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ABSTRACT

The requirement that individual cells be able to communicate with one another over
a range of length scales is a fundamental prerequisite for the evolution of multi-
cellular organisms. Often diffusible chemical molecules originate from a source and
span the distance between cells in order to establish a line of communication -
where the meaning of the signal is a function of both spatial and temporal chemical
concentrations. In the case of chemotaxis, cells respond to concentration gradients
to establish directionality. In the case of morphogenesis, cells respond to the
magnitude of the local concentration field to regulate gene expression. Presented
here is an in vitro platform, applicable in the contexts of chemotaxis and
morphogenesis, where cells may be exposed to dynamic chemical concentration
fields while cultured in a 3-dimensional macromolecular matrix. In the first-
generation system, cells are exposed to a one-dimensional gradient - constant along
the two orthogonal axes. The second-generation system produces two orthogonally
oriented gradients intersecting in a 2-dimensional field. These platforms were able
to stimulate chemotaxis - both of cultured mammalian cells and emanating from
murine skeletal muscle explants. Further, as a developmental tool, we were able to
probe the role of Wnt signaling during Sonic Hedgehog based patterning of the
vertebrate ventral neural tube. Using the presumptive enhancer for the p3
progenitor domain gene Nkx2.2, our findings indicate that such an enhancer would
both negatively and positively regulate Nkx2.2 expression in response to Wnt
signaling. However we found that the net effect of positive Wnt signaling - in the
context of the cross-repressive interactions between various neural tube
transcription factors (Nkx2.2, Olig2, and Pax6) - is inhibition of Nkx2.2 expression
and p3 progenitor domain specification. On the basis of our new model, we
postulate that the two opposing influences of Wnt on Sonic hedgehog signaling have
distinct but dependent functions: first to inhibit Sonic Hedgehog signaling in the
dorsal neural tube and secondly to prevent oscillatory behavior at the dorsal p3
boundary.
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CHAPTER ONE: INTRODUCTION

The earliest forms of life, prokaryotic organisms, were composed of a single cell

encompassing the genetic, structural, metabolic and regulatory components within

a singular plasma membrane. Even at this early stage, survival required individual

responses to pertinent stimuli including the acquisition of nutrients. The plasma

membrane effectively isolated cellular components from the external environment,

yet at the same time interaction with this environment was a necessity.

Functionalized membranes, with extracellular receptors whose transmembrane

domains relayed signals intracellularly, provided a mechanism for chemically

sampling the local environment. Thus cells gained the ability to recognize and

respond to soluble molecules beyond the confines of the plasma membrane.

The binding of a soluble ligand (L) to its cognate receptor (R) often, though not

always, initiates receptor activation and downstream signaling. Given forward and

reverse rate constants of kf and kr, respectively, the formation of ligand-receptor

complex (LR) formation is governed by the following first order kinetics.

kf

L+ R <>LR
k,

dLR
dt = k,[L][R] - k,[LR]
dt

Receptor activation is a balance between binding and unbinding as dictated by the

relative concentration of free ligand, free receptor, and receptor-ligand pairs. Both

the rate and ultimate extent of ligand binding are not binary functions - ON in the

presence of ligand and OFF in the absence of ligand - rather there exists a graded

response over a range of ligand concentrations.

Given this basic paradigm of ligand receptor interaction, both single and

multicellular organisms have evolutionarily developed multiple classes of cellular

responses, each initiated by a ligand-receptor interaction. In the first class, the

cellular response is a continuous and gradual function of ligand concentration. Such
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is the case of how the binding of insulin to its tyrosine kinase receptor yields a

concentration dependent increase in the glucose transporter expression (Wang,

Moller et al. 1989). Expanding the ligand-receptor binding process to encompass

the more general phenomenon of protein-protein binding reveals additional means

of refining this concentration dependence. Enzyme catalysis as described by

Michaelis-Menten kinetics accelerates reactions that, in the absence of an enzyme,

are thermodynamically unfavorable. Further, the cooperative binding of oxygen to

hemoglobin exemplifies the dependence of binding affinity on ligand concentration.

Chemotaxis, the directed migration of a cell in response to a concentration gradient,

represents a second class of responses where the critical ligand property is not its

concentration at a given point, but instead the variability of its concentration in

space. In response, cells migrate toward regions of higher ligand concentration.

Morphogenesis represents the third class of cellular responses to a soluble signal.

During morphogenesis or tissue patterning, qualitatively different cell phenotypes

are adopted in response to different concentrations of a ligand or morphogen. In a

sense, this is similar to the first class of insulin-like responses in that the

independent variable is ligand concentration. However, the dependent variable, cell

phenotype, is a discrete rather than continuous function of ligand concentration.

The presence of various ligand densities and hence concentration gradients suggests

a chemotaxis-like context. Indeed, while morphogen gradients are present,

individual cells respond to the magnitude of the local concentration. The challenge

then, to both the evolutionarily ambitious species and the researcher is to

understand how a continuous input - ligand concentration - can be biologically

transformed into qualitatively unique patterns of gene expression at each successive

ligand concentration regime. In doing so, an introduction to biological gradients is

pertinent.
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1.1 - Biological Gradients

A differentiable scalar or vector-valued function is uniquely defined in space and

time and has similarly defined partial derivatives. These partial derivatives specify

the magnitude and direction of the function's variability at any point given an

incremental change along one of four dimensions (three orthonormal spatial vectors

and time). In biological systems such a function might represent temperature,

charge, pH, or molecular concentration.

In mammals, global temperature regulation is a metabolic requirement, but at the

cellular level small, but relevant temperature variations may exist. Such

temperature differences, also experienced by simpler organisms, may give rise to

thermotaxis - migration in response to a temperature gradient. Thermotaxis was

first described in the orientation and growth of pseudoplasmodia in the slime mold

Dictyostelium discoideum in response to a temperature gradient of 0.05'C/cm

(Bonner, Clarke et al. 1950). C. elegans grown at 20'C and subsequently placed in a

gradient from 13'C - 270 C will directionally migrate up or down the gradient toward

their growth temperature (Hedgecock and Russell 1975). In E. coli motility is

temperature dependent and results in a migratory response analogous to

chemotaxis (Maeda, Imae et al. 1976). Thermotaxis has also been observed in

mammalian cells. Initially demonstrated in polymorphonuclear leukocytes (Kessler,

Jarvik et al. 1979; Mizuno, Kawasaki et al. 1992), thermotaxis has most recently

been studied in spermatozoa (Bahat, Tur-Kaspa et al. 2003). Unlike d. discoideum

and c. elegans, spermatozoa can only respond to positive temperature gradients

which guide them down the oviduct toward the fertilization site. The temperature

gradient in the female reproductive system is transient, increasing for several hours

during ovulation to a magnitude of -0.1 0 C/cm (Bahat and Eisenbach 2006).

