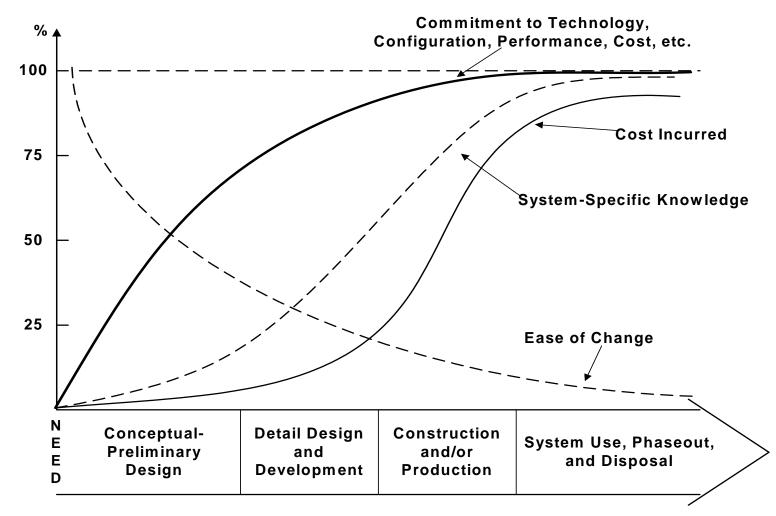

Using Cost Models to Capture Project Risk: A Knowledge-Based Approach

Dr. Ricardo Valerdi Massachusetts Institute of Technology October 22, 2009 [rvalerdi@mit.edu]

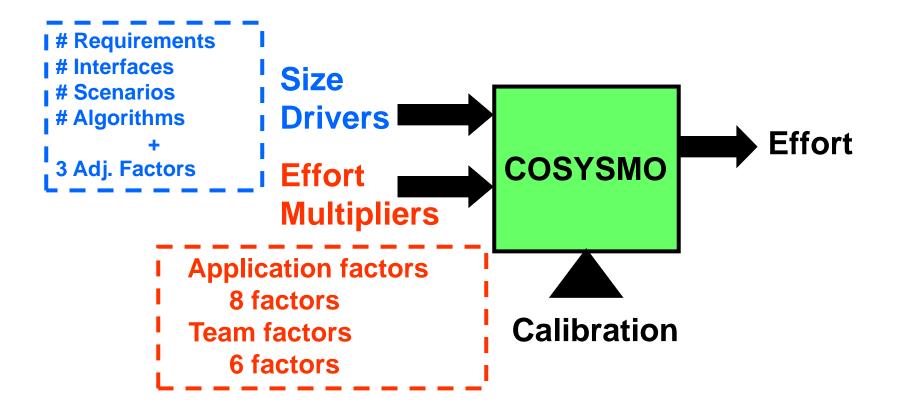
We Share A Goal: Enterprise Excellence BOEING NORTHROP GRUMMAN LOCKHEED MARTIN Rockwell Collins Raytheon ULM **United Launch Alliance** LEAN ADVANCEMENT INITIATIVE TM United Space Alliance artner @ Work Sikorsky Pratt & Whitney **BAE SYSTEMS** A United Technologies Company A United Technologies Company



Risk Assessment Lessons Learned in the U.S. Department of Defense

- 1. Systems engineering can be the blessing or the curse
 - Resource estimation methods are being developed
- 2. Technology maturity and requirements stability are controllable risks
 - Cost models help understand this relationship
- 3. People risks are often underestimated
 - Experience and capability are not interchangeable
- 4. By the time the risk is identified, it's too late!
 - Need leading indicators (not lagging indicators)

Cost Commitment on Projects



Blanchard, B., Fabrycky, W., Systems Engineering & Analysis, Prentice Hall, 1998.

