

A Systematic Approach to Estimate the Life Cycle Cost and Effort of Project Management for Technology Centric Systems Development Projects

Leone Young – Stevens Institute of Technology

Dr. Ricardo Valerdi – Massachusetts Institute of Technology

Dr. Jon Wade – Stevens Institute of Technology

Institute of Technology

Agenda Overview

- ➤General View of Systems Costs
- The Cost of Management: Systems Engineering (SE) & Project Management (PM)
- The Cost of Project Management Services
- The Relationship between SE & PM: Similarities & Differences
- Current Research Effort: PM Cost Estimating Model
- Current Research Status & Next Steps

Institute of Technology

General View of Systems Costs

- Simplest Form & Subcategories
 - 4 Major Systemic Elements
 - Hardware, Software
 - Mature, e.g. the Constructive Cost Model (COCOMO suite)
 - Integration
 - Emerging area difficult to estimate, e.g. the Constructive System of Systems Integration Cost Model (COSOSIMO)
 - Management
 - Development Management = Systems Engineering (SE) & Project Management (PM)
 - e.g. Defense Industry, USAF Programs (Stem et al., 2006)
 - » Development Management (100/%) = SE (50%) + PM (50%)
 - » SE/PM costs doubled since 1960s

Massachusetts

Institute of Technology

General View of Systems Costs

18 16% 16 15% Average SE/PM percentage 14 Average across all years (12%) 12 10 9% 8% 8 6 2 0 1960s 1970s 1980s 1990s Contract award date

ILS functions Non-ILS functions Program Management Systems Engineering Function Functions - Human engineering, 1% ILS demonstration and evaluation, 1% -ILS planning and management, 3% Safety engineering, 1% Quality assurance, 1% Program independent analysis, 2% Reliability, 5% Other PM (non-ILS), 7% Maintainability/corrosion 6% prevention, 5% Survivability/vulnerability, 3% Procurement, 8% 26% LCC/DTC. 1% Standardization/electromagnetic/mass properties, 4% Configuration/ data Other SE (non-ILS), 2% 51% management, 7% Requirements management, 2% LSA, 6% Support equipment/facilities, 8% Planning and control, 29% Spare and repair parts, 2% Training systems analysis/other 1%

Aircraft SE/PM Costs as a Percentage of Total Development Cost for All Development Programs, 1960s–1990s (Stem, et al., 2006) SE/PM as a function of Integrated Logistics Support (ILS) for a typical Air Force program (Stem, et al., 2006)

Systems Engineering (SE) & Project Management (PM)

•SE Costs – significant amount of research has been conducted

-The International Council on Systems Engineering (INCOSE) surveyed (Honour, 2004):

•52% of systems projects spent 5% or less of total systems development cost on SE tasks

-The Constructive Systems Engineering Cost Model (COSYSMO)

•As a SE cost estimating tool used by systems engineering, systems cost estimators, etc (Valerdi, 2006)

•PM Cost Estimating Methodology and Tools?

