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Abstract
Cancer is responsible for over 7.6 million deaths worldwide; the majority of patients fail to respond
to drugs or become resistant over time. In order to gain a better understanding of drug efficacy in
patients, we developed three diagnostic technologies to address limitations in sample acquisition
and improve the scale and sensitivity of current cancer diagnostic tools.

In the first section, we describe a hybrid magnetic and size sorting microfluidic device that isolates
rare circulating tumor cells from peripheral blood. The self-assembled magnetic sorter creates
strong magnetic fields and effectively removes leukocytes tagged with magnetic nanoparticles. The
size sorting region retains the remaining cells in single cell capture sites, while allowing small red
blood cells to pass through 5pm gaps. The device achieves over 103 enrichment, up to 96%
recovery of cancer cells and allows for on-chip molecular profiling.

In the second section we use a magnetic nanoparticle decorated with small molecule drugs to
assay target expression and drug binding in mock clinical samples of cancer cells spiked into
whole blood. Specifically, we modify a PARP inhibitor (Olabarib) and conjugate it to a dextran
coated iron oxide nanoparticle. We measure the presence of the drug nanosensor based on the
change in T2 relaxation time using a miniaturized, handheld NMR sensor for point-of-care
diagnosis.

In the final section, we detail a photocleavable DNA barcoding method for understanding treatment
response via multiplexed profiling of cancer cells. We validate our method with a 94 marker panel
on different cell lines with varying treatments, showing high correlations to gold standard methods
such as immunofluorescence and flow cytometry. Furthermore, we demonstrate single cell
sensitivity, and identify a number of expected biomarkers in response to cell treatments. Finally, we
demonstrate the potential of our method to help in clinical monitoring of patients by examining
intra- and inter-patient heterogeneity, and by correlating pre and post-treatment tumor profiles to
patient response. Together, we show how these technologies can help overcome clinical limitations
and expedite advancements in cancer treatment.

Thesis Supervisor: Ralph Weissleder, M.D., Ph.D.
Title: Director, Center for Systems Biology, Massachusetts General Hospital; Professor,
Systems Biology, Harvard Medical School
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e p ig e n e tic p a th w a y s .................................................................................................................................. 7 5

Figure 4.11. Single-cell profiling in patient sample. A fine needle aspirate was obtained from a patient

with biopsy-proven lung adenocarcinoma. (A) Eleven harvested cells were analyzed individually, and
protein expression levels in each cell (y axis) were correlated with expression levels from the bulk tumor

sample (x axis). Though all of the cells show a linear trend, the spread and distribution of the markers

varies from cell to cell. (B) Spearman R correlation coefficient values are displayed for each of the single

cells to each other and to the bulk measurement (p<.0001). Single cells showed higher correlations to

each othe r as opposed to the bulk............................................................................................................. 76
Figure 4.12. Inter-patient heterogeneity in lung cancer. Fine needle aspirates were obtained from six

patients with biopsy-proven lung adenocarcinoma, and bulk samples (-100 cells each) were processed

as described in Figure 4.1. Expression data is normalized by row to show differences between each
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I Chapter 1 I Introduction

1.1 Motivation
Cancer is the leading cause of death worldwide, accounting for 7.6 million deaths in 2008 alone.

Some of the deadliest cancers in the US, such as pancreatic and lung cancer have five year

survival rates as low as six percent.1 These rates have not significantly improved in the last 30

years.1 For these cancers, the majority of patients are diagnosed in advanced stages with highly

invasive or metastatic disease, where surgical intervention is not an option.2 Instead, patients are

administered systemic therapies on a "trial and error" basis. The large degree of patient-to-patient

variation makes it difficult to predict how a patient will respond to treatment, and tumors can

develop resistance to drugs in less than 6 months. 3-7 Consequently, clinical trials for cancer

therapeutics are increasingly accompanied by genetic diagnostics to rationally elucidate drug-

sensitive and resistant cohorts amongst a heterogeneous group of patients. This companion data

is collected at two extremes: a) exome analysis revealing driver oncogenes and specific

mutations45 and b) a limited number of hand-picked protein biomarkers. However, the majority of

this data never achieves clinical utility. Mounting evidence shows that this is because single time-

point, bulk genetic measurements vastly underestimate the epigenetic and genetic complexity of

the tumor.8,9,10,11 Even genetically similar cells display functional differences; for example, cells with

identical genotypes still have different susceptibilities to the same drug. 12 Changes to drug

combinations, doses and dosing schedules are required combat drug resistant clones. 1314 15

Better tools are required to supplement clinical trials with additional pharmacodynamics data. This

thesis aimed to create new platforms and assays to isolate cells and measure drug binding, drug

dosing and cellular response.
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1.2 Cancer Treatment: Attacking the Hallmarks of Cancer
Cancer is a highly complex disease; each tumor arises through multiple mutagenic steps in

different pathways ranging from epigenetic histone changes to DNA repair and growth/survival

signaling.1 316,17,18 Within a single tumor there is great genetic and proteomic heterogeneity and a

clonal population within the tumor can continue to proliferate even when the majority of the cells

die. 19 There is a also great deal of patient-to-patient variation due to both genetic and

environmental factors. As such, there is an increasing need to develop individualized treatment

regimens.20 Currently there are two major types of treatments: cytotoxic agents which inhibit cell

proliferation, and molecular targeted agents, which act on specific signaling pathways and

proteins.

1.2.1 Cytotoxic Drug Treatments
In early stages of cancer, the tumor is highly localized, and surgical resection is often curative.

However, patients with advanced disease must undergo systemic therapies such as chemotherapy

and radiation. These traditional therapeutics exploit the increased replicative potential and

heightened sensitivity of cancer cells to DNA damage or genotypic stress. Chemotherapeutic or

cytotoxic drugs, work by attacking dividing cells through several mechanisms. Alkylating agents are

one class (e.g. cyclophosphamide, dacarbazine, temozolomide) that work by directly damaging

DNA to prevent cancer cells from dividing. Platinum agents such as cisplatin, carboplatin and

oxaliplatin which covalently bind to DNA to induce damage are also sometimes considered

alkylating agents.21' 22 Antimetabolites (e.g. are 5-fluorouracil, methotrexate, gemcitabine and

premetrexed) make up a second group of cytotoxic drugs, and interfere with DNA and RNA by

intercalating with nucleotides to disrupt the S phase of the cell cycle. Anthracyclines, or anti-tumor

antibiotics such as doxorubicin and mitomycin that interfere with DNA replication enzymes.

Topoisomerase inhibitors that act on either topoisomerase I (e.g. topotecan, irinotecan) or

topoisomerase II (e.g. etoposide) prevent the separation of DNA strands for replication during the S
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phase. The final major class of cytotoxic drugs are mitotic inhibitors that work during the M phase

to prevent mitosis. One common group of drugs are taxanes, such as paclitaxel (Taxol) and

docetaxel (Taxotere), which inhibit microtubules, in turn preventing spindle formation and cell

division. 23 More cytotoxic agents that operate through different mechanisms are still in

development such as proteasome inhibitors. 22

1.2.2. Molecular Targeted Therapy and Personalized Medicine
In an effort to rationally target pathways specific to each cancer, pharmaceutical companies have

developed an increasing number of drugs to inhibit pathways upregulated in cancer. Some of the

most effective drugs inhibit "oncogenes" that drive tumor growth. 24 By identifying sensitizing

genetic mutations, patients can be divided into a select group of drug responders. Success stories

such as Gleevec/imatinib (against the BCR-ABL fusion protein in leukemia), Tarceva/erlotinib and

Iressa/gefitinib (against EGFR in lung cancer), Herceptin/trastuzumab (against HER2 in breast and

ovarian cancers) and Crizotinib (against in lung cancer).25-29 Another approach is based on

"nononcogene addiction," where drugs target genes that may not be oncogenic, but are still

necessary to maintain cancer cells. These include proteins involved in a cell's stress response,

such as Heat Shock Protein (HSP) and PARP inhibitors.133031 Despite these advancements,

patients inevitably develop resistance to targeted therapies within 2 years. 532 33 Increasing

evidence has shown that treating heterogeneous cancer cell populations requires innovative

treatment strategies such as immunotherapies, unique combination therapies, or interspersed

dosing regimens to successfully make caner a manageable disease15 34 Better tools are required to

acquire pharmacodynamic information from cancer cells and the surrounding stroma on a single

cell level. An improved understanding of cancer heterogeneity can intelligently guide therapeutic

regimens.
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Figure 1.1 Multi-Pathway inhibition as a strategy for cancer treatment using molecular targeted drugs and
chemotherapy.

1.3 Pharmacodynamic Measurements in the Clinic: Challenges and Limitations
1.3.1 Sample Acquisition and Processing
Though cancer has been studied extensively in vitro and in vivo, translation to patient samples has

been difficult. Serial, repeat biopsies or fine needle aspirate (FNA) to collect cancer samples raise

ethical and medical safety questions, and impose greater costs to hospitals and patients. Thus,

approval for repeated biopsies is limited to few patients in early clinical trials. Following sample

collection, clinical technicians and biomedical researchers face challenges to process, store and

isolate cancer cells. Common preservatives such as formaldahyde and paraffin can reduce sample

quality making them incompatible with downstream assays. 35 Tissues from biopsies requires

additional processing through enzymatic breakdown of extracellular matrix (collagenase) as well as

well-defined markers to sort and isolate cells of interest.36 Fine needle aspirate samples require less

processing than biopsies, but also result in far fewer cells (as few as 1,000 per pass), limiting the
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number of measurements that can be performed.37 38 Finally, the half-life of cells and protein

markers can be extremely short; in fact, rare cancer cells in the bloodstream (circulating tumor

cells, CTCs) have been shown to have half lives as short as 1 hour 39
-
4 1 Thus, pharmacodynamic

assays for clinical trials ideally need to be compatible and effective for samples with limited

numbers of cells and differing preservations.

1.3.2 Current Diagnostics in Cancer Treatment and Alternative Proteomic Tools
Current clinical practice in cancer diagnosis employs either genomic measurements for known

cancer mutations (e.g. Snapshot genotyping and Oncotype Dx)42'4 3 or immunohistochemistry (IHC)

with a limited number of markers to diagnose cancer type.44 Genomic data has yielded a number

of advances in cancer therapy to identify activating mutations that can be specifically targeted via

treatment. However, the number of new mutations discovered has plateaued, and many known

aberrations are 'un-druggable,' or impossible to target via small molecules or antibodies.45 Recent

therapeutics have taken alternative approaches including drugging the host immune system, or

targeting compensatory proteomic pathways. While proteomic information is valuable, clinical

practice is limited by the amount of sample required for current techniques such as IHC.

Pathologists typically perform basic H&E staining to identify cellular structure, alongside 3-10

selected markers depending on available sample. These analyses are limited since IHC requires

tedious, manual slide preparation with no guarantee of identifying cancerous cells amongst the

stroma.44 Markers are primarily used to distinguish the cancer's originating site (e.g. TTF-1 for lung

cancer),46 and not indicative of therapeutic sensitivities. Often these markers are not standardized

and have limited diagnostic power. Finally, many therapeutically relevant markers are expressed in

non-cancerous tissues; as such, concurrent staining procedures are necessary to ensure that cells

examined are malignant.
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Newer proteomic tools have been designed to perform multiplexed marker detection on small

amounts of proteomic materials with high fidelity and sensitivity. These include mass spectrometry,47

mass cytometry,48-51 or flow cytometry52; however, none of these have been introduced clinically

due to high costs, poor sample recovery, or limited multiplexing capabilities.

1.4 Advancing Cancer Treatment with Micro and Nanotechnologies
Advances in microfluidics and nanotechnology have created a wave of new devices and platforms

to improve companion diagnostics in cancer treatment. Microfluidic advances have allowed for

improved cell-surface interactions through surface modifications such as self-assembling

monolayers, accurate flow control for controlled mixing and isolation of cells, and combined on-

chip sample processing and analysis via integration of optical or magnetic sensors. 53

Nanotechnology utilizes materials, devices and drugs on the scale of 1 00nm or less and have been

applied in molecular sensing, imaging and treatment (drug delivery).54 56 These include

nanodevices, liposomal, polymeric and magnetic nanoparticles, and modified biologics such as

antibody fragments and unique DNA barcodes. Nanoparticles confer advantages such as

modularity and multiplexing capabilities through surface modifications, multivalency (akin to

receptors on cells) to achieve signal amplification, and unique pharamacokinetic properties 758 .

Here, we cover specific applications of micro and nanotechnology to clinical applications including

i) microfluidic devices for rare cell isolation ii) magnetic nanoparticle sensing for cancer diagnostics

iii) DNA barcoding on antibodies for multiplexed protein detection.

1.4.1 Microfluidic Devices for Rare Cell Isolation
The isolation and molecular profiling of rare cells from clinical specimens holds significant potential

for the early diagnosis and treatment monitoring of disease,9 -1 ,82 drug discovery, 2 and stem cell

research.63 Particularly, the detection and profiling of circulating tumor cells (CTCs) in whole blood

has emerged as a promising methodology to detect, monitor, and better understand cancer. 60,61 ,64,65
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CTC detection poses a tremendous technical challenge that requires high throughput screening of

large volumes of fluid (-10 mL) and enrichment of heterogeneous targets against a complex, vast

biological background. 64 Much work has been done to design microfluidic devices that address

these challenges. For example, microfluidic chips have employed micro-magnets to efficiently sort

magnetically labeled cells with high flow rates, molecular biomarker specific isolation, and easy

integration with down-stream microfluidic components. 66-69 Likewise, microfluidic structures have

been reported that capture and hold individual cells for on-chip staining, culture, and molecular

analyses.70- 2 With an increasing need for frequent patient monitoring during cancer progression

and treatment, tools that enable measurements from peripheral blood draws are far more ethical

and feasible than invasive cancer biopsies. Thus, microfluidic devices to identify circulating tumor

cells are positioned to to make a large impact on treatment monitoring in cancer patients.

1.4.2 Diagnostic Capabilities using Magnetic Nanoparticles
Ultra-sensitive detection of cancer antigens could improve cancer diagnosis and monitoring.

