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Abstract   
This paper provides two similar approaches for calculating project schedule from a systems engineering perspective. To 
illustrate the genesis of each approach, we provide two analogies; one from economics and one from physics.  These are 
complemented with mathematical derivations that provide quantitative comparisons of the tradeoff between the duration of a 
project and the optimal effort.  Connections are made to Books’ Law and Parkinson’s Law to validate the theoretical discussion 
with the pragmatic observations from the software engineering literature. 
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1 Introduction 
An issue of considerable importance to proposal managers, 
program managers, technical planners and to software 
engineering and systems engineering managers is how 
schedule compression or stretch-out affects engineering 
costs or overall project costs. Schedule compression (or 
stretch-out) is defined as the amount or percentage of 
reduction (increase) of a project or software or systems 
engineering schedule with respect to some ideal or nominal 
value of cost or productivity. 
Understanding the relationship between cost (and 
productivity) and schedule (duration) can help us to answer 
such questions as: 

What is the optimum duration to perform this task (e.g., 
development of a software system)? 

Can schedule (duration) and cost (effort) be traded off; 
if so, what is the tradeoff? 

Here, optimum might mean with respect to minimizing 
cost. More generally, it might mean with respect to some 
utility or value function of cost and duration, in which the 
utilities of the cost and schedule (duration) values are 
stated, indicating the relative importance of schedule 
(project duration) and cost. In the extreme, a project might 
be either cost driven or schedule driven. 
We consider two approaches for calculating systems 
engineering schedule and discuss the assumptions of each.  
Both approaches use a parametric or top-down 
mathematical model to represent relationships among size 
(S), cost or effort (K), and schedule or duration (T) and 
have the following shared assumptions: 

• Cost or effort (K) is a function of the size of the 
system (S) 

• Schedule or duration (T) can be calculated by the 
cost or effort (K) produced by a parametric model 

• Schedule or duration (T) reduction will result in a 
cost or effort (K) increase 

• Organizations have process efficiencies that 
determine their shortest possible schedule or 
duration (T) of a project 

The main difference between the two approaches is in the 
way they determine process efficiencies on projects. The 
first approach leverages the idea of the Cobb-Douglas 
production function that enables tradeoffs between effort 
and schedule. The second method uses an energy to work 
analogy to define a probabilistic content production 
relationship that enables tradeoffs between effort and 
duration with attendant confidence probability (cost and 
schedule risk) and then defines the notion of management 
stress to constrain and limit the content production 
relationship in terms of nominal (natural) management 
stress, minimum duration (Brook’s Law), and minimum 
effort (Parkinson’s Law). We provide derivations for both 
approaches and discuss the underlying assumptions that 
drive them. We conclude by summarizing how these two 
approaches can be reconciled to improve the COSYSMO 
systems engineering cost estimation model. 

2 Why Estimate Schedule? 

2.1 Background 
An issue of considerable importance to proposal managers, 
program managers, technical planners, and to software 
engineering and systems engineering managers is how 
schedule compression or stretch-out affects engineering 
costs and overall project costs. Schedule compression (or 
stretch-out) can be defined as the amount or percentage of 
reduction (increase) of a project or software or systems 
engineering schedule with respect to some ideal or nominal 
value as related to cost or productivity. One difficulty is 
identifying whether there was compression, stretch-out, or a 
normal situation in any particular project instance. Another 
problem is knowing what is dependent and what is 
independent, or do we only know associations? This 
question relates to the fact that correlation does not mean 
causality. This paper does not deal with such philosophical 
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issues. Rather, it defines various relationships (equations) 
amongst size S , effort K , and schedule (duration) or T . 
It describes how the values of the parameters for such 
relationships can be obtained and how these relationships 
can be used to answer various questions of considerable 
practical value to estimators, and to managers and technical 
personnel (e.g., software engineers and systems engineers). 
However, the paper does consider the very important issue 
of practical limits on project performance, i.e., the physics 
of project execution (and the included or subsidiary 
software engineering and systems engineering tasks). This 
is in recognition, for example, that there is a limit to which 
project tasks can be subdivided enabling parallelism of 
project tasks to enable project schedules to minimized. This 
physical phenomenon is partially due to the increasing 
overhead due to increased amounts of communication that 
grows in proportion to 2

n , where n  is the number of 
units/persons that must communicate with each other. 