Electrochemical gradients formed by the separation of positively and negatively

charged molecules are a ubiquitous means of storing and communicating
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information. The propagation of action potentials in neurons and excitation-

contraction coupling in cardiac muscle are dependent on ion concentration

gradients and selective membrane permeability which confer a resting potential in

most living cells. In the axon of a neuron, for example, the concentrations of

potassium and sodium are high and low, respectively, relative to the extracellular

environment, and the cell is polarized with a negative membrane potential. This

electrical gradient is maintained by an impermeable membrane that prevents

equilibration of the charge separation. Indeed in a physiological saline solution, the

charge relaxation time is on the order of 0.07ns (Weiss 1996). The rapid

propagation of action potentials results from voltage gated ion channels that permit

the flow of ions down their electrochemical gradient, initiating membrane

depolarization and repolarization (Hodgkin and Huxley 1952). In cardiac muscle,

cardiomyocytes become depolarized in response to an action potential due to the

voltage sensitive increase in L-type calcium channel permeability. Ryanodine

receptors respond to this calcium influx by releasing addition calcium into the

cytosol from the sarcoplasmic reticulum. This calcium induced calcium release

stimulates sarcomere contraction (Fabiato 1983).

A special subtype of electrochemical gradients where the spatially distributed

species are hydrogen ions - single protons whose concentration determines pH.

During aerobic respiration in bacteria and mitochondria the energy released by the

reduction of molecular oxygen powers a series of proton pumps that externally

concentrate H+ ions against its electrochemical gradient. In mitochondria protons

accumulate in the intermembrane space between the internal and external lipid

bilayers. The enzyme ATP synthase couples the diffusion of H+ ions back into the

mitochondrial matrix with the production of ATP, thus converting the potential

energy of the proton electrochemical gradient into a transferrable form of energy

currency (Babcock and Wikstrom 1992).

Molecular or chemical concentration gradients, of which electrochemical gradients

are sub-type, represent a large class of biological gradients. Soluble chemical
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gradients allow individual cells to assess the local environment and communicate

between near or distant neighbors. In order to function over any given length-scale

molecules must originate from a source and be transported to a sink/destination.

The physical principles governing mass transport allow researchers to model and

predict chemical gradients both in vitro and in vivo.

Diffusion is the random motion of molecules resulting from inter-molecular

collisions and the transfer of thermal energy. These collisions, occurring at a rate of

trillions per second, can be modeled as a random walk in which a single molecule is

displaced along a unit vector Ar, randomly oriented, in a time At. This random walk

continues with each successive step randomly oriented. After a time t the mean

square displacement of the molecule will indicate its net displacement from its

initial position, and represents the mobility of the particular solute molecule in a

particular solvent. This mobility - a function of solute, solvent, pressure, and

temperature - is the diffusion coefficient Di; of the solute i in solventj.

Adolph Fick observed experimentally the flux of a solute across a plane is

proportional to the concentration difference across the boundary. The constant of

proportionality is the diffusion coefficient and generalized to three dimensions.

N =-DVC + xC

where N is the solute flux of units moles/m 2s, C is the concentration of the solute as

a function of time and space and v is the bulk solvent velocity. The negative sign

indicates that when the concentration is increasing along a vector, the flux of solute

will occur in the opposite direction. That is, molecules diffuse down concentration

gradients - from regions of high concentration to regions of low concentration. The

first term in the equation represents solute diffusion while the second term

represents advection of the solute due to fluid flow in the solvent.

Consider a control volume in space with a fixed boundary. The rate of accumulation

of solute in the volume is the sum of net flux across the boundary and the net rate of
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production within the control volume. Conservation of mass yields the following

mass transport relation:

= DV 2C -V(iVC)+ R
dt

where and R is the net rate of solute production/degradation. This relationship

neglects electrochemical drift effects which are important in context of charged

solute and solvent molecules. Both chemotaxis and morphogenesis rely on gradient

formation and mass transport phenomenon as governed by this mass transport

relation.

1.1.1 - Chemotaxis

Chemotaxis is the directed migration of a cell in response to a soluble gradient.

Prokaryotes are unable to sense gradients across the length scale of a typical cell (1-

2 im). Instead, they rely on a series of uni-directional random walks, powered by

flagellum or pili. Each persistent random walk is interrupted by a tumble - non-

directional movement that results in the cell orienting itself in a new direction for a

successive random walk. Higher chemoattractant concentrations decrease the

frequency of tumbles, producing more persistent random walks. As the cell moves

up a concentration gradient the random walk in that direction persists, whereas

movement away from the concentration source yields increased tumbling and re-

orientation. In this manner, bacteria randomly sample various locations and their

movement becomes less interrupted and more "directed" in regions of greater

chemoattractant concentration (Berg 1988).

1.1.1.1 - Motility, Directional Sensing, and Polarity

Eukaryotic cells, an order of magnitude larger than bacteria, are capable of sensing

and responding to concentration gradients exhibiting concentration differences as

low as 2% between the front and back ends of the cell. Motility, directional sensing,

and polarity together characterize the process of chemotaxis (Swaney, Huang et al.
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2010). D. discoideum and leukocytes have been studied extensively, and share many

genetic and cellular mechanisms in spite of their divergence more than 800 million

years ago (Baldauf, Roger et al. 2000). In the absence or at baseline levels of a pro-

motility factor, cells randomly and frequently (-1/min) produce pseudopodia as

actin polymerization extends these feet-like projections of the cytoplasm away from

the cell border. Pseudopodia may attach to the adjacent substrate followed by acto-

myosin mediated contraction and translocation of the cell in the direction of the

pseudopod. Alternatively, pseudopodia may be retracted without cell movement

and a subsequent pseudopod will extend in a new direction. Thus, at baseline, cells

exhibit some motility or ability to move randomly and intermittently (Van Haastert

and Devreotes 2004). A non-directional increase in motility in response to a

chemical stimulus is termed chemokinesis and must be distinguished from directed

chemotaxis.