Magnetic nanoparticles has been applied to achieve high sensitivity in ex-vivo clinical assays. One

sensing technology that utilizes magnetic nanoparticles is DMR (Diagnostic Magnetic Resonance).

DMR can quickly and quantitatively determine a molecular profile from scant cells including fine

needle aspirates (FNAs), circulating tumor cells (CTCs) and even tumor exosomes of cancer

patients 37,73. The device consists of a miniaturized NMR probe that can measure the transverse

relaxation time (T2 = 1/R2) of the water molecules in the sample. Magnetic nanoparticles

conjugated to an antibody can then be applied to the sample to detect the expression of a

particular protein. The presence of magnetic, iron core nanoparticles increases the relaxation rate

of the surrounding water molecules, resulting in a decrease in the spin-spin relaxation time (T2). By

tagging cells with magnetic nanoparticles targeted to a marker-of-interest, we can detect a change

in the relaxation time between tagged cells and non-tagged cells. This is proportional to the

amount of magnetic nanoparticle present, and in turn protein expression. Specifically we use
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cross-linked iron oxide (CLIO) nanoparticles that are approximately 30 nm in size and can easily

penetrate permeabilized cells.74 Using these nanoparticles, the DMR system can detect as few as

2 cells in 1 -uL volumes in less than 15 minutes.73 The latest DMR (DMR-4) also has superior

temperature control for consistent measurement.

Current technologies for molecular profiling are time consuming, expensive and require large

sample sizes. Though clinical MRI scanners and benchtop relaxometers with low field (<1 Tesla)

magnets have been used in the past, these devices were unable to make parallel measurements

and required large sample volumes. DMR technology has been designed considering clinical

limitations such as sample size. The chief advantages of the chip-based DMR system are high

sensitivity and the ability to use microliter sample volumes with minimal processing. While parallel

processing can be used to achieve multiplexing, an additional sensor channel with greater variable

tags (size, color, etc.) would be required to perform large-scale multiplexed measurements on the

same amount of sample.

1.4.3 Nanoscale Biologics: Multiplexed Immuno-detection via DNA barcoding
Genomic detection through qPCR and sequencing rapidly progressed in the last decade to

achieve femtomolar sensitivity. DNA sequences can be designed to create hybridizable fluorescent

probes and three-dimensional structures that serve as unique barcodes.75,76 By attaching these

barcodes to antibodies, researchers have leveraged the inherent multiplexing and detection

capabilities of DNA technologies to boost the sensitivity of immunoassays such as ELISA by 10 to

10,000 fold.77 Most of these methods have utilized immuno-qPCR (iPCR) with antibodies

conjugated with small, designed DNA sequences of various lengths. After the cells are stained with

the chimeras, DNA can be released following cell lysis and proteolytic cleavage.78 Over the years, a

number of technical advances have enabled both sensitive and specific detection for clinical
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application. These include improved blocking conditions, rolling circle amplification, controlled

chimera conjugations via specifically introduced binding sites on the Fab fragment, and the

introduction of microfluidics for single cell detection.7679 80 Clinical applications have ranged from

cytokine measurements in serum to protein biomarker detection in cancer sources. However,

costs, limited clinical access and processing times have thus far prevented large-scale multiplexed

detection beyond tens of makers.

1.5 Thesis Overview
The overall goal of this thesis is to enable biomedical researchers and clinicians with translational

technologies that can improve cancer treatment. Current state-of-the-art methodologies and

assays are limited by previously outlined clinical constraints such as cost and sample material. To

address these challenges, innovations are required on a number of fronts, including sample

acquisition and assay development to efficiently capture large amounts of information. The tools

developed in this thesis span a range of clinical hurdles and incorporate innovations on a range of

scales from microtechnologies to nanometer sized biologics. First, we tackled the challenge of

sample acquisition. Current methods for treatment monitoring require serial clinical samples with

repeated invasive procedures. Ideally, future measurements would be less invasive and come

circulating tumor cells in peripheral blood. We address challenges in CTC enrichment, capture and

release challenges, and detail a combined size and magnetic sorting microfluidic device (Chapter

2). Next, we created tools to improve data acquisition during clinical trials. Drug binding and dosing

is the primary focus of early (Phase I) clinical trials. We sought to improve companion tools in this

early phase of experimental cancer care with a magnetic nanoparticle assay that could quantify the

amount of drug present in circulating tumor cells (Chapter 3). Finally, we describe a large-scale,

multiplexed protein detection platform that can profile cancer cells. We go on to demonstrate the
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clinical potential of this platform to both predict and monitor treatment response in cancer patients

(Chapter 4). We conclude with perspectives and future directions for these projects.
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I Chapter 2 I Microtechnology to Characterize CTCs

2.1 Introduction
Circulating tumor cells (CTCs) have emerged as an important biomarker in clinical practice as

well as in fundamental research.61,65 CTCs, shed from primary tumors, have been shown to be

an early harbinger of tumor expansion and metastasis, 81 and have been used to predict

disease progression, response to treatment, relapse and overall survival. 82 84 Recent work has

shown that CTCs display distinct proteomic and genetic profiles; for example, CTCs in

pancreatic cancer, have increased RNA expression of Wnt, implicating this pathway in

metastasis. 85 Proteomic characterization of proliferative markers such as Ki-67, and hormonal

markers such as androgen receptor in prostate cancer, also have been shown to be predictive

of treatment outcome. 86,87

Despite such clinical potential of CTCs, their routine detection and characterization still remains

a significant technical challenge.88 The task requires the screening of a large number of cells

(e.g. >107 cells in 10 mL blood) and enrichment of heterogeneous targets against a complex

biological background. Two main methods of CTC isolation are typically used: positive and

negative selection. In positive selection, CTCs are directly isolated from blood via size-based

filtration 89-93 or antibody-based capture. 61,86.94 The negative methods deplete abundant blood

cells, often by immunomagnetic separation, for downstream CTC enrichment. 95 Both

approaches have been used for high throughput CTC isolation from whole blood (SI Table 1).

Each method, however, has its own inherent limitations. Positive enrichment could be biased

by its selection criteria (e.g., cell size, cell surface markers). Negative selection, albeit

unbiased, often requires increased sample processing (e.g. multiple washing steps for CTC

isolation) that could result in cell loss.
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We hypothesized that both positive and negative selection could be combined in a single

platform so as to enable 1) highly efficient and unbiased CTC purification, and 2) in-situ

molecular analyses on collected cells. As proof-of-concept, we herein describe a hybrid

magnetic / size-sorting (HMSS) system, that integrates magnetic- and size-based isolation into

a compact microfluidic chip. The HMSS first uses a magnetic filter to deplete leukocytes

through immunomagnetic capture. Samples then pass through a size-sorter region that traps

individual cells at predefined locations. Since abundant leukocytes are removed by the

magnetic filter, the size-sorter could have a low size cut-off (-5 pm), which allows for the

unbiased capture of even small cancer cells. Furthermore, molecular probes can be

introduced to perform on-chip, multiplexed analyses at single-cell resolution. We evaluated the

utility of the developed system by capturing and profiling tumor cells in whole blood.

2.2 Results and Discussion
2.2.1 Hybrid magnetic and size-sorting chip
The structure of the HMSS chip (Fig. 2.1) is based on two distinct miniaturized components

that have been developed in our laboratory: a self-assembled magnet filter69 and a cell-size

sorter.72 The magnet filter consists of a layer of magnetic grains (125 pm, NdFeB), which

spontaneously self-assemble into an array of anti-aligned magnetic dipoles (Fig. 2.1b).69 Such

configuration creates a magnetic field pattern that is confined tightly above the surface of the

array. The field strength (B) falls off exponentially with distance from the magnet surface,

producing steep field gradients (VB). A large trapping force (-BOVB) can thus be imparted on

magnetically-labeled cells near the magnet surface.69 In tandem with the magnetic filter, a size-

based cell sorter is implemented (Fig. 2.1c). 72 The structure has a weir-style physical barrier

with an underpass-gap that allows flow-through of small cells (e.g., red blood cells; RBCs) and

effluent fluids. Bigger cells (e.g., CTCs), however, are trapped at the capture sites, which

enables in-situ analyses of single cells (Fig. 2.1d). 72,96
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Figure 2.1. Design of microfluidic hybrid magnetic / size-based (HMSS) sorting chip. (a) A
herringbone pattern is integrated on main parallel channels to force cells near top surface of channels
onto the bottom surface. (b) Magnetic grains are self-assembled on the bottom surface of the channels to
generate a large magnetic field and field gradients. (c) Schematics of HMSS sorter: two separate PDMS
blocks are permanently bonded. Top PDMS includes parallel channels with herringbone structures, size-
based capture sites, embedded glass sled, and connecting ports. The other consists of self-assembled
magnetic layer. (d) Schematics of size-based capture structure: cells (red) larger than a underpass gap
are captured at capture sites while smaller cells (green) pass through. (e) Fabricated HMSS-sorter.

Compared to our previous magnetic filter and size-based sorter, the HMSS chip incorporates

new design features that significantly improve the throughput of the device. First, parallel

chaotic-mixing channels are implemented in the magnetic separation region. Unlike a simple

laminar flow, the chaotic advection brings cells more frequently in contact with the channel

bottom, enhancing the capture efficiency by the magnetic filter.97,98 The channel height,

therefore, is no longer limited by the reach of the magnetic field into the flow channel, and tall

channels could be implemented to increase the throughput while reducing fluidic resistance.

Second, the structural strength of the size-sorter is reinforced by embedding a thin glass slip in

the channel top (Fig. 2.1c). By providing rigid support to the physical barrier, this design helps
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the size-sorter maintain a consistent gap height during high flow-rate operation, and thus

minimizes potential escape of CTCs.

Figure 2.1e shows a prototype HMSS device. To fabricate the magnetic layer, we first

suspended NdFeB particles (MQFP-B-20076, Magnequench) in uncured PDMS

(polydimethylsiloxane, Dow Corning), and magnetized them using a high-field magnet (- 1.5 T).

The mixture was then slowly cured (-3 hours) to allow NdFeB grains to self-assemble. The

fluidic mold had three layers that defined the underpass-gap (5 pm in height), fluidic channels,

and herringbone mixers (see Materials and Methods for design details). Prior to PDMS curing,

a thin glass slab (150 pm thick) was placed above the cell capture unit. The HMSS was then

assembled by permanently bonding the magnet layer with the fluidic structure. The channel

inside of the fabricated devices was treated with F127 Pluronic copolymer (Sigma Aldrich) to

minimize non-specific cell adhesion. 99 Liquid injection (e.g., cell suspension, antibody-mixture)

was driven by an external peristaltic pump.

2.2.2. System Operation
The sequence of HMSS operation is demonstrated in Fig. 2.2. Samples were prepared by

spiking -5000 cancer cells (HT29, colorectal adenocarcinoma) into RBC-lysed whole blood

samples (1 mL). Prior to the mixing, cancer cells (HT29, colorectal adenocarcinoma) and

human leukocytes were stained in red (Cell Tracker Red CMPTX, Life Technologies) and blue

(Hoescht 33258, Invitrogen) respectively. Samples were then incubated with CD45-specific

magnetic particles (EasySep@ CD45 Depletion Cocktail) to label leukocytes (see Materials and

Methods for details). In the initial cell mixture (Fig. 2.2a), cancer cells (red) were difficult to

detect due to the presence of abundant leukocytes (blue). Following the negative depletion of

leukocytes with the magnetic filter, cancer cells were efficiently enriched (Fig. 2.2b). The size-

sorter then collected cancer cells along the capture sites, which allowed for easy single cell
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identification and counting (Fig. 2.2c). Note that the entire assay was performed without off-

chip washing steps; after incubating samples with leukocyte-specific magnetic particles, the

mixture was flown through the HMSS chip to complete the assay. Such on-chip processing

minimized potential cell-loss and simplified the system operation.

Figure 2.2. Operation of the HMSS chip. Following the magnetic labeling of leukocytes, samples are introduced

into the HMSS chip for one-step CTC isolation. (a) Before the magnetic depletion, the initial sample was highly

heterogenous, and cancel cells (arrows) were difficult to find. (b) After the depletion of leukocytes by the magnetic

filter, cancer cells were significantly enriched. (c) The size-sorter (gap height, 5 pm) further trapped cells at

predefined capture sites for easy cell counting. Captured cells could be further stained on-chip. Cancer cells and

leukocytes were pre-stained in red and blue, respectively, for visualization.

2.2.3 Device Characterization
The performance of the HMSS chip was evaluated by determining two parameters, enrichment

ratio and recovery rate. The enrichment ratio was defined by measuring how many times the

population of non-magnetic cells (e.g., cancer cells) is enhanced relative to that of
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magnetically-labeled host cells (e.g., leukocytes). The recovery rate, which measures how

many target cells are inadvertently trapped by the system, was obtained from the relative

changes of target cell population before and after HMSS operation.

We first assessed the effect of chaotic mixing on target cell enrichment. Computational

simulation revealed that magnetic objects in the mixing channel can be more effectively

captured by the magnetic filter than those in the laminar flow device (Fig. 2.3a). This trend was

more pronounced at higher flow rate. In the laminar flow system, high speed objects could

easily escape the magnetic filter region before significantly pulled down towards the channel

bottom. Inside the herringbone channel, however, particles were forced to make frequent

contact with the channel bottom. Consequently, the chaotic mixer system could maintain a

consistent capturing efficiency even at higher flow rate (Fig 2.3b).

