
Using Relational Model Transformations to Reduce
Complexity in SoS Requirements Traceability:

Preliminary Investigation

Charles Dickerson
SEIC, Holywell Park

Loughborough University
Leicestershire, LE11 3TU, UK

C.Dickerson@lboro.ac.uk

Ricardo Valerdi
77 Massachusetts Avenue 41-205

Massachusetts Institute of Technology
Cambridge, MA, U.S.A.

rvalerdi@mit.edu

Abstract. The principles and methods of Model Driven
Architecture are applied to the problem of requirements
traceability for a System of Systems (SoS). Model
transformations of operational threads are used to reduce
the complexity of modeling mission requirements and their
flow into the architecture of the SoS. The allocation of
requirements to operational mission threads (OMTs)
rather than to individual systems reduces the complexity of
the requirements tracing. Relational transformations
provide a mathematically based formalism for model
transformations that permit precise computation of the
transformation of operational threads into threads of
systems allocated from the SoS. Connectivity requirements
for the SoS are also exposed in this way and the number of
permissible system threads are seen to correspond directly
to the number of permissible transformations. The
principles and methods are illustrated by an elementary
case study for sensor fusion.

Keywords: Requirements engineering, system of systems,
relational transformation, cost estimation.

1 Introduction
 The Systems Engineering community is aggressively
working on Model Based Systems Engineering (MBSE).
Formal languages, methods and tools are being introduced
to support MBSE. The Systems Modelling Language
(SysML) introduces extensions to the Unified Modelling
Language (UML) for the purpose of Systems Engineering.
UML was specified for modelling software systems and
has become ubiquitous in that community. Working
groups in the OMG and INCOSE are developing methods
and tools.

 Over the past decade a new systems practice in
software development called Model Driven Architecture
(MDA) has emerged. MDATM is now entering its second
generation of specification by the Object Management
Group (OMG). What new ideas are involved and how
does MBSE relate to MDATM? How can they be extended
to SE and System of Systems SE (SoSE)?

 The objective of this paper is to apply the principles
and methods of Model Driven Architecture and recent
advances put forth in [1], [2], and [3] to the problem of
SoS requirements traceability. The traditional systems
engineering practice of definition and decomposition can
be realized through model transformation (as presented in
[2]), which has been given a mathematical basis in [1].
Specifically, the practice of model transformation in
MDATM can be realized using relationship-preserving
transformations of the parameters of a model. The power of
this approach is that traditional transformations of model
parameters can be used to compute the implied
transformation of relationships between those parameters.

 In a traditional definition and decomposition
approach to systems engineering, an allocation of
requirements to individual operational activities and
individual systems can lead to order of magnitude growth
in the number of requirements specified. See for example
[4]. And this does not account for the fact that unspecified
dependencies or other relationships between system
parameters, when discovered, will add further complexity.
Recent research [3] has introduced an MDA approach
using relational transformations to evaluate alternative SoS
architectures against the particular requirements of a
specific mission. The preservation of relationships between
operational requirements through mathematically defined
model transformations ensures that all relationships
between SoS parameters implied by the requirements are
properly captured. The use of OMTs for SoS requirements
engineering simplifies this problem by means of
meaningful groupings of operational activities and systems.

1.1 Model Driven Principles for SoSE

 MBSE generally seeks to model (vice document in
text) the basic attributes associated with a system. This is a
move from Document Centric to Model Centric
engineering. It should be accompanied by a shift from
document centric storage and retrieval of information to a
data centric paradigm. This will improve design quality,
program management. MDATM is the exemplar for
software development.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/19878696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The promise of OMG for MDATM is to allow
definition of machine readable application and data models
which allow long term flexibility of Implementation,
Integration, Maintenance, Testing and Simulation.

