
7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

Approaches to Calculating Systems Engineering
Schedule in Parametric Cost Models

John E. Gaffney1, Ricardo Valerdi2 and Michael A. Ross3

1 Lockheed Martin, USA, j.gaffney@lmco.com

2 Massachusetts Institute of Technology, USA, rvalerdi@mit.edu
3 r2Estimating, USA, mike.ross@r2estimating.com

Abstract
This paper provides two similar approaches for calculating project schedule from a systems engineering perspective. To
illustrate the genesis of each approach, we provide two analogies; one from economics and one from physics. These are
complemented with mathematical derivations that provide quantitative comparisons of the tradeoff between the duration of a
project and the optimal effort. Connections are made to Books’ Law and Parkinson’s Law to validate the theoretical discussion
with the pragmatic observations from the software engineering literature.

Keywords – cost estimation, schedule estimation, COSYSMO, COCOMO II.

1 Introduction
An issue of considerable importance to proposal managers,
program managers, technical planners and to software
engineering and systems engineering managers is how
schedule compression or stretch-out affects engineering
costs or overall project costs. Schedule compression (or
stretch-out) is defined as the amount or percentage of
reduction (increase) of a project or software or systems
engineering schedule with respect to some ideal or nominal
value of cost or productivity.
Understanding the relationship between cost (and
productivity) and schedule (duration) can help us to answer
such questions as:

What is the optimum duration to perform this task (e.g.,
development of a software system)?

Can schedule (duration) and cost (effort) be traded off;
if so, what is the tradeoff?

Here, optimum might mean with respect to minimizing
cost. More generally, it might mean with respect to some
utility or value function of cost and duration, in which the
utilities of the cost and schedule (duration) values are
stated, indicating the relative importance of schedule
(project duration) and cost. In the extreme, a project might
be either cost driven or schedule driven.
We consider two approaches for calculating systems
engineering schedule and discuss the assumptions of each.
Both approaches use a parametric or top-down
mathematical model to represent relationships among size
(S), cost or effort (K), and schedule or duration (T) and
have the following shared assumptions:

• Cost or effort (K) is a function of the size of the
system (S)

• Schedule or duration (T) can be calculated by the
cost or effort (K) produced by a parametric model

• Schedule or duration (T) reduction will result in a
cost or effort (K) increase

• Organizations have process efficiencies that
determine their shortest possible schedule or
duration (T) of a project

The main difference between the two approaches is in the
way they determine process efficiencies on projects. The
first approach leverages the idea of the Cobb-Douglas
production function that enables tradeoffs between effort
and schedule. The second method uses an energy to work
analogy to define a probabilistic content production
relationship that enables tradeoffs between effort and
duration with attendant confidence probability (cost and
schedule risk) and then defines the notion of management
stress to constrain and limit the content production
relationship in terms of nominal (natural) management
stress, minimum duration (Brook’s Law), and minimum
effort (Parkinson’s Law). We provide derivations for both
approaches and discuss the underlying assumptions that
drive them. We conclude by summarizing how these two
approaches can be reconciled to improve the COSYSMO
systems engineering cost estimation model.

2 Why Estimate Schedule?

2.1 Background
An issue of considerable importance to proposal managers,
program managers, technical planners, and to software
engineering and systems engineering managers is how
schedule compression or stretch-out affects engineering
costs and overall project costs. Schedule compression (or
stretch-out) can be defined as the amount or percentage of
reduction (increase) of a project or software or systems
engineering schedule with respect to some ideal or nominal
value as related to cost or productivity. One difficulty is
identifying whether there was compression, stretch-out, or a
normal situation in any particular project instance. Another
problem is knowing what is dependent and what is
independent, or do we only know associations? This
question relates to the fact that correlation does not mean
causality. This paper does not deal with such philosophical

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

issues. Rather, it defines various relationships (equations)
amongst size S , effort K , and schedule (duration) or T .
It describes how the values of the parameters for such
relationships can be obtained and how these relationships
can be used to answer various questions of considerable
practical value to estimators, and to managers and technical
personnel (e.g., software engineers and systems engineers).
However, the paper does consider the very important issue
of practical limits on project performance, i.e., the physics
of project execution (and the included or subsidiary
software engineering and systems engineering tasks). This
is in recognition, for example, that there is a limit to which
project tasks can be subdivided enabling parallelism of
project tasks to enable project schedules to minimized. This
physical phenomenon is partially due to the increasing
overhead due to increased amounts of communication that
grows in proportion to 2

n , where n is the number of
units/persons that must communicate with each other.