To test the computational prediction, we fabricated two types of magnetic filter chips that were

with and without herringbone structure. Samples were prepared by adding -103 cancer cells

(HT29) in RBC-lysed blood (1 mL) and subsequently labeling leukocytes with magnetic

particles (Materials and Methods). Samples (1 mL) were then introduced to the devices at the

flow rate of 3 mL/hr. The number of leukocytes before and after magnetic depletion was

measured by flow cytometry. As expected, the herringbone pattern-assisted magnetic filter

achieved significantly higher (> 30-fold) enrichment ratio (-1800) than the simple-laminar flow

device (enrichment ratio: -50; Fig. 3b); this could be attributed the increased frequencies of

cell-magnet interactions by the chaotic advection. Furthermore, the capture efficiency was

stable over wide range of flow rates. For instance, even though the flow rate of whole blood

samples were varied from 1 to 12 mL/hr, the overall enrichment ratio remained nearly constant

with values >103 (Fig. 2.3c).
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Figure 2.3. Characterization of the HMSS-sorter. (a) Computational simulation of magnetic capture in the laminar

(top) and the chaotic (bottom) fluidic systems. Magnetic objects inside the chaotic mixer more frequently contact the

magnet surface, leading to higher capture yield. (b) Comparison of enrichment ratios with and without chaotic

mixing. The enhancement due to the chaotic mixing is > 30 fold. (c) Enrichment ratios at varying flow rates.

Consistent cell-enrichment (>103 enrichment ratio) could be achieved at various flow rates. (d) Titration experiments.

Known amounts of cancer cells were spiked in blood and were captured by the HMSS. The measured counts shows

good with the expected numbers. Data is displayed as mean ± SD from triplicate (b, c) and quintuplicate (d)

measurements.

We next characterized the recovery performance of HMSS chip. Blood samples (10 mL)

containing varying concentrations of cancer cells (HT29; 10, 50, 100 and 250 cells/mL) were

prepared. Leukocytes were then magnetically labelled, and samples (1 mL) were introduced to

the HMSS chip at the flow rate of 5 mL/hr. Cancer cells, that were trapped at pre-defined

capture sites, were enumerated. The measured cell counts showed excellent agreement with
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expected cell counts (Fig. 2.3d); the slope between the measured and the expected cell

counts was statistically equal to 1 (P > 0.59, two-tailed t-test) after linear regression. The

average recovery rate was 87% for 50 cells, and increased to 96% for 250 cells.

2.2.4 Molecular profiling on individual cells
The HMSS chip can be an effective platform not only for CTC isolation and counting, but also

for its characterization. By flowing a mixture of molecular probes, captured cells can be

molecularly screened at a single cell resolution. As an representative example, we profiled the

expression of EpCAM (epithelial cell adhesion molecule) and vimentin in tumor cells. These

markers were chosen for their clinical implications: EpCAM is a widely-used epithelial marker

for CTC isolation; vimentin is a mesenchymal marker whose level is up-regulated during the

epithelial-to-mesenchymal transition of CTCs. 94,100 Samples were prepared by spiking different

types of cancer cells (SW872, liposarcoma; SKOV3, ovarian serous adenocarcinoma; MCF-7,

breast adenocarcinoma) into whole human blood (see Materials and Methods for details).

Following the cell enrichment and trapping, a cocktail of fluorescent probes were introduced to

stain captured cells for nucleus, EpCAM and vimentin. The assay revealed distinct marker

profiles among different cell lines (Fig. 4a). For the epithelial cancer cells (SKOV3, MCF-7),

EpCAM expression was strongly positive; vimentin was positive in SKOV3, but was negative in

luminal-like MCF-7, which is consistent with previous reports. 101 102 The mesenchymal cancer

cells (SW872), on the other hand, were stained positive for vimentin and negative for EpCAM.

The HMSS also facilitated molecular analyses at the single cell level. For instance, Fig. 2.4b

shows the expression profiling of Ki-67, a cell-proliferation marker, in A431 cells (epidermoid

carcinoma) spiked into whole human blood. With the cancer cells stably trapped in the HMSS,

we could resolve nuclear localization, and heterogeneity amongst cells. Some cells showed

strong Ki-67 staining, suggesting their high proliferative potential. Proliferative markers such as
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Ki-67 have been shown to correlate to disease progression and survival; dual staining of CTCs

with PSA and Ki-67 in prostate cancer patients showed a broad range of proliferative index in

CTCs, even under castrate conditions. 86 Note that other diagnostic markers could be readily

incorporated into the HMSS platform, including DNA damage markers (e.g., histone yH2AX)

and signaling proteins (e.g., phosphorylated EGFR).10,104 Such multiplexed assays on CTC

molecular status would be of significant clinical importance in monitoring and rationalizing

patient treatment.

a

Brigh Seid &
DAPI (blue)

b

25 pm

Figure 2.4. On-chip analyses on captured cancer cells. (a) Molecular analyses on on three different types of cells

(SW872, SKOV3, and MCF-7) showed differential staining of EpCAM and vimentin. The staining was performed on-

chip after capturing cancer cells in whole blood. DAPI, 4',6-diamidino-2-phenylindole. (b) With cancer cells stably

trapped, the HMSS facilitated the identification and higher resolution imaging of individual cells. Ki-67 staining of

A431 cells revealed subcellular nuclear localization and heterogeneity amongst cells.

2.2.5 Conclusion
In summary, the HMSS is a promising tool for CTC detection and analysis. The integration of

two distinct cell separation technologies, namely a self-assembled magnetic filter and a size-
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based sorter, allows the efficient isolation of CTCs in an unbiased manner. Subsequent on-chip

profiling enables cellular studies at single cell resolution. Furthermore, by optimizing the fluidic

design, we have significantly improved the throughput and the cell-capture accuracy. With

such advanced features, the HMSS chip could play an important role in translational cancer

research. We plan on using the HMSS system with clinical samples to look at a variety of

markers that are relevant to pathway inhibition in molecularly targeted treatments. Ultimately,

we envision that the technological advancements in HMSS device would aid in understanding

the underlying biology of CTCs as well as in establishing their clinical utility.

2.2.6 Personal Contribution to Work
The author of this thesis led a group of researchers in planning, performing and interpreting

experiments in equal collaboration with Dr. Jaehoon Chung and Professor Dave Issadore.

2.3 Materials and Methods
2.3.1 Design of microfluidic channel
The fluidic system had a triple-layer structure that defined the underpass-gap in the size sorter

(5 pm in height), fluidic channel (height, Hc = 50 pm), and herringbone patterns (height, HH

50 pm). The main microfluidic channel in the magnetic filter region consisted of 64 parallel

mixing channels (width, Wc = 380 pm). The dimension of herringbone mixer was chosen

according to the previous report 98 to maximize the events of suspended cells contacting the

channel bottom (see Fig. 2.5a for details). Cell capturing structure was implemented in the size

sorter region (Fig. 2.5b). The capture sites were designed to trap even small cancer cells (> 5

pm in diameter).
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Figure 2.5. Fluidic structures in HMSS. (a) Design parameters for the herringbone mixer: Wc = 380 pm; Hc = 50

pm; LH1 = 250 pm; LH2 = 130 pm; WH1 = 150 pm; WH2 = 150 pm; HH = 50 pm). (b) Dimension of capture sites in size-

sorter: gap height, 5 pm; w = 7 pm.

2.3.2 Sample preparation
Samples were prepared by following the workflow shown in Fig. 2.6. For the device

characterization, we used RBC-lysed human blood, which facilitated the staining of leukocytes

(Fig. 2.6a). For the molecular staining experiments, we used human whole blood (Fig. 2.6b).

a Sample for device characterization

P.eu ot rW e l Preparation of cancer clls
. Fixsng red blo o Fbdng moner cobs

Processing wit HMS

" F*n Lekoye kct elto

Cancer cace callure

b Sample for molecular analyses

Preparation of whole blood Preparatn of cancer cells
'Ani-coagulated 'Fixing cancer cels

Splldng cancer cells to
whaole blood

inmunomaneic labelng of
le"kOeytes

[Processing wit HMS
Sukoyt depletm

cncer cl capt

I' Inecling molecular probesLLemin

Figure 2.6. Sample Processing Workflow. Sample preparation steps for device characterization (a) and on-chip

molecular analyses (b).
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Preparation of RBC-lyses blood: Human whole blood were lysed and fixed with pre-warmed 1x

Lyse/Fix (BD Biosciences) for 10 minutes , shaking at 37 'C. Samples were then washed twice

with PBS+2% BSA. Leukocytes were labeled blue by adding Hoescht 33258 (Invitrogen)

(1:2000 dilution).

Preparation of cancer cells: Cancer cells (HT29) were pre-fixed in the same manner as

described above. The fixed cells were then labeled with Cell Tracker Red CMPTX (Life

Technologies) at 25 pM.

Magnetic labeling of leukocytes: Leukocytes were labeled using EasySepTM Human CD45

Depletion Kit (Stemcell Technology). First, EasySep@ CD45 Depletion Cocktail at 100 pL/mL

cells (e.g., for 1 mL of cell suspension, add 100 pL of cocktail) was added in prepared whold

blood. The mixture were incubate at room temperature for 15 minutes. EasySep@ Magnetic

Nanoparticles were then added and mixed at 220 pL/mL cells for 10 minutes.

Demonstration of system operation (Fig. 2.2): Pre-stained red-fluorescent HT29 cells (-5000)

were spiked into RBC-lysed blood (1 mL), and leukocytes were magnetically labeled. Without

washing, the mixture (1 mL) was introduced to the HMSS device at the flow rate of 3 mL/hr. The

operation was monitored with an inverted fluorescent microscope (Nikon Eclipse Ti).

Enrichment testing (Figs. 2.3b,c): Samples were prepared by adding -1000 cancer cells into

RBC-lysed blood (1 mL). The numbers of cancer cells (Nc ) and leukocytes (NLi) were

measured using a flow cytometer (LSRII, BD Biosciences), before (i = 1) and after (i = 2) the

magnetic depletion. The enrichment ratio was then obtained as (Nc,2/NL,2)-(Nc,1/NL,1)- 1.

Titration experiments (Fig. 2.3d): Confluent cancer cells in culture were suspended (>107 cells/

mL), and the cell concentration was determined through standard hemacytometer cell

counting. We then serially diluted (10x) the stock solution. Final samples were then prepared

by separately adding a precise volume of dilution series into 10 mL of RBC-lysed blood. The
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final concentrations of cancer cells were 10, 50, 100 and 250 cells/mL. Note that this approach

minimized the logistic errors coming from pipetting. For each experiment, we used 1 mL of

prepared samples. The cancer cells captured by the HMSS were counted via microscopy.

2.3.3. Samples for on-chip molecular analyses

On-chip staining of EpCAM and vimentin (Fig. 2.4a). Three cell lines (SW872, liposarcoma;

SKOV3, ovarian carcinoma; MCF-7, breast adenocarcinoma) were chosen for their varying

expression levels of EpCAM and vimentin. Cells in culture (-70% confluence) were detached

and subsequently fixed as described above.Whole blood was obtained from healthy volunteers

and placed in tubes containing ethylenediaminetetraacetic acid (Becton Dickinson, Franklin

Lakes, NJ). Approximately 3500 of cancer cells were added in 3.5 mL of whole blood. After the

magnetic labeling of leukocytes (see above), samples were flown to the HMSS device at the

flow rate of 3 mL/hr. Captured cancer cells were then stained on-chip by injecting a cocktail of

molecular probes (0.1 mL/hr, 6 hours). Following probes were mixed: Hoescht 33258

(Invitrogen), a vimentin (D21 H3)-Alexa Fluor@ 555 antibody (Cell Signaling) and an EpCAM

(VU1D9)-Alexa Fluor@ 488 antibody (Cell Signaling). These probes were suspended in 1x

Perm/Wash buffer (BD Biosciences) supplemented with 2% BSA (PW+). The final

concentration of each antibody was 2 pg/mL. After staining, cells were washed on-chip by

flowing PW+ buffer (0.1 mL/hr, 30 min), and imaged under an inverted microscope (Nikon

Eclipse Ti).

On-chip staining of Ki-67 (Fig. 4b): Cancer cells (A431, epidermoid carcinoma) were cultured

to 70% confluence, detached and fixed, following the same protocol described above. Cells

were then pre-stained with 1:2000 Hoescht 33258 (Invitrogen). Approximately 1000 cancer

cells were mixed into whole blood (3.5 mL), and the prepared samples were processed by the

HMSS. We first treated the capture cancer cells with PW+ buffer (0.5 mL/hr, 30-40 min) to

permeabilize their membrane. Next, Ki-67 antibody (BD Biosciences) in PW+ buffer (1 pg/mL)
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was introduced (0.1 mL/hr, 8 hours). FITC- labeled secondary antibody (4 pg/mL) against

Mouse IgG1 (BD Biosciences) was then injected (0.1 mL/hr, 1 hour), followed by a final wash

with PW+ (1 hour).
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I Chapter 3 I Nano-assay to Study Target-Drug Binding

Parts of this chapter are from Ullal, et. al. "Nanoparticle-mediated measurement of
target-drug binding in cancer cells." ACS Nano. 5(11), 2011.

3.1 Introduction
Nanomaterials have become an indispensable tool in the development of clinical

diagnostics 37,105,106, single cell analysis1 07108 and systems wide analysis of clinical specimen. 109 They

can be easily modified with multivalent targeting ligands to amplify signals,110 improve avidity, 107,108

enhance binding,11' and translate molecular interactions into measurable electrical, optical or

magnetic signals. In particular, magnetofluorescent nanoparticles allow for dual read-outs by

optical (e.g. flow cytometry, immunofluorescence) and magnetic sensing (e.g. nuclear magnetic

resonance or magnetoresistive detection). Dextran-coated, cross-linked iron oxide (CLIO)

nanoparticles have been shown to be ideal for use with clinical samples as they are highly stable in

physiological buffers and can be easily detected by NMR measurements with low biological

background. Recently, our group leveraged these properties to profile scant cells from fine needle

aspirate37 and to enhance detection of rare circulating cancer cells. Most nanoparticle-based

diagnostic applications have primarily used antibodies as affinity ligands to detect whole cells,37

pathogens,731  soluble protein biomarkers1 13 or metabolites.' 14

One major unexplored application, has been the use of nanomaterials to quantitatively assay drug-

target binding in clinical samples. Though clinical samples are readily procured during routine

medical procedures, samples often have scant cells with short half-lives once harvested,86 thus

necessitating a point-of-care assay with minimal sample processing. Tools to quantify target-

binding in a given patient at a given dose could help in screening drug candidates during

pharmaceutical development1 15 and also impact treatment decisions made in the clinic. Ultimately

such assays would significantly aid in determining whether systemically administered drugs have
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reached and occupied their intended cellular targets and how target binding varies across patients

who may have acquired drug resistance.