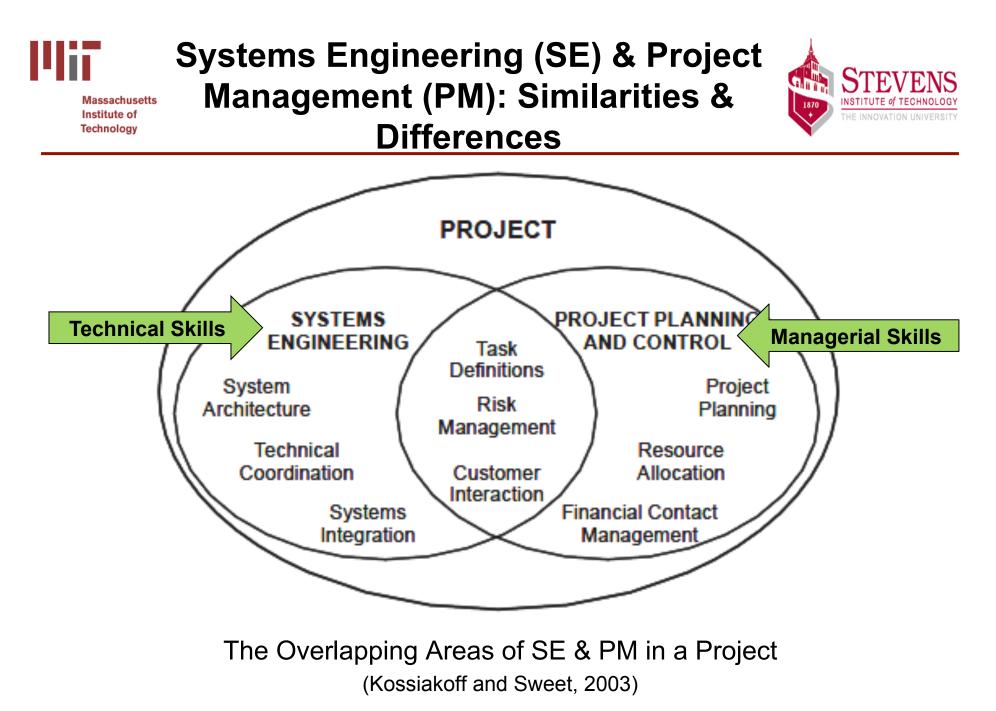
Technology

PM Services Costs

- Literature limited information on PM related expenditures or costs
- Organizations often *do not* identify or measure PM costs, and a survey led by UC Berkley (Ibbs and Kwak, 2000a, 2000b) shows:
 - 80% of companies surveyed spend less than 10% of total project cost (TPC) for PM services
 - Average = 6% of TPC, Range = $0.3\% \sim 15\%$ of TPC
 - Another survey indicated the average = 10% of TPC (lbbs and Reginato, 2002)
- Evidently, PM costs varies among organizations
 - Influential PM Cost Factors: project type, size, # of projects, PM maturity level (Archibald, 2003)

Technology

Systems Engineering (SE) & Project Management (PM): Similarities & Differences


• SE is "a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. SE is the art and science of developing an operable system capable of meeting requirements within often opposed constraints. Systems engineering is a holistic, **integrative discipline**, wherein the contributions of structural engineers, electrical engineers, mechanism designers, power engineers, human factors engineers, and many more disciplines are evaluated and balanced, one against another, to produce a coherent whole that is not dominated by the perspective of a single discipline." (NASA, 2007)

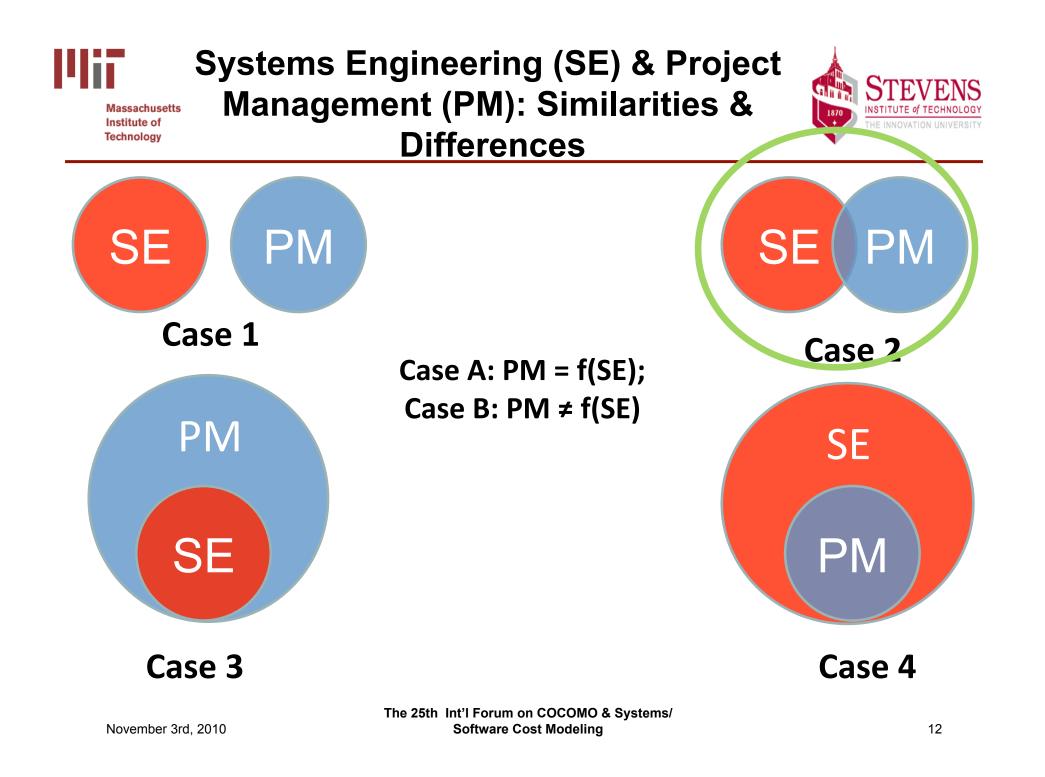
Systems Engineering (SE) & Project Management (PM): Similarities & Differences