http://lean.mit.edu

Constructive Systems Engineering Cost Model

Systems Engineering Processes

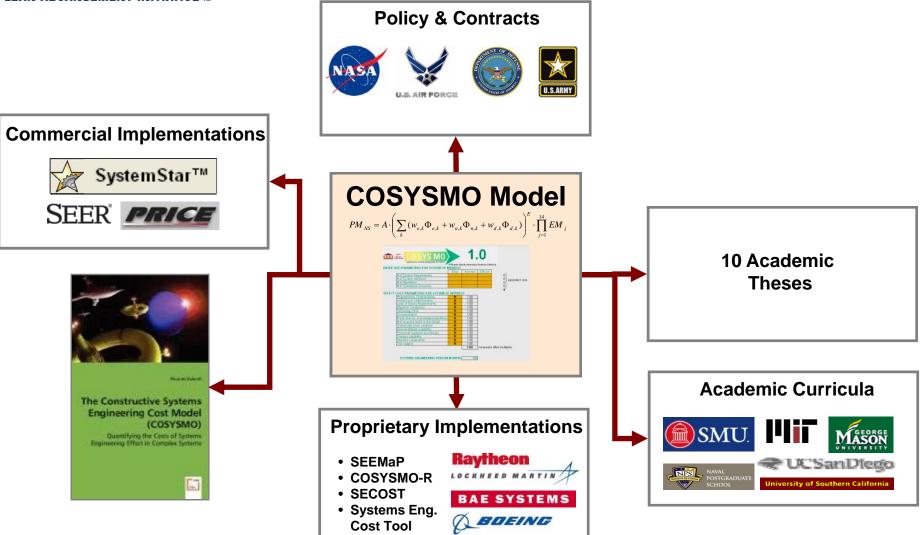

EIA/ANSI 632, Processes for Engineering a System (1999).

- Acquisition and Supply
 - Supply Process
 - Acquisition Process
- Technical Management
 - Planning Process
 - Assessment Process
 - Control Process
- System Design
 - Requirements Definition Process
 - Solution Definition Process

- Product Realization
 - Implementation Process
 - Transition to Use Process
- Technical Evaluation
 - Systems Analysis Process
 - Requirements Validation Process
 - System Verification Process
 - End Products Validation Process

© 2009 Massachusetts Institute of Technology Valerdi 2009 - 8

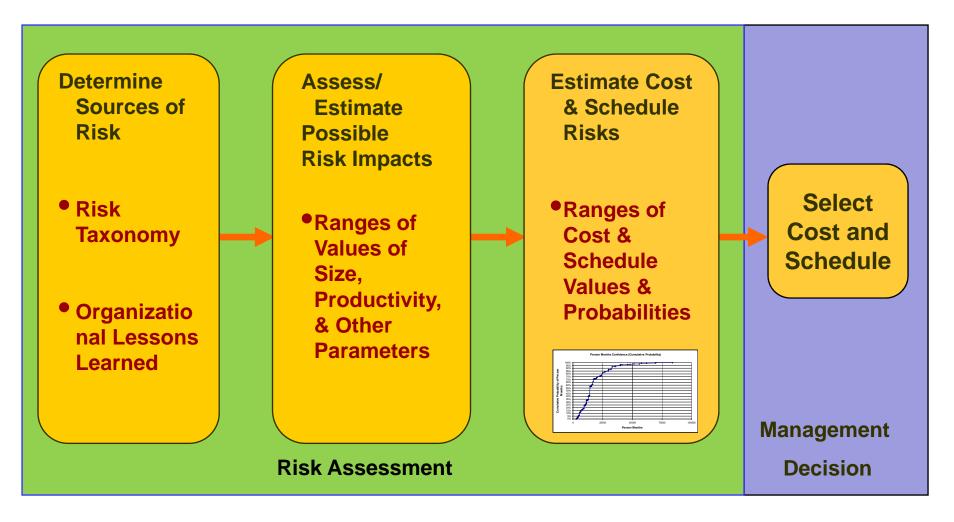
http://lean.mit.edu


COSYSMO Data Sources

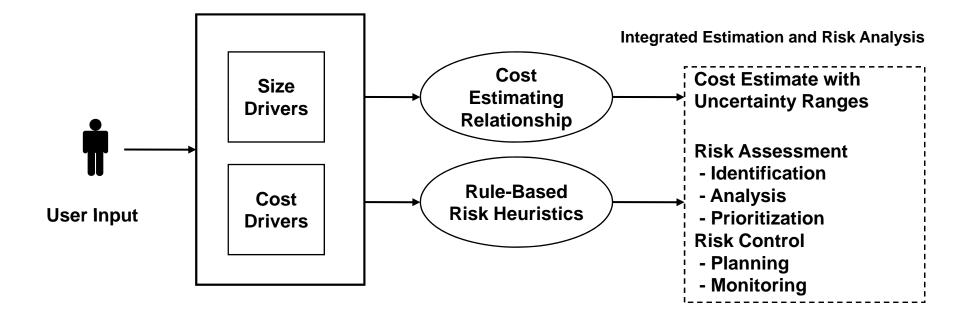
	COSYSMO Data Source
Boeing	Integrated Defense Systems (Seal Beach, CA)
Raytheon	Intelligence & Information Systems (Garland, TX)
Northrop Grumman	Mission Systems (Redondo Beach, CA)
Lockheed Martin	 Transportation & Security Solutions (Rockville, MD) Integrated Systems & Solutions (Valley Forge, PA) Systems Integration (Owego, NY) Aeronautics (Marietta, GA) Maritime Systems & Sensors (Manassas, VA; Baltimore, MD; Syracuse, NY)
General Dynamics BAE Systems	Maritime Digital Systems/AIS (Pittsfield, MA) Surveillance & Reconnaissance Systems/AIS (Bloomington, MN)
	National Security Solutions/ISS (San Diego, CA) Information & Electronic Warfare Systems (Nashua, NH)
SAIC	Army Transformation (Orlando, FL) Integrated Data Solutions & Analysis (McLean, VA)
L-3 Communications	Greenville, TX