In order to enable fast, point-of-care assessment of drug-target interactions, we designed

nanosensors that could be adapted to study many drug-target systems which are quickly assayed

by a portable diagnostic NMR system (DMR)73,116. Specifically, we hypothesized that by

constructing a single small molecule drug-nanoparticle conjugate that could compete with

corresponding free small molecules for their targets, one could gain insights into the molecular

binding action of the drugs. Given the vast repositories of small molecules drugs, nanosensors

could thus be developed for a variety of targets. Furthermore, we reasoned that the drugs

themselves could serve as "affinity ligands", and aimed at establishing a new biomarker detection

paradigm distinct from antibodies. 107 Unlike antibodies which show binding specificity for single

antigenic sites within a given protein, small molecule drugs bind to specific conformations (e.g.

catalytic sites) and often show broader specificity. Using the drug itself as a probe allows for a

combined read out of multiple relevant targets all of which may affect drug efficacy.

As a model system, we selected poly(ADP-ribose) polymerase (PARP) inhibition, and conjugated

the PARP inhibitor Olaparib (AZD-2281) to magnetic nanoparticles. Several PARP inhibitors have

made significant headway in pre-clinical and clinical trials for ovarian and breast cancer.1 17-120

Moreover, the binding kinetics of PARP inhibitors are particularly interesting as they have been

designed to mimic nicotinamide and competitively block binding at specifically the PARP1 and

PARP2 catalytic sites.12 1 Using the PARP nanosensor, we performed validation experiments,

comparative drug inhibition studies and testing in whole blood samples without the need for prior

purification. We show that the method is fast, sensitive and well suited for point-of care operation.

The ability to measure target binding of an increasing number of molecularly targeted drugs should
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have a range of applications in biomedicine, drug development, clinical trials and for routine patient

care.

3.2 Results and Discussion
3.2.1 Synthesis and characterization of the PARP nanosensor
Based on earlier findings that the 4-NH-piperazine functionality of AZD2281 tolerates bulky

substituents without significant decrease in binding affinity,122-124 we chose this site to immobilize

the small molecule. For this reason, carboxyl-functionalized precursor 1 was reacted with N-

hydroxy succinimide in the presence of a carbodiimide resin, yielding the amine reactive NHS ester

activated AZD2281 derivative AZD2281 -NHS 2 (Fig. 3.1 a). HPLC, ESI-MS and HRMS spectra

confirmed both identity and purity of the isolated product. AZD2281 -NHS was converted to

PARPi-NP 3 by addition of amine-terminated CLIO nanoparticles (Fig. 3.1a). Each nanoparticle

had approximately 70 drug molecules covalently attached, which corresponds to near complete

conversion of free amine groups on each particle. The AZD-2281 conjugated nanoparticles (PARPi-

NPs) were highly stable in solution (>6 months) without detectable aggregation, as determined by

dynamic light scattering (mean diameter: 40.1 nm). Control NPs used for all studies were

succinylated, but otherwise identical. Carboxylic acid modified AZD-2281 had an IC50 of 6.7 nM,

similar to that of the reported free AZD-2281 drug (5 nM).1 2 2 1 25 Following conjugation to the

nanoparticle, the construct retained inhibitory activity against PARPI with a measured ICso of 3 nM

(Fig. 3.1 c). Importantly, none of the control nanoparticles (either the succinylated or amine

precursor CLIO) showed any inhibition of PARP activity.

41



A
S NH

N

HF N-

00

+ (HN

B

100 Diode array

50

01
0 0

1001 ES(+)

50]

n i
250

0

HO'N DCC-Resin N 0

RT 16h, 0DCM) N

OH F N" N

0 0
2. AZD2281 -NHS

4. Control-NP

(HN Q

0

H0

0

NH
N

N

F N

00
3. PARPi-NP

PARPi-NP

C

AZD2281 NHS Ester

.5
time

500

C

.2
1.0 1.5 2.0 .

(min) C

578.3 [M+H+]+

I i

120

90

60

30

0

750
-30

1000

m/z

PARPi-NP

AZD-2281-COOH

Contro -NP

CLIO-NH2

-3 -2 -1 0 1 2 3
log[Concentration] (nM)

Fig. 3.1. Synthesis and Characterization of Small Molecule Nanoparticle. a) AZD-2281 was modified

to have an NHS-ester and reacted with magnetic nanoparticle (CLIO-NH 2) for 4 hours in PBS. Control

nanoparticle was created by reacting succinic anhydride with CLIO-NH 2 overnight. b) HPLC and ESI-LC/MS
traces of the AZD2281 NHS Ester. c) AZD-2281 remained active even after conjugation to CLIO as verified

by a PARP activity assay. IC50AZD-COOH = 6.685 nM (5.087 to 8.786 nM IC50 95% confidence interval; R2

9816); IC50PARPi-NP = 3.071 nM (1.643 to 5.740 nM IC50 95% confidence interval; R2 = .9723). Control and
unconjugated nanoparticles did not have any inhibitory effect.

3.2.2 Validation of the drug nanosensor in cell lines
To test whether our drug nanosensor could measure PARP expression, we selected five cell

lines (HT29, HeLa, MDA-MB-231, MDA-MB-436 and HEK293 cells) that have varying PARP1

expression levels as confirmed by Western Blotting (Figs. 3.2a, b). Cells were fixed, permeabilized,

and then incubated with either PARPi-NP or control-NP. The PARPi-NPs had an average diameter

of about 40 nm, which is slightly larger than an unconstricted, open nuclear pore size of 30 nm. 126

However, once permeabilized, nanoparticles are able to freely enter the cell by diffusion for both

nuclear and cytoplasmic targets. 12 7 Incubation times and nanoparticle concentrations were
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selected to achieve maximal target binding from the PARPi-NP with minimal background from the

control-NP. PARPi-NPs showed tight binding to the target with little decrease in signal over time.

Following the removal of excess NPs, samples were processed by the DMR system to determine

their transverse relaxation time (T2). The measured T2 values were converted to R2 (=1/T 2) and

normalized to PBS and control-NP samples to obtain the PARPI cellular expression level (Fig.

3.2c). Fig. 3.2d shows excellent correlation between DMR magnetic measurements and PARPI

expression levels as determined by Western Blots (r2= 0.92) and flow cytometry (r2= 0.97). DMR

measurements were performed with 10,000 cells for validation studies; however, in subsequent

experiments signals were detected in as few as 1,500 cells. In addition to PARP-1 measurements,

we also determined PARP2 expression levels by immunoblotting (Fig. 3.2b). However, correlation of

PARPi-NP to expression was dominated by PARP1, likely due to the much higher abundance of

PARP1 as compared to PARP2 in the selected cell lines.
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Fig. 3.2. AZD2281-NP Measurement of PARP expression. a) Cell lines were screened for PARP1

expression by immunoblotting and five were selected with varying levels of PARP expression. Expression was

quantified from three separate blots and plotted normalized to HT29 expression. b) A representative Western

Blot showing PARP1 and PARP2 expression. c) PARPi-NP was applied to the same cell lines to quantify

binding to total PARP Changes in T2 relaxation time were measured by DMR to measure the amount of

magnetic nanoparticle present. Signal of the nanoparticle (SNP)was calculated as R2 , NP - R2 , PBS)/(R2, PBS) -1).

The amount of magnetic particle present was then determined by dividing by the amount of background as

assessed by the control-NP (SPARPi-NP /SControl-NP). Data shown is in biological duplicate. from three separate

DMR measurements and is normalized to HT29 signal. d) PARPi-NP was also optically assayed using flow

cytometry and shows high correlation to DMR measurements (R2=0.97). DMR measurements also had high

correlation (R2=0.92) to PARP1 expression from immunoblotting. Dotted lines represent 95% confidence

intervals.
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We next used microscopy to further assess quantitative measurements by examining the

intracellular localization of nanosensor and drug targets. In HEK293 cells with high PARP

expression (Fig. 3.3a), there was excellent co-localization between intracellular PARP1 antibody

and PARPi-NP (co-localization correlation = 0.8). The nanosensor showed strong nucleolar and

and nuclear localization, which is consistent with PARP1 subcellular organization as previously

found using PARP1 expressing cell lines 128,12 9 or AZD-2281 as a fluorescent probe.124 Similar

trends were observed in HeLa cells, which have moderate PARP1 expression. In HT29 cells which

have little PARP expression, both the PARP1 antibody and PARPi-NP showed negligible signal. The

control-NP showed little to no background (Fig 3.3b).

A HT29 (low PARP) HeLa (medium PARP) HEK293 (high PARP)
* PARP1 Ab-FITC

M PARPi NP

o Merge

-10 pm

B DAPI PARPi-NP VT680 PARP1 Ab-FITC VT680+ FITC Merged
CL
z
iU.

Rmoow~so 0.8

.z

Control-NP VT680 Secondary Ab-FITC

Fig. 3.3. Immunofluorescence of PARPi-NP. a) Differences in PARP expression could be seen using
PARPi-NP and immunofluorescence. Experiments were performed in biological duplicate. PARP1 -Ab is
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shown in green; PARPi-NP is shown in red, and the merge is displayed in yellow. Here, representative images

show that the low PARP expression cell line, HT29 had hardly any PARPi-NP, and low PARP1 -Ab binding

(mostly background). HeLa cells had slightly more PARP, and respectively PARPi-NP. Finally, high PARP

expressing HEK283 cells showed high amounts of PARPi-NP and PARP1 -Ab. b) Strong colocalization of

PARPi-NP and PARP1 -Ab were seen (Colocolization Correlation = 0.8). The control-NP had low background

with negligible signal.

3.2.3 Nanosensor testing of different small molecule PARP inhibitors
Most small molecule PARP inhibitors work by competitively inhibiting nicotinamide (NAD+) at the

PARP catalytic site.130 We chose 5 different, commercially available PARP inhibitors (Fig. 3.4) to test

whether the nanosensor-DMR measurements could be used to determine IC5o of each of the

different drugs. Briefly, cells were incubated with varying doses of a PARP inhibitor. Subsequently,

PARPi-NPs were added to detect the number of unoccupied PARP targets. The entire assay was

performed in less than 90 minutes and required only 10,000 cells. The key PARP inhibitor,

AZD2281 showed an IC0o of 1.14 nM and was able to effectively compete the PARPi-NP in a

homologous binding competition assay (Fig 3.4). AG-01 4699 which has high structural similarity to

AZD-2281 also displayed very tight binding with an IC50 of 0.67 nM. The heterologous competitive

binding curve with ABT-888 (Velaparib), another competitive PARP inhibitor, showed an IC50 of 9.5

nM. This data suggests that ABT-888 may have a faster off rate than that of PARPi-NP, in turn

allowing the PARPi-NP to occupy more PARP sites for a given concentration of free ABT-888.

Furthermore, unlike AZD-2281, ABT-888 has been reported to have a slightly stronger binding

affinity for PARP-2 as opposed to PARP-1 due to a stronger interaction with alpha-helix-5 in the

PARP-2/ABT-888 co-crystalstructure. 131 This difference in binding affinity for the two PARP targets

could also explain why it has less of a competitive effect on the PARPi-NP compared to AZD-2281

or AG-01 4699. The weak PARP inhibitor, 3-aminobenzamide, which is similar in structure to NAD+

only showed a competitive effect at extremely high doses (IC5o=29.5 pM). As a negative control, we

also demonstrated that the non-competitive inhibitor BSI-201 (4-iodo-3-nitro-benzamide), which
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has a distinct pharmacophore and acts by ejecting the first zinc-finger of the PARP1 protein, 132

does not block PARPi-NP binding even at high doses. These results indicate that the nanosensor

can indeed be used to quantitate target inhibition in competitive experiments.
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Fig. 3.4. Competitive Binding Curves of PARPi-NP with various PARP inhibitors. Competitive binding

assays were performed by incubating selecting PARP inhibitors that have been designed to compete with

Nicotinamide at the PARP1 and PARP2 catalytic pockets (AZD2281, AG04699 and ABT888). Another weak

competitor, 3-aminobenzamide was selected, as well as the non-competitive inhibitor BSI-201 as a negative

control. Free PARPi was added at various doses for 30 minutes before addition of the PARPi-NP or Control-

NP (15 pg Fe/ml). After 20 minutes of incubation and washing, signal was read magnetically using DMR.

Competitive binding curves were fitted using Prism (GraphPad); AZD-2281 had an IC50 of 3.4 nM (R2=.86),

AGO1 4699 had an IC50 of 7.OnM (R2=.84), and ABT-888 had an IC50 of 257nM(R2=.88). 3-

aminobenzamide was only weakly competitive and BSI-201 had no competitive effect. Experiments were
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performed on three separate occasions and represent at least biological duplicate. Fluorescence

measurements of the assay

3.2.4 Drug Inhibition in Live Cells and Blood Samples
A number of strategies are currently used to measure target binding, including fluorogenic assays,

ELISA, radioimmunoassays, mass spectrometry, SILAC, surface plasmon resonance and

isothermal calorimetric measurements. These methods typically require purified target protein

which necessitates a large number of cells and makes it difficult to perform assays under

biologically relevant conditions. Consequently, few of these methods are ever performed in a

clinical setting where there are time constraints, complexities in obtaining clinical samples, and

limited numbers of cells.