2.2 Research Questions 
A fairly safe assumption regarding any project is that every 
stakeholder has some degree of interest in how long a 
project will take to complete. Many business and technical 
decisions are based on some estimate or best guess about 
the duration and schedule of a project. Estimators and 
others are interested in being able to obtain answers to such 
questions as: 

What is the expected percent change in effort for a 
stated percent change in schedule (duration)? 

What is the expected change in effort (e.g., 
increase/decrease in person hours/months) that 
would correspond to a given change in schedule 
(e.g., increase/decrease in months/weeks)? 

Depending upon the relationship between schedule and 
effort, there can be a positive or negative relationship 
between effort and schedule. Schedule compression (or 
stretch-out) can be defined as the amount or percentage of 
reduction (increase) of a project or software or systems 
engineering schedule with respect to some ideal or nominal 
value as related to cost or productivity. An issue of 
considerable importance to proposal managers, program 
managers, technical planners and to software engineering 
and systems engineering managers is how schedule 
compression or stretch-out affects engineering costs or 
overall project costs. Now, we provide a method to provide 
answers to questions, such as the two given above that 
relate to the (likely) affect of a change in schedule or effort. 
Knowing a relationship between cost (and productivity) and 
schedule (duration) can help us to answer such questions as: 

(1) “What is the optimum duration to perform this 
task (e.g., development of a software system)?” 
Here, optimum might mean with respect to 
minimizing cost. More generally, it might mean 
with respect to some utility or value function of 
cost and duration, in which the relative importance 

or utilities of the cost and schedule (duration) 
values are stated. In the extreme, a project might 
be cost driven or schedule driven. 

“Can schedule (duration) and cost (effort) be traded 
off; if so, what is the tradeoff?” 

Often, the schedule for performing the systems or software 
engineering work on a project will be imposed upon those 
who will perform the systems or software engineering 
tasks. However, it may also be of interest and value to the 
person performing the estimate as well as the proposal, 
program or technical managers whom he is supporting, to 
determine what schedule or duration would be expected to 
correspond to the effort estimate produced by COSYSMO 
[1], COCOMO [2,3] or other resource (labor) estimation 
models. This value of schedule would be based on past 
project experience and might be smaller than, greater than, 
or equal to the schedule value that might be imposed upon 
those performing the systems engineering tasks. 
COSYSMO, COCOMO and the other members of the 
COCOMO family of estimation models estimate effort as 
their primary outputs. Consequently, a major topic of this 
paper is the estimation of the schedule that would 
correspond to the estimated effort and the possibility that 
exists in some cases for trade-offs between schedule and 
effort. 

3 Defining Effort, Duration and Size 
The following definitions are extracted from [4] and edited 
to suit the system engineering context of this paper.  We 
first conceptually define staffing to be some function of 
elapsed calendar time t , ( )tPf , that describes, for a 
particular instance of some task or collection of tasks, the 
application of people over time within the task’s time 
interval. We define this time interval in absolute terms as 

[ ]start finish
T ,T  where 

start
T  and 

finish
T  represent the start 

and finish dates, respectively, of the task. In the interest of 
generalization, we prefer to use a 

start
T -relative frame to 

describe this interval; therefore, 
start
T  relative to 

start
T  is 

start start
T T 0! =  and 

finish
T  relative to 

start
T  is 

finish start
T T! , the value of which we will represent as T . 

The resulting 
start
T -relative task interval is [ ]0,T . Note 

that the value of T  represents not only the 
start
T -relative 

point in time where the task finishes, it also represents the 
duration (elapsed calendar time) of the task interval. 

3.1 Effort 

With our conceptual definition of a staffing function 
Pf , 

we now define the concept of effort to be some function of 
elapsed calendar time t , ( )tEf , that describes, for a 
particular task, the accumulated result of people laboring to 
do work over elapsed time t : 
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dt! "E Pf f  (1) 

Using Equation (1) as our definition of an effort function 
with respect to its associated staffing function we can now 
define an instantaneous staffing function with respect to its 
associated effort function by differentiating Equation (1) 
with respect to time t  and then solving for 

Pf : 

d d
dt

dt dt

d

dt

=

! =

"
E

P

E
P

f
f

f
f

 (2) 

3.2 Task Effort 

We have already defined [ ]0,T  to be the 
start
T -relative 

task time interval where T  represents process duration. We 
now define task effort K  to be the change in effort within 
this task time interval. 

