
Second International Symposium on Engineering Systems
MIT, Cambridge, Massachusetts, June 15-17, 2009

Exploring the Sources of Enterprise Agility in Software Organizations

Jayakanth Srinivasan1
Lean Advancement Initiative, Massachusetts Institute of Technology

 School of Innovation Design and Engineering, Mälardalen University

Kristina Lundqvist2
School of Innovation Design and Engineering, Mälardalen University

Christer Norström3
School of Innovation Design and Engineering, Mälardalen University

Copyright © 2009 by [Jayakanth Srinivasan]. Published and used by MIT ESD and CESUN
with permission.

Organizations involved in the design, development and sustainment of software systems have to
manage the tension between creating new products and services, while at the same time
maintaining their existing portfolio. This paper explores the sources of enterprise agility in
software firms, wherein agility is defined as the ability of the organization to sense changes in its
environment (both internal and external), and effectively respond to these changes. Using
engaged scholarship as the overarching paradigm, we report on the findings of a process study
that uses semi-structured interviews, observation, and archival firm & project information for
data gathering, and grounded theory methods and comparative case analysis for data analysis
and theory generation. The analysis highlights the importance of the four organizational
enablers of: stakeholder alignment, employee empowerment, group & organizational learning,
and governance mechanisms, as necessary but not sufficient precursors to obtaining enterprise
agility. Furthermore, we provide illustrative case examples of the three mechanisms: Continuous
Improvement, Creating Systems of Innovation, and Leveraging Globally available Capabilities,
that software organizations use to gain enterprise agility.

Keywords: Software Organizations, Enterprise Agility, Engineering Systems, Engaged
Scholarship, Mixed-Methods

1. Introduction

1 Research Engineer, Lean Advancement Initiative, 77 Massachusetts Avenue, # 41-205, Cambridge, MA, 02139
2 Professor of Dependable Software Engineering, School of Innovation Design and Engineering, P.O. Box 883, SE-
721 23 Västerås, Sweden
3 Vice President & Professor Computer Science and Computer Engineering, School of Innovation Design and
Engineering, P.O. Box 883, SE-721 23 Västerås, Sweden

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/19878736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

“Software is a place where dreams are planted and nightmares harvested, where terrible demons
compete with magical panaceas, a world of werewolves and silver bullets.” -Cox [1]

When Brooks pointed out that there was no silver bullet for solving the challenges of developing
complex software systems [2] more than two decades ago, he noted that:

'The software product is embedded in a cultural matrix of applications, users, laws, and machine
vehicles. These all change continually, and their changes inexorably force change upon the
software product”- Brooks

Software systems have since become interconnected and ubiquitous, and the challenges of
building these complex systems have only become more difficult. The recognition in the 1990's
of needing to move from craft-based production of software to more industrial approaches [1],
led to a shift in focus from the search of a technological silver bullet of the 1980's, to the
emphasis on standardized processes in the 1990s. Yet, the 'software crisis' [3] still remains an
open and more urgent problem.

When you frame the problem of software development as finding the unique blend of people,
processes, and technology to solve some real-world problem, a potential answer emerges.
Significant progress in the processes and technology strands of the puzzle have brought the
people issues to the forefront. While people & organization issues have been at the forefront
since the first NATO conference on software engineering [4], we still lack theories of software
organizations that can help us better explain why some organizations are successful at
developing software, and why others fail. This paper is a needed step towards to filling that void,
and does so by developing a theory of enterprise agility in software organizations. The theory
identifies the key mechanisms that software organizations use to sense changes in their
environment, and reconfigure their resources to respond to those changes. In the ideal case, the
organization would be able to adapt and influence those environmental changes.