The simplicity and the robustness of the nanosensor confer potential for the assay to be an

effective platform to directly assess drug binding efficacy in patient samples. To evaluate its clinical

utility, we measured target inhibition of AZD-2281 in mock clinical samples. Specifically, the ovarian

cancer cell lines A2780, OVCAR429 and UCI-1 01 or the breast cancer cell line MDA-MB-231 were

spiked into human whole blood. The samples were immediately treated with AZD-2281 drug at

three different doses: 0 (probing dose), 150 nM (testing dose), and 1.5 pM (saturating dose). We

used this "three-dose assay" rather than a full dose response curve (see Fig. 3.4) to speed up

analysis and preserve valuable scant clinical samples. After removing excess AZD-2281, the

PARPi-NPs were used to probe PARP sites unoccupied by the free drug (Figure 3.5a). Finally,

cancer cells were isolated using CD45 negative selection to remove host cells. While all prior in-

vitro validation DMR assays were performed with 10,000 cells, signals from whole blood samples

were detected with as few as 1,500 cells. This detection level is promising for clinical samples such

as fine needle aspirate where one obtains about 1,500 per pass. 133 Though host cells (CD45+)
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showed little to no uptake of the PARPi-NP, CD45 negative selection was necessary to reliably

detect changes in signal from the PARPi-NP after drug inhibition.
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Fig. 3.5. Drug Binding Efficacy in Whole Blood Samples . a) A schematic of a clinical drug binding assay

from whole blood samples. Mock clinical samples were prepared by spiking cancer cells into human whole

blood. This sample was directly incubated with AZD-2281 before the PARPi-NP was added. Quick read-out

could then be performed with DMR and/or flow cytometry. b) Drug binding levels were determined by looking

at the inverse percent change in PARPi-NP from treated versus untreated samples. Data shown is an

example of "Binding Efficacy" by taking the ratio of drug bound at the test dose to the saturating dose.

OVCAR429 showed the highest drug binding at the test dose, and thus had a binding efficacy measure of

0.94. In contrast, no drug was bound to MDA-MB-231 at the test dose resulting in a binding efficacy of

0.00.With further experiments and validation, such a measure could be used as a simple diagnostic to

dictate treatment choices in the clinic such as choice or dose of drug.
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The result at the probing dose ([AZD-2281] = 0 nM) revealed differences in PARP expression

across the cell lines, which could serve as a predictive biomarker for initiating treatment. Indeed,

prior work has correlated PARP levels to treatment sensitivity and patient outcome. 134 135 The drug

binding levels at the testing and saturating doses were then estimated by comparing R2 values

between drug-treated and untreated samples. At the saturating dose, the binding levels reached a

near maximum of 70% in almost all cell lines, except A2780 which showed only moderate drug

binding (-40%). At the test dose, however, drug binding levels varied significantly across tumor

lines, presumably reflecting differences in drug uptake as a result of varying expression in drug

transporters, or variability in binding affinity due to mutations at the catalytic site. We then

converted these values into a potential measure of drug binding efficacy by taking the ratio of drug

binding levels between the test and the saturating doses (Fig. 3.5b). These results suggest the

potential for a future "treatment index," where patients with high drug binding efficacy would

receive lower therapeutic doses, while patients with low drug binding efficacy would require higher

doses, or be candidates to receive alternative drugs. In the future we plan to combine this assay

with a previously developed assay136 using two-step antibody-nanoparticle labeling to detect target

expression. In this way, we will be able to discriminate low signals as a result of diminished drug

binding as opposed to decreased expression of the target protein.

The described approach lays the groundwork for further advances. The sensitivity of the assay

could be further enhanced by adopting two step bioorthogonal systems. In the first step, the drug

could compete with a drug-trans-cyclooctene (TCO) conjugate of similar size with reduced steric

constraints. In a second step, a Tetrazine (Tz)-NP could "click" with the drug-TCO to reveal target

binding. Such two step systems have been shown to have a dramatic improvement in sensitivity

over direct conjugates;110 moreover, PARPi-TCO molecules have already been described.12 4 A

second consideration is the fact that current read-out happens as an average in several hundred to
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thousand of cells. In the future, we hope to combine the assay with newer generations of ultra-high

sensitivity DMR and other magnetic technologies that would allow for single cell sensing of drug

binding.1 16 This sensitivity could potentially allow for early identification of rare drug resistant clones

where the target protein contains mutations in the drug binding pocket or the resistant cells display

an increase in drug efflux pumps. For example, we show that we can discriminate differences in

drug binding in HT1 080 cell lines that overexpress MDR (a drug effluxor protein) as compared to

normal HT1 080 (Figure 3.6).
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Figure 3.6. PARPi Nanosensor Curves Show Drug Efflux. Competitive nanoparticle drug binding

showed differences in binding affinities between a drug-sensitive HT1080 cell line [1C50 = 5.3 nM; r2

0.9923], and its drug-resistant counterpart transfected with MDR1 [IC5o = 68.6 nM; r2 = 0.9983]. Olaparib,

or AZD-2281 is a known substrate of MDR1, a drug extruding protein. Moreover, MDR1 upregulation is a

known resistance mechanism in response to Olaparib as well as standard-of-care taxol chemotherapeutics.

Finally, in the current work we have focused solely on drug target binding, but not on therapeutic

efficacy. It would thus be of interest to combine the current assay with molecular profiling of several

protein biomarkers to measure drug response. For example, one could assay cellular phenotypes

to drug response such as apoptosis induction via measurements of cleaved caspases and cleaved
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PARP or P13K/MAP kinase inhibition using measurements of key signaling pathway proteins such

as phospho-s6rp.127

3.2.5 Conclusion
The described method could serve as a broader platform generalizeable to other drugs and their

targets. The main challenges in adapting the assay to other drug or cellular systems are 1) the

ability to modify the drug while retaining target specificity, tight binding, and stability in aqueous

buffers and 2) optimization of assay conditions to ensure optimal nanoparticle binding for each

target system. For some proteins, steric hinderance from the nanoparticles may be an issue for

targets proteins with small binding pockets. This could be overcome by implementing two-step

labeling with click chemistries. Recently, we have shown this to be possible for a variety of targets,

e.g. Taxol,'137 PARP1 1 2 3,1 38,1 39 or PLK1 inhibitors.140 Each target-inhibitor system would also require

optimization of drug and nanoparticle concentrations, incubation times and cell permeabilization

levels to ensure that nanoparticle binding is not assay-limited. Notably, an inherent benefit of the

assay is that just one drug conjugate is required to survey several inhibitors of a particular target

(Fig. 3.4). Thus, there is flexibility during assay development to select a drug that is both optimal for

the target system, yet easy to work with. In the future, we believe the assay can be extended

beyond cancer cells, and used in other organisms such as bacteria to assay antibiotic resistance.

The ability to provide such data in biologically relevant samples could be of considerable clinical

interest to make rational treatment decisions, optimize doses in a given patient and understand

population heterogeneities of drug responses. The method could also serve to quantitate the

effective drug target resident time in readily accessible samples such as peripheral blood. In sum,

we designed and developed a paradigm using small molecule nanoparticle conjugates that have

the potential to address several clinical limitations and to impact patient treatment.
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3.2.6 Personal Contribution to Work
The author of this thesis led a group of researchers in planning, performing and interpreting

experiments.

3.3 Materials and Methods
3.3.1 Materials
The cell lines HT29, MDA-MB-231, MDA-MB-436, HeLa, HEK293, UCI-101, A2780, and

OVCAR429 were all obtained from ATCC and cultured in RPMI (MDA-MBA-231, MDA-MB-436,

OVCAR429, A2780, UCI-1 01) or DMEM (HT29, HeLa, HEK293) with 10% fetal bovine serum, 1 %

L-glutamine and 1 % penicillin. The small molecule drug AZD-2281 modified with the NHS-ester

was synthesized in-house. Free AZD2281 (Selleck), BSI-201 (ChemieTek), AG04699 (ChemieTek)

and 3-aminobenzamide (Sigma) were all commercially purchased for use in competition assays.

Until otherwise noted, all reagents were purchased from Sigma-Aldrich (St. Louis, MO) and used

without further purification. Cyclohexylcarbodiimide polystyrene resin was purchased from EMD

biosciences (Gibbstown, NJ). 4-[[4-Fluoro-3-(4-(5-oxopentanamide)piperazine-1 -

carbonyl)phenyl]methyl]-2H-phthalazin-1-one was synthesized according to published literature

procedures.124 Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Varian

AS-400 (400 MHz) spectrometer. Chemical shifts for protons are reported in parts per million (ppm)

and are referenced against the dimethylsulfoxide lock signal (1H, 2.50 ppm). Data are reported as

follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration

and coupling constants. LC-ESI-MS analysis and HPLC-purifications were performed on a Waters

(Milford, MA) LC-MS system. For LC-ESI-MS analyses, a Waters XTerra® C18 5 pm column was

used. For preparative runs, an Atlantis® Prep T3 OBDTM 5 pM or a XTerra® Prep MS C18 OBDTM 5

pM column was used. High-resolution electrospray ionization (ESI) mass spectra were obtained on
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a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform mass spectrometer (FT-ICR-MS) in the

Department of Chemistry Instrumentation Facility at the Massachusetts Institute of Technology.

3.3.2 Synthesis of AZD-NHS
Cyclohexylcarbodiimide polystyrene resin (74 mg, 2.3 mmol/g) was added to a solution of 4-[[4-

Fluoro-3-(4-(5-oxopentanamide)piperazine-1 -carbonyl)phenyl]methyl]-2H-phthalazin-1-one (3) (20

mg, 0.042 mmol) and N-hydroxysuccinimide (20 mg, 0.174 mmol) in dichloromethane (1.5 mL) and

the resulting mixture stirred gently at room temperature over night. Subsequently, the reaction

mixture was filtered and volatiles removed in vacuo. The crude material was purified via silica

chromatography (acetonitrile/ethyl acetate = 5%-100%, yielding the title compound as a clear solid

(15.5 mg, 0.027 mmol, 64%). 1H NMR (400 MHz, DMSO-d 6) 6 = 12.59 (s, 1H), 8.26 (d, 3JHH= 7.7,

1H), 7.96 (d, 3JHH= 7.9, 1H), 7.89 (t, 3JHH= 7.2, 1H), 7.83 (t, 3JHH = 7.4, 1H), 7.47-7.41 (m, 1H),

7.39-7.34 (m, 1H), 7.24 (t, 3JHH = 9.0, 1H), 4.33 (s, 2H), 3.67-3.12 (m, 8H), 2.81 (m, 4H), 2.72 (t,

3JHH = 6.4, 2H), 2.50-2.40 (m, 2H), 1.89-1.81 (m, 2H); 19F NMR (376 MHz, DMSO-d6) b = -119.68;

LC-ESI-MS(-) m/z = 576.2 [M-H]-; LC-ESI-MS(+) m/z = 578.3 [M+H]+; HRMS-ESI [M-H]+ m/z

calcd. for [C29H27FN 507]- 576.1900, found 576.1888.

3.3.3 Nanoparticle Conjugations and Characterization
Cross-linked iron oxide (CLIO) nanoparticles were synthesized and tagged with with an amine

reactive cyanine dye (VivoTag 580xL, VT680xL, Perkin Elmer) as previously described 110.

Magnetofluorescent nanoparticles were reacted with 370 equivalents of AZD2281 -NHS in PBS

with 5% dimethylformamide (DMF) for 4h at room temperature. Excess AZD2281 -NHS was

removed using 1 OOkD ultracentrifugation filtration units (Amicon) washed three times with PBS at

2000 rcf for 10 minutes and subsequently passed through a Sephadex G50 column.
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Nanoparticle concentration was determined by measuring iron content through absorbance at a

characteristic wavelength of 400nm as previously established. 141
,
1 42 Drug loading was determined

by measuring the change in absorbance between the conjugated and unconjugated nanoparticle

at 275nm. This change in absorbance was normalized by the amount of CLIO per sample, as

calculated previously using iron concentration (UV absorbance at 400nm).141 Molecules of

AZD-2281 per nanoparticle were determined using a standard curve for the unreacted AZD-2281 -

NHS-ester. Drug inhibitory activity was confirmed by testing the ability of AZD2281 -NP to inhibit

PARP activity using an standard, in-vitro plate assay (Trevigen). Nanoparticle size was measured

using dynamic light scattering (Malvern).

3.3.4 Cell Labeling
Cells were grown in culture for 3 days up to 90% confluency before collection with 0.05% Trypsin/

0.53 mM EDTA, and washed once with Stain Buffer, SB+ (PBS + 2% FBS + 1 % BSA). Cells were

then fixed with a 1:1 mixture of PBS with a formaldehyde based fix buffer (FBI, BD Biosciences) for

20 minutes at room temperature and permeabilized by washing twice with a saponin containing

buffer with 1 % BSA (PW+) (Perm/Wash Buffer, BD Biosciences). Each sample (250,000 cells/

sample) was then labeled with 15 pg Fe/ml of nanoparticle (PARPi-NP, or Control-NP) in PW+, and

incubated at room temperature protected from light on a rocker for 20 minutes. Excess

nanoparticle was removed with two washes of PW+ before a final wash and resuspension in PBS

(or Stain Buffer).

For the competition assay, HEK293 cells were treated with varying concentrations from 0 to

1 00pM of various PARP inhibitors. Solutions were made up in PW+. After a 20 minute incubation

at room temperature with the free inhibitor, the targeted PARPi-NP or Control NP were added to

the same mix for a total concentration of 15 pg Fe/ml and incubated for an additional 20 minutes
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before washing and continuing with labeling as described above. Data shown represents at least

biological duplicates and experiments were repeated at least three times. All data was fitted using

Prism 5.0 (GraphPad, La Jolla, CA).

3.3.5. Immunoblotting
Lysates were collected from cells at 90% confluency by washing with cold PBS on ice and

scraping with Ripa buffer containing a protease inhibitor cocktail. Samples were syringed 3 to 5

times and sonicated for 30 seconds before being spun down at 10,000 rpm for 15 minutes to

collect the supernatant. Samples were made up with 4x Laemlli buffer with DTT and boiled for 10

minutes. Ten pg of total protein was loaded on NuPAGE 4-12% gradient Bis-Tris gels (Invitrogen)

with MOPS running buffer and transferred to PVDF membrane using an iBlot Gel Transfer Device

(Invitrogen). Blots were blocked with 5% dried milk in TBST (TBS with 0.1% Tween-20) and probed

with primary monoclonal antibodies at the appropriate dilutions (PARP1, Santa Cruz Biotechnology

sc7150, 1:250; PARP2, Abcam ab93416, 1:250, Beta-tubulin, Abcam ab7287, 1:100). Relative

expression for each blot quantified using ImageJ (NIH).To ensure consistency in PARP expression,

cell lysates were collected within four passages of the PARPi-NP detection. Data shown is

representative of biological triplicate and is displayed as mean + standard error.