Directional sensing involves the extra- and intra-cellular signaling cascades that

interpret chemoattractant concentrations at multiple locations along the plasma

membrane. Chemotaxis is often initiated by ligand binding of G-protein coupled

receptors on the cell membrane. Via Ras proteins, G-proteins activate

phosphatidylinositol 3-kinases (PI3Ks) which leads to accumulation of

phosphatidylinositol tri-phosphate (PIP 3) near the plasma membrane (Huang, Iijima

et al. 2003). Activation occurs rapidly and uniformly along the plasma membrane

and to a magnitude proportional to the chemoattractant concentration. The Local

Excitation Global Inhibition model suggests that although activation occurs locally

as a function of local receptor occupancy, inhibition occur globally in response to the

mean chemoattractant concentration surrounding the cell (Parent and Devreotes

1999). Thus, regions of the cell adjacent to higher concentrations (leading end) will

experience a local activation that exceeds the global inhibition signal, and regions

adjacent to lower concentrations (trailing end) will experience an activation that is

exceeded by the inhibition signal. The presence of P13K and PIP 3 is sustained at the

front end of the cell, whereas phosphatase and tensin homolog (PTEN), a negative

regulator of PIP 3, accumulates in the rear. In addition to modulating the excitatory
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signal that enables direction sensing, the inhibition mechanism is also responsible

for adaptation in the presence of a uniform concentration field and uniform cellular

activation. In this context, however, the global inhibition is sufficient to globally

attenuate the positive signal. The precise mode of global inhibition has not yet been

clarified, but sustained G-protein activation has been observed in the presence of a

uniform gradient. Ras activation, however, is not - indicating that adaptation and

global inhibition may lie upstream of Ras and downstream to the G-protein (Zhang,

Charest et al. 2008).

Polarity describes the elongation of the cell body and functionalization of the front

and rear ends of a cell in a concentration gradient. Following PIP 3 accumulation at

the front-end, actin polymerization and the repeated formation of pseudopodia in

the direction of the increasing gradient are thought to be dependent on Rac proteins

and Cdc42 (Van Haastert and Devreotes 2004). In addition to extension at the

leading edge, translocation of the cell body requires myosin-IT mediated contraction

at the trailing edge. Generally, rear-end localization is achieved by chemoattractant-

receptor dependent maintenance of myosin-II phosphorylation and subsequent de-

polymerization at the front end (Steimle, Yumura et al. 2001; Xu, Wang et al. 2003).

1.1.1.2 - Extracellular Matrix Interactions

Adhesion at the leading edge and contraction at the trailing edge require optimally

tuned interactions with extracellular matrix (ECM) molecules. Integrins are a

heterodimeric class of membrane receptors that signal intracellularly in addition to

binding ECM components such as collagens, fibronectin, laminins, and vitronectin

(Humphries, Byron et al. 2006). Focal adhesion complexes connect ECM-bound

integrins to the cytoskeleton thereby permitting bi-directional force transmission.

Contractile forces generated within the cell induce unbinding at the trailing edge,

while the cell is anchored at the leading edge. Thus the adhesion strength between

the cell and the substrate must be sufficiently moderate so as to be ruptured during
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retraction and sufficiently strong to maintain attachment in the front. Indeed

migration speed is maximum at an intermediate range of cell-substrate

adhesiveness (Palecek, Loftus et al. 1997).

While various ECM components may be arranged or patterned in either a 2-

dimensional or 3-dimensional environment, cells respond differently in each

context (Elsdale and Bard 1972; Cukierman, Pankov et al. 2001). Cells cultured on a

2D substrate tend to flatten and spread out, adopting a bottom to top polarity that is

not common in non-epithelial cells types. Epithelial cells and fibroblasts form wide

flat lamellipodia at the leading edge rather than pseudopodia, indicative of an

adaptation suitable for migration along a planar surface (Schneider and Haugh

2006). Recent studies have revealed a diverse and complex array of context-

dependent adhesion mechanisms, motility patterns, and intracellular regulators

during 3D migration (Friedl, Sahai et al. 2012). 3D migration exhibits multiple types

of extracellular adhesions including fibrillar adhesions, focal complexes, 3D-matrix

adhesions, nascent adhesions, podosomes, and invadopodia - in addition to focal

adhesions (Harunaga and Yamada 2011). The traditional balance between actin

polymerization, acto-myosin contraction, and rear retraction (Lauffenburger and

Horwitz 1996) does not always exist in 3D. Cells may migrate by contraction-

induced propulsion of blunt cylindrical processes called lobopodia. Lobopodia

based migration does not require PIP 3 polarization or actin and myosin localization.

Rather contraction of the cytoskeleton increases intra-cellular pressure and traction

forces near the rear-end of the cell allow the cell to push itself forward through the

matrix (Petrie, Gavara et al. 2012).

Beyond presenting ECM components in an additional dimension, 3D matrices

introduce additional variables associated with matrix formation. Randomly oriented

ECM molecules create a porous structure through which cells must either navigate

or degrade depending on the ratio of pore size to the diameter of the minimally

deformable nucleus. 2D substrates are generally stiff or non-deformable whereas

3D matrices exist over a range of significantly more elastic moduli. A typical 1-2
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mg/ml collagen gel has a Young's modulus of only 50 Pa, whereas typical plastics

such as polystyrene have a modulus on the order of 1 GPa (Grinnell and Petroll

2010). Cells themselves are also relatively compliant with moduli on the order of

2Pa. Matrix cross-linking as well as large deformation (approaching

macromolecular contour lengths) of structural ECM components may produce

strain-stiffening as the modulus increases in response to strain. This non-linear

elastic behavior has been shown to influence the transition from lamellipodia to

lobopodia based migration (Petrie, Gavara et al. 2012).

1.1.1.3 - Chemokines and Context Diversity of Migration

Differences exhibited during 2-dimensional vs. 3-dimensional migration and the

various mechanisms of motility only partial encompass the variability present

during chemotaxis in vivo. For instance, in addition to protrusion, amoeboid, or run

and tumble based migration of individual cells, migration may occur collectively.

Collective migration is characterized by the maintenance of cell-cell junctions, the

generation of traction forces by coordinated cytoskeletal protrusion and

contraction, and the modification of the local environment either through matrix

degradation or the deposition of a basement membrane (Friedl and Gilmour 2009).

Epithelial cells, bound both to one another and an underlying basement membrane,

often migrate collectively as is the case during wound healing.

