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Abstract 

High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission 

spectral lineshapes and minimal single dot emission intermittency (known as blinking) have been 

recognized as universal requirements for the successful use of colloidal quantum dots (QDs) in nearly all 

optical applications. However, synthesizing samples that simultaneously meet all these four criteria has 

proven challenging. Here, we report the synthesis of such high-quality CdSe/CdS core/shell QDs in an 

optimized process which maintains a slow growth rate of the shell through the use of octanethiol and 

cadmium oleate as precursors. In contrast with previous observations, single-QD blinking is 

significantly suppressed with only a relatively thin shell. In addition, we demonstrate the elimination of 

the ensemble luminescence photodarkening that is an intrinsic consequence of QD blinking statistical 

aging. Furthermore, the small size and high photoluminescence quantum yields of these novel QDs 

render them superior in vivo imaging agents compared to conventional QDs. We anticipate that this new 

generation of QDs will also result in significant improvement in the performance of QDs in other 

applications such as solid-state lighting and illumination. 

. 



Nanocrystal quantum dots (QDs) have great potential as a unique optical material in a broad 

range of applications that rely on downshifting light, especially those relying on achieving spectral 

purity at high optical flux. These applications include multiplexed labelling and tracking of cells or 

molecules in a biological environment1-4, downshifting light for colour engineering in solid-state 

lighting, illumination and displays5-7, and single-photon sources8-10. In order to fully realize the potential 

of QDs in this broad class of applications, the following major criteria, which may not be strictly 

independent, need to be simultaneously fulfilled: 1) high particle uniformity, 2) high photoluminescence 

quantum yields (PL QYs) for optimized brightness, 3) narrow and symmetric emission spectra for 

multiplexing and/or color saturation, 4) minimized single-QDs blinking for tracking and/or for light 

output stability. In addition, applications in biological environments generally require the QDs to be as 

compact as possible to minimize interactions with biological systems and to maximize diffusion to 

confined biological spaces of interests11.  

In the past two decades, great progress has been made in synthesizing QDs with uniform size, 

high PL QYs and narrow emission spectra12, 13. However, these QDs universally show significant 

“blinking”, whereby the photoluminescence of single-QDs turns “on” and “off” under continuous 

excitation, which limits the use of QDs in tracking applications, as single-photon sources and in 

downshifting illumination applications at relatively high fluxes14-16. Recently, a few groups have 

reported successes toward non-blinking or nearly non-blinking QDs17-22. To date, two general 

approaches have been developed towards suppressing blinking. The first approach relies on changing the 

solution environment of the QDs by adding “antiblinking agents” that presumably bind to the QD 

surface17-19. However, this blinking suppression is not an intrinsic property of the QDs and relies on 

weakly bound surface species so that the initial blinking state is easily and almost immediately 

recovered by displacement of the “antiblinking agent”17, 18. This lack of robustness and the requirement 



of the QDs being in a solution containing an excess of the “antiblinking agent” are unacceptable for 

most applications1-4. The second approach is to grow a thick inorganic shell (>5nm) on the QDs in order 

to fully isolate the excited carriers from the QD surface and the surface environment20, 21. However, 

these “giant” core/shell QDs are often large, with a poor size distribution, have a broad PL spectra, with 

only moderate ensemble PL QYs20, 21. Therefore, synthesizing QDs that simultaneously satisfy all 

criteria discussed above has not yet been possible.  

We have met the challenge here through a novel synthesis that produces high-quality CdSe/CdS 

core/shell QDs using cadmium (II) oleate (Cd-oleate) and octanethiol as shell precursors. Due to the 

strong carbon-sulphur chemical bond in octanethiol, the shell-growth temperature is at 310 °C. The slow 

continuous shell precursor infusion and the relatively low reactivity of octanethiol provide an optimal 

condition, leading to a well-maintained particle size distribution during shell growth. Because of the 

small lattice mismatch (3.9%) between core and shell and the slow, high temperature growth, the 

resulting QDs maintain the original crystal structure of the CdSe core. In contrast with previous 

observations, we find that single-QDs blinking is significantly suppressed with only a relatively thin 

shell (~2.4nm, ~7 monolayers (MLs)). Consequently, the intrinsic ensemble PL photodarkening induced 

by blinking statistical aging is eliminated, making these QDs stable ensemble PL output sources even at 

relatively high optical fluxes. Most importantly, this new generation of QDs for the first time 

simultaneously satisfies the four criteria of high uniformity, high PL QYs (up to 97%), narrow PL peaks 