3.3.6 Flow Cytometry
To determine target binding, the amount of nanoparticle present was quantified from VT680

fluorescence with an LSRII flow cytometer (Becton Dickinson) and the geometric mean of

fluorescence intensity was determined using FlowJo software. All measurements were performed

in biological triplicate and signals were normalized by the Control NP sample (SPARPi-NP/SContro-NP).

Data are shown as mean + standard error.

3.3.7 Microscopy
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Cells were labeled with nanoparticle as described above, and then incubated for 1 hour at room

temperature with a PARPI antibody (Santa Cruz Biotechnology sc8007) at a dilution of 1:50 in PW

+. Cells were washed once with PW+ and then incubated with secondary antibody at 2ug/ml for

half an hour on ice. Cells were washed two more times with PW+ before resuspension in PBS. A

minimal volume (1 00pL) of sample containing approximately 10,000 cells was transferred to a 96

well plate and imaged . Images were acquired at 40x with DeltaVision screening system (Applied

Precision Instruments) and analyzed using FIJI software (version 1.45).

3.3.8 DMR
Magnetic detection measurements were conducted as described previously13 3 with 10,000 cells

using the miniaturized nuclear magnetic resonance device, DMR,73 for target expression and

competitive binding experiments. Detection in whole blood studies were performed with detection

of as few as 1,500 cells. Signals were calculated by converting T2 measurements to R2 and

compared the change in R2 from the baseline PBS sample to the labeled PARPi-NP (SPARPi-NP) or

Control-NP (SControl-NP). Signals from the PARPi-NP were normalized by dividing by the signal from

the Control-NP (SPARPi-NP/SControl-NP). Data shown is in biological duplicate and is represented as

means + standard error.

3.3.9 Whole Blood Processing
Selected cell lines (A2780, UCI-101, OVCAR429 and MDA-MB-231) were spiked into human

whole blood samples (200,000 cells in 1.5mL). Samples were then either left untreated, or

incubated with AZD-2281 at 155 nM and 1.5pM for 30 minutes at room temperature. Following

drug incubation, red blood cells were partially lysed with an RBC lysis agent (Qiagen), the sample

was washed with SB+. The sample was then divided into two samples and probed either with

PARPi-NP or Control-NP at 5 pg Fe/mL in 0.2x PW+ for 60 minutes. Samples were washed twice

with 0.2x PW+ before resuspension in SB+ (or PBS). CD45 Negative selection was performed by
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using CD45 magnetic beads and LS columns (Miltenyi Biotec). Signals from CD45+ cell samples

were then measured by flow cytometry or DMR.
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I Chapter 4 I Proteomic Profiling to Monitor and
Predict Treatment Response in Patients

4.1 Introduction
Variability of protein levels across cancer-driving networks can provide a snapshot of the

cell's phenotype. Proteins function as the cell's machinery to directly regulate cell fate, survival and

genomic integrity. Understanding protein expression and fluctuation could directly affect knowledge

about drug pharmacodynamics and the extent to which drugs engage their targets, trigger

alternative molecular pathways, and induce tumor cell death or resistance.15 4 Though we annotate

proteins into discrete, canonical pathways, in reality they interact and overlap in a complex

network. Consequently, protein functions can differ on a case by case basis, making it difficult to a

priori select good biomarkers in clinical trials for varying treatments.

Integrating large-scale proteomic measurements across relevant cancer pathways into clinical trials

would allow us to algorithmically determine predictive biomarkers. However, there are limited tools

for proteomic analysis in the clinical setting; mass spectrometry remains technically challenging and

extremely expensive, while scant sample material precludes broader analysis by

immunohistochemistry. 44, We sought to develop a method that circumvents the limited

throughput, capacity and loss of material associated with the above methods. We initially

entertained emerging approaches such as mass cytometry49 and multicolor spectral

deconvolution, 4 4 but they did not have the required multiplexing capability or sample yield for

clinical samples harvested by fine needle aspirates (FNA). DNA barcoding on antibodies had the

potential to allow large-scale multiplexed read out on the order of hundreds of markers with high

sensitivity. The majority of DNA barcoding technologies have previously been used in conjunction

with qPCR to quantify readouts. However, large-scale multiplexing with qPCR requires individual

primer design and hands-on processing for each marker. Thus, multiplexing with over 50 markers

on single cells has not been achieved with any of the current DNA barcoding techniques.
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We used a photocleavable linker to conjugate DNA to antibodies and selected the Nanostring

platform to attain multiplexing of nearly 100 markers on single cells. This platform offered unique

advantages over qPCR and other methods including i) multiplexed quantification on limited sample

ii) femtomolar sensitivity iii) quantitative and reproducible results without amplification and iii) direct

readout from cell lysate. This would allow us to achieve i) simultaneous detection of hundreds of

markers ii) theoretical sensitivity of detecting a single cell iii) quantification without amplification bias

and iv) increased sample preservation by removing DNA isolation and wash steps. Here, we show

that our approach has high correlation to gold standard methods such as flow cytometry and

immunofluorescence. We then demonstrate that this profiling method can be used to discriminate

pathway changes across different type of treatments. Finally we establish translational potential for

patient monitoring by examining cancer patients on trial for a P13K inhibitor where we find profiles

can be predictive of treatment response.

4.2 Results and Discussion
4.2.1 Method Development and Validation
In order to perform proteomic profiling, we adapted standard flow cytometry antibody staining

methods and combined them with the commerical Nanostring platform for genetic readouts. A

cocktail of chimeric DNA-barcoded antibodies were mixed with permeabilized cells to allow for

both extracellular and intracellular protein detection. After staining, DNA was released through

photocleavage and lysis. Finally, DNA barcodes were read out and quantified using the Nanostring

platform (Fig 4.1). Negative IgG/housekeeping antibody controls, internal DNA controls, and

measurement of relative DNA per antibody were then used to extract expression profiles. Any

markers that were not above IgG control signals were excluded. Thus, depending on antibody

binding or expression level, some markers are not displayed in subsequent figures.

60



Harvest, Fix and
Store Cells

Permeabilize and
Stain Cells

r- I i r

Readout (Nanostring)
and Analysis

Ruorescent barcodes

PNA, CTC)

Conjugate Antibodies
to DNA

hr cell lysis
V

EGFR Her2 EpCAM IgG1

Anitdboy - -%
s DNA

Figure 4.1 Schematic of DNA barcoded proteomic profiling. Cells are harvested from cancer

patients by fine needle aspirate. Antibody conjugates contain a photocleavable linker to allow DNA release

after exposure to specific wavelengths of light. Cells of interest are then "stained" with a cocktail of DNA

barcode-conjugated antibodies. DNA barcodes are released from lysed cells and quantified with the

Nanostring fluorescent DNA barcoding platform where probes are hybridized and imaged via a CCD camera.

Protein expression levels are derived by subtracting non-specific binding from control IgGs and normalizing

according to DNA per antibody and housekeeping genes.

We validated our approach by utilizing gold standard methods such as flow cytometry and show

that protein expression measured from unconjugated antibodies correlate highly to chimeric

conjugates in two different cell lines (Fig. 4.2). We then compare profiles of two ovarian cancer cell

lines and a control benign ovarian epithelial cell line derived from our method compared to

standard flow cytometry measurements and find high correlations between the two methods (Fig

4.3).
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Figure 4.2. Validation of Conjugated Antibodies. DNA-conjugated antibodies were compared to

native antibodies by performing immunocytochemistry in parallel. Results on flow cytometry showed similar

results with linear relationships and high Pearson R values in two cell lines (p<.0001).
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Figure 4.3. Validation of DNA barcoded Proteomic Expression Profiling. (a) Multiple cancer antigens

and markers were profiled on two ovarian cancer cell lines (SKOV3 and ES2) and a benign ovarian epithelial

cell line (TIOSE6). As expected, cancer antigens were high on the malignant cell lines (CD44 for SKOV3 and

ES2, and Her2 for SKOV3). In contrast, TIOSE6 showed relatively low expression for all cancer antigens

tested. (b) Proteomic measurements from the DNA barcoding were consistent with flow cytometry
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measurements performed on the same passage of cells, and showed a linear, high correlation for SKOV3

(Pearson R = 0.96, r2=0.89, p<.0001), ES2 (Pearson R = 0.96, r2 =0.91, p<.0001), and TiOSE6 (Pearson R =

0.78, r2=0.60, p<.0001). Data is shown in triplicate and errors bars are shown as +/- standard error.

All measurements were performed on DNA from the equivalent of just 100 cells. Using this

methodology we were able to multiplex up to 96 antibodies (88 markers, 6 controls). Markers were

selected to cover a wide range of relevant cancer pathways and also included a number of cancer

biomarkers. The breakdown of markers into various categories and their profile on a triple negative

breast cancer cell line is shown in technical replicate (Figure 4.4).
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Figure 4.4. Multiplexed Profile of MDA-MB-231 in technical replicate. Representative example

of 88 different DNA barcode-antibody conjugates spanning cancer-relevant pathways are profiled in triplicate
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on the MDA-MB-231 triple negative breast cancer cell line. DNA signal is converted to protein binding by

normalizing according to relative DNA per antibody levels. Non-specific binding from expression of six

control IgGs is subtracted and expression was normalized by housekeeping genes. Housekeeping genes

(Cox IV, Histone H3, Tubulin, Actin and GAPDH) are shown at the far right and have consistent expression.

Data is shown in technical triplicate and errors bars are shown as +/- standard error.

4.2.2 Sensitivity and Single Cell Profiling
We tested the sensitivity of our method by measuring dilutions of DNA input to bulk measurements

(DNA barcodes from 500,000 A431 cells). Dilutions down to 5 cells gave extremely significant,

linear and high correlation values. We then examined single cell measurements by isolating and

selecting single cells from an antibody-stained population using a micromanipulator. Single cells

then underwent similar processing and analysis as described for the bulk measurements. However,

since single cells were selected, no normalization to housekeeping genes was used. The profiles

for single cells were compared to bulk measurements in cell culture. Significant and high correlation

values were found between the single cells and bulk. High concordance could also be seen

through Bland-Altman plots which showed the difference between single cell measurements to the

bulk measurements (Figure 4.5).
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Figure 4.5. Detection Sensitivity. (A) 500,000 cells from the epidermoid carcinoma cell line, A431, were

lysed and processed as shown in Fig. 4.1. Dilutions corresponding to 5, 15, and 50 cells were then

compared to the bulk measurement, showing good correlation at low cell numbers (Spearman R = 0.98). (B)

Correlation values for analyzing small cell numbers as well as single cell analysis selected by

micromanipulation. (C) Bland-Altman plots of two single cells show high concordance between markers

whether measured in bulk or at the single cell level. D) Protein expression profiles (log 2 expression values) of

four single cells are compared to profiles of the bulk sample. While all cells showed similar relative protein

expression, single cells 1 and 2 showed nearly identical profiles to bulk measurements, whereas single cells 3

and 4 showed lower overall protein levels. Correlations were highly significant when comparing all single cells

to bulk measurements (p<.0001). The heat map is shown with row normalization across each marker on a

log scale.

The variability in single cell measurements is a combined result of technical and biological variation.

Since it is impossible to achieve technical replicates on a single cell, we instead show that single
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cell profiling actually produces biologically relevant results by using a positive control experimental

study where we compare single cells from A431 cells treated with EGFR inhibitor (gefitinib) treated

to untreated cells. Clustering based on correlation values from the proteomic profiling naturally

segregated the treated and untreated populations; moreover, significant differential markers such

as phospho-s6rp (known downstream target of gefitinib) were identified from these single cell

measurements (Figure 4.6). This showed that biologically relevant variation could indeed be

discriminated at the single cell level.
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Figure 4.6. Validating Single Cell Measurements. (A) We examined single cell measurements in A431 cell

lines that were untreated and treated with the EGFR inhibitor gefitinib. A431 cell lines overexpress EGFR and

are highly sensitive to gefitinib (IC50 = 1 OOnM) as evidenced by widespread pathway inhibition (marked in red)

in these cells. Treated and untreated cells segregated into two clusters based on a correlation metric

(MatLab). The heat map scale is indicative of expression values across each of the markers accounting for
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non-specific IgG binding. (B) Expected markers such as phospho-s6rp and Ku80 show significant changes

between treated (yellow) and untreated (blue) cell lines. Many other markers also showed significant treated

to untreated changes as shown in (C). These markers included surface receptors (FGFR4, CD56) and the

proliferation marker phospho-Histone H3.

4.2.3 In Vitro Profiling of Cells and Treatments
The value of our methodology stems not only from its scale but also careful selection of markers. In

order to study treatment response, we carefully selected markers that were implicated in notable

cancer pathways, many of which are relevant to molecularly targeted drugs and

chemotherapeutics.

We performed a number of in vitro screens across many types of treatments, doses and cell lines

to demonstrate that the method could indeed identify both established and novel biological

changes. Furthermore, we performed independent experiments to verify that we get similar marker

changes using a different technique (immunofluorescence) with the same cell lines and treatment

conditions.

We first performed a dose response study of taxol (Paclitaxel) on a HT1 080 fibrosarcoma cell line.