 The precepts of traditional Systems Engineering
design and development are often described by the
Forsberg Systems Engineering Vee (see for example [5]),
in which system specification is accomplished by means of
definition and decomposition. The left side of the Vee is
comprised of system concept and requirements analysis,
system specification, configuration item specification, and
finally ‘build to’ specification. The bottom of the Vee,
which joins left and right hand sides, is implementation. A
Model Driven Approach to Systems and SoS Engineering
would view each level of decomposition as a model and
focus on model transformation as central to system design
and SoS assemblage.

 One possible approach to applying MDA principles
and methods to the traditional Systems Engineering Vee
was presented in [2]. In this approach, the principal
systems engineering activities on the left hand side of the
Vee are realized through the principal MDATM models: the
Computational Independent Model (CIM), the Platform
Independent Model (PIM), the Platform Specific Model
(PSM), and the Platform Model (PM). These models are
described in detail in the OMG MDATM Guide [6]. Figure
1 illustrates how this approach could be adapted to a
Systems Engineering Vee for SoS Engineering (SoSE).

Figure 1. An MDA Approach for an SoSE Vee

 At the CIM level, functional requirements are
captured with Use Cases and the operational tasks for the
mission concept are captured in OMTs. Strictly speaking,
at the CIM level only the operational sequence portion of
the OMT would be specified. In the DoD Architecture
Framework (DoDAF) [7], this sequence is denoted as the
OV-6c. The association of systems from the SoS with
operational tasks could be captured parametrically in a
PIM, which for example, could be described with generic
system outputs or system functions. Through relational
transformation of models, this allocation gives rise to
collaboration relationships between the systems of the SoS.
This is the first artifact of the SoS architecture. UML
Package Diagrams or SysML Block Diagrams can be used

to further model the structure of the SoS, which would be
captured in the PSM. The PM can be used to capture the
final specifications for the systems of the SoS and the
integrating functions for their interoperability.

 In this way, the SoS is assembled and integrated to
support the mission concept. Operational capabilities are
modeled through the OMTs which capture both the ways
(e.g., Ov-6c) and means (e.g., systems from the SoS) by
which the operational capabilities are realized. Strictly
speaking, the SoS is not ‘designed’ but rather assembled
and integrated. However, there could be modifications to
the individual systems or additions to the SoS that are
required for the systems to operate and interoperate for the
purpose of delivering SoS level mission capabilities. These
modifications are the subject of a more traditional system
design approach. Early research and experiments in
network centric warfare by the U.S. Navy [8] provide
further elaboration of this concept for SoSE.

1.2 SoS Requirements Traceability

 It is clear from the above discussion that tracing
mission requirements through the SoS entails not just the
specification of how individual systems must operate but
also how the systems interoperate with each other to
deliver mission level capabilities. Thus, the tracing of
relationships through the definition and decomposition
process of systems engineering is an integral part of SoS
requirements traceability. Applying a mathematically based
formalism using relational model transformations for this
type of requirements traceability is the subject of the next
section of the paper.

2 System Modeling Approaches
 Just as Model Driven Architecture can be adapted to
the Systems Engineering Vee [2], it can also be adapted to
other aspects of traditional systems engineering such as
requirements engineering and the Dependence Structure
Matrix (DSM).

2.1 Requirements Engineering

 The understanding, elaboration, and management of
requirements is at the core of the systems engineering
function [9]. The dependencies of requirements in an SoS
is especially challenging because of the diverse set of
stakeholders involved. Requirements traceability, in
particular, becomes a complex task that calls for machine
automation. Therefore a more structured approach that
captures the relationships between requirements is
necessary. The model driven approach, using relational
transformation, can be used to address some of the
complexities involved with SoS requirements engineering.
Existing methods can be used to represent some of the
complexities but they fall short in capturing the traceability
of all the relationships that drive the system functionality.