Software organizations today operate in an environment that is characterized by volatility in
customer preferences, rapid evolution of technology, increased workforce mobility, and greater
fiscal responsibility on the part of capital providers. These organizations have to be agile enough
to cope with an environment where change is the only constant, and yet remain disciplined
enough to continue to do what made them successful. This notion that they have to possess both
agility and discipline in how they create value serves as the starting point of the research
presented in this dissertation. From a software engineering research standpoint, the use of the
phrase balancing agility and discipline immediately brings to mind the work of [5], however, our
intent is to go beyond the notion of managing the risks associated with selecting a software
process model, to truly addressing firm-level value creation.

Within this paper, we present a simple classification of software organizations and justify our
selection of a capabilities-based view as the foundation for our theory generation efforts. We
discuss the three broad classes of mechanisms that software organizations use to build their
capabilities, and identify the organizational enablers that support the use of these mechanisms.

3

2. Software Organizations

Unlike other organizations that can be categorized as typically belonging to a single industrial
sector, software's pervasive nature makes that hard to do so. A simple exploration of NAICS
(North America Industry Classification System) codes that explicitly mention software, and other
sectors that we consider to be truly software-intensive (Table 1) highlights this challenge. For
example, two industries that were traditionally thought to be manufacturing centric are now
being driven largely by software innovations: the motor vehicle industry, and the aerospace
industry. Broy et al. point out that while a current premium car has about a 100MB of binary
code (270 user interaction functions distributed across 70 embedded platforms), the next
generation vehicles (circa 2012) will contain about 1 GB of software [6]. More importantly, they
highlight that even in the current state over 80% of the innovations come from computer
systems, making it a major contributor to the value of contemporary cars, and project that 38% of
the total value creation in automotive electrics/electronics by 2010 will be obtained through
software (the worldwide value creation is expected to grow from 127 billion Euros in 2002 to an
expected 315 billion Euros in 2015). Similarly, we have argued in earlier work [7] that software
is the mechanism through which the true value of an aerospace platform is realized.

Table 1. Inadequacy of NAICS codes for Understanding Software Organizations

NAICS Code Explanation

 Explicitly Includes Software

511210 Software Publishers

54151 Computer Systems Design and Related Services

5416 Management, Scientific, and other Technical Consulting Services

 Implicitly Includes Software (Illustrative examples)

3345 Navigational, Measuring, Electromedical, and Control Instruments
Manufacturing

3361 Motor Vehicle Manufacturing

Despite this diversity at the industry sector level, software organizations can be understood with
respect to the nature of their products, and the form of their value delivery. We extend Arora et
al.’s classification [8] to include three subsectors:

 Shrink-Wrapped Software: This sub-sector focuses on software is often sold directly to
the end consumer, either in the form factor suggested in the name (shrink wrapped boxes
containing some physical media containing software), or in the form of an online
download. There is a rich tradition of firm-level research in the area, for instance see [9].
More recently, there has been a call for greater research focus on product development
within the sector [10].

 Software Services: This sub-sector, consisting of firms performing operations ranging
from new software development, packaged software tailoring, and maintenance

4

operations makes up a significant portion of the software sector. While there has been
significant research in the areas of outsourcing for application software development and
packaged software tailoring, more work is needed in the area of software maintenance
services.

 Software-Intensive Systems:This sub-sector consists of firms that span a spectrum of
domains ranging from non-critical comfort functions in a vehicle to mission critical and
safety critical functions such as nuclear reactor control and flight guidance. While there
have been numerous studies that have focused on the challenges of building these
systems in the production phase, little has been said about transitioning these systems
from the concept to the production stage.

The two sectors that we specifically explore in our research are software-intensive systems
development, and software services.

3. Models of Competition

To effectively discuss firm-level value creation, we have discuss the underlying models of
market competition, and associated approaches that firms use to formulate competitive strategies.
The common models of market competition include the Mason & Bain industrial organization
model, the Chamberlinian monopolistic model, and the Schumpeterian creative-destruction
model. While discussing each of the models in detail is outside the scope of this paper, we
briefly highlight the key aspects of each of the models, and justify the capabilities-based model
that we adopt as the foundation for understanding software organizations.