The results for all the markers across multiple doses are shown in Figure 4.7. Significant marker

changes were determined by pairwise comparisons. One of the significant markers was tubulin, the

primary target of taxol for microtubule inhibiton (Table 4.1). We also gleaned that several markers

showed dose response curves (CDCP1, pCycD, CyclinEl, FGF4, BRCA2, and pERK1/2). These

marker changes were consistent with an independent screen performed by immunofluorescence

(Fig 4.8). In sum these experiments showed marker changes that were confirmed by results from

other established methods. Additionally, we pulled out the expected dose-responses and primary

drug targets for taxol. Interestingly the 350nM dose had less of a response than 7nM or 700nM.
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This could be due to biological variability, or specific dose-dependent responses that have

previously been found in the literature. 155,156
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Figure 4.7. HT1080 Multiplexed Dose Response to Taxol in HT1080 Cells. (A) Multiple doses of taxol

(0, 7, 70, 350 and 700nM) were given to HT1 080 fibrosarcoma cell lines for 24 hours. Profiles from each

dose are shown from biological duplicate. Control antibodies are shown at the end of the graph and have

low expression levels.
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CDCP1 Antibody 0.0045608 BRCA2 0.00449409 D-Actin (13E5) Rabbit 0.00534819

ALK (D5F3) XP@ 0.00725414 Cycin El 0.00597256 8-Tubujin (9F3) Rabbit 0.0099721
BRCA2 0.00932165 MUC1 0.0108515

O-Actin (13E5) Rabbit 0.0103799 Phospho-Jak3 0.0120797
Phospho-53BP1 0.0119901 Phospho-53BP1 0.0143511
Phosoho-p44/42 0.0174366 Histone H3 (D1 H2) 0.0167682
Phospho-Jak2 0.0186321 Phospho-p44/42 0.0194615

c-Myc (D84C12) XPO 0.0199422 BRCA2 0.0201895
GAPDH (14010) 0.0201203 p2lwafl/ciol 0.020681
FGF Receptor 4 0.0214794 GAPDH (14C10) 0.022213

CD56 0.0230159 Cyclin El (HE12) 0.0231627
Di-Methyl-Histone H3 0.0240667 FGF Receptor 4 0.0236512
Ku8O (C48E7) Rabbit 0.0272129 Phospho-Jak2 0.0257955

COX IV (3E1 1) Rabbit 0.0287779
4E-BP1 (53H11) 0.0318927

Phospho-Akt (Ser473) 0.0348263
Ax (C89E7) Rabbit 0.0363095

VE-Cadherin (D87F2) 0.0406075
Cetuximab 0.0431182
E-cadherin 0.0442288
Vimentin 0.0458849

Table 4.1. Significant Taxol Treatment Markers in HT1080 Cells. Significant markers are shown by

performing a pairwise t-test (FDR = 0.2). As expected, no significant changes were evident with low doses of

drug, while many profiling changes occurred at a high dose. Notable markers include Tubulin (primary target

of taxol). Experiments were performed in biological duplicate.

PhOhO-.Ak3 Fi3BP1 Antibndy
:P1 Antibody 0.00058121
Transferin 10.00080497

69

0.0032228 0.00168M38



B

T1o60

TIO080MORI C IM K: l . W

ill
9-SEX'KK- = H

p.STAT3 - H

P-4EqPI-

P-p64Q42 ERKIQ

MselI

p(S!T)ATU-ATR sustW

pChi

leved Colpaee 9 02

Ceaved Ca,. 9k

Cleved CS.4,.

P.44 Charge (TalniTrame ve. Unft&We)

-UM
KuAI - -

Phos-53BP1 7.76 0.76

KuBO 52.92 0.78

FGFR4 26.81 0.95

Cychin El 4.971 0.91

BRCA2 17.11 0.84

pERK1/2 12.74 0.78

Figure 4.8. Validation of Taxol Marker Changes. (A) Marker changes from an independent

immunofluorescence screen are shown (biological triplicate +/- standard error) with sample images for key

markers shown (B) After taxol treatment (right column), tubulin, the primary target of taxol, shows a different

cell structure architecture (more rounded, less adherent). There is also an increase in Ku80, a DNA repair

protein. (C) Similar changes were identified from DNA barcoding profiles and dose response curves could be

pulled out for a variety of significant markers. (D) Each of these markers had varying EC 5 0 values in response

to taxol.

We then showed that this marker panel was versatile and could differentiate treatments across

mechanism of action. To do this we applied 5 different treatments to a triple negative breast cancer

cell line (MDA-MB-436). We selected three targeted treatments: two EGFR inhibitors (Gefitinib and

Cetuximab) and a PI3K/mTOR inhibitor (PKI-587) and two DNA repair/damaging agents: PARP
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inhibitor (Olaparib) and an alkylating agent (Cisplatin). Drug treatments showed expected inhibition

or activation across expected markers. For example, phospho-s6rp was inhibited for the targeted

treatments, and Ku80, a DNA damage marker, increased as a result of DNA damaging agents.

Furthermore, these markers could be clustered based on correlation values and segregated into

their mechanisms of action (Fig 4.9). Interestingly, the number of significant markers determined

corresponded with the cell's sensitivity to the drug (Table 4.2). Drugs that induced greater

changewere indicative of the cell's heightened sensitivity to that therapy. This suggested that profile

changes and clustering in patients could be predictive of treatment response.
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Figure 4.9. Clustering of different therapies from post-treatment profile changes. Treatment

response markers for each of the groups identified inhibition of expected proteins (p-mTOR, ps6rp,

pERK for targeted treatments; pH2A.X, pATM/ATR substrate for DNA damaging agents). Furthermore,

correlation clustering grouped drug treatments by their mechanism of action (molecular targeted vs. DNA

damaging) and their primary targets (EGFR for Gefitinib/Cetuximab vs. mTOR/Pl3K for PKI-587). The

heat map is normalized across row for each marker and displayed on a log scale. All measurements

were performed in biological triplicate.
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Table 4.2. Drug Sensitivities in MDA-MB-436 and Corresponding Significant Marker Changes.

MDA-MB-436 cells are resistant to EGFR inhibitors Gefitinib and Cetuximab, and also show no significant

changes in marker profiling. The significant decrease in Cetuximab during treatment serves as a control for

antibody blocking or drug inhibition. In contrast, MDA-MB-436 is uniquely sensitive to PKI-587, Olaparib and

Cisplatin and shows corresponding marker changes. (Pairwise-t testing, FDR = 0.2). Samples were

performed in biological triplicate.

To further investigate if profile changes could be predictive of drug response, we examined profiles

for Olaparib (AZD2281) and Cisplatin treatments across 4 cell lines with varying sensitivities (Fig.

4.10). Indeed we found that the sensitive breast cancer cell line MDA-MB-436 and ovarian cancer

cell line A2780 showed significant marker changes across several DNA damage markers

(phospho-H2A.X, phospho-Chk2, phospho-Chk2, Ku80, 53BP1) and apoptosis markers (Bim,

cleaved caspases). In addition, both cell lines responded to the PARP inhibitor with changes in the
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Wnt/Beta-Catenin signaling pathway. This was expected as PARP has long been known to

complex with Beta-Catenin, which affects downstream Wnt signaling.145 However, this was a

pathway effect that was entirely ignored in PARP inhibitor clinical trials, and the entirety of research

efforts focused on the role of PARP in DNA damage and repair.31 ,1 2 1 ,1 4 6 -1 4 9

Resistant cell lines MDA-MB-231 and OVCAR429 did not show any significant marker changes,

with one exception. OVCAR429 showed significant changes in phospho-Chk2 in response to

Olaparib. This was interesting since Chk2 inhibitors have previously been shown in the literature to

have a synergistic effect with PARP inhibitors, and expression of Chk2 has been predictive of

Olaparib sensitivity. 1 501 51
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Figure 4.10. Olaparib and Cisplatin In Vitro Profiling Correlates to Drug Sensitivity. We profiled 4 cell

lines with varying sensitivities (viability curves shown on right) to the PARP inhibitor Olaparib (AZD2281)

and the chemotherapeutic cisplatin. Heatmap data is normalized by row to show differences across cell

lines and the two treatments (log scale). A number of key changes can be seen in DNA repair and

epigenetic pathways. Samples were performed in biological triplicate.

4.2.4 Translation to Clinical Samples: Molecular and Therapeutic Profiling
We extended our analyses to clinical material to study intratumoral heterogeneity (at the single cell

level), interpatient variability (amongst a cohort of lung cancer patients), and therapeutic response

(in patients receiving a Phase I P13K inhibitor).

We first examined single cell heterogeneity in a fine needle aspirate sample from a patient with with

lung adenocarcinoma (Fig. 4.11). All investigated extracellular proteins as well as many intracellular
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proteins were detectable in each of the samples. Single cells (EpCam+, DAPI+, CD45-) showed

good correlation to the bulk measurement but with lower correlations and wider spread compared

to cell line data. The highest correlation to bulk was 0.79 (cell culture showed R= 0.96), while the

lowest value was 0.43. This supports the notion that clinical samples have greater heterogeneity

than cell culture and in vitro cancer models do not fully capture tumor phenotypes. These data

shows the need for better, more frequent clinical profiling techniques such as the one presented in

this thesis.
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Figure 4.11. Single-cell Profiling in Patient Sample. A fine needle aspirate was obtained from a patient

with biopsy-proven lung adenocarcinoma. (A) Eleven harvested cells were analyzed individually, and protein

expression levels in each cell (y axis) were correlated with expression levels from the bulk tumor sample (x

axis). Though all of the cells show a linear trend, the spread and distribution of the markers varies from cell to

cell. (B) Spearman R correlation coefficient values are displayed for each of the single cells to each other and

to the bulk measurement (p<.0001). Single cells showed higher correlations to each other as compared to

the bulk.
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We then examined the heterogeneity amongst a cohort of patients with identical histopathological

diagnoses of lung adenocarcinoma. Snapshot genotyping through MGH provided insights into the

genetic basis of differences. We examined each proteomic profile to see how genetic-proteomic

differences could differ or concur. Specifically we looked at four patients with EGFR mutations (two

exon 19 amplifications with T790m mutations; one exon 20 mutation and one L858R sensitizing

mutation with a BRAF mutation). We also looked an one patient with an EML4-ALK mutation and

another with a KRAS mutation. The patients with the EGFR T790M mutations and KRAS mutation

had very similar profiles (Figure 4.12). This suggests that different genotypes may result in similar

proteomic phenotypes and is consistent with the observation that both EGFR T790M and KRAS

mutations are known markers for resistance to EGFR inhibitor therapy.3215 2 Protein clustering also

reveals interesting personalized targets. For example, Patient 4 (EGFR/BRAF mutant) had high

phospho-ERK1/2 and phospho-s6rp as expected; however, this patient also showed a high level

of PARP, Ku80 and pH2A.x, which are markers for DNA repair/damage. This suggests that PARP

inhibitors or DNA damaging agents (cisplatin) could be effective in this patient.

An emerging clinical approach in oncology employs frequent resampling of primary cancers to

more rationally assess the effect of a given drug and its dosage.153 The ability to analyze small

numbers of cells is critical, since repeat biopsies are difficult as tumors shrink post-treatment.

Furthermore, risk of morbidity and high cost preclude highly invasive procedures to collect large

tissue samples. We performed scant cell analyses in 4 patients before and after treatment with new

PIK3CA inhibitors (Fig. 4.13). All of these patients were sampled either the day before or two days

before the start of their treatment cycle and followed up with sampling at the end of the cycle. The

first patient (leftmost), was a colorectal cancer patient with KRAS and TP53 mutations. The second

patient (second to left) also had a colorectal cancer with a TP53 mutation and Her2 amplification.

The third patient had endometrial carcinoma with mutant PIK3CA G1 049R mutations and the
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fourth patient (rightmost column) had a salivary gland tumor with a PIK3CA mutation. we

compared the fold changes pre and post-treatment to observe global differences in each of these

patients. Profiles clustered into the two patients that responded and the two that progressed. The

two responsive patients received two different doses of the same drug (400mg bid vs. 150 mg

bid); interestingly, the patient with the higher dose experienced larger fold changes across the

marker panel.

We also examined a cohort of pre-treatment samples form patients to see if comprehensive

proteomic analyses to survey signaling pathways could aid in developing companion diagnostics

(Fig. 4.13b). In this cohort, the 5 patients had different cancers but all had PIK3CA genetic

mutations, yet went on to have mixed responses to a P13K inhibitor. Specifically, Patient 1 had

liposarcoma (PIK3CA G346R, P53 loss, RB1 truncation), Patient 2 had endometrial cancer

(PIK3CA 3140A>G, MET mutation), Patient 3 had uterine sarcoma (PIK3CA Gln546Lys), Patient 4

had endometrial carcinoma (PIK3CA G1 049R), and patient 5 had salivary gland carcinoma

(PIk3CA). It was interesting to note that as the markers were chosen to reflect changes treatment,

the samples clustered according to response, and not according to the originating site of a tumor

(e.g. endometrial cancers did not cluster together). All of these patients had stage 4 cancer and

samples were collected 1-7 days before treatment.

We employed a marker ranking algorithm to determine which markers differentiated responders

and non-responders. The top hit was H3K79me2. This marker clustered with a number of

interesting markers: phospho-S6 RP (a known downstream target of P13K), phospho-H2A.X, and

PARR These markers were also identified by the in vitro profiling of a P13K inhibitor. This cluster

covered diverse proteins across various pathways - epigenetic changes, DNA damage and

pathway inhibition. Future targeted therapies will have to rely on biomarkers that are predictive of
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treatment response, especially given the considerable costs of these types of treatments. Intra-

tumor heterogeneity may itself be a biomarker of poor clinical outcome 157 and estimates of such

heterogeneity may provide another approach to assess the propensity of the tumor to adapt to

drug exposure.
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Figure 4.12. Inter-patient Heterogeneity in Lung Cancer. Fine needle aspirates were obtained from six

patients with biopsy-proven lung adenocarcinoma, and bulk samples (-100 cells each) were processed as
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described in Figure 4.1. Expression data is normalized by row to show differences between each patient.

Clustering is based on correlation values. Patients 1, 2, and 5 showed similar protein profiles. This partially

concurred with genotyping as both patients 1 and 2 had EGFR exon 19 amplification and T790m mutations.