PIM:
SoS (Functional)

Allocation to Mission

PSM:
SoS Architecture
Analysis System

Specification

PM:
“Build-To”

Specification,

Implementation:
Procure, Fabricate,

Code, Assemble

Acceptance Testing

Integrate SoS and Test
to Specification

Assemble SoS Systems,
Test to Specification

Inspect/Test to “Build-
To” Specification

Validation

Verification

Verification

Verification

CIM:
Requirements Analysis,

Mission Concept Definition

Integration and
Test

Analysis and
Specification

Adapted from Forsberg and Mooz “Vee"

Use Cases, Operational
Mission Threads

Model Transformation,
System Collaboration

Diagrams

Package Diagrams,
System Sequence

Diagrams

2.2 Dependence Structure Matrix

 An existing method for representing the dependencies
between elements of a system is the Dependence Structure
Matrix shown in Figure 2. This approach has been widely
used to capture dependencies between system elements,
which can take the form of components, processes,
organizations, and activities [10]. The benefit of DSM is
that it can help characterize the dependencies. In the
example provided in Figure 2, there are 19 different
dependencies between the elements A1, … , A7. One
disadvantage of DSM is that it does not enable the
traceability of requirements across multiple components of
a system or system of systems. In other words, isolated
relationships between system elements is inadequate to
reason about the complexity of the dependencies.

Figure 2. Dependence structure matrix

3 Relational Transformation
 Model transformation in MDA is the process of
converting one model into another model of the same
system. It is a central concept. An MDA mapping provides
specifications for transformation of a PIM into a PSM for a
particular platform. The platform model will determine the
nature of the mapping. Model transformation can be
thought of as part of the design and development process.

3.1 Origins

 Despite the popular practice of model transformations
in MDATM, a mathematical foundation has not yet been
given in the OMG guidance and specifications for MDATM.
The broader computer science community, on the other
hand, has considered mathematical transformations on
relational structures. A summary and assessment of a wide
variety of these transformations based on universal algebra
can be found in [11]. These transformations share the
common concept of relationship-preserving functions on
structures. Based on a comparison of these concepts and
the concepts of model transformation in MDATM, reference
[1] introduced a variant of the approaches used in [11] to

define an easily computable definition of model
transformation that is properly founded on mathematical
logic and universal algebra.

3.2 Methodology

 The relational transformation of a model is a natural
concept because in mathematical logic, relational structures
are the basis of models. See for example, [12]. In general,
a transformation is specified only for the parameters used
to model a system but it will induce a mapping between the
relationships in any model of the parameters. The notation
below provides a simple but rigorous method of calculating
the transformation of relationships in a matrix notation.

 In [1], the relational structure of a model is
represented by a matrix which is designated by an
underlined capital letter, such as M. The underlying set of
parameters are designated by a capital italics letter, e.g. M
= {y1, y2, … ym-1, ym}. A mathematical relation on the
parameters M is denoted as a normal capital letter, for
example R = {(y2, ym-1), (y2, ym), (ym-1, y2)}. The ordered
pairs in R represent relationships between the parameters
and correspond to the tick marks in the matrix M, as
illustrated in figure 3.

 In the figure, Q transforms the parameters y1, … ym
into a set of system parameters x1, … xn by associating one
or more of the xk with one or more of the yi. We shall use
the notation yiQxk to mean that Q has associated yi with xk.
As with a binary mathematical relation, this means that the
ordered pair (yi, xk) belongs to Q.

 To see the implied transformation of the models we
extend the notation yQx to the notation RQ to show how Q
transforms a subset R of M into a subset RQ of N. Recall
that a subset R of M, in general, represents a mathematical
relation on the underlying set of parameters M. RQ is
defined as follows: for each pair of parameters (yi, yj) that
belong to the mathematical relation R, if yiQxk and yjQxl
then the pair (xk, xl) belongs to the mathematical relation
RQ in N. If S is a relation in N and RQ is a subset of S,
then Q preserves the relationships of M and it is called a
relational transformation from M to N. Although the
transformation of relationships is easily calculated in this
way, it is important to understand that this is not an
ordinary calculation involving matrix sums or products.