2.2 Research Questions
A fairly safe assumption regarding any project is that every
stakeholder has some degree of interest in how long a
project will take to complete. Many business and technical
decisions are based on some estimate or best guess about
the duration and schedule of a project. Estimators and
others are interested in being able to obtain answers to such
questions as:

What is the expected percent change in effort for a
stated percent change in schedule (duration)?

What is the expected change in effort (e.g.,
increase/decrease in person hours/months) that
would correspond to a given change in schedule
(e.g., increase/decrease in months/weeks)?

Depending upon the relationship between schedule and
effort, there can be a positive or negative relationship
between effort and schedule. Schedule compression (or
stretch-out) can be defined as the amount or percentage of
reduction (increase) of a project or software or systems
engineering schedule with respect to some ideal or nominal
value as related to cost or productivity. An issue of
considerable importance to proposal managers, program
managers, technical planners and to software engineering
and systems engineering managers is how schedule
compression or stretch-out affects engineering costs or
overall project costs. Now, we provide a method to provide
answers to questions, such as the two given above that
relate to the (likely) affect of a change in schedule or effort.
Knowing a relationship between cost (and productivity) and
schedule (duration) can help us to answer such questions as:

(1) “What is the optimum duration to perform this
task (e.g., development of a software system)?”
Here, optimum might mean with respect to
minimizing cost. More generally, it might mean
with respect to some utility or value function of
cost and duration, in which the relative importance

or utilities of the cost and schedule (duration)
values are stated. In the extreme, a project might
be cost driven or schedule driven.

“Can schedule (duration) and cost (effort) be traded
off; if so, what is the tradeoff?”

Often, the schedule for performing the systems or software
engineering work on a project will be imposed upon those
who will perform the systems or software engineering
tasks. However, it may also be of interest and value to the
person performing the estimate as well as the proposal,
program or technical managers whom he is supporting, to
determine what schedule or duration would be expected to
correspond to the effort estimate produced by COSYSMO
[1], COCOMO [2,3] or other resource (labor) estimation
models. This value of schedule would be based on past
project experience and might be smaller than, greater than,
or equal to the schedule value that might be imposed upon
those performing the systems engineering tasks.
COSYSMO, COCOMO and the other members of the
COCOMO family of estimation models estimate effort as
their primary outputs. Consequently, a major topic of this
paper is the estimation of the schedule that would
correspond to the estimated effort and the possibility that
exists in some cases for trade-offs between schedule and
effort.

3 Defining Effort, Duration and Size
The following definitions are extracted from [4] and edited
to suit the system engineering context of this paper. We
first conceptually define staffing to be some function of
elapsed calendar time t , ()tPf , that describes, for a
particular instance of some task or collection of tasks, the
application of people over time within the task’s time
interval. We define this time interval in absolute terms as

[]start finish
T ,T where

start
T and

finish
T represent the start

and finish dates, respectively, of the task. In the interest of
generalization, we prefer to use a

start
T -relative frame to

describe this interval; therefore,
start
T relative to

start
T is

start start
T T 0! = and

finish
T relative to

start
T is

finish start
T T! , the value of which we will represent as T .

The resulting
start
T -relative task interval is []0,T . Note

that the value of T represents not only the
start
T -relative

point in time where the task finishes, it also represents the
duration (elapsed calendar time) of the task interval.

