells in the details.
In some cases, it may be more appropriate to assign some
tasks to FSGs.

Much more could be said about the chartering of IPTs.
Again, this paper does not focus on the creation and
management of IPTs themselves, although this is a salient
issue and the subject of much other research. Instead, the point
here is to show how this important step fits into a DFI process.

 3) Systematically group IPTs
After IPTs and necessary FSGs have been assigned to

develop low level components of the system architecture,
these teams and groups should be aggregated into system
teams. System teams will tend to form around major
subsystems, especially if the architecture is wisely partitioned.
However, constraints affecting architectural decomposition are
likely to differ in some ways from those in the organization.
Hence, it is best to conduct an additional analysis to make the
system team grouping determination from the “bottom-up.”

This type of analysis is described using a design structure
matrix and clustering algorithms by McCord and Eppinger
(1993).

This is also the stage in a DFI process where resources that
are not available to each individual team are included at a
system team or program level. Referring again to Figure 1,
some IPTs, FSGs, and/or individual contributors cannot or need
not be integrated at the lowest levels. This is often the case for
tasks requiring minimal interfaces. It is also true in the
opposite case, when groups have highly integrative tasks,
such as process coordination or the design of an extremely
interactive component (e.g., a data transmission subsystem).
In these cases, it is best to integrate the highly interactive
group at a higher level, such as within a system team or at the
program level.

Grouping IPTs and FSGs into system teams is a key step
in the DFI process, for it determines which interfaces will be
crucial in the program. Table 3 discusses the desirable
characteristics of information transfer interfaces.

The goal of this DFI step is to come up with the best
system team breakouts and the beginnings of a viable scheme
for interface mediation (SIM) for the program. A SIM
document explicitly outlines the expected interfaces, their
desired characteristics, and the means of monitoring them. It
is not given a formal outline here, although it should contain
the details of the trade-offs involved in the design of the
integration scheme as well as the implementation plan. As a
formal document, however, it should not be an end in itself.
The SIM document will serve the program’s organizers as an
invaluable interface management tool. Results of SIM
development are included as part of the program’s Systems
Engineering Management Plan (SEMP)4, Integrated Master
Plan (IMP), and/or Program Execution Plan (PEP).5 How well
the system team and integration level determinations are made
will directly affect a program’s success.

 4) Apply Integrative Mechanisms (IMs)
Once IPTs, FSGs, and system teams have been determined

and interface characteristics have been established, the
appropriate IMs from the list in Table 1 must be implemented
to facilitate the interactions—based on the unique physical,
political, architectural, and other attributes of the program.
The deliberations in this step—especially the reasons for
choosing particular IMs—should be recorded in the SIM
document so they can be communicated to the entire program
and revisited later (Step 6).

4 For more details on a SEMP, see, for example, (Blanchard, 1990; DoD,
1994; Kockler, 1990; Shishko, 1995).
5 As described by Peters (, p. 3), a PEP was used for the organizational
transition from a functional organization to IPTs in the Space Station
program. “The PEP represents customer needs in terms of program
strategies and issues, unique contract requirements, program
requirements, program schedules and budget, unique and standard
processes as well as IPT responsibilities and structure. … i.e. their
operating node, schedule development, resource allocation,
organizational structure, process, and overall team authority and
responsibilities.”

TABLE 3: DESIRABLE INTERFACE
CHARACTERISTICS

1. Defined , in terms of what information needs to flow,
where, when, and how (i.e., “the right information at
the right place at the right time”).

2. Tight - f i t t ing , in terms of task assignment. Tasks
should not overlap or “underlap.”

3. Permeable , in terms of permitting and regulating
information flow. Information should arrive “just-in-
time”—not too early or too late. It must be the correct
amount of information—not more and not less. It must
flow readily and smoothly, yet not inundate its
recipients. The interface must allow just the right
amount of the right information to flow.

4. Mutable , in terms of altering information flow.
There must be a means of adjusting what information
gets transferred, when, and how.

5. Eff ic ient , in terms of time lag from provider to
recipient. This path should be free of undue
bureaucracy or other delays.

6. Documented , in terms of keeping a record of
information flow. Information useful once may be
useful again. To avoid “reinventing the wheel,” one
needs a record of the flow. Documentation facilitates
learning and accumulation of a knowledge base.