The prevalence of chemotaxis in several in vivo contexts is uniquely catalogued by

the role of chemokines. Chemokines are low molecular weight chemotactic

cytokines that stimulate migration of immune cells, epithelial cells, and endothelial

cells. More than 40 chemokine ligands in addition to 18 corresponding G-protein

coupled receptors have been identified in mammals. The utilization of chemokines

is pervasive, modulating diverse cell populations in biological processes including

immune function, inflammation, autoimmune disorders, wound

repair/regeneration, angiogenesis, tumor metastasis, and embryonic development.
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Each of these phenomena is only partially dependent on chemokine activity, further

highlighting the abundance of unique implementations of gradient-based migration

that have evolved to date.

1.1.2 -Tissue Patterning and Morphogenesis

During development, a single fertilized egg is fated to give rise to the entire

heterogeneous population of cells in the adult organism. New cells eventually

mature, differentiate, and together self-organize into functional tissues and organs.

The instructions that specify the appropriate magnitude and location of each cell

type are contained within the genome of the first undifferentiated and pluripotent

cell. Over the past 100 years, the process by which cell fates are determined as a

function of positional location has been described with increasing detail and

accuracy. The progression occurred in stages, first recognizing the significance of

induction, followed by gradients, thresholds, and diffusion (Rogers and Schier

2011).

Scientists initially postulated that the organization of undifferentiated cells into

functionalized tissues must be dependent on cell-cell communication. Through this

interaction, one cell could induce a second cell to adopt a particular phenotype and

gene expression profile. Although the concept of induction represented a significant

first step, the question of how a cell could induce multiple cell fates within a single

tissue remained unanswered. Still in the early years of the early 20th century,

Thomas Hunt Morgan proposed that a spatial gradient in the presence of a substance

could underlie embryological tissue patterning (Rogers and Schier 2011). However,

it was not until the idea that thresholds exist between the maximum and minimum

gradient values and that the spatial locations of these thresholds separate adjacent

regions of unique target cell induction that the first model of tissue pattern

formation was described. In the late 1960's Wolpert's French flag model described

how an inducing cell produced a concentration gradient within a field of responding
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cells (Wolpert 1969). The concentration at each position within the field, relative to

the magnitude of the various thresholds, conferred positional information at that

point. However, a cell's realization of its positional identity, rather than the signal

from the inducing cell, determined cell fate. A few years later, the idea that

molecular diffusion from a source to a sink could create stable concentration

gradients set the stage for the discovery and characterization of actual tissue

patterning systems (Crick 1970).

Before describing the various mechanisms through which tissues create and

interpret morphogen gradients, a brief overview of various classic systems will

provide the basis for future examples. In the Drosophila blastoderm, a syncytium of

early progenitors, Bicoid exists as an intracellular gradient specifying anterior-

posterior positioning (Driever and Nusslein-Volhard 1988). Bicoid mRNA is found

at the most anterior region producing an exponentially decreasing gradient of the

Bicoid transcription/translation factor - the first morphogen gradient to be

described in the literature (Driever and Nusslein-Volhard 1988). Dorsal, also

forming an intra-nuclear gradient, is required for patterning along the dorsal-

ventral axis (Roth, Stein et al. 1989). The first extracellular morphogen gradient

identified in Drosophila is Dpp, a member of the TGF-P family, which patterns,

among others, both the dorsal-ventral axis in the embryo (Ferguson and Anderson

1992) and the wing imaginal disc (Lecuit, Brook et al. 1996).

The Wingless(Wg)/Wnt, Hedgehog, fibroblast growth factor (Fgf), and retinoic acid

(RA) morphogen systems specify various tissue patterns throughout embryogenesis

in Drosophila and humans. One illustrative example of multiple mnorphogen

gradients coordinated patterning of a complex structure is the vertebrate limb

(Benazet and Zeller 2009). The limb bud is patterned along 3 axes - dorsal-ventral,

anterior-posterior, and proximal-distal. The distal tip of the limb bud,

predominantly naive mesenchymal cells, forms a thin epithelial structure - the

apical ectodermal ridge - where Fgf production controls proximodistal patterning

(Niswander, Tickle et al. 1993). Distal cell types are dependent on prolonged Fgf
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exposure, whereas RA synthesized in the proximal limb bud flank specifies proximal

cell fates. Thus opposing Fgf and RA gradients synergistically determine

proximodistal spatial identities (Mercader, Leonardo et al. 2000). In the distal limb

bud, anteroposterior patterning, including the specification of individual digits, is

controlled by the posteriorly positioned zone of polarizing activity, where the

morphogen sonic hedgehog diffuses anteriorly to pattern along this axis (Riddle,

Johnson et al. 1993).

A diffusing chemical signal presents many challenges in ensuring the proper

orientation and arrangement of inducible cell types. Indeed noise and embryo-to-

embryo anatomical and genetic variations may lead to gradient disruption and

defective patterning. Thus various mechanisms have evolved to control the

formation and interpretation of gradients. Traditionally, gradient formation is

thought to be governed by a synthesis-diffusion-clearance mechanism, where

diffusion occurs between a productive source location and a destructive sink

location (Kicheva, Pantazis et al. 2007). While generally true, variations on this

theme exist. In Xenopus embryos, the production of BMP antagonists in a uniform

BMP field produces a spatial gradient (Ben-Zvi, Shilo et al. 2008). Similarly, in the

hindbrain of zebrafish an RA gradient is produced, without a localized source, by its

spatially varied enzymatic degradation (White, Nie et al. 2007). In the mouse tail

bud, Fgf8 mRNA is produced posteriorly, followed by cell division and selective

mRNA destruction yielding maximal Fgf8 protein production at the most proximal

locations (Dubrulle and Pourquie 2004).

During the diffusion phase of the synthesis-diffusion-clearance paradigm,

modifications to the diffusing molecule itself as well as the diffusion route may

regulate gradient formation. Post-translational modification of morphogen proteins

may affect diffusivity by limiting or expanding the range of signaling. The addition

of cholesterol and palmitic acid to newly synthesized hedgehog molecules promotes

oligomerization into complexes capable of controlled long range signaling and

association with plasma membranes at the cell surface (Gallet, Ruel et al. 2006).
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Such lipoproteins may also be transported by extracellular plasma membrane

vesicles or experience enhanced signaling capabilities through increased association

with cell surface plasma membranes (Eaton 2008). Extracellular matrix

components, specifically negatively charged heparan sulfate proteoglycans (HSPGs)

may bind morphogens and alter gradients accordingly (Yan and Lin 2009). HSPGs

may concentrate morphogens close to the cell membrane promoting receptor

interaction, sometimes functioning as a co-receptor as well (Tsuda, Kamimura et al.