3.1 Effort

With our conceptual definition of a staffing function
Pf ,

we now define the concept of effort to be some function of
elapsed calendar time t , ()tEf , that describes, for a
particular task, the accumulated result of people laboring to
do work over elapsed time t :

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

dt! "E Pf f (1)

Using Equation (1) as our definition of an effort function
with respect to its associated staffing function we can now
define an instantaneous staffing function with respect to its
associated effort function by differentiating Equation (1)
with respect to time t and then solving for

Pf :

d d
dt

dt dt

d

dt

=

! =

"
E

P

E
P

f
f

f
f

 (2)

3.2 Task Effort

We have already defined []0,T to be the
start
T -relative

task time interval where T represents process duration. We
now define task effort K to be the change in effort within
this task time interval.

() () ()
0

0
T

K dt T T! = " =# P E E Ef f f f (3)

where ()0 0!Ef ; i.e., no task effort, by definition, can
be spent before the task starts.

3.3 Effective Size (Content)
We describe system development processes as transforming
one abstraction (the desire or the requirements) to another
abstraction (the system product). Each and every
abstraction, be it expressed in a natural language, as
structured text, or even as graphic constructs; consists of
primitive elements that we refer to as size units. Examples
of commonly-used size units in system and software
engineering include operational scenarios, interfaces,
algorithms, use cases, Source Lines of Code (SLOC),
function points, objects, methods, classes, and web pages;
basically something that can be consistently counted and
reasonably represents the work that must be done. We
choose here to define the notion of effective size S of a
particular abstraction to be the number (count) of size units
in the abstraction that are considered to be directly related
to the resources (labor and time) necessary to develop said
system; this includes developing new content plus selecting,
understanding, incorporating, changing, and/or verifying
any included legacy content1.

1 Examples of legacy content include Commercial Off-The
Shelf (COTS) content, reused content, and content from a
previous build, increment, or release.

4 Genesis of the Two Approaches

4.1 Economics Approach – Cobb-Douglas Form –
COSYSMO-R

The basic approach considered here is to use a parametric
or top-down mathematical model to represent relationships
among size S , effort (cost) K , and duration (schedule)
T . Note that S could be equivalent new source statements
in the case of software, e.g. in the COCOMO tool, or
equivalent new requirements in the case of systems
engineering estimation, e.g., in the COSYSMO tool. So,
what is a model (mathematical relationship) that might be
used to help to answer the above questions? A
generalization of the Cobb-Douglas production function is
of the form

1

i

n
Q

i

i

O A F
=

= ! (4)

where

O ! Output of the production process

A ! Total productivity factor (and
potentially a scalar calibration constant)

iQ

i
F ! Factor of production

If we assume size to be the output of the production process
and assume each of effort and duration to be factors of
production, then we can notionally (ignoring, for the
moment, the exponents of the production factors) state
Size Productivity Factor Effort Duration= ! ! (5)

4.2 Physics Analogy Approach – Energy to Work
Form – r2SEF

A branch of the software estimating world has been using
an integrated effort and duration parametric estimating
approach originally proposed by Putnam [5] as the SLIM
model, improved upon by Jensen [6] as the Seer model, and
extended by [4] as the r2 Software Estimating Framework
(r2SEF). The approach is based on an analogy to the
physics of directed energy into a process yielding work (a
product) out of that process. Physics defines the notion of
power as being the rate at which work is done; i.e.,
Power Work Time! . If we assume power is analogous
to the cumulative effect of people laboring on a project
(effort) and that work is analogous to produced system
content (size), then we can notionally (ignoring, for the
moment, possible nonlinearities) state

Size
Effort

Time

Size Efficiency Effort Time

!

" = # #

 (6)

where

Efficiency ! Constant of proportionality (and
potentially a scalar calibration constant)

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

In this relationship the product of effort and time represents
the energy applied to the process and size represents the
work produced by the process. The symbol ! indicates
that the two sides are proportional [4] has extended this idea
to include the notion that defects are the undesired
byproducts of the engineering development process; i.e.,
defects can be viewed as work (albeit undesirable)
produced by the process.