The Mason & Bain model [11,12] built on industrial organization economics, assumes that the
rents a firm receives are a function of the industry structure that it is belongs to. The existence
and value of barriers to entry (the number and relative size of firms, the existence and degree of
product differentiation in the industry, and the overall elasticity of demand for the industry
determine the firms overall performance. More simply, these three aspects form the Porterian
levers of competition [13] within the structure-conduct-performance paradigm. Given the diverse
nature of organizations involved in software development, and the relatively low barriers to
market entry, the model does not provide sufficient insight into how software organizations
create unique competitive advantage.

The Chamberlinian model [14] is built on the notion of firms having unique assets and
capabilities, which then determine the strategies that a firm pursues and the associated
performance outcomes it obtains. These unique assets include technical know-how, reputation,
brand-awareness, and the willingness of managers to work together. One of the limitations of the
model is the strict monopoly assumption, which is difficult to find in the case of the software
industry.

The Schumpeterian model of competition is characterized by the assumption that revolutionary
innovations in products, markets or technologies can only be imperfectly estimated by firms in
the market. This model is representative of the environment which software organizations
operate in, and the underlying idea of viewing the firm as a bundle of resources that provide
strategic advantage [15] provides a foundation for studying these firms. An extension of this

5

approach, the dynamic capabilities approach that was first articulated in [16], wherein dynamic
capabilities are defined as:

“The firm's ability to integrate, build, and reconfigure internal and external competencies to
address rapidly changing environments. Dynamic capabilities thus reflect an organizations
ability to achieve new and innovative forms of competitive advantage given path dependencies
and market positions.”

The construct was further refined in [17], who defined dynamic capabilities as:

“A set of specific strategic and organizational processes that create value within dynamic
markets by manipulating resources into new value creation strategies.”

This has spawned extensive work in the areas of learning [18,19], in attempting to find micro
foundations for dynamic capabilities [20] and in trying to understand strategic change [21].

Firms in software industry have commonality in that they operate in fast clockspeed
environments [22]; with project teams as the primary means of creating value[23]; using a
process which forms one the purest forms of knowledge work [24,25]. These characteristics
coupled with the Schumpeterian competitive environment that these organizations operate it,
make the ideas of dynamic capabilities the most applicable. However, there has been little
research in using this construct, with the exception of the work in the Indian Software Services
industry in [26,27]. In related work, the notion of enterprise agility has been explored in the
software organizational context in [28] who define agility from the perspective of information
technology, and [29], who brings together the notion of project agility and new product
development agility in software organizations. We bring the two ideas together when we define
enterprise agility as:

“The ability of the organization to sense changes in its environment (both internal and external),
and reconfigure its resources and capabilities to meet those needs.”

This definition treats enterprise agility being an outcome of a firm developing and reconfiguring
its capabilities (i.e. it's dynamic capabilities). At it’s core, this paper explores the mechanisms
that software organizations use develop capabilities, and through the use of these mechanisms
obtain enterprise agility.

4. Framing the Research

4.A. Mechanisms for Capability Development

Our definition of enterprise agility is predicated on the ability of an organization to evolve/adapt
its capabilities. From the perspective of software organizations, there are three broad,
overlapping approaches using which the organization can build capabilities:

 Software Process Improvement: When the organization has a clear sense of the set of
capabilities that it will need in the long run, and has the time needed to developed them, then

6

software process improvement is the easiest choice. However, there is no guarantee that the
organization will actually achieve those capabilities, and even if it does, if those are the right
capabilities in the long run. For example, Y2K organizations building up capabilities through
training of personnel in other technologies such as Java and .Net to smoothly transition into
related markets.

 Creating Systems of Innovation: When the organization has a sense of its potential future
capabilities, it can develop them using systems of innovation, typically a mix of internal
R&D, open innovation, and spin-offs from process improvement and outsourcing efforts.
Again, this approach requires investment of time on the part of the organization.