(full width at half maximum (FWHM) as narrow as 67.1meV (~20nm)), and significantly suppressed 

blinking (~94% average on-time fractions). Additionally, this thin shell allows for compact QDs suitable 

for biological imaging applications. These QDs can be easily brought into water maintaining the high PL 

QYs (>70%) desired for imaging probes in highly scattering biological environments. This new 

generation of QDs will result in significant performance improvements in a variety of applications 



ranging from solid-state lighting, illumination and displays to biological multiplexed labelling and 

tracking.  

 Absorption and PL spectra of four CdSe/CdS QDs samples synthesized by our method are shown 

in Fig. 1a-d. Cd-oleate and octanethiol were chosen as the shell precursors. The low reactivity induced 

by the strong carbon-sulphur covalent bond in octanethiol requires a relatively high temperature (310 °C) 

for shell growth. During the overcoating reaction (Supplementary Information), both the PL peak and 

the absorption features shift to lower energy (Fig. 1e,f) as a consequence of the weak exciton 

confinement generated by the CdS shell23. Narrow and symmetric PL peaks and absorption spectra with 

well-resolved transitions indicate that particle size distributions remain tight throughout the entire shell-

growth process (Fig. 1e,f). PL QY measurements show that after an initial drop, due to quenching by the 

addition of octanethiol (Fig. 1g),24, 25 the PL QY monotonically increases during the reaction and reaches 

its maximum when the reaction solution is annealed at 310 °C for 60 min following precursors injection 

(Fig.1g). The PL QYs of the obtained QDs were observed to be as high as 97%. The PL peak FWHM 

decreases dramatically from 96.2 meV for “bare” CdSe QDs to 67.1 meV (~20 nm) for final CdSe/CdS 

QDs (Fig. 1h), consistent with the decreased half width at half maximum of the first absorption peak 

(Fig. S3). Remarkably, this uniquely narrow ensemble PL peak width (67.1 meV) is comparable to that 

from single-QDs (50~70 meV)26.  To the best of our knowledge, such a narrow and symmetric ensemble 

emission peak has not been achieved before for any CdSe based core/shell or alloy QDs. This narrow 

ensemble PL can enhance the spectral purity of QD based illumination or display applications, and 

enables an increased number of wavelength detection channels in multiplexing applications. 

Transmission electron microscopy (TEM) measurements show that, during CdS shell growth, the 

average particle diameter increases from 4.4 nm to 9.1nm, which corresponds to a shell thickness of 2.4 

nm (~7 MLs) (Fig. 2a-d, Fig. S5)27. The size distribution of the core/shell QDs remains exceptionally 



narrow (~ 4%) during the entire shell-growth process (Fig. 2a-d, Fig. S5), consistent with optical 

measurements (Fig. 1). This narrow size distribution may be due to the slow shell precursor infusion and 

the low reactivity of the octanethiol which may provide a constant and sufficient monomer production 

rate, consistent with a recent model28. Energy dispersive X-ray spectroscopy shows that the atomic 

percentages of Cd, Se and S atoms are in good agreement with the calculated values based on the CdSe 

core size and CdS shell thickness determined by TEM (Fig. 2e). High-Resolution TEM images reveal 

high crystallinity with lattice fringes throughout the whole particle (Fig. 2f inset, Fig. S7). The displayed 

lattice distance of 3.64 Å (Fig. 2f inset) corresponds to the (100) lattice spacing of the wurtzite (W) 

crystal structure. XRD results confirm a W crystal structure with characteristic (102) and (103) Bragg 

peaks (Fig. 2f), in agreement with the W crystal structure of the starting cores, demonstrating epitaxial 

shell formation. To further confirm this epitaxial shell growth, W-CdSe cores were replaced with zinc-

blende (ZB) CdSe cores. As expected, the resulting particles show a ZB crystal structure (Fig. S8)29. 