5 Two Approaches – Derivation

5.1 Economics Approach – Cobb-Douglas Form –
COSYSMO-R

Production functions such as the Cobb-Douglas Production
Function were developed for use in economics analyses.
This functional form relates an output, such as number of
automobiles produced annually to number of labor hours
and amount of invested capital. From this form can be
derived a productivity, actually a unit cost, labor hours per
automobile. Notice the indicated possible tradeoff between
capital (appropriately applied in terms of training and
technology) and labor; more capital implies less labor to
obtain the same output.
Two additional, related examples are:

Inputs: invested capital, labor; output=$ profit. From
this form can be derived a productivity, return-on-
invested capital relationship and

Inputs: invested capital, labor; output=$ sales. From
this form can be derived a productivity, sales per
employee relationship.

Referring back to Equation (4) if all of the exponents i
Q

are positive then the factors of production can be traded off,
e.g., more of factor

1
F can make up for less of factor

2
F to

yield the same product. For the situation addressed in this
paper, we employ the following instance of the Cobb-
Douglas production function:

p q
S AK T= (7)

This equation represents a production function to produce
an output, of S , based on the factors of production, K
(labor, person hours or person months), and T (time,
duration, schedule, in weeks or months). S could be
thousands of source statements in the case of software
estimation such as with the COCOMO model or the number
of equivalent requirements in the case of systems
engineering estimation such as with the COSYSMO model.
The factor A is a constant that captures the effects of other
factors such as those dealing with the domain, the process
(e.g., software development and testing, systems
engineering).Thus, the constant A represents other factors
of production not explicitly stated. It can also be viewed as
equivalent to the product of the cost drivers in the
COCOMO and COSYSMO (labor) resource estimation
models. Note that Equation (7) is of the same form that is
used in the SLIM software development resource

estimation tool. The parameter r , where /r q p! , is an
important parameter as it characterizes the relationship
between K and T , effort and schedule, and whether they
can be traded off, and if so, the degree to which they can.
Three examples of the equation for S are now given that
were developed from actual data that depend on the values
of p and q . They cover three important alternative
situations:

Case 1: If 0p > and 0q > then increasing values
of K associate with decreasing values of T and
vice versa; i.e., K and T can be traded off.

0.6288 0.5555

1
S AK T= ; / 0.8834r q p= =

Case 2: Low values of r (/q p), especially low q ,
mean little change in K , for a change in T , for a
given value of S ; effort is relatively insensitive to
schedule and hence to a change to it. Only a very
moderate degree of tradeoff between K and T is
possible.

0.929 0.079

2
S A K T= ; / 0.0850r q p= =

Case 3: If 0p < or 0q < then increasing values of
K associate with increasing values of T and vice
versa; i.e., K and T cannot be traded off.

Now, we describe how to derive a specific instance of the
relationship form shown in Equation (7). It can be used to
answer questions, such as the two above, which relate
changes in effort as a function of changes in schedule.
Suppose we want to determine the effect on K , effort, for
a change in schedule from

1
T to

2
T , and where S remains

constant,
1 2
S S= , and the other conditions, as represented

by A remain constant,
1 2
A A= . Now, we write the

equation for
2 1
/S S , getting

() ()() ()

()
()

()
()

2 1 2 1

2 1

2 1

2 1

2 1

1 1 1 1

1

1

p q

p

q

r

K K T T

K K
T T

K K
T T

=

=

! =

 (8)

Suppose we want to answer the first earlier-posed question,
What is the expected percent change in effort for a stated
percent change in schedule (duration)? That is, we want to
know the percent change in K corresponding to a percent
change in T , then we use the relationship:

()

1
%

%
r

K

T

! =
!

 (9)

where

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

%K! ! change from
1
K to

2
K ; ()2 1

%K K
and

%T! ! change from
1
T to

2
T ; ()2 1

%T T

Plots of Equation (9) for the three cases given above are
shown in Figure 1 where:

Case 1: ()
0.8834

% 1 %K T! = !

Case 2: ()
0.0850

% 1 %K T! = !

Case 3: ()
0.6827

% 1 %K T
!