http://lean.mit.edu

© 2009 Massachusetts Institute of Technology Valerdi 2009 - 9



http://lean.mit.edu



Traditional Cost and Schedule Risk Estimation

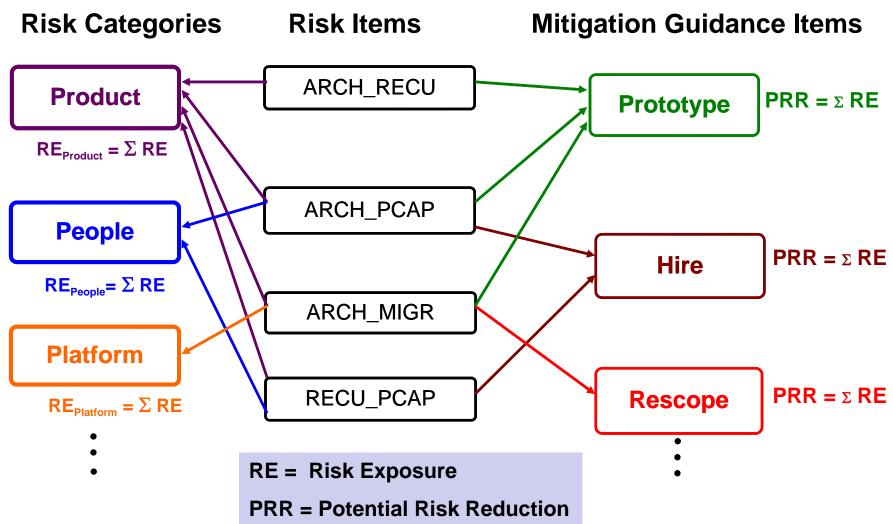
Expert COSYSMO Operation

Madachy, R. & Valerdi, R., Knowledge-Based Risk Assessment for Systems Engineering: Expert COSYSMO, working paper, 2009.

Initial Risk Conditions

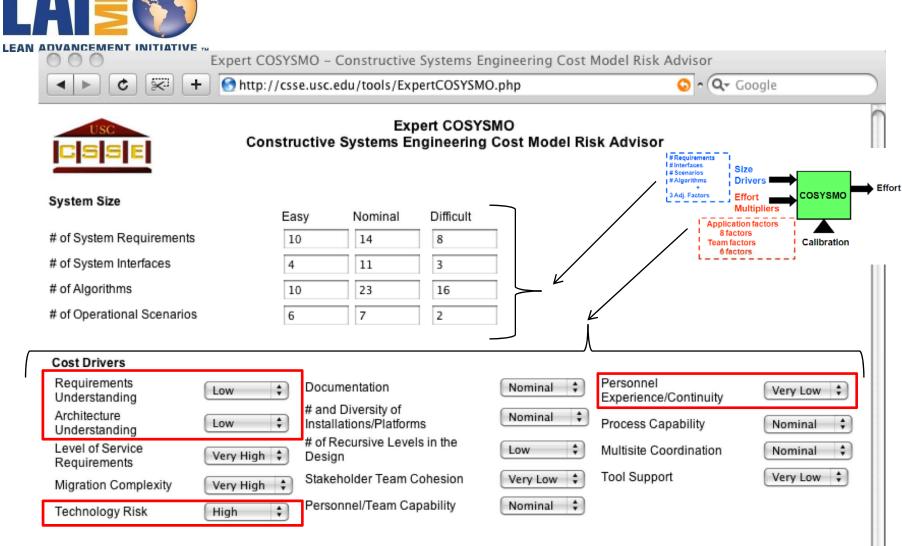
n = 19

	SIZE	RQMT	ARCH	LSVC	MIGR	TRSK	DOCU	INST	RECU	TEAM	PCAP	PEXP	PROC	SITE	TOOL
SIZE (REQ + INTF + ALG + OPSC)		21	21	9	12	5	4	7	10	8	9	11	7	6	
Requirements Understanding			17	9	7	8	3	, 5		5					
Architecture Understanding				9	10	12	3	7			11	11	5		
Level of Service Requirements (the ilities)					5	7	4	5		6	4				
Migration Complexity (legacy system considerations)						8	1	10	1	4	7	7	3		_
Technology Risk (maturity of technology)							2	8	6	4	9	5			_
Documentation match to life cycle needs							Ζ	2	3	4	4	2	6	2	-
Number and Diversity of Installations or Platforms		1						\land	4	3	5	6	4	8	
Number of Recursive Levels in the Design									Ζ	4	8	7	7	2	
Stakeholder Team Cohesion										Ζ	7	9	3	8	
Personnel/team capability											Ζ	12	9	8	
Personnel Experience and Continuity												Ϊ	10	8	
Process Capability													Ζ	5	
Multisite Coordination														Ζ	
Tool Support															