- Project Management Institute (PMI) Project Management Body of Knowledge (PMBOK) guidebook defines PM as "the application of knowledge, skills, tools and techniques to project activities in order to <u>meet or</u> <u>exceed stakeholder needs and expectations</u> from a project" (PMI, 2004)
- NASA defines PM as "the function of <u>planning</u>, <u>overseeing</u>, and <u>directing</u> the numerous activities required to achieve the requirements, goals, and objectives of the customer and other stakeholders within specified cost, quality, and schedule constraints" (NASA, 2007, 2010)

Systems Engineering (SE) & Project Management (PM): Similarities & Differences

Technical Management Processes	Technical Processes	
Decision Analysis	Stakeholders Requirements Definition	
Technical Planning	Requirements Analysis	
Technical Assessment	Architectural Design	
Requirements Management	Implementation	
Risk Management	Integration	
Configuration Management	Verification	
Technical Data Management	Validation	
Interface Management	Transition	

The Roles of Program/Project Manager and Systems Engineer in the Defense Systems Project Life Cycle Processes (DOD, 2010)



Systems Engineering (SE) & Project Management (PM): Similarities & Differences

Life-cycle Processes	Program Manager	Chief / Systems Engineer
Stakeholder Management	Primary	Support
Technical Planning	Support	Primary
Decision Analysis	Primary	Support
Technical Assessment (Includes Program Status: Technical Progress, Schedule & Cost Management)	Shared	Shared
Configuration Management	Primary	Support
Data Management	Primary	Support
Requirements Management	Support	Primary
Contract Management	Primary	Support
Requirements Analysis	Support	Primary
Architecture Design	Support	Primary
Implementation	Support	Primary
Risk Management	Primary	Support
Interface Management	Support	Primary
Integration	Support	Primary
Verification	Support	Primary
Validation	Shared	Shared

The Responsibility of Program/Project Manager and Systems Engineer in the Defense Systems Project Life Cycle Processes 11 (DOD, 2010)

Research Model: PM Cost Estimating Model

Synthesized via COSYSMO (Valerdi, 2005)

$$PM_{NS} = A \cdot \left(\sum_{k} (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right)^{E} \cdot \prod_{j=1}^{14} EM_{j}$$

Where,

PM_{NS} = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical project data

k = {REQ, IF, ALG, SCN}

w_k = weight for "easy", "nominal", or "difficult" size driver

 Φ_k = quantity of "k" size driver

- **E** = represents diseconomies of scale
- **EM** = effort multiplier for the *j*th cost driver. The geometric product results in an overall effort adjustment factor to the nominal effort.

Research Model: PM Cost Estimating Model

Potential model parameters were predetermined through various knowledge sources (e.g. books, scholar publications, research whitepapers, dissertations, professional and government publications, etc.)

- Aerospace Engineering
- Civil Engineering
- Computer Science
- •Construction Engineering and Management
- Defense/Military
- Engineering Management
- •Government
- Information Technology
- Management Information Systems
- Professional Societies
- Project Management
- Risk Management
- Software Engineering
- •Systems Engineering

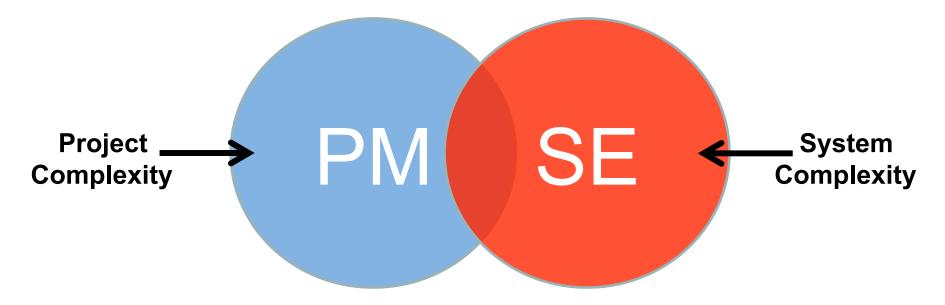
Massachusetts

Institute of Technology Research Model: PM Cost Estimating Model

The initial 18 PM effort multipliers are listed as following:

- Scope Understanding
- •Scope Volatility
- Scope Growth
- •Requirements Volatility
- •Requirements Growth
- •Budget Constraints
- Schedule Span
- Project Complexities
- Systems Complexities

- Documentation Level
- Level of Service Requirements
- Stakeholder Cohesion
- •Project Management Maturity
- Project Management Experience/Continuity
- Process Capability
- Technology Maturity and Risk
- Tool Support
- Multisite Coordination


These initial PM cost indicators were determined to be possibly correlated to factors that have effects on SE/PM cost adjustment factors (Akintoye, 2000; Anderson and Brown, 2004; Crawford et al., 2005; de Wit, 1988; Hamaker and Componation, 2005; Hartman and Ashrafi, 2002; Honour, 2010; NASA, 2010; Valerdi, 2005)

Research Model: PM Cost Estimating Model

Is PM effort proportional to SE effort?

What if PM ≠ f(SE) ?

The 25th Int'l Forum on COCOMO & Systems/ Software Cost Modeling

Research Model: PM Cost Estimating Model

Synthesized via COSYSMO (Valerdi, 2005)

$$PM_{NS} = A \cdot \left(\sum_{k} \left(w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}\right)\right)^{E} \cdot \prod_{j=1}^{5} EM_{j}$$

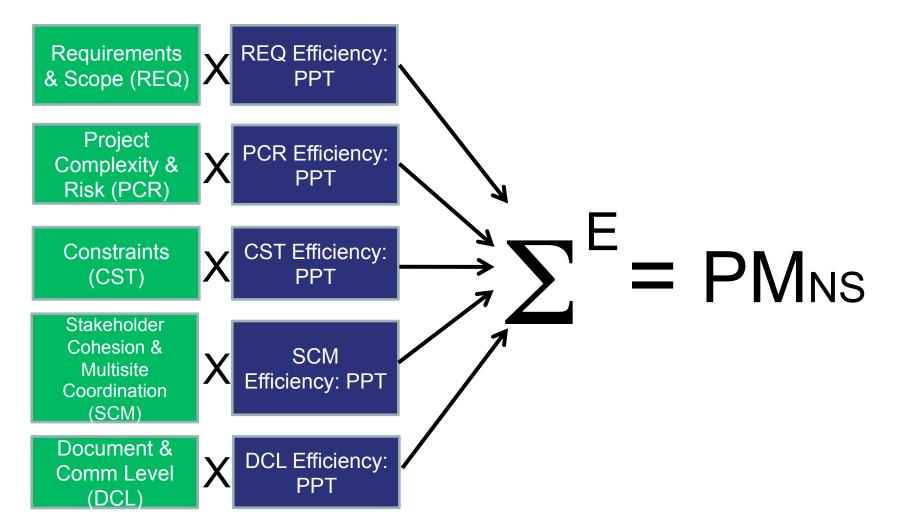
Where,

PM_{NS} = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical project data

k = {REQ, PCR, CST, SCM, DCL}

- w_k = weight for "easy", "nominal", "difficult", or "low", "medium", "high" size driver
- Φ_k = quantity of "k" size driver
- **E** = represents diseconomies of scale
- **EM = project management** <u>efficiency</u> multiplier for the *j*th cost driver. The geometric product results in an overall effort adjustment factor to the nominal effort.



Massachusetts

Institute of Technology

Research Model: PM Cost Estimating Model

PPT = Project Management Capability & Maturity of People, Process & Tools

Research Model: PM Cost Estimating Model

Consolidated 5 Cost Categories

REQ: Requirements & Scope – How well understood is the project?

- o Scope of requirements
- o Number of requirements
- o How well defined (e.g. Statement of Work (SOW), Work Breakdown Structure (WBS), etc
- o Volatility/Rate at which they are changing

PCR: Project Complexity & Risk – How much risk is there?

- o What is the level of risk for the project
- o How difficult is it to assess the risk
- o Number of known project complexity & risks

CST: Constraints – How tight are the constraints?