1999). Interestingly, binding to HSPG's may limit morphogen diffusion to regions

adjacent to the source or promote long-range spreading (Vyas, Goswami et al. 2008;

Yu, Burkhardt et al. 2009). Although extra-cellular diffusion is the main mechanism

of morphogen gradient formation, endocytosis-based inter-cellular trafficking

(transcytosis) has been shown to mediate the spread of Dpp (Entchev,

Schwabedissen et al. 2000). In addition to transporting morphogens, cells may

respond to and modulate morphogen gradients through various feedback

mechanisms. Feedback may increase receptor expression and ligand sequestration

at the cell surface or through endocytosis and degradation as with sonic hedgehog

and its receptor patched-1 (Incardona, Lee et al. 2000). Nodal signaling, of the TGF-

P family, results in the expression of its soluble inhibitor in order to limit its spatial

expansion (Chen and Schier 2002).

The transduction and interpretation of morphogen gradients that results in

concentration based gene expression incorporate a diverse array of regulatory

schemes to achieve specific patterning requirements. Transduction of a morphogen

signal from an extracellular presence to concentration dependent intracellular

activity is often linearly dependent on the absolute number of occupied receptors.

In Xenopus, a threefold change in the number of bound Activin receptors (regardless

of the total number of receptors at the cell surface) results in a threefold change in

the nuclear transcriptional regulator Smad2 (Shimizu and Gurdon 1999) and a

transition from low to high threshold gene expression (Dyson and Gurdon 1998).
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Translating small fold changes in the concentrations into intracellular morphogen

effectors is achieved through differential DNA binding affinities and various types of

combinatorial regulation. Broadly, target genes with low affinity binding sites

require higher morphogen concentrations for expression whereas genes with high

affinity binding are expressed at lower concentrations (Driever, Thoma et al. 1989).

Binding affinity alone does not account for the diversity of expression patterns

found in even the simplest embryos. Rather combinatorial regulation, where the

morphogen effector in conjunction with additional transcriptional activators and

repressors interact with cis-regulatory enhancer elements, determines target gene

expression (Ashe and Briscoe 2006). In a feed-forward loop, a morphogen effector

induces the expression of a second activator, and together both proteins induce

expression of the target gene. In a positive feedback loop, the target gene is initially

induced by the morphogen effector alone and subsequent expression is augmented

through self-induction by the target gene and the morphogen. Cross-repression

allows differential expression of two target genes A and B by the same morphogen

as gene A is inhibited by gene B and gene B is inhibited by gene A. In a reciprocal-

repressor gradient, the morphogen establishes an inverse gradient of its repressor

such that the repressor activity is high where activator activity is low and vice versa.

The ratio of activator to repressor determines gene expression of target genes.

The reproducibility of tissue patterning is dependent upon four concepts:

precision/sharpening, corrections, robustness, and scaling. Many of the above

strategies for gradient interpretation contribute to sharp boundaries separating

regions of differential gene expression and the precise mechanisms that sharpen

each type of morphogen boundary is unclear. Error correction following the mis-

expression of a target gene outside its proper domain, may be achieved through re-

specification where the cell adopts the gene expression profile of its neighbors

(Standley, Zorn et al. 2001), rearrangement, where the cell repositions itself within

its proper domain (Wijgerde, McMahon et al. 2002), or simply by cell death (Namba,

Pazdera et al. 1997). Robustness refers to the proper interpretation of gradients in

the presence perturbations such as stochastic variations in concentration or signal
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transduction. Feedback contributes greatly to robustness by filtering out noise or

regulating concentration based clearance mechanisms to account for altered

morphogen production rates (Eldar, Dorfman et al. 2002). A fascinating property of

morphogen gradients is the ability to properly pattern tissues, with appropriate

proportioning, in embryos of multiple sizes, particularly as diffusion time scales

with the square of diffusion length. The exact mechanisms of scaling are not entirely

identified but one model, the expansion-repression model, concludes that an

expander protein that expands the signaling range of a morphogen by increasing its

diffusivity or decreasing its degradation will naturally scale a morphogen gradient if

the morphogen also inhibits expression of the expander (Ben-Zvi and Barkai 2010).

This feedback topology is analogous to an integral-feedback controller, where the

controlled variable is the length of the morphogen gradient, the desired output is a

full-length gradient where the expander is not produced, and the error is the region

where the expander is produced. The time integral of expander accumulation

lengthens the gradient, reducing the error.

1.1.2.1 - Neural Tube

Many of the morphogen gradient properties discussed above are present in the

vertebrate neural tube, an embryological structure that develops into the central

nervous system: the brain and spinal cord. In the early embryo, the three germ

layers - ectoderm (dorsal), mesoderm, and endoderm (ventral) - are formed during

gastrulation. The dorsal mesoderm directs the ectoderm to form the neural plate

medially. These cells, up to 50% of the ectoderm, adopt a distinctive columnar

shape. The neural plate elongates along the anteroposterior axis and narrows

mediolaterally. Bilaterally the neural plate is bound by a neural plate border region

and pre-epidermis non-neural ectoderm. Folding of the neural plate begins as

midline neural plate cells are anchored to the ventrally positioned notochord. The

neural plate border regions begin to rise dorsally and converge medially, forming

the two neural folds dorsal the medial neural groove. The two neural folds fuse and
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in some species, cells at this location become neural crest cells which migrate

throughout the embryo forming many cell types including peripheral neurons and

melanocytes (Gilbert 2000). The hollow neural tube, oriented along the

anteroposterior axis, is open at either extreme and bordered by epidermis forming

surface ectoderm dorsally, the notochord ventrally, and mesoderm laterally.

Failure of the neural plate to properly fuse into the neural tube results in a class of

congenital anomalies known as neural tube defects (Wallingford, Niswander et al.

2013). The prevalence of neural tube defects remains high in developed countries

(1 in 2000 births in the United States) despite recent advances in prevention and

treatment. Neural tube defects are broadly classified into three categories

according to the location along the anteroposterior axis where neural tube

closure is incomplete. Anterior/cranial defects are referred to as anencephaly.

Anencephaly is typically a lethal condition characterized by severe cerebral

malformations as well as the absence of the cerebellum. Posterior/caudal defects

are referred to as spina bifida and allow the protrusion of spinal cord tissue from

the vertebrae. These defects are more common than anencephaly and compatible

with life given proper treatment. Finally, the lethal and relatively rare condition of

craniorachischisis results from incomplete closure of the neural tube along the

entire anteroposterior axis.