" = "

% Effort Change Vs.% Schedule Change (100%=Baseline)

50%

70%

90%

110%

130%

150%

170%

190%

210%

50% 70% 90% 110% 130% 150% 170% 190%

% Schedule Change

%

E
ff

o
rt

 C
h

a
n

g
e

Case 1

Case 2

Case 3

Figure 1 - Three Cases of Effort versus Schedule

A more general form for a software engineering, systems
engineering, overall project function is shown in Figure 2.
It combines parts of Cases 1, 2, and 3 to illustrate a
composite behavior that might be found for one domain,
organization, and/or, function over a range of schedule,
effort and size values.

Illustrative % Effort Change Vs.% Schedule Change,

Combined Behaviors

50%

70%

90%

110%

130%

150%

170%

190%

210%

50% 75% 100% 125% 150% 175% 200%

% Schedule Change

%
 E

ff
o

rt
 C

h
an

g
e

Region of Effort/Schedule Tradeoff:Schedule Compression

Region of Schedule Flexibility

Region of Region of Effort and Schedule

Increase/Stretchout

Figure 2 - Effort versus Schedule; Combining Cases

Equation (8) can also be used to answer the second earlier-
posed question, “What is the expected change in effort
(e.g., increase/decrease in person hours/months) that would
correspond to a given change in schedule (e.g.,
increase/decrease in months/weeks)?” We rewrite this
equation as

()

()

1

2

2 1

1

2

%

r

r

K
K

T T

K
K

T

=

! =
"

 (10)

1
K could be a resource (labor) estimate produced by the
COSYSMO or COCOMO model for some value of size

1
S . Then, for a change in schedule from a baseline of Δ%

from a baseline value, the effort would go from
1
K to

2
K .

The estimation of the baseline schedule value is described
in the next section.

5.2 Estimating Schedule
Now, we consider some other questions having to do with
estimated effort and schedule and how they can be
answered. As stated earlier, we focus on the use of
estimating models such as COSYSMO and COCOMO that
produce resource (labor) estimates as their primary outputs.
The first question is:

“What is the value of T that corresponds to the value
of E that was obtained using a model such as
COSYSMO or COCOMO?”

We want the value of T , call it
1
T , that is the nominal or

natural value of the schedule, that corresponds to the
model-yielded value of K , call it

1
K . The nominal or

natural schedule value is based on past project experience
for the relevant domain; captured and used as part of the
tool calibration process. This value is not identified as being
a compressed or a stretched-out schedule unless the project
data used to develop the calibration was so identified.
Rather, it is the schedule,

1
T , that would be expected to

correspond to an effort,
1
K , to for a project size,

1
S , based

on past project experience. A subsidiary question is:
“Does the estimator accept this value of T ,

1
T ; i.e.,

does it meet project criteria, or is it too large (long) or
too small (short)?”

Suppose that the answer is that the estimator does not
accept this value, but rather wants a different value of T ,
call it

2
T , say that is imposed by the program manager.

Then, the next question is:
“What is the value of K , call it

2
K , that corresponds

to the desired value of schedule,
2
T , e.g., one imposed

upon the systems engineering job by the proposal
manager or by the program manager?”

We have already covered how this question could be
answered in the preceding discussion. Now, we show how
to determine the value of the schedule,

1
T , that corresponds

to an amount of labor,
1
K , estimated by a model such as

COSYSMO or COCOMO. We use an equation of the form
v z

T BS K= (11)

where T , S , and K are corresponding values of
schedule, size and effort (labor) as before. Thus, we obtain
the value,

1
T , using the relationship

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

1 1 1

v z
T BS K= (12)

Note that one could use an equation of the form2

1 1

d
T CK= (13)

to obtain an estimate of
1
T ; however, this form is less

accurate than the form of Equation (12).