 Figure 3 illustrates a simple relational transformation.
Although the association of parameters by the matrix Q is
bidirectional, the calculation of RQ is regarded as a
‘forward’ transformation of the model M into the model N.
If S is the mathematical relation on N defining N, then the
‘reverse’ transformation from N to M is denoted by QS and
calculated from pairs (xk, xl) in S: given (xk, xl), if yiQxk
and yjQxl then (yi, yj) belong to QS. Note that for the
special case of S = RQ then QS = R.

A1

A1

A4

A3

A2

A5

A6

A7

A4 A3 A2 A5 A6 A7

 If the parameters of the source model M represent
system requirements, for example, then allocation by Q of
the 2 requirements in M to the 4 specification parameters in
N gives rise to 6 relationships between the parameters of
N. Various analyses can also be performed. In figure 3,
symmetries in the source or target models can represent
concurrencies. In this illustration, the single concurrency in
M is transformed into two concurrencies in N.

Figure 3. System design example using relational
transformation

3.3 Operational Mission Threads (OMTs)

OMTs are generally regarded as operational
sequences to which mission resources have been allocated.
If the formalism in figure 3 is used to model OMTs, then
the matrix M would be a model of operational tasks (e.g. an
OV-6c), N a model of the SoS systems and interoperations,
and Q would be an allocation of the systems to the tasks. In
this formalism, figure 3 would be the model of an OMT.
Thus, for fixed M, N, the permissible OMTs and systems
threads for a mission are in direct correspondence with the
permissible transformations.

3.4 Applications

The graphical representations of models used by UML
and SysML are suitable for relational transformation
because the transformation preserves graphs. And
whenever key parameters such as cost, schedule and risk
have dependencies amongst each other, transformations of
the dependencies can be calculated.

4 SoS Requirements Case Study
 Chapter 14 of reference [1] provides a case study of
capabilities assessment for the introduction of a fusion
node into the architecture of a sensor SoS. This case study
can be used to provide a straight forward example of how
OMTs and model transformations can be used to reduce
the complexity of modeling mission requirements and their
flow into the architecture of the SoS. Following the MDA
approach described in the Introduction and depicted in

figure 1, the CIM, PIM, and PSM models can be used to
model the architecture, mission and capabilities of the SoS.

 The SoS in the case study is comprised of four
systems: a Micro-Internetted Unattended Ground Sensor
(MIUGS), a Global Hawk configured with an imaging
radar, a Predator configured with video imaging, and a
sensor fusion node. Figure 4 displays a deployed MIUGS
ground sensor. The Global Hawk and Predator are
unmanned air vehicles. Details of these systems can be
found in [1].

Figure 4. Micro-internetted unattended ground sensors

4.1 Concept Definition and Requirements

 Following the scenario and case study in [1], the
mission concept focuses on an operational capability to
track a target for a required minimum of time (tmin). The
target of interest in the scenario is a SCUD tractor erector
launcher (TEL). But the TEL must not only be detected
and located; it must also be identified correctly amongst an
ensemble of about a dozen ground vehicles that escort it.
Four key tasks (operational activities) are used to model the
capability to track the target: cue, find, fix, and track.
These tasks are commonly denoted as the activity sequence
CF2T. In this sequence each activity must be performed in
order to the prior activity. The ‘Cue’ activity (A1) is an
alert to search a region for a target of interest. ‘Find’ (A2)
is the result of a successful search of the region and
provides geolocated detections of possible targets. ‘Fix’
(A3) in this model is the result of associating target
identification with a geolocated detection. ‘Track’ (A4) is
the result of correlating repeated Fixes of the target of
interest.