This observation is in contradiction with recent results that the CdS shell growth on ZB-CdSe QDs in 

the presence of primary amines (i.e., oleylamine) necessarily generates core/shell particles 

simultaneously containing both W and ZB crystal structures20, 30. We believe that in our case, the slow 

shell growth maintains the original crystal structure of the starting core material. Moreover, these results 

are in accordance with the recent finding of ZB-CdSe/CdSe iso-material core/shell growth31. 

 As shown in Fig. 1, the PL peak of the final core/shell QDs is remarkably narrow (FWHM: 67.1 

meV, ~20 nm), comparable to single-QDs emission linewidths26. Such uniquely narrow and symmetric 

ensemble emission peaks are desired in many applications. Exploring the origins of this narrow emission 

peak is therefore intriguing.  

We can consider two possible scenarios: (i) The average PL peak width of single-QDs 

synthesized here is narrower than that of single-QDs synthesized by other methods, resulting in a 



narrower ensemble PL peak, or (ii) the narrow ensemble emission peak comes from the high sample 

uniformity, minimizing inhomogeneous broadening from size/morphology distributions. To examine 

these hypotheses, we carried out emission linewidth measurements for single-QDs as well as for the 

ensemble using Photon Correlation Fourier Spectroscopy in solution (S-PCFS)32, 33. The average single-

QDs and ensemble spectral correlations for our core/shell QDs are shown in Fig. 3a. After fitting 

(Supplementary Information), the ensemble emission FWHM is 69 meV, nearly identical to that 

obtained using a spectrometer (Fig. 1e,h). The average single-QDs emission FWHM is 63 meV, in good 

agreement with previous studies26, 32. The small difference (6 meV, ~10%) between the single-QDs and 

the ensemble emission linewidths indicates extremely high uniformity of the sample including uniform 

shape, narrow size distribution, high shell crystallinity, sufficient surface passivation, etc. These results 

confirm the hypothesis of scenario (ii) that this narrow ensemble PL peak is due to the high uniformity 

of our QDs, rather than unusually narrow single-QDs PL peaks [scenario (i)]. 

For comparison, the emission linewidth of the CdSe/CdS QDs synthesized using a conventional 

method34 was also measured using S-PCFS (Fig. 3b). Fitting results show that the average single-QDs 

emission FWHM is 65 meV. However, the ensemble emission linewidth is 111 meV (~34 nm), ~60% 

broader than our QDs, indicating a relatively polydisperse sample. TEM measurements show two 

indications of increased polydispersity: broader particle size distribution (~6%) and irregular shapes (Fig. 

S10). Other factors not observed in TEM, such as a polydispersity in surface structure, insufficient 

surface passivation, and increased spectral diffusion may also be contributing factors to this broader 

ensemble linewidth. 

 Ever since single-QDs fluorescence intermittency has been discovered14-16, 35, 36, it has been 

recognized as a potential limitation of QDs in a variety of applications. For example, the existence of 

long “off” periods (e.g., tens of seconds or longer) hinders the use of QDs in biological settings for 



tracking. Blinking also limits the potential use of QDs as single-photon sources. In another example, the 

power-law distribution associated with “off” times at the single-QDs level results in an intrinsic 

ensemble PL photodarkening when the dots are continuously excited with high flux37, 38. This intrinsic 

photodarkening limits QDs from being a stable PL output source under high flux excitation, such as in 

solid-state lighting and low-threshold lasers. QDs with suppressed blinking are therefore attractive 

across a broad class of applications.  