5.3 Physics Analogy Approach – Energy to Work
Form – r2SEF

There are two hypotheses Suggested by historical data:
 H1: Content (system size) is the desired product
of labor and time—The amount of size produced is directly
related to the resource amount (labor and time) applied; i.e.,
the product of labor and time [4].
 H2: Defects are the unwanted byproduct of labor
and time—The number of defects produced is directly
related to resource intensity (labor and time); i.e., the ratio
of labor and time [4].
In the effort-duration tradeoff relationship, content is made
by people laboring to do work over some period of time;
the result being neither free, instant, nor perfect. Effort
K and duration T trend upward (and in most cases non-
linearly) as functions of increasing size [4]. Our first
empirically-suggested hypothesis states that content
(system size) is the desired product of labor and time—the
amount of size produced is directly related to the resource
amount (labor and time) applied; i.e., the product of labor
and time. All three of these variables are uncertain and
should therefore be treated as random variables3. We
therefore propose the following generalized relationship:
() () () () () ()b! " =K T S K T SK T S K T Sf f f f f f (14)

where b represents the constant of proportionality.
Performing regression analysis on data from past projects
suggests that both effort and duration are reasonably
correlated with size and that these correlations can be
generally and reasonably modeled by power functions [4]
described as

() () () , , and SK T
aa a

x x x x x x! ! !K T Sf f f (15)

Performing the algebraic manipulation described by Ross
(2008) yields the following content production relationship:

K T
! !" #

=$ %
& '<datasetname>

S
K T

ç
 (16)

Where:

2 This is the form of the duration estimating relationship
currently used by COCOMO.
3 Note that all random variables (i.e., variables that take on
values described by some distribution) are formatted in
Arial Bold Italic font.

K
! ! Exponent of effort; characterizes

nonlinearity between effort and size4

T
! ! Exponent of duration; characterizes

nonlinearity between duration and size5

ç ! Efficiency expressed as a random
variable; characterizes the net effect of
environmental (people, process, and
product) factors that positively or
negatively influence productivity

and where the square bracket symbols with a postfix
subscript mean “within the context of the data set named
< >datasetname ”.

Duration

E
ff

or
t

EFFORT DURATION TRADEOFF

Figure 3 - Example Tradeoff Curve (Content Productivity)

Ross (2007) demonstrates how the content production
relationship shown as Equation (16) can be instantiated
with COCOMO II behavior and variables as

() ()
()1

1 1

nom nom

11000

B
n

A B B

K T

i

C C
!

=

" #$ %$ %
=& '()()
* +* +& ', -

. i

COCOMOII

EM
S

K T

 (17)

where

nomK
C and

nomT
C are COCOMO II calibration

constants,

i
EM ! the 6-element (COCOMO II Early

Design) or 16-element (COCOMO II
Post Architecture) vector (one-
dimensional array) of COCOMO II
effort multipliers, each expressed as a
random variable which is triangularly-
distributed according to a distribution

4 Note the different variables a subscript K in Equation (15)
and alpha subscript K in Equation (16).
5 Note the different variables a subscript T in Equation (15)
and alpha subscript T in Equation (16).

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

parameter vector
, ,Low Mode High ,

B ! ()
5

min

1

median median 0.01
i

i

B

=

! "
= +# $

% &
'SDB

where
min
B is a COCOMO II

calibration constant,

i
SD ! the 5-element vector (one-dimensional

array) of COCOMO II scale drivers,
each expressed as a random variable
which is triangularly-distributed
according to a distribution parameter
vector , ,Low Mode High , and

A ! ()min
0.2 B B! + " where ! is a

COCOMO II calibration constant.

5.4 Management Stress – Describing a Particular
Effort-Duration Solution

The notion of management stress was suggested by [6] and
described as the inherent equilibrium between effort and
duration for software development processes, this
equilibrium being independent of effective software size
and efficiency and being constrained by a Rayleigh-shape
staffing assumption unique to [5] and [6].
[4] chose to redefine this notion of management stress by
eliminating the Rayleigh-shape staffing assumption
constraint and by more-generally postulating that duration
T is proportional to some function f of effort K . In
other words, for all task or project instances in a particular
data set, ignoring the variety of sizes and efficiencies, as the
effort increases, the duration tends to increase and vice
versa. Stated mathematically

() () T K T b K! " =f f (18)

where b represents the constant of proportionality.
Performing the regression analysis and algebraic
manipulation described by [4] yields:

1

 M M
M

!