Patterning of the neural tube occurs along its anteroposterior/cranocaudal and

dorsoventral axes, as the brain develops cranially and the spinal cord caudally.

Pseudostratified neuroepithelia line the inner surface of the neural tube which

features a polarized elliptical cross-section with a dorsoventral major axis. The

dorsal aspect produces sensory spinal neurons while the ventral region gives rise to

motor spinal neurons. The dorsoventral patterning of the neural tube has been

studied extensively and serves as one of the prototypical examples of complex

morphogen regulation, particularly within the ventral neural tube where sonic

hedgehog is a key morphogen.
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1.1.2.2 - Sonic Hedgehog and the Ventral Neural Tube

Sonic hedgehog (Shh) functions as a morphogen in the ventral neural tube,

conferring positional information sufficient for patterning distinct neural progenitor

domains along the inner lumen of the neural tube (Jessell 2000). Each domain is

defined by the expression of a unique combination of homeodomain and basic helix-

loop-helix transcription factors, Figure 1.2.1. Together these transcriptional

regulators result in the formation of distinct neuronal subtypes from progenitors in

each domain. The Shh gradient develops over time and decreases dorsally from a

maximum concentration at the ventral midline. Progenitor specification does not

occur uniformly, rather induction of each domain is dependent on the magnitude

and duration of Shh exposure. Thus genes induced by the lowest levels of Shh are

specified first throughout the ventral neural tube, with increasingly Shh dependent

genes restricted to progressively more ventral positions. Two to three fold

increases in Shh concentration are sufficient to transition from induction of a given

Shh dependent progenitor domain to a more ventral domain (Roelink, Porter et al.

1995). The patterning process begins with formation of the extracellular Shh

gradient, followed by cell-level signal transduction leading to transcriptional

regulation of target genes.

Sonic hedgehog is initially produced by the notochord just ventral to the ventral

midline of the neural tube (Echelard, Epstein et al. 1993). Notochord derived Shh

induces a second signal center, the floor plate, at the ventral midline which also

secretes Shh protein (Marti, Bumcrot et al. 1995). Visualization of the Shh gradient

reveals an exponentially decaying ligand distribution along the dorsoventral axis

(Chamberlain, Jeong et al. 2008) that increases in time at each position along the DV

axis while maintaining the same overall profile. Shh forms distinct apically

restricted punctae within the neural tube lumen in close association with basal

bodies of primary cilia, Figure 1.2.2.
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Diffusion of Shh is regulated by post-translational modifications at the source,

extracellular matrix components within the target field, and plasma membrane

proteins expressed by target cells. Newly translated Shh precursors are cholesterol

modified at the C-terminus (Porter, Young et al. 1996) and palmitoylated at the N-

terminus (Pepinsky, Zeng et al. 1998). Fully-processed Shh molecules form high

molecular weight complexes that are secreted via a mechanism dependent on the

transmembrane protein Dispi (Chen, Li et al. 2004). These lipid modifications

affect the diffusivity of secreted Shh as well as its activity. Heparan sulfate

proteoglycans, distributed throughout the neural tube, bind Shh and likely

contribute to gradient regulation through local accumulation of the ligand (Rubin,

Choi et al. 2002).

Two classes of membrane associated proteins interact with Shh in order to regulate

its extracellular distribution and intracellular transduction. Hedgehog interacting

protein-1 (Hhipi) and the Shh receptor patched-1 (Ptchi) sequester Shh,

preventing diffusion and limiting ligand levels at more dorsal positions (Jeong and

McMahon 2005). Additionally, the bound Ptchi-Shh complex undergoes

endocytosis followed by Shh degradation (Incardona, Gruenberg et al. 2002). Ptchi

and Hhipi are up-regulated by Shh signaling and represent a negative feedback

pathway that limits the local transduction and spatial extent of Shh signaling. The

second class of transmembrane proteins - including Cdo, Boc, and Gasi - are

generally inhibited by and promote Shh signaling in a cell autonomous manner

(Tenzen, Allen et al. 2006; Allen, Tenzen et al. 2007). It is not known whether these

binding-partners function solely by concentrating Shh ligand at the cell surface, but,

together with the opposing actions of Ptchi and Hhipi, they confer a degree of

robustness to the Shh system in the presence of protein level fluctuations. In the

presence of very low levels of Shh signaling, Cdo, Boc, and Gasi are more highly

expressed and may augment Shh activity. Conversely, these genes are down-

regulated in the presence of very high levels of Shh and increased expression of

Ptchi and Hhipi may serve as a signal attenuator.
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In the absence of Shh, Ptchl inhibits the transmembrane protein smoothened

(Smo), Figure 1.2.2. Transduction of the Shh signal, in vertebrates, begins the

binding of Ptchl at the apical primary cilium (Ribes and Briscoe 2009). Bound

Ptchl does not inhibit Smo thereby permitting its accumulation in the primary

cilium and initiation of downstream signal transduction (Murone, Rosenthal et al.

1999). Smo signaling, however, is necessary and sufficient to completely effect Shh

dependent events in target cells. Smo null embryos lack all the progenitor domains

ventral to the p1 domain (Wijgerde, McMahon et al. 2002), and expression of a

dominant active Smo transcript cell-autonomously induces ventral phenotypes

(Hynes, Ye et al. 2000). Similarly, small molecule agonists and antagonists of Smo

increase and decrease, respectively, the extent of Shh induced gene expression

(Frank-Kamenetsky, Zhang et al. 2002).

Signaling events initiated by Smo culminate in the modulation of three zinc-finger-

containing transcription factors - Glil, Gli2, and Gli3 (Matise and Joyner 1999). Gli

proteins may function as transcriptional repressors (GliR) or activators (GliA)

depending on the degree of Shh stimulation, although Glii is thought to function

exclusively as an activator, Gli2 primarily as an activator, and Gli3 primarily as a

repressor. In each cell there exists a competition between GliR and GliA, the net

result of which determines the degree of Shh gene induction (Jacob and Briscoe

2003). Thus the extracellular Shh gradient is transduced into an intracellular Gli

activity gradient (Stamataki, Ulloa et al. 2005). In the absence of Shh, GliR

dominates due to Gli2 degradation and proteolytic cleavage of Gli3 into its repressor

form Gli3R (Meyer and Roelink 2003; Pan, Bai et al. 2006). Such repression

suppresses Shh dependent genes prior to Shh gradient formation ventrally and in

dorsal tissues where the Shh gradient is maximally decayed. In the presence of Shh,

the cleavage of Gli3 is inhibited and Gli3R levels are reduced. Elimination of Gli3R is

sufficient to roughly induce the p1, p2, and pMN domains (Persson, Stamataki et al.