To further characterize our QDs at the single-emitter level, we studied single-QDs blinking 

behaviour using a CdSe/CdS QDs sample with a shell thickness of 2.4 nm (~7ML). Fig. 4a shows a 

representative PL blinking trace and histogram of PL intensity distributions. The antibunching dip (Ĳ = 

0) from a second-order photon intensity correlation (g(2)(Ĳ)) measurement is consistent with the expected 

emission from a single-QD and not a cluster of QDs (Fig. S11)39. Some antibunching “dips” do not drop 

to the background level (Fig. S13), due to the heterogeneity of bi-exciton (BX) QYs recently observed39-

41. This heterogeneity in BX QYs does not affect our observed blinking traces because of the negligible 

BX population under our experimental conditions39. Figure 4a shows well-resolved “on” –“off” blinking. 

An average time fraction that the QDs stay “on” during the course of the measurements was extracted 

from 135 blinking traces each from a different QD, with the resulting distribution shown in Fig. 4b. The 

average “on” fraction is ~94% and ~20% of the QDs we studied displayed an on-time fraction greater 

than 99% (Fig. 4b). Note that “grey states” which have been observed and attributed to the emission 

from a positive trion have not been observed here42. This indicates that deep electron or hole traps are 

significantly eliminated, consistent with the high on-time fraction measured for exciton emission. 

The statistics of “on” and “off” times calculated from the blinking traces are plotted in Fig. 4c. 

The probability distributions for the duration of “on” and “off” eventsǡ ௢ܲ௡Ȁ௢௙௙ , fit power-law 

distributions ( ௢ܲ௡Ȁ௢௙௙ሺݐ௢௡Ȁ௢௙௙ሻ ן  ௢௡Ȁ௢௙௙ are the time intervals for a QD in an “on” orݐ ఈ೚೙Ȁ೚೑೑) whereିݐ



“off” state, and ߙ௢௡Ȁ௢௙௙ are the power-law exponents expressing the statistics of “on”/“off” events. For 

our core/shell QDs,  ߙ௢௡= 0.85 and  ߙ௢௙௙ = 2.2. Note that usually both Į values for CdSe/ZnS QDs are 

close to 1.516, 37, 38, 43, 44. The slow decay of the on-time distribution and fast decay of the off-time 

distribution indicate that PL blinking is dominated by long “on” events and short “off” events, consistent 

with the observed high on-time fraction. These exponents describe distributions of “on” and “off” times 

that are qualitatively different from the usual ones, and as discussed below, predict an ensemble 

behaviour that is also qualitatively different.  

Recent work shows that the blinking of CdSe/CdS QDs can be dramatically suppressed by 

growing thick CdS shells (>5nm, ~15 MLs), which effectively isolate the excited carriers from the 

nanocrystal surface and surrounding environment20, 21.  Recently, Ghosh et al. correlated single-QDs 

blinking suppression with particle volume45. They claim that in order to observe suppressed blinking 

from single CdSe/CdS QDs, the final single particle volume must be no less than  ~750 nm3, with a 

radiative lifetime of ~65 ns or longer45. However, the single-particle volume of our QDs is only about 

half of their threshold volume (~390 nm3) with a much shorter PL lifetime of ~32 ns (Fig. S12). Our 

results strongly suggest that, even with a relatively thin shell, the blinking behaviour of core/shell QDs 

can be qualitatively altered by improved synthetic methodology. We speculate that the significantly 

reduced blinking observed here is at least partially caused by a highly crystalline shell that results from 

high-temperature slow shell-growth conditions. 

To prove this hypothesis, we synthesized CdSe/CdS QDs with a very thin shell (~0.7 nm, ~2 

MLs) through our method and characterized their blinking properties. The calculated on-time fraction of 

85% (Fig. 4d and Fig. S14) is dramatically higher than that of CdSe/CdS QDs with similar shell 

thickness synthesized using more common methods20, 45-47. Due to this thin shell and small conduction 

bands offset (0.29 eV) between the core and shell48, the excited carrier (i.e., electron) is delocalized in 



the entire particle and easily access the particle surface. Thus, the dramatically increased on-time 

fraction we observe for this sample cannot be explained by the physical separation between the excited 

carriers and the nanocrystal surface and surrounding environment as is usually the case for thick shell (> 

5 nm) QDs20, 21. Therefore, we speculate that this improvement in blinking behaviour is a consequence 

of the high shell crystallinity that results through controllable and relatively slow CdS epitaxial shell 

formation. The use of the relatively stable octanethiol precursor provides shell precursor atoms at a slow 

growth rate, allowing for annealing of the shell structure and the surface during growth, minimizing 

defects at interfaces, within the shell and on the surface (e.g., stacking faults, vacancies, dislocation, 

dangling bonds etc.) which could initiate fast non-radiative decays and turn the particle “off”14, 15, 20, 21, 35. 