 Leveraging Globally Available Capabilities: In the absence of time or the requisite talent
base, the organization has to tap into the global talent base, either in the form of an
outsourcing contract and/or an offshoring effort,and/or through global recruiting. This
requires the organization to have a clear sense of what capabilities they are going to continue
to retain as part of the core, and what portions they are potentially willing to commoditize.

4.B. Research Approach

Potts [30] points out the focus of research in software engineering has been driven by the
‘research-then-transfer’ model as opposed to the ‘industry-as-laboratory’ approach. The recent
ICSE workshops [31,32] have highlighted that the need still exists for innovative research
approaches to study broader scale socio-technical phenomena. The approach that we have
developed and tested over the last four years to drive and support our own research is shown in
Figure 1. It is built on using engaged scholarship [33] as the guiding philosophy, as the critical
realist perspective [34,35] that it is built on, is one that deeply resonates with our own philosophy
for research.

Figure 1. Research Approach

We use the word process along the same lines of [36], wherein a process can be understood as:

1. the logic used to explain a causal relationship in a variance theory
2. a category of concepts that refers to the actions of individual and organizations
3. a sequence of events that describes how some entity thing changes over time

7

There are two broad classes of research designs that can be used in studying the strategy process
in organizations, a variance research design (aimed at explicating relationships between
independent and dependent variables, and pertains to the 1st definition of process), and a process
research design (aimed at understanding the evolution of a process, pertaining to the latter two
definitions of process). The process research design that we adopt is built around developing that
category of concepts, and in understanding how specific firms evolved in their quest for
enterprise agility. Since the processes we are interested in studying at the firm level have not
always been well understood or completely articulated, we adopted a multiple case sampling
strategy [37] (wherein he defines a case study as an empirical inquiry within its real-life context,
particularly when the boundaries between phenomena and context are not clearly evident), across
two dimensions: the development process; and the primary value creation approach; as shown in
Figure 2.

Figure 2. Understanding the Sample Space

Our first round of pilot case studies involved three organizations FinServicesCo, BankCo, and
SpaceCo. The FinServicesCo and BankCo studies provided the insights needed to further explore
agile process improvement using the in depth case studies of AgileCo and GameDevCo [38].
The insights from SpaceCo led to the creation of a theoretical framework for understanding
aspects of innovation in software organizations, and ensure a first pass validation. The two in
depth studies of EuroTel [39] and IndiaCo [40,41] were carried out to provide deeper insights
into how organizations leverage globally available capabilities.

For data gathering, we use a mix of semi-structured interviews [42], observations [43] captured
in field notes [44], and archival data. The intent behind using semi-structured interviews, was to
go gather richer data from the participants by providing them with an opportunity to reflect more
broadly from their individual perspective, and from their organization's context. This structure
also provided us with the flexibility of exploring specific areas in greater depth, especially in the
second and third rounds of fieldwork. While most interviewees consented to be taped during the
interviews, in the case of the few that did not consent (either due to organizational policies or
personal preferences) and during closed door meetings with the senior leadership teams, we
captured field notes that later became invaluable sources of insights. We used observations to
further enhance our understanding of the organization culture and social dynamics, i.e. as

8

validation sources, rather than as the primary sources of insights. The two predominant
approaches that we use to conduct the data analysis were grounded theory [45] in the vein of
[46], and comparative case analysis [47]. We chose a grounded theoretic approach to data
analysis as it enables us to capture the context within which the phenomena occurred, and create
thicker descriptions of how each of the organizations evolved to their current state. When we
consider the sample of the four in depth case studies, they are essentially polar cases along the
software process dimension (iterative versus plan based), and the principle value creation
dimension (products versus services), hence leading to the use of comparative case analysis in
addition to grounded theory.