!

!

" #" # $ %" #= = =& '()* +& '* + , -& '* +
<datasetname>

<datasetname>
<datasetname>

K K
K T T

T

 (19)

where

M ! Management stress (resource intensity,
team communication complexity);
higher values indicate a relatively
larger effort over a relatively shorter
period of time.

! ! Economy or diseconomy associated
with higher task or project durations.

A particular effort-duration solution for a given size S and
efficiency ç can now be described by substituting first the
solved for duration form of Equation (19) into Equation
(16) and second the solved for effort form of Equation (19)
into Equation (16) to yield the following two equations:

()1
K T

TM

!" "!

"

+# $% &% &' (=) *) *) *' (+ ,+ ,- .<datasetname>

S
K

ç
 (20)

and

()1

1
K T

KM

!" "

"

+# $% &% &% &' (=) *) *) *
' (+ ,+ ,+ ,- .<datasetname>

S
T

ç
 (21)

and can, by taking the median of the convolved
size/efficiency ratio S ç 6, be graphically illustrated as the
intersection of Equation (16) and Equation (19) as shown in
Figure 4.

Duration

E
ff

or
t

EFFORT DURATION TRADEOFF

Particular
Solution

Figure 4 - Illustrating a Particular Solution

[7] demonstrates how the management stress relationship
shown as Equation (19) can be instantiated with COCOMO
II behavior and variables as

1

1
 or or

A

A

A
M M

M

! "! " # $! "= = =% &' () *% &) * + ,% &) *
COCOMOII

COCOMOII
COCOMOII

K K
K T T

T

 (22)

where

()nom 1

nom

1

A

T

M
C

= (23)

A particular COCOMO II effort-duration solution for a
given size S and set of effort multipliers and scale drivers
(environment parameters) can now be described by the
following two equations:

6 Note that by taking the median of the convolved
size/efficiency ratio, the resulting values for effort and
duration are each 50% probability solutions.

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

()nom nom

11000

B
n

A

K T i

i

M C C

=

! "# $
=% &' (

) *% &+ ,
-

COCOMOII

EM
S

K (24)

and

()1

nom nom

11000

A
B

n

A

K T i

i

M C C
!

=

" #$ %$ %& '= ()()()& '* +* +, -
.

COCOMOII

EM
S

T
 (25)

5.5 Minimum Duration Limit – Brooks’ Law
It has been well documented that adding manpower to a
late software project makes it later [8]. Each and every
instance of a software development process (and by
extension, each and every instance of a system development
process), by its nature (divisibility or potential for
concurrency), can effectively handle only so much
management stress (only so many people); therefore, there
exists, for each and every instance of the process, some
minimum achievable process duration [4]. [5,6] and others
have analyzed historical project data and concluded that this
limit can be defined in terms of a project’s maximum
achievable management stress.
Mathematically, the

max
M limit can be expressed in the

extreme as

()
max

maxM !" #$ %i <datasetname>
M (26)

where

i
M = the vector of M values from the

projects in data set
< datasetname >

Since this notion of the limit assumes all members of the
data set to be within the realm of possibility for the next
project (which may or may not be realistic), we suggest a
conservatively-practical value for

max
M in estimation

situations to be the one-sigma percentage standard error of
estimate %SE (aka standard multiplicative error) between
the mean management stress M of the data set and the
actual management stress M values of its members:

()()
1.0

max
1 %SEM M

+! "# +
$ %i

<datasetname>

M (27)

and where

()
2

1

1
%SE

1

n

i

M

n M=

! "#
= $ %

& '
(i

i

M
M (28)

5.6 Minimum Effort Limit – Parkinson’s Law
Work expands so as to fill the time available for its
completion [9]. Theoretically, a specific instance of an
engineering development process is not limited by some
maximum process duration. Rare is the engineer who
complains about having too much time to develop
something. However, we argue that there exists, for each

and every development process instance, some duration that
yields maximum productivity; i.e., some duration that
represents the most efficient combination of problem
decomposition and corresponding use of labor [4].
For each instance of a system development process, we
submit that maximum productivity occurs at some point of
minimum-practical management stress. This point of
minimum practical management stress

min
M defines the

optimum use of people over time, and represents a practical
limit to the benefit of schedule relaxation.
Mathematically, the

min
M limit can be expressed in the

extreme as

()min
minM !" #$ %i <datasetname>

M (29)