This explanation is consistent with the crystal structure study discussed above as well as the ligand-

exchange results shown below. In addition, our results also demonstrate that shell thickness still does 

play a role in controlling single-QDs blinking, consistent with previous observations20, 45, 46, but with a 

significantly thinner shell. 

Photodarkening effects from collections of QDs (the ensemble level) that are exclusively caused 

by statistical aging from single-QDs blinking have been both experimentally observed and theoretically 

modelled37, 38. In contrast to photochemical degradation (e.g., permanent photochemical darkening), this 

ensemble PL intensity decay is intrinsic, inevitable, and reversible because it is purely induced by the 

non-ergodicity of single-QDs blinking distributions, as expected from Lévy statistics, where the mean 

and variance of the distributions diverge49. When “on” and “off” events share the same or similar power-

law distributions, as is the usual case, but with the on-time distribution truncated, as time progresses, 

long “off” states become dominant and the ensemble PL decays. However, the QDs studied here display 

a qualitatively and statistically different blinking behaviour with significantly different “on” and “off” 

powers (0.85 vs 2.2) (Fig. 4c), compared to the usual observations where both “on” and “off” powers are 



close to ~1.5 with a short “on” time cut-off 37, 38.  Rather than being dominated by the “off” times, as is 

traditionally the case, our samples are now dominated by the “on” times with significant implication for 

ensemble PL stabilities. To explore the PL stability of our novel QDs at the ensemble level, a collection 

of QDs was excited by a continuous wave laser at 514 nm under the same excitation flux as used for 

previous single-QDs blinking studies (i.e., 80 W/cm2). After slightly photobrightening (PL intensity 

increases ~8%, Fig. 4e), the PL intensity stays constant during the course of the measurement (~7.2×104 

s). This observation is consistent with the fast decay of the off-time distribution, the slow decay of the 

on-time distribution (Fig. 4c) as well as the calculation of the on-time distribution dominated ensemble 

PL QYs evolution (Supplementary Information). A cut-off time for this on-time distribution, which may 

not be easily accessible even for the measurement at ensemble level (Fig. 4e), is very likely to exist. As 

a control experiment, the ensemble PL intensity trace collected from a collection of CdSe/CdS QDs that 

were synthesized through a more conventional method with “normal” power-law blinking behaviour 

(Fig. S16) is plotted in Figure 4d. It reveals that after an initial photobrightening process, the ensemble 

PL intensity begins to decrease after ~2×104 s, implying a truncation of the on-time distribution at 

~2×104 s, (a time scale inaccessible with single-QDs measurements) (Fig. S16)38. The PL intensity 

decreases ~23% from its highest value under continuous excitation of ~ 5×104 s (Fig. 4f). These results 

are in good agreement with previous observations37, 38. Complete PL recovery after removal of the 

excitation (Fig. 4f inset) is consistent with this photodarkening originating from single-QDs blinking 

statistical aging, and not an irreversible photochemical degradation process37, 38. This result is also 

consistent with an initial photobrightening process that is irreversible and likely caused by neutralizing 

initially charged QDs as has been previously observed50. 