7. Measurable , in terms of allowing analysis of success
and flow rate. Success should be based on objective
criteria where possible. Metrics to evaluate
information flow and interteam interactions are crucial
to provide appropriate incentives and further process
improvement.

8. Adapted, in terms of the program’s task, size, and
stage. One size does not fit all. Each important
interface deserves explicit, personalized, unique
attention and optimization.

 5) Manage interfaces
After designing the best possible organization structure

and choosing appropriate IMs a priori, program management
must keep information within the program flowing smoothly.
This includes mediating technical issues via suitable IMs and
monitoring the effectiveness of communication. Evaluating
the effectiveness of the SIM is difficult on a real-time basis.
Often only “lagging indicators” such as adherence to budget
and schedule are available as macro level proxy metrics. This
is one reason why successful integration is notoriously
difficult. One proposed metric includes counting the number of
change notices involving interfaces (which is most of them).
Their source and scope must be noted. However, change notice
data are difficult to obtain and analyze. Integrated prototype
testing and design reviews also provide opportunities to
formally evaluate organization integration effectiveness. Are

the issues that result from these tests and reviews the result of a
lack of information? miscommunication? unresolved
technical issues? Checklists and scorecards can assist
reviewers in asking the right questions about integration.
Tracking the time spent (perhaps through charge numbers) by
members of integration teams and other individuals on IM-
related tasks might also yield interesting data on which
mechanisms are being utilized and where the issues reside.

 6) Reassess status
As the program evolves, the SIM will need to be

reevaluated. Some IMs will no longer be appropriate. Some
interfaces will become more important, others less. New
interfaces will form. Some will disappear altogether. For
example, IPTs will tend to utilize design support FSGs early in
the design process; later, they will spend more time with
production process FSGs. As the organization changes, so
must the IMs that connect it. It should be the periodic, if not
ongoing, task of a group of organization designers to
reevaluate the SIM and effect the necessary changes. Making
sure this process is well-documented will greatly improve its
effectiveness in the long run, especially for long-term
development projects where turnover among the membership
of the SIM group is likely.

CONCLUSION
The proposed DFI process is aimed at providing a

systematic approach to organization design that explicitly
accounts for interteam integration issues. Such issues have
been the root cause of numerous complications and setbacks in
complex system development projects. Despite the
attractiveness of incorporating these considerations earlier and
explicitly in program design decisions, barriers exist to doing
so. First, one must establish that such issues indeed account
for substantial performance gaps. This paper addressed this
issue in a cursory fashion but largely assumes that the
immediate CERA audience is aware of such matters. Second,
some organization changes deemed advantageous by the
process analysis may run counter to tradition. New programs
are the best opportunities to make necessary changes. This
also argues for organization design foresight early in the
project. Third, a suitable group of individuals to conduct the
DFI process may be hard to find and assemble. Obviously,
they must have a systems perspective and the authority or
support of authority necessary to enact their decisions. As a
minimum, it is expected that key program managers and
potential system team managers will be present on this
committee (keeping in mind that it must be kept to a
reasonable size).

Processes resembling aspects of the six step DFI
framework are developing in several programs I have visited
and are suspected in many others that also appreciate
integration issues and their potential to influence program
success. It is hoped that further elaboration and refinement
will provide a DFI template suitable for a wide range of

programs, yet powerful enough to provide explicit directions
towards the anticipation and resolution of integration issues.

Companies can pursue launching and managing complex
programs as a core competency or organizational capability.
In the development of large, complex systems, a systematic
approach is required to ensure an effective product and process.
Companies that learn and begin improving upon a systematic
process for process development will be a step ahead of most
competitors.

ACKNOWLEDGMENT
Direct and indirect funding for this work has been provided

through the Massachusetts Institute of Technology’s Lean
Aircraft Initiative, sponsored jointly by the US Air Force and a
consortium of aerospace companies. Additional support has
come from MIT and the National Science Foundation. I am
grateful for helpful comments provided by Stanley Weiss,
Steven Eppinger, and Charlie Boppe.

REFERENCES
Alexander, C., 1964, Notes on the Synthesis of Form

Cambridge, MA: Harvard University Press.
Altus, S. S., Kroo, I. M. and Gage, P. J., 1995, "A Genetic

Algorithm for Scheduling and Decomposition of
Multidisciplinary Design Problems" Proceedings of the 21st
ASME Design Automation Conference, Boston, Sept.