5. Executing the Research
5.A. AgileCo

AgileCo was started in 2001 as the Indian arm of a global software services provider. In 2005,
AgileCo consisted of about 75 people and was expecting to double in size by 2006. We
conducted 12 interviews at AgileCo in two sessions spanning a week in total. Our interviewees
included three senior managers , four business analysts, and five developers. Our observations of
members of AgileCo occurred when we were teaching with them at two workshops, as well as
during breaks between interviews, and after-work social interactions. Given that their parent
company had a long history of applying agile development, AgileCo also adopted agile methods,
but faced significant challenges in terms of educating their personnel in the use of agile methods.
Over the last seven years AgileCo has become one of the benchmarks of agile adoption and
usage in India. In addition to mentoring other organizations in agile methods, their staff is
encouraged to share their understanding of agile methods through conference papers, teaching
tutorials, and participation in local knowledge networks. The four key aspects of AgileCo:
personnel selection and training, building strong teams, managing customer expectations, and
teaching/mentoring, are reflective of the learning from the pilot case studies, and additionally
emerged from the analysis of the interview data as being key to the success of AgileCo.

5.B. GameDevCo

The study at GameDevCo was initiated in late 2005, athough it took almost two years to gain
access to study the organization. We were aware that GameDevCo was in the process of
adopting agile methods (since our primary project champion had just joined the organization),
and we were hoping to understand how they had adopted agile methods, and how they planned to
sustain it. The data was gathered using semi-structured interviews, after-hour conversations,
analysis of project data, and observations on team meetings. The data gathering and analysis
covered four steps: The first step involved conducting 22 semi-structured interviews, which
included three of the four business unit heads, four scrum masters, the lead technical architect of
their most successful product, three members from the verification and validation team, and three
project teams, three sustainment personnel, and two operations team members; the second step in
Aug 2008, was an interim review meeting with the project champion on ensure that the analysis
was essentially correct, and to determine where the gaps existed that needed to be refined; The
third step in Dec 2008, focused on the governance process between GameDevCo, and their
corporate office; and finally in January 2009, we conducted a review with the top leadership
team. This cycle of data gathering, inductive analysis, and stakeholder review, ensures that the

9

findings in this chapter are trustworthy. The key themes that emerged from the analysis of
GameDevCo focused on requirements management, requirements management & knowledge
capture, product variation, verification & validation, and human resource management.

GameDevCo was born as a startup project that was designed and built on a university campus by
developers who had a deep passion for the game of poker, and the technological expertise in the
three critical areas of: Server-side software, gaming engine, and client-side software. The game
was initially designed to develop the game playing skills using ‘play’ money, but the success of
the product overall led to the creation of a product that would allow people to buy-into and play
the actual games. This success led to the formation of a company to market the product on a
larger scale.

5.C. EuroTel

TelCorp is a global leader in the design, development and sustainment of telecommunications
equipment. From an organizational structure standpoint, TelCorp is best understood as having
three business units: the Applications Business Unit (ABU), the Advanced Research Group
(ARG), and EuroTel. The Applications Business Unit (ABU) acts as the primary face of TelCorp
to its customers, and is responsible for short-term product innovation, product sales and client
management for TelCorp. The Advanced Research Group (ARG) carries out both medium-term
and long-term research in defining the next generation of product capabilities. EuroTel serves as
the internal technological platform provider for TelCorp. Our first round of field work at EuroTel
involved interviews with eight members of the senior leadership team. The selection of personnel
to interview was driven by a desire to discuss technical and managerial challenges that were
currently being faced, and how those challenges could/would be mitigated in the long run. These
interviews provided the historical background necessary for understanding the evolution of the
organization, and provided some preliminary insights into the drivers underlying their evolving
relationship with their outsourcing supplier - IndiaCo. We followed the first round of fieldwork
by conducting a workshop with members from both IndiaCo and EuroTel (including the senior
leadership teams of both organizations), in order to understand the dynamics of the relationship,
and gain a deeper understanding of their strategic direction of the relationship going forward.
The findings of the engagement phase and the workshop led to a second round of fieldwork at
EuroTel which focused on project team level issues. In this round of focused fieldwork, we
interviewed twelve team members from two teams(including their project managers), in order to
understand the project level drivers of success. The analysis of EuroTel focused on the strategic
issues (disconnect from the rest of the enterprise, risk-average culture, and dearth of innovation)
and the execution challenges (resource constraints and schedule pressure).