 Figure 5 depicts the matrix representation of this
simple model. In this model, the information output from
Ai will be provided to Ai+1 for i = 1, 2, 3. The tick marks in

the matrix indicate the precedence order of the tasks. Thus,
this is a matrix representation of the OV-6c associated with
the CF2T activity sequence. A representation of the OV-6c
as an operational flow would be: A1 A2 A3 A4. This
contains the same information as the three ordered pairs
(i.e. relationships) represented in the matrix. Techniques
such as DSM can be used in more complex problems to re-
order the indices so as to create simpler structures in the
matrix representation of the operational activity model than
might be realized in a first ordering of the indices.

Figure 5. Matrix representation of activity model

4.2 SoS Allocation to Mission

 Allocation of the SoS systems to the tasks of the
operational activity model can be accomplished by various
methods such as functional allocation. The MIUGS, for
example, is a networked field of sensors that can detect the
movement of ground vehicles along roads. Denoting the
MIUGS as S1 and allocating it to support the Cueing task
(A1) is represented in the matrix as a tick mark in the cell
(A1, S1). Denoting the Global Hawk and Predator as S2 and
S3, these systems are allocated to Find (A2) and Fix (A3)
based on their fields of view and ability to identify the
target. Track (A4) in this concept is allocated to the sensor
fusion node (S4). This allocation is associated with the SoS
when it is in a state of target acquisition and its matrix
representation is depicted in figure 6. When the SoS is in a
state of track maintenance, cueing is no longer needed. The
fusion node then permits the Predator (S3) to also be used
for the Find activity. Figure 7 depicts the matrix of SoS
allocations for track maintenance. Thus, the source models
and transformations in the OMTs for target acquisition and
track maintenance are given by the OV-6c in figure 5 and
the allocations in figures 6 and 7, respectively.

Figure 6. Matrix representation of SoS allocation for the
state of target acquisition

4.3 SoS Architecture Analysis

 Relational transformation of the matrix of the activity
model (figure 5) can be calculated for the two states of the
SoS using figures 6 and 7 as the transformation matrix. The
different SoS allocations will give rise to different system
threads, depending on the state of the SoS. For the state of
target acquisition, using the matrix in figure 6, the thread
(A1, A2), (A2, A3), (A3, A4) is transformed into a single
thread (S1, S2), (S2, S3), (S3, S4). The system sequence in
the system collaboration matrix is identical in form to the
matrix in figure 5 (i.e. replace the Ai with Si).

Figure 7. Matrix representation of SoS allocation for the
state of track maintenance

 But this is not the case when the SoS is in a state of
track maintenance. In this case, the operational thread
represented in figure 5 is transformed (by the matrix in
figure 7) into two system threads: (i) (S2, S3), (S3, S4) and
(ii) (S3, S3), (S3, S4). The (S3, S3) collaboration is possible
because the sensor fusion node permits the Predator (S3) to
both Find and Fix the target (which is under track). Figure
8 depicts the system collaborations and sequencing when
the SoS is in a state of track maintenance. The system
collaborations displayed in the matrix expose 3
requirements for SoS connectivity. The two loops in the
figure depict the two distinct system threads.

Figure 8. Matrix representation of system collaboration and
sequencing in the state of track maintenance

 One significant implication of the relational
transformation of the operational thread into the system
collaboration and sequencing matrix is that it shows how a
single thread at the operational level of the mission can be
transformed into two system threads at the SoS level.

 The requirement for an operational capability to track
the target for a required minimum of time (tmin) would be
flowed down to a performance requirement on each of or a

A1 A2 A3 A4

A1

A4

A3

A2

S1 S2 S3 S4

A1

A4

A3

A2

S2 S3 S4

A4

A3

A2

S2 S3 S4

S4

S3

S2

combination of both of the two system threads. The fusion
node would be central to combining the two threads.

 SoS architecture analysis would also investigate, for
example, whether the two systems threads implied by the
OMT are technically feasible. Each of the two threads
reflects the Find then Fix then Track precedence from the
operational activity model. But whether the collaborations
(i.e. sharing of sensor data) are permissible depends on the
specification of the SoS communications architecture.