Blanchard, B. S. and Fabrycky, W. J., 1990, Systems
Engineering and Analysis. Second Edition. Englewood Cliffs,
NJ: Prentice Hall.

Browning, T. R., 1996a, Systematic IPT Integration in Lean
Development Programs Master's Thesis (Aero./TPP), M.I.T.,
Cambridge, MA.

Browning, T. R., 1996b, "A Systems Engineering Approach
to Multi-Team Integration: Interdependence and Integrative
Mechanisms" Proceedings of the Sixth Annual International
Symposium of INCOSE, St. Louis, July.

Browning, T. R., 1997, "Mechanisms for Interteam
Integration: Findings from Five Case Studies" Proceedings of
the Seventh Annual International Symposium of INCOSE, Los
Angeles, Aug. 3-7.

Cole, W. E., 1995, "Cooking Up a Batch of Team Synergy:
Ingredients for Setting Up Successful Teams" Program Manager
No. Sept.-Oct., pp. 28-33.

DoD, 1994, MIL-STD-499B Systems Engineering (Draft)
DoD, Military Standard Specifications MIL-STD-499B.

Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D.
A., 1994, "A Model-Based Method for Organizing Tasks in
Product Development" Research in Engineering Design Vol.
6, , pp. 1-13.

Grady, J. O., 1994, System Integration Boca Raton, FL:
CRC Press.

Gulati, R. K. and Eppinger, S. D., 1996, "The Coupling of
Product Architecture and Organizational Structure Decisions"
M.I.T. International Center for Research on the Management
of Technology, Working Paper no.151.

Katzenbach, J. R. and Smith, D. K., 1993, The Wisdom of
Teams: Creating the High-Performance Organization Boston:
Harvard Business School Press.

Klein, J. A. and Susman, G. I., 1995, "Lean Aircraft
Initiative Organization & Human Resources (O&HR) Survey
Feedback-Integrated Product Teams (IPTs)" M.I.T. Lean
Aircraft Initiative, White Paper LEAN 95-03.

Kockler, F. R. et al., 1990, Systems Engineering
Management Guide Defense Systems Management College.

Kusiak, A. and Wang, J., 1993, "Decomposition of the
Design Process" Journal of Mechanical Design Vol. 115, No.
December, pp. 687-695.

McCord, K. R. and Eppinger, S. D., 1993, "Managing the
Integration Problem in Concurrent Engineering" M.I.T. Sloan
School of Management, Working Paper no.3594.

Michelena, N. F. and Papalambros, P. Y., 1995, "Optimal
Model-based Decomposition of Powertrain System Design"
Proceedings of the ASME Advances in Design Automation.

Mohrman, S. A., Cohen, S. G., and Mohrman, Jr., A. M.,
1995, Designing Team-Based Organizations San Francisco:
Jossey-Bass.

Morelli, M. D., Eppinger, S. D. and Gulati, R. K., 1995,
"Predicting Technical Communication in Product Development
Organizations" IEEE Transactions on Engineering
Management Vol. 42, No. 3, pp. 215-222.

Peters, J. F., 1995, "The Transition of Functional
Organizations to Integrated Product Teams on the Space
Station Program" Proceedings of the Fifth Annual
International Symposium of INCOSE, St. Louis, July 22-26.

Pimmler, T. U. and Eppinger, S. D., 1994, "Integration
Analysis of Product Decompositions" Proceedings of the
ASME Design Theory and Methodology Conference,
Minneapolis, MN, Sept.

Rechtin, E., 1991, Systems Architecting: Creating &
Building Complex Systems Englewood Cliffs, NJ: P T R
Prentice Hall.

Sheard, S. A. and Margolis, M. E., 1995, "Team Structures
for Systems Engineering in an IPT Environment" Proceedings
of the Fifth Annual International Symposium of INCOSE, St.
Louis, July 22-26.

Shishko, R. et al., 1995, NASA Systems Engineering
Handbook NASA.

Susman, G. I., Ed. 1992, Integrating Design and
Manufacturing for Competitive Advantage. New York: Oxford
University Press.

von Hipple, E., 1990, "Task Partitioning: An Innovation
Process Variable" Research Policy Vol. 19, , pp. 407-418.

Whitney, D. E., 1990, "Designing the Design Process"
Research in Engineering Design Vol. 2, , pp. 3-13.