5.D. IndiaCo

IndiaCo’s roots can be found in an early 2000’s pilot project in the maintenance arena to
demonstrate their capabilities in supporting the needs of their European client, EuroTel. While
they have historically been a services provider, the offshore development center they established
for EuroTel, represents one of their most successful efforts in the product development and

10

sustainment arena. Although their relationship with their client began as a cost saving effort, the
last eight years has seen IndiaCo evolve towards becoming a strategic partner. While we see their
evolution as being consistent with the typical engagement model adopted by most software
services firms, IndiaCo is unique in their approach to transforming a services based culture to the
product development and support environment. Although the contractual relationship between
IndiaCo and their customer remains time-and-materials based, their senior leadership has relied
on continuous improvement to drive down costs, innovate processes for knowledge transfer and
dedicated internal (basically non-billable) resources to demonstrate the increasing value
proposition to support their growth. In the first round of fieldwork, we conducted sixteen
interviews in total with twelve project managers, two senior leaders, and two developers. The
focus on project managers was driven partly because we felt that the project managers were the
closest to the actual challenges of executing projects with EuroTel. In addition to these
individual interviews, we used coffee breaks and lunches to gain a sense of the IndiaCo
environment. Each of these interviews were transcribed, and analyzed to find common themes
across the various levels of analysis. In addition to the interviews, we also were given access to
the training materials used internal to IndiaCo and to some project data. Once the preliminary
data analysis was complete, we did a second round of fieldwork in August, in which we focused
on team interviews with members of all seven projects that formed the core portfolio at IndiaCo.
These interviews gave us deeper insight into the dynamics of the relationship between IndiaCo
and EuroTel, and made more explicit the three major classes of projects in the portfolio: Product
Sustainment, Product Ownership, and Knowledge-Work. The third round of meetings at IndiaCo
in December, focused on presenting the findings of the case study, and getting feedback from
members of IndiaCo. Recently, we visited IndiaCo for the third and final round of fieldwork,
working primarily with the senior leadership team to discuss challenges imposed by the
recession. Among the themes that emerged were: a focus on long-term performance, capabilitiy
development (including knowledge management, and competency development), managing
human capital (including leadership), and governance.

6. Conclusions and Future Research

Through the analysis of the data, and theoretical triangulation, we identified the four key
organizational enablers of stakeholder alignment, employee empowerment, group &
organizational learning, and governance systems. We decomposed each of the enablers into their
constituent elements, and used those elements for better understanding the case studies. Our
analysis of the organizational enablers showed that in the cases of organizations that were
successful, the enablers were present to a greater degree than in organizations that were not so
succesful. For example, success in achieving continuous improvement is predicated on alignment
and engagement of key stakeholders (employees and senior leadership in particular),
empowerment of employees to make the key changes needed, learning to ensure that best
practices are easily disseminated (and mistakes are not repeated), and a governance mechanism
to ensure that these efforts are in fact meeting the objectives. Similarly, innovation is carried out
by people, and translated into organizational capabilities through a system that has to be
governed effectively. In the case of leveraging globally available capabilities, stakeholder
alignment is critical to prevent fear within the organization, and learning and governance are
foundational to support long term sustainability.