As with
max

M , we suggest a conservatively-practical value

for
min

M in estimation situations to be based on the
percentage standard error of estimate %SE between the
mean management stress M of the data set and the actual
management stress M values of its members

()()
1.0

min
1 %SEM M

!" #$ +
% &i

<datasetname>

M (30)

The median case of the complete system of equations
described thus far is shown in Figure 5.

Duration

E
ff

or
t

EFFORT DURATION TRADEOFF

Too Little Time
(High Stress)

Minimum Duration
Solution

Too Much Time
(Low Stress)

Minimum Effort
Solution

 Figure 5 - Minimum Duration and Minimum Effort Limits

6 Observations and Next Steps
The two approaches for estimating project schedule as a
function of cost provide useful frameworks for analysis.
The most significant observation is that, despite the
drastically different origins of the ideas, there is a
convergence in the approaches for performing tradeoffs
between project duration and effort. A logical next step is
to integrate these approaches into the COSYSMO model to
allow users to estimate systems engineering effort and
schedule. This capability will provide a more complete
assessment of the systems engineering project which will
result in lower risk [10] and higher probability of success.
This work is being done in context of the larger objective of

7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)

Loughborough University – 20th - 23rd April 2009

improving cost estimation by enhancing existing methods
for capturing the economic impact of reuse [11] and
harmonizing systems and software cost estimation [12].

7 References
[1] Valerdi, R. (2008), The Constructive Systems
Engineering Cost Model (COSYSMO): Quantifying the
Costs of Systems Engineering Effort in Complex Systems,
VDM Verlag.

[2] Boehm, B.W. (1981), Software Engineering Economics.
Englewood Cliffs: Prentice-Hall, Inc.

[3]Boehm, B.W., et al. (2000), Software Cost Estimation
with COCOMO II. Upper Saddle River: Prentice-Hall, Inc.

[4] Ross, M. A. (2008), “Next Generation Software
Estimating Framework: 25 Years and Thousands of
Projects Later”, Journal of Cost Analysis and Parametrics,
1(2), 7-30.

[5] Putnam, L.H. (1980), Software Cost Estimating and
Life-Cycle Control: Getting the Software Numbers. New
York City : IEEE Computer Society.

[6]Jensen, R.W. (1983), “An Improved Macrolevel
Software Development Resource Estimation Model”,
Proceedings of the Fifth International Society of Parametric
Analysts Conference. St. Louis, Missouri, USA, pp. 88-92.

[7] Ross, M. A. (2007), “Instantiating the r2 Software
Estimating Framework for COCOMO”, Procedings, 22nd
International Annual Forum on COCOMO and
Systems/Software Cost Modeling. Los Angeles, CA, USA.

[8]Brooks, F.P. (1995), The Mythical Man-Month: Essays
on Software Engineering. Anniversary. Reading : Addison-
Wesley Publishing Company.

[9] Parkinson, C.N. (1958), Parkinson's Law: The Pursuit
of Progress. London : John Murray.

[10] Valerdi, R., Gaffney, J.E. (2007), “Reducing Risk and
Uncertainty in COSYSMO Size and Cost Drivers: Some
Techniques for Enhancing Accuracy”, 5th Conference on
Systems Engineering Research, Hoboken, NJ.

[11] Valerdi, R., Gaffney, J.E., Roedler, G.J., Rieff, J.
(2006), “Extensions of COSYSMO to Represent Reuse”,
21st Forum on COCOMO and Software Cost Modeling,
Herndon, VA.

[12] Wang, G., Valerdi, R., Roedler, G.J., Ankrum, A.,
Gaffney, J.E. (2009), “Harmonizing Systems and Software
Estimation”, to appear in the 19th INCOSE Symposium,
Singapore.