Fluorescent organic dyes are commonly used for both in vitro assay detections and in vivo 

imaging applications51; nonetheless, their intrinsic characteristics of broad/asymmetric emission profiles, 



significant blinking, low absorption cross sections, and low photobleaching thresholds limit their 

performance in long-term and/or multiplexing imaging studies3, 4, 8. The QDs presented here with high 

PL QYs, narrow emssion peak and suppressed blinking, render them ideal for ultrasensitive and 

multiplexing investigations in the broad biomedical domain3, 8. Furthermore, in an advance over prior  

non-blinking QDs20, 21, our new generation (ng) QDs are small and compact, which allows them to be 

accessible to confined biological spaces of interest11. To demonstrate the benefit of using our QDs for in 

vivo imaging, two samples underwent the same ligand-exchange reaction (supplementary information): 

(1) conventional CdSe/CdS QDs (QDconv.) with a PL QY of 43%; (2) our new generation CdSe/CdS 

QDs (QDng) with a PL QY of 94%. Both samples were successfully transferred into aqueous solution via 

ligand-exchange reaction with methoxy-polyethylene-glycol thiol (PEG-SH, MW5000). Hydrodynamic 

diameters for PEG-SH capped QDconv. (QDconv.-SH-PEG) and QDng (QDng-SH-PEG) are 18.3 nm and 

18.7 nm, respectively (Fig. S17), indicating no measureable aggregation11. After ligand-exchange, the 

PL QY decreased to 13% (~70% quenching) for QDconv.-SH-PEG, and to 71% (~24% quenching) for 

QDng-SH-PEG (Fig. 5a and b). Thiol groups have been shown to generally quench the PL through QD 

surface trap states24, 25. The different PL QYs quenching levels between these two samples reflect a 

qualitative difference in surface passivation. Our QDs (QDng) showed dramatically less quenching, 

suggesting better passivation.  

To demonstrate the consequence of this improvement, we imaged QDconv.-SH-PEG and QDng-

SH-PEG in vivo. We intravenously injected these QDs at equal concentrations (2.5 µM) into Tie2-GFP 

transgenic mice bearing dorsal skinfold chambers, and carried out intravital multiphoton microscopy in 

the skin (Fig. 5d, e)52. The in vivo fluorescence signal of QDng-SH-PEG was ~4.7 times more intense 

than that of QDconv.-SH-PEG (Fig. 5d, e, Fig. S18). Importantly, these results roughly matched the 



difference in QYs for these QDs (Fig. 5a, b), indicating this improved PL QYs translates to enhanced 

brightness for in vivo imaging applications.  

Furthermore, similar to what we observed before11, 53, polymeric imidazole ligands (PILs) capped 

ng QDs (QDng-PIL) show a smaller hydrodynamic diameter (~15.6 nm) (Fig. S17), higher PL QY in 

PBS (77%) (Fig. 5c) and brighter in in vivo imaging (~20% more intense) (Fig. 5f, Fig. S18) than using 

QDng-SH-PEG under the same experimental conditions. 

In summary, we have successfully synthesized high-quality CdSe/CdS core/shell QDs using Cd-

oleate and octanethiol as shell precursors at a relatively high temperature of 310 °C. We find that, for 

our core/shell QDs with only a relatively thin shell (~2.4nm), blinking from single-QDs is significantly 

suppressed. Consequently, the intrinsic ensemble PL photodarkening induced by statistical aging from 

blinking under long time excitation is eliminated. Most importantly, these core/shell QDs for the first 

time simultaneously satisfy all four criteria including high uniformity, high PL QYs, narrow emission 

peaks, and significantly suppressed blinking. In addition, the relatively thin shell allows for compact 

QDs generally suitable for biological applications. We demonstrate that these core/shell QDs can be 

easily solubilized into water with high PL QYs, rendering them promising for in vivo imaging. We 

anticipate that this new generation of QDs will result in significant improvements in a variety of 

applications ranging from solid-state lighting and illumination under high and/or long time flux and 

single-photon generation, to biological multiplexed labelling, real-time tracking and in vivo transport 

studies. 

 

 

 

 



 

Figure 1. Optical properties of new generation CdSe/CdS core/shell QDs. a-d, Absorption (blue) 

and photoluminescence (PL) (red) spectra of four different CdSe/CdS core/shell QDs synthesized with 

different CdSe core diameters of a, 2.7 nm, b, 3.4 nm, c, 4.4 nm and d, 5.4 nm. Temporal evolution of e, 

photoluminescence (PL), f, absorption, g, PL quantum yields (QYs), green square shows the original PL 

QY of CdSe QDs, and h, full width at half-maximum (FWHM) of the PL peak of the CdSe/CdS 

core/shell QDs (shown in panel c) during the shell growth reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 2. Morphology, composition and crystal sturcture characterization of new generation QDs. 