- o Schedule Span Time constraints
- o Budget Constraints Money constraints
- o Resources Constraints Human resources constraints
- o Function/feature Minimum acceptable features
- o Quality Minimum acceptance by customers

Research Model: PM Cost

Estimating Model

Consolidated 5 Cost Categories (cont'd)

SCM: Stakeholder Cohesion & Multisite Coordination

o Number of stakeholders

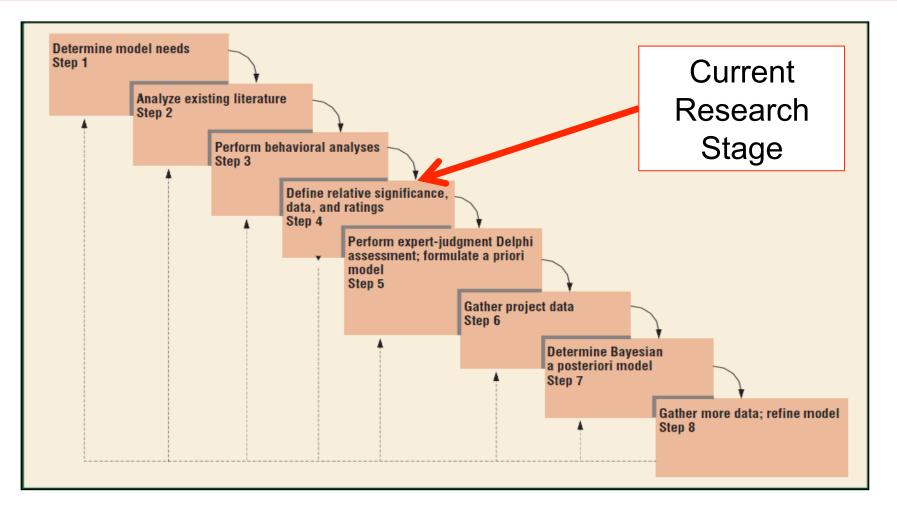
o Diversity of stakeholders (e.g., have opposing goals/objectives, have different world views)

o Communication challenges (external clients, internal clients, contractors,

languages, time zone difference, etc)

DCL: Documentation & Communication Level – Amount of PM work to be done

o Amount and complexity of required documentation (e.g., project plan, resource management plan, status reports, etc)


o Amount and complexity of required communications (number, length, occurrence of meetings, etc)

Current Research Stage

USC CSSE Cost Estimation Model Development Methodology

(Boehm and Valerdi, 2008)

Next Steps

- Utilize recommendations/suggestions from practitioners & subject matter experts (SME) to update the proposed PM cost model
- COSYSMO workshop
 - Thursday, Nov 4^{th,} 2010
 - Develop an approach to generate PM Efficiency (PPT) cost driver weight factors
- Facilitate the industry outreach to reach agreement on data-sharing
 - United States Army Armament Research, Development and Engineering Center (ARDEC)

References

- Akintoye, Akintola, "Analysis of Factors Influencing Project Cost Estimating Practice," *Construction Management and Economics*, *18:1* (Jan/Feb 2000), pp. 77-89.
- Anderson, William, and Maureen Brown, "Revealing Cost Drivers for Systems Integration and Interoperability through Q Methodology," Paper presented at the 26th International Society of Parametric Analysts Conference (ISPA), Frascati, Italy (May 10-12, 2004).
- Archibald, Russell D., Managing High-Technology Programs and Projects, third edition, John Wiley & Sons (2003).
- Archibald, Russell D., and Richard L. Villoria, *Network Based Management Systems: PERT/CPM*, John Wiley & Sons (March 1967).
- Boehm, Barry W., Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert Steece, *Software Cost Estimation with COCOMO II*, Prentice-Hall (2000).
- Boehm, Barry W., and Ricardo Valerdi, "Achievements and Challenges in COCOMO-Based Software Resource Estimation," *IEEE Software*, 25:5 (September/October 2008), pp. 74-83.
- Chatters, Brian, Peter Henderson, and Chris Rostron, "An Experiment to Improve Cost Estimation and Project Tracking for Software and Systems Integration Projects," *Proceedings from the 25th EUROMICRO Conference*, Milan, Italy (September 8-10, 1999), pp. 177-184.
- Crawford, Lynn, J. Brian Hobbs, and J. Rodney Turner, *Project Categorization Systems: Aligning Capability with Strategy for Better Results*, Project Management Institute (September 2005).
- de Wit, Anton, "Measurement of Project Success," *International Journal of Project Management, 6:3* (August 1988), pp. 164-170.
- Department of Defense (DOD), Parametric Cost Estimating Handbook, Arlington, VA (Fall 1995).
- Department of Defense (DOD), *Defense Acquisition Guidebook*, Defense Acquisition University (February 19, 2010).
- Government Accountability Office (GAO), *GAO Cost Estimating and Assessment Guide*, GAO-09-3SP, Washington, D.C. (2009).
- Hamaker, Joseph W., and Paul J. Componation, "Improving Space Project Cost Estimating with Engineering Management Variables," *Engineering Management Journal, 17:2* (June 2005), pp. 28-33.
- Hartman, Francis, and Rafi A. Ashrafi, "Project Management in the Information Systems and Information Technologies Industries," *Project Management Journal, 33:3* (September 2002), pp. 5-15