11

Figure 3. Towards a Theory of Enterprise Agility in Software Organizations

Based on our work, we believe that enterprise agility is gained through the use of a combination
of one or more of the mechanisms of continuous improvement, systems of innovation, and
leveraging globally available capabilities. Furthermore, enterprise agility requires the presence of
all four organizational enablers (in some degree). As with all research, it sets the stage for further
exploration:

1. We have provided useful insights into the use of agile methods in the product
development context, but more research is needed in the application of these methods to
the development of mission critical and safety-critical systems

2. The framework for transitioning ideas to production was developed theoretically, and
first pass evidence from the GameDevCo case shows that it has explanatory powers.
More research is needed to improve its predictive capabilities.

3. The qualitative case study on customer-supplier relationships needs to be generalized
across geographical and industrial contexts.

4. We have identified the four organizational enablers, and hypothesize that the relationship
between them starts with stakeholder alignment as the foundation, and successively
builds up through employee empowerment, governance, and learning. More research is
needed to test this hypothesis.

7. Acknowledgement

The research presented here was supported in part by the Swedish Foundation for Strategic
Research (SSF) through the PROGRESS center at Mälardalen University.

References
[1] B.J. Cox, “Planning the software industrial revolution,” IEEE software, vol. 7, 1990, pp.

25-33.
[2] F.P. Brooks, “No silver bullet: Essence and accidents of software engineering,” IEEE

computer, vol. 20, 1987, pp. 10-19.

12

[3] W. Gibbs, “Wayt (1994)" Software's Chronic Crisis,” Scientific American, 1994, pp. 72-81.
[4] P. Naur, B. Randell, and F.L. Bauer, Software Engineering: Report on a conference

sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October
1968, Scientific Affairs Division, NATO, 1969.

[5] B.W. Boehm and R. Turner, Balancing agility and discipline: A guide for the perplexed,
Addison-Wesley Professional, 2003.

[6] M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive software,”
Proceedings of the IEEE, vol. 95, 2007, pp. 356-373.

[7] J. Srinivasan and K. Lundqvist, Why is Aerospace Software Development and Sustainment
Hard?, Cambridge: Massachusetts Institute of Technology, 2005.

[8] A. Arora, V.S. Arunachalam, J. Asundi, and R. Fernandes, “The Indian software services
industry,” Research Policy, vol. 30, Oct. 2001, pp. 1267-1287.

[9] M.A. Cusumano and R.W. Selby, Microsoft secrets, Free Press New York, 1995.
[10] L. Xu and S. Brinkkemper, “Concepts of product software: Paving the road for urgently

needed research,” 2005.
[11] J.S. Bain, Industrial organization, John Wiley & Sons, 1968.
[12] E.S. Mason, “Price and production policies of large-scale enterprise,” The American

Economic Review, 1939, pp. 61-74.
[13] M.E. Porter, “Competitive strategy,” New York, 1980.
[14] E.H. Chamberlin, “Monopolistic or Imperfect Competition?,” The Quarterly Journal of

Economics, 1937, pp. 557-580.
[15] B. Wernerfelt, “A resource-based view of the firm,” Strategic management journal, 1984,

pp. 171-180.
[16] D.J. Teece, G. Pisano, and A. Shuen, “Dynamic capabilities and strategic management,”

Strategic management journal, 1997, pp. 509-533.
[17] K.M. Eisenhardt and J.A. Martin, “Dynamic capabilities: what are they?,” Strategic

management journal, 2000, pp. 1105-1121.
[18] M. Zollo and S.G. Winter, “Deliberate learning and the evolution of dynamic capabilities,”

Organization Science, 2002, pp. 339-351.
[19] S.G. Winter, “Understanding dynamic capabilities,” Strategic Management Journal, 2003,

pp. 991-995.
[20] D.J. Teece, “Explicating dynamic capabilities: the nature and microfoundations of

(sustainable) enterprise performance,” Strategic Management Journal, vol. 28, 2007.
[21] C.E. Helfat, Dynamic capabilities: Understanding strategic change in organizations,

Wiley-Blackwell, 2007.
[22] C.H. Fine, Clockspeed: Winning industry control in the age of temporary advantage,

Perseus Books, 1998.
[23] S. Faraj and L. Sproull, “Coordinating expertise in software development teams,”

Management Science, 2000, pp. 1554-1568.
[24] R.W. Zmud, “An examination of'push-pull'theory applied to process innovation in

knowledge work,” Management Science, 1984, pp. 727-738.
[25] T.H. Davenport and L. Prusak, “Working knowledge: How organizations manage what they

know,” Ubiquity, vol. 1, 2000.
[26] S.S. Athreye, “The Indian software industry and its evolving service capability,” Industrial

and Corporate Change, vol. 14, 2005, pp. 393-418.