( ) ( ) ( )
0

0
T

K dt T T! = " =# P E E Ef f f f  (3) 

where ( )0 0!Ef ; i.e., no task effort, by definition, can 
be spent before the task starts. 

3.3 Effective Size (Content) 
We describe system development processes as transforming 
one abstraction (the desire or the requirements) to another 
abstraction (the system product). Each and every 
abstraction, be it expressed in a natural language, as 
structured text, or even as graphic constructs; consists of 
primitive elements that we refer to as size units. Examples 
of commonly-used size units in system and software 
engineering include operational scenarios, interfaces, 
algorithms, use cases, Source Lines of Code (SLOC), 
function points, objects, methods, classes, and web pages; 
basically something that can be consistently counted and 
reasonably represents the work that must be done. We 
choose here to define the notion of effective size S  of a 
particular abstraction to be the number (count) of size units 
in the abstraction that are considered to be directly related 
to the resources (labor and time) necessary to develop said 
system; this includes developing new content plus selecting, 
understanding, incorporating, changing, and/or verifying 
any included legacy content1. 
 

                                                             
1 Examples of legacy content include Commercial Off-The 
Shelf (COTS) content, reused content, and content from a 
previous build, increment, or release. 

4 Genesis of the Two Approaches 

4.1 Economics Approach – Cobb-Douglas Form – 
COSYSMO-R 

The basic approach considered here is to use a parametric 
or top-down mathematical model to represent relationships 
among size S , effort (cost) K , and duration (schedule) 
T . Note that S  could be equivalent new source statements 
in the case of software, e.g. in the COCOMO tool, or 
equivalent new requirements in the case of systems 
engineering estimation, e.g., in the COSYSMO tool. So, 
what is a model (mathematical relationship) that might be 
used to help to answer the above questions? A 
generalization of the Cobb-Douglas production function is 
of the form 

1

i

n
Q

i

i

O A F
=

= !  (4) 

where 

O  !  Output of the production process 

A  !  Total productivity factor (and 
potentially a scalar calibration constant) 

iQ

i
F  !  Factor of production 

If we assume size to be the output of the production process 
and assume each of effort and duration to be factors of 
production, then we can notionally (ignoring, for the 
moment, the exponents of the production factors) state 
Size Productivity Factor Effort Duration= ! !  (5) 

4.2 Physics Analogy Approach – Energy to Work 
Form – r2SEF 

A branch of the software estimating world has been using 
an integrated effort and duration parametric estimating 
approach originally proposed by Putnam [5] as the SLIM 
model, improved upon by Jensen [6] as the Seer model, and 
extended by [4] as the r2 Software Estimating Framework 
(r2SEF). The approach is based on an analogy to the 
physics of directed energy into a process yielding work (a 
product) out of that process. Physics defines the notion of 
power as being the rate at which work is done; i.e., 
Power Work Time! . If we assume power is analogous 
to the cumulative effect of people laboring on a project 
(effort) and that work is analogous to produced system 
content (size), then we can notionally (ignoring, for the 
moment, possible nonlinearities) state 

Size
Effort

Time

Size Efficiency Effort Time

!

" = # #

 (6) 

where 

Efficiency  !  Constant of proportionality (and 
potentially a scalar calibration constant) 
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In this relationship the product of effort and time represents 
the energy applied to the process and size represents the 
work produced by the process. The symbol !  indicates 
that the two sides are proportional [4] has extended this idea 
to include the notion that defects are the undesired 
byproducts of the engineering development process; i.e., 
defects can be viewed as work (albeit undesirable) 
produced by the process. 

5 Two Approaches – Derivation 

5.1 Economics Approach – Cobb-Douglas Form – 
COSYSMO-R 

Production functions such as the Cobb-Douglas Production 
Function were developed for use in economics analyses. 
This functional form relates an output, such as number of 
automobiles produced annually to number of labor hours 
and amount of invested capital. From this form can be 
derived a productivity, actually a unit cost, labor hours per 
automobile. Notice the indicated possible tradeoff between 
capital (appropriately applied in terms of training and 
technology) and labor; more capital implies less labor to 
obtain the same output. 
Two additional, related examples are:  

Inputs: invested capital, labor; output=$ profit. From 
this form can be derived a productivity, return-on-
invested capital relationship and 

Inputs: invested capital, labor; output=$ sales. From 
this form can be derived a productivity, sales per 
employee relationship. 