4.4 SoS Specification

 SoS specification in this case study would be
primarily concerned with how the collaborating systems
will communicate with each other [13]. It is important to
remember that the system collaboration matrix (which
identifies needs for exchanges between systems) should not
be confused with the systems communications matrix
(which identifies means for exchanges between systems).

 In point to point communications architecture, each
collaboration would be enabled by direct communication
between the collaborating systems. In this case, the systems
communications matrix would have the same form as the
systems collaboration matrix. However, in net centric
communications architecture, each collaboration would be
enabled by direct communication with the network. In the
sensor SoS case study, the fusion node can be used to
implement a net centric communications architecture.

5 Conclusions
 This preliminary investigation into the application of
relational transformations and OMTs to reduce the
complexity of SoS requirements traceability has provided
both a framework and formalism for SoSE that builds on
and extends MDATM. The case study for sensor fusion
illustrates the application of the framework and formalism
in a straightforward example that supports architecture
analysis for system design and SoS assemblage. Precise
computation of the transformation of operational threads
into threads of systems allocated from the SoS efficiently
and effectively exposes SoS connectivity requirements.

 Because an OMT can be represented by a source
model, a target model, and a relational transformation
between the two, it becomes possible to use one set of
requirements on one set of operational threads to govern
the flow down of requirements to each permissible OMT.

References
[1] C.E. Dickerson and D.N. Mavris, Architecture and
Principles of Systems Engineering, Auerbach Publications,
New York, 2009.

[2] C.E. Dickerson, “A Review of Model-Based Methods
for Systems Engineering”, Proceedings of the INCOSE UK
Chapter Autumn Assembly, 26 October 2009.

[3] P.W. Johnson, “Evaluating systems of systems
against mission requirements,” Ph.D. dissertation,
Loughborough University, UK, 2010.

[4] R. Valerdi and M. Wheaton, “EIA ANSI/EIA 632 As
a Standard WBS for COSYSMO,” AIAA 1st
Infotech@Aerospace Conference, Arlington, VA,
September 2005.

[5] K. Forsberg, H. Mooz and H. Cotterman, Visualizing
Project Management, 3rd edition, John Wiley and Sons,
New York, NY, 2005.

[6] J. Miller and J. Mukerji, 2003. MDA guide, version
1.0.1. OMG. http://www.omg.org/docs/omg/03-06-01.pdf
(accessed 8 August 2008).

[7] Department of Defense. Department of Defense
Architecture Framework (DoDAF), Volume I: Definitions
and Guidelines, Volume II: Product Descriptions.
Washington, DC, 2007.

[8] C.E. Dickerson, et al. Using Architectures for
Research, Development, and Acquisition. Defense
Technical Information Center: (www.dtic.mil) AD Number
ADA427961. Washington, DC, 2003.

[9] P.A. Laplante, Requirements Engineering for
Software and Systems, CRC Press, Boca Raton, FL, 2009.

[10] M. Danilovic and B. Sandkull, “The use of
dependence structure matrix and domain mapping matrix in
managing uncertainty in multiple project situations,”
International Journal of Project Management, Vol. 23, No.
3, pp. 193-203, 2005.

[11] M. Walicki and M. Bialasik, “Categories of relational
structures”. Lecture Notes in Computer Science, Vol. 1376,
Selected Papers on the 12th International Workshop on
Recent Trends in Algebraic Development Techniques.
Springer-Verlag: London, 1997.

[12] J.L Bell and A.B. Slomson, Models and
ultraproducts: an introduction. North-Holland Publishing
Company: Amsterdam, 1969.

[13] C.E. Dickerson, Defense Applications of SoS in
Jamshidi, M., editor. System of Systems Engineering:
Principles and Applications. CRC Press, Taylor and
Francis Group: Boca Raton, Florida, November 2008.