13

[27] S.K. Ethiraj, P. Kale, M.S. Krishnan, J. Singh, S. Ethiraj, and D. Levinthal, “Where do
capabilities come from and how do they matter? A study in the software services industry,”
Strategic Management Journal, vol. 26, 2005, pp. 25-45.

[28] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise agility and the enabling role of
information technology,” European Journal of Information Systems, vol. 15, 2006, pp.
120-131.

[29] P. Kettunen, “Extending Software Project Agility with New Product Development
Enterprise Agility,” Software Process: Improvement and Practice, vol. 12, 2007.

[30] C. Potts, “Software-engineering research revisited,” IEEE Software, vol. 10, 1993, pp. 19-
28.

[31] S.E. Sim, J. Singer, and M.A. Storey, “Beg, borrow, or steal: Using multidisciplinary
approaches in empirical software engineering research,” Empirical Software Engineering,
vol. 6, 2001, pp. 85-93.

[32] Y. Dittrich, O. Hazzan, F. Maurer, M. John, H. Sharp, J. Sillito, S. Sim, M.A. Storey, B.
Tessem, and G. Venolia, “Cooperative and human aspects of software engineering (CHASE
2008),” 2008.

[33] A.H. Van de Ven, Engaged scholarship: A guide for organizational and social research,
Oxford University Press, USA, 2007.

[34] R. Bhaskar, “A realist theory ofscience,” Brighton: Harvester, 1978.
[35] R. Bhaskar, The possibility of naturalism, Harvester Wheatsheaf New York, 1979.
[36] A.H. Van de Ven, “Suggestions for studying strategy process: a research note,” Strategic

Management Journal, 1992, pp. 169-191.
[37] R.K. Yin, Case study research: Design and methods, Sage Publications, Inc, 2008.
[38] J. Srinivasan and K. Lundqvist, “Organizational Enablers for Agile Adoption: Learning

from GameDevCo,” Agile Processes in Software Engineering and Extreme Programming:
10th International Conference, XP 2009, Sardinia, Italy, May 25-29, 2009, Proceedings,
Springer, 2009, p. 63.

[39] J. Srinivasan, “Studying Customer-Supplier Relationships in Global Software
Development,” 2008.

[40] J. Srinivasan, “Architecting a Lean Software Enterprise: The TODC Story,” Hyderabad,
India: Strategic Management Society, 2008.

[41] J. Srinivasan, A. lofgren, C. norstrom, and K. Lundqvist, “Lessons Learned from a
Workshop on Relationship Building,” Limerick, Ireland: IEEE Computer Society Press
Los Alamitos, CA, USA, 2009.

[42] I. Seidman, Interviewing as qualitative research: A guide for researchers in education and
the social sciences, Teachers College Press, 2006.

[43] J.P. Spradley and K. Baker, Participant observation, Holt, Rinehart and Winston New
York, 1980.

[44] R. Sanjek, Fieldnotes: The makings of anthropology, Cornell University Press, 1990.
[45] B.G. Glaser and A.L. Strauss, The discovery of grounded theory, Aldine de Gruyter New

York, 1967.
[46] K. Charmaz, Constructing grounded theory: A practical guide through qualitative analysis,

Sage, 2006.
[47] C.C. Ragin and H.S. Becker, What is a case?: exploring the foundations of social inquiry,

Cambridge Univ Pr, 1992.