Referring back to Equation (4) if all of the exponents i
Q  

are positive then the factors of production can be traded off, 
e.g., more of factor 

1
F  can make up for less of factor 

2
F  to 

yield the same product.  For the situation addressed in this 
paper, we employ the following instance of the Cobb-
Douglas production function: 

p q
S AK T=  (7) 

This equation represents a production function to produce 
an output, of S , based on the factors of production, K  
(labor, person hours or person months), and T  (time, 
duration, schedule, in weeks or months). S  could be 
thousands of source statements in the case of software 
estimation such as with the COCOMO model or the number 
of equivalent requirements in the case of systems 
engineering estimation such as with the COSYSMO model. 
The factor A  is a constant that captures the effects of other 
factors such as those dealing with the domain, the process 
(e.g., software development and testing, systems 
engineering).Thus, the constant A  represents other factors 
of production not explicitly stated. It can also be viewed as 
equivalent to the product of the cost drivers in the 
COCOMO and COSYSMO (labor) resource estimation 
models. Note that Equation (7) is of the same form that is 
used in the SLIM software development resource 

estimation tool. The parameter r , where /r q p! , is an 
important parameter as it characterizes the relationship 
between K  and T , effort and schedule, and whether they 
can be traded off, and if so, the degree to which they can. 
Three examples of the equation for S  are now given that 
were developed from actual data that depend on the values 
of p  and q . They cover three important alternative 
situations: 

Case 1:  If 0p >  and 0q >  then increasing values 
of K  associate with decreasing values of T  and 
vice versa; i.e., K  and T  can be traded off. 

0.6288 0.5555

1
S AK T= ; / 0.8834r q p= =  

Case 2:  Low values of r  ( /q p ), especially low q , 
mean little change in K , for a change in T , for a 
given value of S ; effort is relatively insensitive to 
schedule and hence to a change to it. Only a very 
moderate degree of tradeoff between K  and T  is 
possible. 

0.929 0.079

2
S A K T= ; / 0.0850r q p= =  

Case 3:  If 0p <  or 0q <  then increasing values of 
K  associate with increasing values of T  and vice 
versa; i.e., K  and T  cannot be traded off. 

Now, we describe how to derive a specific instance of the 
relationship form shown in Equation (7). It can be used to 
answer questions, such as the two above, which relate 
changes in effort as a function of changes in schedule. 
Suppose we want to determine the effect on K , effort, for 
a change in schedule from 

1
T  to 

2
T , and where S  remains 

constant, 
1 2
S S= , and the other conditions, as represented 

by A  remain constant, 
1 2
A A= . Now, we write the 

equation for 
2 1
/S S , getting 

( ) ( )( ) ( )

( )
( )

( )
( )

2 1 2 1

2 1

2 1

2 1

2 1

1 1 1 1

1

1

p q

p

q

r

K K T T

K K
T T

K K
T T

=

=

! =

 (8) 

Suppose we want to answer the first earlier-posed question, 
What is the expected percent change in effort for a stated 
percent change in schedule (duration)? That is, we want to 
know the percent change in K  corresponding to a percent 
change in T , then we use the relationship: 

( )

1
%

%
r

K

T

! =
!

 (9) 

where 
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%K!  !  change from 
1
K  to 

2
K ; ( )2 1

%K K  
and 

%T!  !  change from 
1
T  to 

2
T ; ( )2 1

%T T  

Plots of Equation (9) for the three cases given above are 
shown in Figure 1 where: 

Case 1:  ( )
0.8834

% 1 %K T! = !  

Case 2:  ( )
0.0850

% 1 %K T! = !  

Case 3:  ( )
0.6827

% 1 %K T
!