2002). Specification of the most ventral domains, p3 and FP, require additional GliA

in addition to diminished Gli3R activity. The high level of Shh signaling in these

domains prevents the degradation of Gli2, inhibits expression of Gli3 entirely, and
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promotes the expression of Glil (Dai, Akimaru et al. 1999; Pan, Bai et al. 2006).

Hence, the balance of Gli activity, dominated by Gli2 and Glil, is tilted toward Shh

target gene activation.

Both the concentration and duration of Shh exposure determine the strength of

intracellular Gli activity in target cells. A temporal adaptation model suggests that

exposure to Shh decreases a target cell's sensitivity to continued stimulation

(Dessaud, Yang et al. 2007). Initially, Shh induces a strong GliA signal; however,

negative feedback will require greater and greater concentrations of Shh to

maintain this level of Gli activity. In the presence of a constant Shh concentration,

GliA activity will decrease until it ceases entirely. Larger Shh concentrations will

sustain GliA activity for longer periods of time, whereas lower concentrations will

wane quickly. The duration of Gli activity then is proportional to Shh concentration,

and the time integral of Gli activity determines the extent to which Shh may induce

gene expression.

The Shh morphogen gradient functions within a larger gene regulatory network

(GRN) in which cross-repressive interactions between Shh target genes contribute

to domain specification and boundary sharpening (Dessaud, McMahon et al. 2008;

Lek, Dias et al. 2010). Other soluble proteins including members of the BMP and

Wnt families are also expressed in the neural tube, contributing to patterning in

both the dorsal and ventral neural tube (Liu and Niswander 2005; Ulloa and Marti

2010).
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pO Pax6, Irx3, Dbx2, Dbxl

p1 Pax6, Irx3, Nkx6.2, Dbx2

p2 Pax6, Irx3, Nkx6.1

Figure 1.2.1 - Progenitor Domains in the Ventral Neural Tube
Six progenitor domains are found in the ventral neural tube, each
expressing a unique set of transcription factors that determine cell
identity. Shh acts as a morphogen, decreasing dorsally from a
maximum concentration at the ventral midline and assigning
positional identities to in the floor plate (FP), p3, pMN, p2, p1, and p0
domains. Dorsal to the p0 domain exist a series of dorsal progenitor
domains, primarily implicated in sensory perception, in which Shh
does not function as a morphogen.
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Figure 1.2.2 - Sonic Hedgehog Signaling Pathway
In the absence of Shh, patched1 inhibits smoothened which allows Gli
transcription factors to be expressed in and processed into repressor
forms. The binding of Shh to patchedi relieves the inhibition of
smoothened which then localizes to the primary cilium where it
inhibits the processing of Gli3 into its repressor form, prevents the
degradation of Gli2, and up-regulates Gli1 expression. Each of these
changes increases GliA function while decreasing GliR. GliA goes on to
positively regulate the expression of ventral transcription factors such
as Foxa2 (FP), Nkx2.2 (p3), and Olig2 (pMN).
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CHAPTER TWO: RC MICROFLUIDIC BIOREACTOR

2.1 - Introduction

Many important biological processes such as gastrulation and organogenesis

(Montero and Heisenberg 2004; Laird, von Andrian et al. 2008), inflammation

(Friedl and Weigelin 2008), and cancer metastasis (O'Hayre, Salanga et al. 2008)

depend on the directed movement or transcriptional response of cells to

biochemical and biophysical stimuli. In vitro systems designed to study these

cellular behaviors rely on the replication of local microenvironments, including the

presentation of relevant stimuli in an appropriate spatiotemporal pattern. The

microenvironment may include specific cell populations, extracellular matrix

components, and soluble or immobilized chemical signals. In contrast to

experiments with cells grown in 2-dimensional monolayers, 3-dimensional cell

culture systems allow for the construction of microenvironments characterized by

preservation of native cell-cell and cell-matrix interactions (Abbott 2003). Like

cellular migration (Sun, Wise et al. 2004; Even-Ram and Yamada 2005; Zaman,

Kamm et al. 2005; Gabriel and John 2006; Smalley, Lioni et al. 2006; Zaman, Trapani

et al. 2006; Ghibaudo, Trichet et al. 2009), a variety of cellular functions are

markedly affected by 3D environments. This has prompted the development of 3D

scaffolds such as hydrogels and self-assembling peptides in which cells can be

seeded and cultured (Cukierman, Pankov et al. 2001; Smalley, Lioni et al. 2006;

Smalley, Lioni et al. 2006; Lee, Cuddihy et al. 2008; Zhang, George et al. 2008).

Chemotaxis is the directed translocation of a cell under the influence of a soluble

chemical gradient. Several methods, with varying limitations and degrees of

complexity, have been developed to study cell chemotaxis. The Boyden chamber

assay establishes a chemical gradient across a thin porous membrane through

which cells migrate in the direction of the concentration gradient (Boyden 1962). In
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the under-agarose assay, cells migrate between a coverslip and an agarose gel

toward a well containing the chemical species of interest (Nelson, Quie et al. 1975).

The Zigmond and Dunn chamber assays offer improved visual observation of cells

migrating across a bridge between two wells, one containing the chemoattractant

(Zigmond 1977; Zicha, Dunn et al. 1991). Most assays lack quantifiable or stable

concentration gradients and assay migration in 2D rather than 3D, prompting recent

efforts to define stable gradients in 3 dimensional geometries (Keenan and Folch

2008).

Chemical concentration gradients may decay due to transfer of solute from the

source region to the sink region. In order to establish a stable linear concentration

gradient between a source and sink, the two regions must be continuously

maintained at maximum and minimum concentrations, respectively. This is

commonly achieved by continuous flow that replenishes the source solute

concentration and eliminates the growing sink concentration. In the "Y-shaped"

microfluidic device, two laminar streams are combined in a microfluidic channel,

and the solute diffuses between streams, creating a gradient perpendicular to the

combined flow path (Lin and Butcher 2006). These gradients are formed in a

channel in which cells can migrate in a 2D but not 3D environment. In another

implementation of flow-maintained gradients in microfluidic channels, a hydrogel is

placed between a source and sink channel through which cells migrate up the

concentration gradient established across a gel (Saadi, Rhee et al. 2007; Vickerman,

Blundo et al. 2008; Chung, Sudo et al. 2009; Mack, Zhang et al. 2009; Sudo, Chung et

al. 2009). The maintenance of stable linear concentration gradients by continuous

flow, however, is subject to a number of practical limitations. If flow characteristics

in the source and sink channels are not identical, a pressure gradient will develop

and the resultant fluid flow between the two channels can disrupt the concentration

gradient. Fluid flow within the channel or gel induces shear stress on cells, which

can independently alter the underlying biology of interest (Garanich, Pahakis et al.