References

- Honour, Eric C., "Understanding the Value of Systems Engineering," Paper presented at *the 14th Annual International Symposium of INCOSE*, Toulouse, France (June 20-24, 2004).
- Honour, Eric C., "Effective Characterization Parameters for Measuring Systems Engineering," Paper presented at the 8th Conference on Systems Engineering Research (CSER), Hoboken, NJ (March 17-19, 2010)
- Ibbs, C. William, and Young Hoon Kwak, "Assessing Project Management Maturity," *Project Management Journal, 31-1* (March 2000a), pp.32-43.
- Ibbs, C. William, and Young Hoon Kwak, "Calculating Project Management's Return on Investment," *Project Management Journal, 31-2* (June 2000b), pp.38-47.
- Ibbs, C. William, and Justin Reginato, "Measuring the Strategic Value of Project Management," Paper presented at *the Project Management Impresario of the Construction Industry Symposium*, Hong Kong, China (March 22-23, 2002).
- Jain, Rashmi, Anithashree Chandrasekaran, George Elias, and Robert Cloutier, "Exploring the Impact of Systems Architecture and Systems Requirements on Systems Integration Complexity," *IEEE Systems Journal, 2-2* (June 2008), pp. 209-223.
- Kossiakoff, Alexander, and William N. Sweet, *Systems Engineering; Principles and Practice*, John Wiley & Sons (2003).
- Kwak, Young Hoon, and Frank T. Anbari, "Availability-Impact Analysis of Project Management Trends: Perspectives from Allied Disciplines," *Project Management Journal, 40:2* (June 2009a), pp. 94-103.
- Kwak, Young Hoon, and Frank T. Anbari, "Analyzing Project Management Research: Perspectives from Top Management Journals," *International Journal of Project Management, 27:5* (July 2009b), pp. 435-446.
- National Aeronautics and Space Administration (NASA), Cost Estimating Handbook (CEH), Washington, D. C. (2004).
- National Aeronautics and Space Administration (NASA), *NASA Systems Engineering Handbook*, NASA/SP-2007-6105 Rev. 1, (2007).
- National Aeronautics and Space Administration (NASA), 2008 NASA Cost Estimating Handbook (CEH), Washington, D.C. (2008).
- National Aeronautics and Space Administration (NASA), *NASA Space Flight Program and Project Management Handbook*, NPR7120.5 (NASA), Washington, D.C. (February 2010).
- National Research Council of the National Academies, *Pre-Milestone A Systems Engineering: A Retrospective Review and Benefits for Future Air Force Systems Acquisition*, Air Force Studies Board (Co-Lead Author), The National Academies Press, Washington, D. C. (2007).

References

- Project Management Institute (PMI), A Guide to the Project Management Body of Knowledge (PMBOK), third edition, Project Management Institute (2004).
- Stem, David E., Michael Boito, and Obaid Younossi, "Systems Engineering and Program Management Trends and Costs for Aircraft and Guided Weapons Programs," RAND Corporation, Santa Monica, CA (2006).
- Valerdi, Ricardo, *The Constructive Systems Engineering Cost Model (COSYSMO)*, Doctor of Philosophy dissertation, University of Southern California, (2005).
- Valerdi, Ricardo, "Academic COSYSMO User Manual A Practical Guide for Industry and Government," Version 1.1, Massachusetts Institute of Technology Lean Aerospace Initiative, (September 2006).

Questions?

- Suggestions?
- Comments?

COSYSMO Workshop

Thursday, Nov 4th, 2010 The University of Southern California (USC)

Section

Systems Engineering and Project Management: Similarities and Difference for Cost Estimation