Valerdi, R. & Gaffney, J., Reducing Risk and Uncertainty in COSYSMO Size and Cost Drivers: Some Techniques for Enhancing Accuracy, 5th Conference on Systems Engineering Research, Hoboken, NJ, March 2007.

medium risk

low risk



Risk Network

Madachy, R. & Valerdi, R., Knowledge-Based Risk Assessment for Systems htt Engineering: Expert COSYSMO, working paper, 2009.

Expert COSYSMO Inputs

http://csse.usc.edu/tools/ExpertCOSYSMO.php

Expert COSYSMO Outputs

Systems	Engineering	Effort = 3	635 Perso	n-months
---------	-------------	------------	-----------	----------

Effort Distribution (Person-Months)

Phase / Activity	Conceptualize	Develop	Operational Test and Evaluation	Transition to Operation
Acquisition and Supply	71.3	129.8	33.1	20.4
Technical Management	136.0	234.9	154.5	92.7
System Design	370.9	436.3	185.4	98.2
Product Realization	70.9	163.6	174.5	136.3
Product Evaluation	202.9	304.3	450.9	169.1

Risk Summary

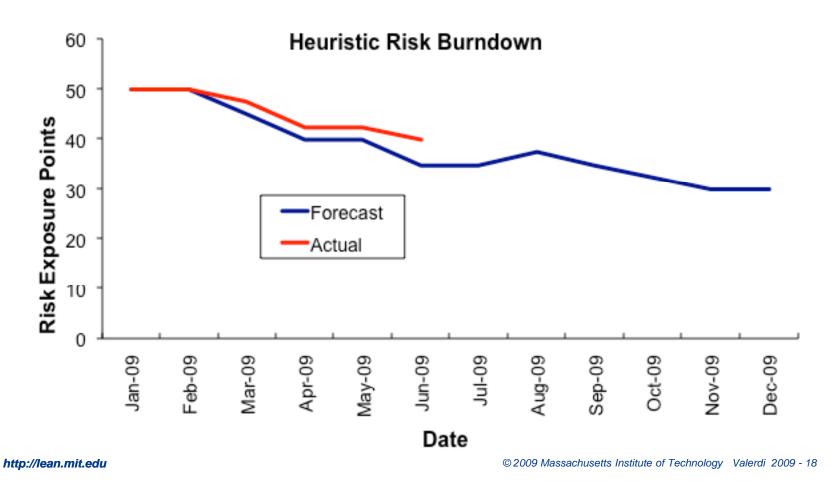
Product	60	
Process	2	
Personnel	20	

Prioritized Risks

High	Medium	Low
requ_arch	requ_serv	requ_team
arch_trsk	requ_migr	requ_serv
arch_pexp	requ_trsk	requ_serv
	arch_serv	requ_serv
	arch_migr	requ_serv
	arch_team	arch_tool
	serv_trsk	serv_migr
	serv_team	serv_pexp
	migr_trsk	serv_tool
	migr_pexp	migr_team
		migr_tool
		trsk_team
		trsk_pexp
		trsk_tool

Outputs - Risk Mitigation Advice

Risk Mitigation Guidance


The risk mitigation guidance below shows alternatives for consideration in specific project environments.

Risk Severity	Description	Alternatives
High	Requirements Understanding = Very Low <i>and</i> Architecture Understanding = Very Low	Subcontract, prioritize requirements, cancel project
High	Architecture Understanding = Very Low <i>and</i> Technology Risk = Very High	Early prototyping, trade studies, negotiation on priorities
High	Architecture Understanding = Very Low <i>and</i> Personnel Experience/Continuity = Very Low	Hire experts, establish educational benefits, conduct training

Risk Exposure Trends as Leading Indicators

 Risk burndown tracked as mitigation actions are executed and other changes occur

Publicly Available Resources

- U.S. General Accountability Office (<u>http://gao.gov/</u>)
 - Investigative arm of the U.S. Congress
- RAND Corporation (<u>http://rand.org/</u>)
 - Public think tank
 - "Managing Risk in USAF Force Planning"
- Defense Acquisition University (<u>https://acc.dau.mil</u>)
 - One of several U.S. Military Universities
 - "DoD Risk Management Guidebook "