Patient 5 shows a similar profile but had a KRAS mutation. Patients 3, 4, and 6 all had distinct proteomic

profiles, and all had differing mutations. Patient 3 had an exon 20 EGFR mutation, and patient 4 had an

EGFR L858R mutation and an additional BRAF mutation. Patient 6 was noted to have an EML4-ALK

translocation.
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Figure 4.13. Treatment Changes post-P13K Inhibitor. Four patients with biopsy-proven adenocarcinoma

were treated with P13K inhibitors, and primary cancers were biopsied before and after treatment. The heat

map is a pre-post treatment difference map showing log2 fold changes in protein expression (normalized by

row to highlight differences between patients). Patients segregate into two clusters (correlation distance

metric; weighted linkage): tumors that responded and tumors that progressed. The patient in the third

column received a higher dose of the P13K inhibitor (400 mg bid as opposed to 150 mg bid) and showed

greater up-regulation and down-regulation across the marker panel.
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Figure 4.14. Pre-treatment profiles predict response to P13K inhibitor. Profiles of five drug-naive lung

cancer patients are shown with clustering based on correlation metrics with weighted linkage. The patients

group into responders and non-responders. An algorithm to identify markers that separate drug-sensitive

and drug-resistance classes identified H3K79me2 as the top hit, which clustered with many other markers
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implicated in Pl3Ki treatment including phospho-s6rp (dotted box). Heat map is normalized by row and

shown on a log scale.

_Di-Methyl-Histone H3 (Lys79)

LC3B

Cleaved Caspase-8 D391

Her2

VE-Cadherin

Beta Catenin

TSPAN8

Phospho-Cyclin D1

Bcl-xL

4EBP1

Table 4.3. Significant Differential Markers between Responders and Non-responders. The marker

ranking algorithm identified ten key differential markers. Groups were defined by correlation clustering and

markers were selected using the Bhattacharya distance metric.

4.2.5 Conclusion

In sum, we developed a photocleavable antibody-DNA barcoding conjugate technique for large-

scale, multiplexed proteomic profiling with single cell sensitivity. This method allows for massive

proteomic data collection that could advance basic research and inform clinical diagnosis and

treatment decisions. In vitro profiling with a carefully selected marker panel distinguished drug

treatments by differing mechanism of action, identified drug sensitivities, and even pointed to new

drug combinations. Clinical sample profiling showed intratumoral heterogeneity, and variations in a

seemingly 'homogenous' cohort of lung adenocarcinoma patients. Finally, we demonstrated the

potential of proteomic profiling to predict and monitor patient response to cancer treatments.
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4.2.6 Personal Contribution to Work

The author of this thesis led a group of researchers in designing, executing and interpreting

experiments. This method was developed in equal collaboration with Vanessa Peterson.

4.3 Materials and Methods
Drug Treatments

Cell lines were given a variety of drug treatments at various doses. A431 cell lines were dosed with

Gefitinib (Selleck Chemicals) in media with 1 % DMSO overnight at a concentration of 1 0pM. The

MDA-MB-436 cell line was dosed with the PARP inhibitor Olaparib (10pM in 0.1 % DMSO in

media), Cisplatin (10pM, 1% HBSS in media), Pl3K/mTOR inhibitor PKI-587 (100nM, 0.1% DMSO/

media) and the EGFR inhibitors, Cetuximab (75 pg/ml in media), Gefitinib (10pM in 0.1% DMSO/

media). All molecular targeted agents (PKI-587, Cetuximab, Gefitinib) were incubated overnight

with corresponding controls. DNA damaging agents Olaparib and Cisplatin were incubated with

cells for 3 days. All fold changes are displayed compared to controls in media with no drug, but

equivalent levels of DMSO, for the same period of time.

Immunofluorescence Validation

HT1 080 cells were seeded in 96 well glass bottom plates (Grenier) compatible with high resolution

imaging at 2,000 cells per well and grown for 24h in DMEM media before either being treated with

Paclitaxel at 1 pM, or kept in control media. After 24h, cells were fixed with 4% paraformaldehyde

(diluted from 16% foramldehyde) for 15 minutes at room temperature, washed (PBS/1 % Tween)

and permeabilized with ice cold 90% methanol for 20 minutes. Cells were blocked, incubated with

primary antibodies (Cell Signaling) overnight (40C) and visualized after Hoescht and secondary

antibody-FITC staining the following day. Multiple images were taken at using a 20x objective on a

DeltaVision microscope. All markers were measured in biological triplicate. Fluorescence intensity

for each cell was determined using CellProfiler, which used Hoescht and the whole cell stain to
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delineate cell boundaries, and size constraints to discount debris. Additional in-house MatLab code

was then used to calculate the marker signals for each condition and calculate the changes

between treated and untreated.

Flow Cytometry Validation

Standard flow cytometry staining methods were used. 200,000 cells were used per vial. All primary

antibodies were stained for one hour at room temperature at 1 g/ml or the recommended dilution.

All secondary antibodies were incubated for 30 minutes at 2pg/ml. Measurements were performed

on a LSRII flow cytometer. Fixable viability dyes were used in some cases.

Antibody Staining and DNA Collection for Proteomic Profiling

Cell staining for proteomic identification with Nanostring was based on standard flow cytometry

staining methods. The pooled antibody cocktail was incubated for one hour at room temperature

with intermittent vortexing. Staining with a large number of antibodies was comparable to single

antibody staining; cell permeabilization also did not affect antibody binding. After incubation, the

cells were washed (Perm/Wash buffer) on ice. Labeled cells could then be counted and selected

for DNA release via cell lysis, proteolysis and photocleavage (UV long wavelength, 30 minutes).

Supernatant from the lysate was collected and serial dilutions were performed in DNAse free water

to collect DNA equivalent to 50-100 cells to avoid saturation of the Nanostring cartridge. This

amount resulted in cartridge binding densities within the linear range of Nanostring quantitation.

Binding densities lower than 0.2 were still linear and gave consistent proteomic profiles comparable

to those in the highly quantitative, linear range.

Nanostring Materials and Processing

All capture and fluorescent probes were designed by Nanostring to be compatible with their Prep/

Analyzer stations. Commercial protocols for hybridization and detection from the DNA lysis sample

were followed.

Single Cell Isolation and processing.
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After antibody staining, single cells were picked using a micromanipulator. Cells were stained with

Hoescht and added to an open 10cm dish and imaged using TE2000 microscope. Once cells

were identified, the micromanipulator could be used to carefully select a single cell and place it

directly into the PCR tube used in nanostring processing. Nanostring probes were then directly

added to this tube according to commercial protocols.

Analysis

Calculating Proteomic Expression Profiles

Proteomic expression profiles were extracted from Nanostring raw data for DNA counts as follows:

First, raw DNA counts were normalized by the mean of the internal nanostring positive controls.

These counts were then converted to antibody expression values using the relative DNA/Ab counts

we calculated. Average background signal from control IgG antibodies was then subtracted.

Housekeeping genes were used for normalization. We normalized signals by Beta-tubulin as this

provided the most consistent result. For the taxol treatments we normalized by Histone H3,

GAPDH and Actin, since tubulin is a primary target of taxol. Data was transformed into log2 scale

as denoted in captions.

Clustering

Heat maps and clustergrams were plotted using MatLab with a matrix input of marker expression

values calculated as listed above. All clustergrams shown were performed using a weighted linkage

and were clustered using correlation values as a distance metric. Some clustergrams were

normalized by row as specified in captions to highlight differences of each marker between different

patients. If a marker was not detectable in one of the patients it was removed from the matrix or

heatmap and not displayed.

Statistical analysis: Correlations and Significant Marker Testing
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Correlation between single cell analysis and bulk measurement was calculated in GraphPad

Prism. Spearman R values were calculated without assuming a normal, consistent distribution.

Two-sided p values were calculated.

Significant Markers were identified by comparing two groups (e.g. treated vs. untreated) in

Prism and performing pairwise t-tests with an FDR of 0.2 for multiple test correction error.

Significant markers and their p-values are displayed in supplementary tables.

To identify differentiating markers between responders and non-responders, we used a

multi-class sequential forward selection ranking algorithm. We classified the patients into

responders and non-responders based on known data. Class separability is measured by the

Bhattacharya distance.
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I Chapter 5 I Perspectives and Future Directions
This thesis describes several tools to address critical hurdles in monitoring tumors in cancer

patients. The state of drug development and cancer treatment has remained largely unchanged for

the last 30 years despite rising cost of care. We were motivated to change established

pharmaceutical and therapeutic paradigms where limited data is collected during pre-clinical and

clinical trails. We hypothesized that data-driven clinical trials that complemented current genomic

analyses would increase the number of successful drug candidates and improve patient outcomes.

Using micro and nanotechnologies, we sought to create tools and methods that could overcome a

number of barriers to clinical translation. We developed a microfluidic device for circulating tumor

cell isolation and characterization, a nanoparticle assay to study drug binding, and a DNA

barcoding technology for massive proteomic profiling. All three projects laid the groundwork for the

adaptation of biomedical research techniques into clinical practice. By building on this foundation,

we envision a future with data-driven clinical trials and improved cancer treatment regimens.

In the first project, we designed and engineered a microfluidic CTC isolation device that

integrated two distinct cell separation technologies, namely a self-assembled magnetic filter and a

size-based sorter. This allowed for the efficient isolation of CTCs in an unbiased manner with

improved throughput and cell-capture accuracy. On-chip profiling can also enable cellular studies

at single cell resolution. With such advanced features, the HMSS chip could play an important role

in translational cancer research. Since peripheral blood is easier to acquire from patients

repeatedly, this device enables us to study CTCs in patients over time. We plan on using the HMSS

system with clinical samples to look at a variety of markers that are relevant to pathway inhibition in

molecularly targeted treatments to chart how the molecular phenotypes of CTCs change

throughout treatment. Ultimately, we envision that the technological advancements in HMSS device

would aid in understanding the underlying biology of CTCs as well as in establishing their clinical

88



utility. Furthermore, this device can be used in conjunction with the methods described in this

thesis to understand intratumoral heterogeneity on a single cell level and the pharmacodynamic

properties of circulating tumor cells.

In the second project, we addressed current limitations in clinical trails to accurately measure drug

binding and dosing. Currently these measurements are made with radioactive probes and only

performed in one or two patients due to ethical issues. However, our magnetic nanoparticle assay

allowed for measurement of drug binding and quantification with ex vivo samples isolated from

blood. The ability to provide such data in biologically relevant samples could be of considerable

clinical interest to make rational treatment decisions, optimize doses in a given patient and

understand population heterogeneities of drug responses. The method could also serve to

quantitate the effective drug target resident time in readily accessible samples such as peripheral

blood. In sum, we designed and developed a paradigm using small molecule nanoparticle

conjugates that have the potential to address several clinical limitations and to impact patient

treatment. We are advancing and testing this method with other small molecule drugs such as the

ALK inhibitor Crizotinib and plan on applying measurements to study drug dosing in vivo. Future

experiments could also examine drug distribution in metastases vs primary tumor in a mouse

model. Finally, we plan on using our assay to study drug binding differences across cell lines with

differing drug sensitivities. Such an assay could allow for researchers and clinicians to disentangle

treatment failure as a result of drug targeting or cell efflux as opposed to efficacy.

The final project was motivated by the scarcity of proteomic information measured in clinical trials

for cancer treatments. Though vast genomic information has been collected, this information has

resulted in only a few successes; moreover, it has been a great challenge to discriminate between

true driver oncogenes as opposed to passenger mutations. We developed a photocleavable DNA

barcoding immunodetection method for sensing tens to hundreds of key proteins in human cells.
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Combining several well-established techniques, this is currently the only methodology with the

potential to simultaneously assay over 100 markers at the single cell level, requiring far less sample

material than multiplexed FACS, immunohistochemistry or mass cytometry. Using this method, we

demonstrate how insights into cancer biology insights including intratumoral heterogeniety, patient

diversity, and changes in tumor biology following selection pressures from therapy could have

important clinical implications. Furthermore, the assay allows for downstream processing, making it

compatible for concurrent genetic measurements. Proteomic profiling during pre-clinical and

clinical trials can lead to more effective therapies and cheaper drug development. In the future, we

expect that the method can be applied to perform protein mapping across patients, characterize

the tumor-stroma interactions, profile rare circulating tumors cells, and perhaps even explain clonal

evolution in tumors via topological visualization of several proteins.

Currently we are performing further in depth studies of cancer treatment response by 1) exploring

possible synergistic combinations as identified by our screen (e.g. PARPi and P13Ki; P13Ki and

EGFRi) 2) understanding how Wnt signaling connects to PARP sensitivity 3) demonstrating

feasibility of personalized treatments through integrative profiling of patient-derived cell lines.

Specifically, for aim 3, we are performing concurrent RNA/DNA/proteomic profiling on ovarian

cancer samples and comparing profiling changes to drug sensitivities from patient-derived cell

lines, and clinical response. In addition, we plan to profile circulating tumor cells and compare their

proteomic profiles to that of the primary tumor.

This tool can enable a number of other projects that can yield great insights into cancer evolution,

and the tumor microenvironment. In particular, we can see how this method can be used to

perform large-scale profiling on numerous single cells. It will be interesting to see if proteomic

heterogeneity is actually greater or less than the variations captured by single cell genotyping. With
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concurrent RNA/DNA/proteomic measurements, this tool could also show how the branched

evolution of cancer clones agrees or differs based on genetic or proteomic measurements. This

methodology could also be used as powerful tool to fully understand stromal cells that support the

tumor. There is mounting evidence that endothelial cells promote tumor vascularization to sustain

tumor growth, while host immune cells can act as immune shields to disguise the tumor from the

body's natural defense. These cell populations can be selected by single cell sorting methods

(FACS, micromanipulation, laser capture microdissection) based on well established and well

defined markers. Follow up profiling with our method could reveal the cell's phenotype and tumor-

supportive or tumor-protective activities in stromal cells. These experiments would not only

advance our biological understanding, but also evince new drug targets and biomarkers for cancer

therapeutics.

The "war" on cancer was declared in the 1970s. While there has been no single cure, we

have advanced our knowledge on cancer and are better equipped to manage this heterogeneous,

evolving disease. The research community exploited advances in genomics to afford select

patients groups entirely new targeted therapeutics and prolong their lives by years. New hallmarks

of cancer and pathways have been identified (e.g. epigenetic histone and bromodomain targets).

158,159 Immunotherapies designed to target not the tumor but the surrounding inflammatory milieu

have shown dramatic responses in patients. 160 These novel methods show how insights into

cancer have rapidly progressed from biological study into the clinic. We anticipate that the

knowledge derived from translational biomedical tools will redefine our 'war' with cancer and turn

this deadly disease into a treatable, manageable one.
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