" = "
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Figure 1 - Three Cases of Effort versus Schedule 
 
A more general form for a software engineering, systems 
engineering, overall project function is shown in Figure 2. 
It combines parts of Cases 1, 2, and 3 to illustrate a 
composite behavior that might be found for one domain, 
organization, and/or, function over a range of schedule, 
effort and size values. 
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Figure 2 - Effort versus Schedule; Combining Cases 
 
Equation (8) can also be used to answer the second earlier-
posed question, “What is the expected change in effort 
(e.g., increase/decrease in person hours/months) that would 
correspond to a given change in schedule (e.g., 
increase/decrease in months/weeks)?” We rewrite this 
equation as 

( )

( )

1

2

2 1

1

2

%

r

r

K
K

T T

K
K

T

=

! =
"

 (10) 

1
K  could be a resource (labor) estimate produced by the 
COSYSMO or COCOMO model for some value of size 

1
S . Then, for a change in schedule from a baseline of Δ% 

from a baseline value, the effort would go from 
1
K  to 

2
K . 

The estimation of the baseline schedule value is described 
in the next section. 

5.2 Estimating Schedule 
Now, we consider some other questions having to do with 
estimated effort and schedule and how they can be 
answered. As stated earlier, we focus on the use of 
estimating models such as COSYSMO and COCOMO that 
produce resource (labor) estimates as their primary outputs. 
The first question is: 

“What is the value of T  that corresponds to the value 
of E  that was obtained using a model such as 
COSYSMO or COCOMO?” 

We want the value of T , call it 
1
T , that is the nominal or 

natural value of the schedule, that corresponds to the 
model-yielded value of K , call it 

1
K . The nominal or 

natural schedule value is based on past project experience 
for the relevant domain; captured and used as part of the 
tool calibration process. This value is not identified as being 
a compressed or a stretched-out schedule unless the project 
data used to develop the calibration was so identified. 
Rather, it is the schedule, 

1
T , that would be expected to 

correspond to an effort, 
1
K , to for a project size, 

1
S , based 

on past project experience.  A subsidiary question is: 
“Does the estimator accept this value of T , 

1
T ; i.e., 

does it meet project criteria, or is it too large (long) or 
too small (short)?” 

Suppose that the answer is that the estimator does not 
accept this value, but rather wants a different value of T , 
call it 

2
T , say that is imposed by the program manager. 

Then, the next question is: 
“What is the value of K , call it 

2
K , that corresponds 

to the desired value of schedule, 
2
T , e.g., one imposed 

upon the systems engineering job by the proposal 
manager or by the program manager?” 

We have already covered how this question could be 
answered in the preceding discussion.  Now, we show how 
to determine the value of the schedule, 

1
T , that corresponds 

to an amount of labor, 
1
K , estimated by a model such as 

COSYSMO or COCOMO. We use an equation of the form 
v z

T BS K=  (11) 

where T , S , and K  are corresponding values of 
schedule, size and effort (labor) as before. Thus, we obtain 
the value, 

1
T , using the relationship 



7th Annual Conference on Systems Engineering Research 2009 (CSER 2009)  
 

Loughborough University – 20th - 23rd April 2009 
 

1 1 1

v z
T BS K=  (12) 

Note that one could use an equation of the form2 

1 1

d
T CK=  (13) 

to obtain an estimate of 
1
T ; however, this form is less 

accurate than the form of Equation (12). 

5.3 Physics Analogy Approach – Energy to Work 
Form – r2SEF 

There are two hypotheses Suggested by historical data: 
 H1: Content (system size) is the desired product 
of labor and time—The amount of size produced is directly 
related to the resource amount (labor and time) applied; i.e., 
the product of labor and time [4]. 
 H2: Defects are the unwanted byproduct of labor 
and time—The number of defects produced is directly 
related to resource intensity (labor and time); i.e., the ratio 
of labor and time [4]. 
In the effort-duration tradeoff relationship, content is made 
by people laboring to do work over some period of time; 
the result being neither free, instant, nor perfect. Effort 
K  and duration T  trend upward (and in most cases non-
linearly) as functions of increasing size [4]. Our first 
empirically-suggested hypothesis states that content 
(system size) is the desired product of labor and time—the 
amount of size produced is directly related to the resource 
amount (labor and time) applied; i.e., the product of labor 
and time. All three of these variables are uncertain and 
should therefore be treated as random variables3. We 
therefore propose the following generalized relationship: 
( ) ( ) ( ) ( ) ( ) ( )b! " =K T S K T SK T S K T Sf f f f f f  (14) 

where b  represents the constant of proportionality. 
Performing regression analysis on data from past projects 
suggests that both effort and duration are reasonably 
correlated with size and that these correlations can be 
generally and reasonably modeled by power functions [4] 
described as 