TEM images of a, 4.4 nm CdSe core and b-d, CdSe/CdS core/shell QDs with a CdS shell thickness of 

0.8nm, 1.6nm and 2.4nm, respectively. e, Energy dispersive X-ray spectrum of the final CdSe/CdS 

core/shell QDs shown in panel d. Inset shows the observed and calculated atomic percentages of Cd, Se 

and S atoms. f, X-ray powder diffraction pattern measured from the same sample shown in panel d. The 

stick patterns show the standard peak positions of bulk wurtzite CdSe (bottom blue sticks) and CdS (top 

green sticks). The inset shows a representative high-resolution TEM image of a CdSe/CdS QD.  Scale 

bars are 50nm in a-d and 2nm in the inset of f. 

 

 

 

 

 

 

 

 

 

 



 
Figure 3. PL spectral correlation of single and ensemble QDs obtained through S-PCFS. The 

spectral correlations of the single QD (red line) and the ensemble (blue line) spectrum obtained by S-

PCFS for CdSe/CdS core/shell QDs synthesized by a, our method and b conventional method with 

nearly the same shell thickness (~7MLs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 4. Blinking behaviour of new generation CdSe/CdS core/shell QDs and ensemble PL 

stability test. a, Representative PL blinking trace of a single CdSe/CdS core/shell QD with a CdSe core 

radius of 2.2 nm and a shell thickness of 2.4 nm (~7 MLs) (bin size is 50 ms). Histograms indicate the 

distribution of intensities observed in the trace. The dashed red line indicates the value chosen as the 

threshold between “on” and “off” states in calculating the “on” time fraction. b, Histogram of the 

blinking “on” time fraction. The average “on” time fraction is 0.94 with a standard deviation of ± 0.06.  

c, Log-log plot of the probability distributions of “on” and “off” times. Straight lines represent a power-

law fitting using the equation ௢ܲ௡Ȁ௢௙௙ሺݐ௢௡Ȁ௢௙௙ሻ ן  ఈ೚೙Ȁ೚೑೑ where Įon = 0.85 for “on” times (red line)ିݐ

and Įoff = 2.2 for “off” times (blue line). d, Representative PL blinking trace of a single CdSe/CdS 

core/shell QD with a CdSe core radius of 2.2 nm and a shell thickness of 0.7 nm (~2 MLs) (bin size is 

50 ms). The PL intensity traces obtained from a collection of QDs synthesized through e, our new 

method and f, the conventional method. The inset in f shows the PL intensity recovery after an initial 

decay. The black arrow indicates the time point when continuous excitation was stopped. 

 

 

 

  

 

 

 

 



 

Figure 5. Water-soluble CdSe/CdS core/shell QDs for in vivo imaging. a-c PL QYs of CdSe/CdS 

core/shell QDs before ligand exchange in chloroform (CHCl3) and after ligand exchange in phosphate 

buffer saline (PBS 1X, pH 7.4). Equal amount of these QDs (2.5ȝM, 200ȝL) were injected retro-

orbitally into Tie2-GFP transgenic mice bearing dorsal skinfold chambers, and carried out intravital 

multiphoton microscopy in the skin at 30 min after injection. a and d: conventional CdSe/CdS QDs 

synthesized by a literature method and ligand exchanged with methoxy-polyethylene-glycol thiol 

(QDconv.-SH-PEG). b and e: new generation (ng) CdSe/CdS QDs synthesized by our novel method and 

ligand exchanged with methoxy-polyethylene-glycol thiol (QDng-SH-PEG). c and f: new generation 

CdSe/CdS QDs and ligand exchanged with polymeric imidazole ligands (QDng-PIL). In d-f, all the 

images are scaled to the same contrast, and scale bars are 100µm.  
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