( ) ( ) ( ) , , and  SK T
aa a

x x x x x x! ! !K T Sf f f  (15) 

Performing the algebraic manipulation described by Ross 
(2008) yields the following content production relationship: 

K T
! !" #

=$ %
& '<datasetname>

S
K T

ç
 (16) 

Where: 

                                                             
2 This is the form of the duration estimating relationship 
currently used by COCOMO. 
3 Note that all random variables (i.e., variables that take on 
values described by some distribution) are formatted in 
Arial Bold Italic font. 

K
!  !  Exponent of effort; characterizes 

nonlinearity between effort and size4 

T
!  !  Exponent of duration; characterizes 

nonlinearity between duration and size5 

ç  !  Efficiency expressed as a random 
variable; characterizes the net effect of 
environmental (people, process, and 
product) factors that positively or 
negatively influence productivity 

and where the square bracket symbols with a postfix 
subscript mean “within the context of the data set named 
< >datasetname ”. 
 

Duration

E
ff

or
t

EFFORT DURATION TRADEOFF

 
Figure 3 - Example Tradeoff Curve (Content Productivity) 
 
Ross (2007) demonstrates how the content production 
relationship shown as Equation (16) can be instantiated 
with COCOMO II behavior and variables as
 

( ) ( )
( )1

1 1

nom nom

11000

B
n

A B B

K T

i

C C
!

=

" #$ %$ %
=& '( )( )
* +* +& ', -

. i

COCOMOII

EM
S

K T

 (17) 

where 

nomK
C  and 

nomT
C  are COCOMO II calibration 

constants, 

i
EM  !  the 6-element (COCOMO II Early 

Design) or 16-element (COCOMO II 
Post Architecture) vector (one-
dimensional array) of COCOMO II 
effort multipliers, each expressed as a 
random variable which is triangularly-
distributed according to a distribution 

                                                             
4 Note the different variables a subscript K in Equation (15) 
and alpha subscript K in Equation (16). 
5 Note the different variables a subscript T in Equation (15) 
and alpha subscript T in Equation (16). 
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parameter vector 
, ,Low Mode High , 

B  ! ( )
5

min

1

median median 0.01
i

i

B

=

! "
= +# $

% &
'SDB  

where 
min
B  is a COCOMO II 

calibration constant, 

i
SD  !  the 5-element vector (one-dimensional 

array) of COCOMO II scale drivers, 
each expressed as a random variable 
which is triangularly-distributed 
according to a distribution parameter 
vector , ,Low Mode High , and 

A  !  ( )min
0.2 B B! + "  where !  is a 

COCOMO II calibration constant. 

5.4 Management Stress – Describing a Particular 
Effort-Duration Solution 

The notion of management stress was suggested by [6] and 
described as the inherent equilibrium between effort and 
duration for software development processes, this 
equilibrium being independent of effective software size 
and efficiency and being constrained by a Rayleigh-shape 
staffing assumption unique to [5] and [6]. 
[4] chose to redefine this notion of management stress by 
eliminating the Rayleigh-shape staffing assumption 
constraint and by more-generally postulating that duration 
T  is proportional to some function f  of effort K . In 
other words, for all task or project instances in a particular 
data set, ignoring the variety of sizes and efficiencies, as the 
effort increases, the duration tends to increase and vice 
versa. Stated mathematically 

( ) ( )     T K T b K! " =f f  (18) 

where b represents the constant of proportionality. 
Performing the regression analysis and algebraic 
manipulation described by [4] yields: 
 

1

          M M
M

!

!

!

" #" # $ %" #= = =& '( )* +& '* + , -& '* +
<datasetname>

<datasetname>
<datasetname>

K K
K T T

T

 (19) 

where 

M  !  Management stress (resource intensity, 
team communication complexity); 
higher values indicate a relatively 
larger effort over a relatively shorter 
period of time. 

!  !  Economy or diseconomy associated 
with higher task or project durations. 

A particular effort-duration solution for a given size S  and 
efficiency ç  can now be described by substituting first the 
solved for duration form of Equation (19) into Equation 
(16) and second the solved for effort form of Equation (19) 
into Equation (16) to yield the following two equations: 
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and 
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and can, by taking the median of the convolved 
size/efficiency ratio S ç 6, be graphically illustrated as the 
intersection of Equation (16) and Equation (19) as shown in  
Figure 4. 
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Figure 4 - Illustrating a Particular Solution 
 
[7] demonstrates how the management stress relationship 
shown as Equation (19) can be instantiated with COCOMO 
II behavior and variables as 
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where 

( )nom 1

nom

1

A

T

M
C

=  (23) 

A particular COCOMO II effort-duration solution for a 
given size S  and set of effort multipliers and scale drivers 
(environment parameters) can now be described by the 
following two equations: 

                                                             
6 Note that by taking the median of the convolved 
size/efficiency ratio, the resulting values for effort and 
duration are each 50% probability solutions. 
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and 

( )1

nom nom

11000

A
B

n

A

K T i

i

M C C
!

=

" #$ %$ %& '= ( )( )( )& '* +* +, -
.

COCOMOII

EM
S

T
 (25) 

5.5 Minimum Duration Limit – Brooks’ Law 
It has been well documented that adding manpower to a 
late software project makes it later [8]. Each and every 
instance of a software development process (and by 
extension, each and every instance of a system development 
process), by its nature (divisibility or potential for 
concurrency), can effectively handle only so much 
management stress (only so many people); therefore, there 
exists, for each and every instance of the process, some 
minimum achievable process duration [4]. [5,6] and others 
have analyzed historical project data and concluded that this 
limit can be defined in terms of a project’s maximum 
achievable management stress. 
Mathematically, the 

max
M  limit can be expressed in the 

extreme as 

( )
max

maxM !" #$ %i <datasetname>
M  (26) 

where 

i
M  = the vector of M  values from the 

projects in data set 
< datasetname >  

Since this notion of the limit assumes all members of the 
data set to be within the realm of possibility for the next 
project (which may or may not be realistic), we suggest a 
conservatively-practical value for 

max
M  in estimation 

situations to be the one-sigma percentage standard error of 
estimate %SE (aka standard multiplicative error) between 
the mean management stress M  of the data set and the 
actual management stress M  values of its members: 
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5.6 Minimum Effort Limit – Parkinson’s Law 
Work expands so as to fill the time available for its 
completion [9]. Theoretically, a specific instance of an 
engineering development process is not limited by some 
maximum process duration. Rare is the engineer who 
complains about having too much time to develop 
something. However, we argue that there exists, for each 

and every development process instance, some duration that 
yields maximum productivity; i.e., some duration that 
represents the most efficient combination of problem 
decomposition and corresponding use of labor [4]. 
For each instance of a system development process, we 
submit that maximum productivity occurs at some point of 
minimum-practical management stress. This point of 
minimum practical management stress 

min
M  defines the 

optimum use of people over time, and represents a practical 
limit to the benefit of schedule relaxation. 
Mathematically, the 

min
M  limit can be expressed in the 

extreme as 

( )min
minM !" #$ %i <datasetname>

M  (29) 

As with 
max

M , we suggest a conservatively-practical value 

for 
min

M  in estimation situations to be based on the 
percentage standard error of estimate %SE between the 
mean management stress M  of the data set and the actual 
management stress M  values of its members 
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The median case of the complete system of equations 
described thus far is shown in  Figure 5. 
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 Figure 5 - Minimum Duration and Minimum Effort Limits 

6 Observations and Next Steps 
The two approaches for estimating project schedule as a 
function of cost provide useful frameworks for analysis.  
The most significant observation is that, despite the 
drastically different origins of the ideas, there is a 
convergence in the approaches for performing tradeoffs 
between project duration and effort.  A logical next step is 
to integrate these approaches into the COSYSMO model to 
allow users to estimate systems engineering effort and 
schedule.  This capability will provide a more complete 
assessment of the systems engineering project which will 
result in lower risk [10] and higher probability of success.  
This work is being done in context of the larger objective of 
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improving cost estimation by enhancing existing methods 
for capturing the economic impact of reuse [11] and 
harmonizing systems and software cost estimation [12]. 
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