2005). Fluid flow also depletes factors secreted by cells that might function as

autocrine or paracrine signals. Finally, the durations of typical chemotaxis assays
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range from hours to days, periods over which replenishment by continuous flow

requires substantial quantities of medium and chemoattractant. While non-

continuous flow devices can facilitate stable gradients by creating source and sink

wells with volumes much larger than that of the gel region (Abhyankar, Toepke et al.

2008), such devices are still subject to interstitial flow induced by inadvertent

fluctuations in the pressure difference between the two wells.

A simple microfluidic approach to create and maintain concentration gradients in a

microfluidic device without the use of continuous flow is described here. Source

and sink concentrations are maintained by creating corresponding wells whose

volumes are large relative to the diffusive flux through the connecting hydrogel

channel. Interstitial flow is eliminated by connecting the source and sink wells with

additional channels and reservoirs that serve as a resistor-capacitor (RC) circuit.

Accordingly, in the RC-Bioreactor, any pressure gradients between the source and

sink are dissipated by flow through the low impedance RC network rather than

through the hydrogel channel.

2.2 - Methods

2.2.1 - Design of RC-Bioreactor

The Resistor-Capacitor (RC) Bioreactor is composed of 3 regions, an experimental

(source) region, a central cell (sink) region, and a control region as shown in Figure

2.4.1. The source and sink wells are separated by a hydrogel-filled channel across

which the desired chemoattractant gradient is developed. The source well is

connected to the source-reservoir well by a low resistance channel, and the sink

well is similarly connected to the sink-reservoir well. Finally, the source-reservoir

well and the sink-reservoir well are connected to each other. Solute in the source

well may diffuse or be advected via two paths: either through the hydrogel channel

or through the reservoir channels. The control region is a mirror image of the

source region and serves as an internal control for each experiment. The control
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well is connected to the sink well by a gel region but there is not a chemical gradient

between the sink and control wells as they are both filled with control/untreated

solutions. Thus a control gel region for direct comparison accompanies each

experimental gel region on the same chip.

2.2.2 - Fabrication of RC-Bioreactor

The microfluidic devices were fabricated as described elsewhere (Vickerman,

Blundo et al. 2008). Briefly, the device design was drawn using the computer aided

design (CAD) software SolidWorks and DWGeditor (Dassault Systemes SolidWorks

Corp, Concord, MA). The CAD files were sent to the Stanford Microfluidics Foundry

(Palo Alto, CA) for master wafer fabrication. In this process, a transparency

photomask was used to cure SU-8 photoresist on a silicon wafer and produce the

positive relief of the microfluidic design. The completed wafer underwent

silanization in order to facilitate the removal of the replica material. Replica molds

were made from liquid polydimethylsiloxane, PDMS, (Sylgard@ 184 Silicone

Elastomer Kit, Dow Corning, Midland, MI) that was cured at 80 'C for 2 hours. The

PDMS chips were removed from the wafer and the wells were formed by punching

holes with appropriately sized biopsy punches and needles. The devices were

autoclaved, plasma treated (Harrick Expanded Plasma Cleaner, Harrick Plasma,

Harrick, CA) and bonded to glass cover slips. Finally, devices were coated with poly-

D-lysine (poly-D-lysine hydrobromide, 1mg/ml; Sigma-Aldrich, St. Louis, MO) to

promote hydrogel attachment to the PDMS and glass surfaces.

2.2.3 - Loading of Collagen Hydrogel

A prepolymer collagen solution was prepared on ice by combining 1oX phosphate

buffered saline, 0.5N sodium hydroxide, deionized water and Rat Tail Collagen Type

I (BD Biosciences, Franklin Lakes, NJ) to produce a final collagen concentration of 2

mg/ml at pH 7. As shown in Figure 2.4.1, each 1.3 mm long gel channel is connected
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to a small gel filling port. Approximately 4 [L of the collagen solution were injected

into each gel region through the corresponding gel filling port. Each device was

subsequently placed in a humidity chamber at 37 'C for 30 min to allow for collagen

gel polymerization. The humidity chambers were assembled from empty pipette tip

boxes, containing sterile water. Finally, the devices were filled with PBS or

appropriate cells and culture medium.

2.2.4 - Characterization of Concentration Gradients

RC-Bioreactors were filled with PBS. The PBS solution was aspirated from the

source well and source reservoir. In a subset of experiments, these ports were then

filled with a 25 [ig/ml FITC conjugated to a 10 kDa dextran solution. Fluorescent

images of the gel region were acquired every 1 hour for 24 hours or every 2 hours

for a period of 12 hours daily for 6 days. The data were analyzed using MATLAB

(Mathworks, Natick, MA) software. The devices were covered with a glass cover slip

to prevent evaporation during the time lapse period.

A device with a gel region whose width expands with distance from the source,

Figure 2.4.5 inset, was fabricated to form a non-linear concentration gradient.

Similarly to the characterization of the linear device, the wells, reservoirs and

channels were filled with PBS and then the source well and source reservoir were

filled with a 25 tg/ml FITC conjugated 10 kDa dextran solution. Images were

acquired every 2 hours for a total of 12 hours.

2.2.5 Maintenance of Concentration Gradients with Pressure Disturbances

To evaluate the dissipation of pressure gradients, pressure gradients were

introduced into devices with and without the bypass channels and reservoirs

connecting the source and sink wells. In the device without the bypass channels the

source well was filled with a FITC-dextran solution and a gradient was allowed to
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develop for 6 hours. At this time an additional 10 ptl of the FITC-dextran solution

was added to the source well, and images were acquired every 10 minutes for 1

hour. In the device with the bypass channels the source and source reservoir wells

were filled with the FITC-dextran and the 10 pl bolus of the FITC-dextran solution

was added to the source well.

In a separate experiment the source and source reservoir wells were filled with a 50

tg/ml FITC-dextran (20 kDa) and a 10 pl bolus of the FITC-dextran solution was

added to the source well. Fluorescent images were taken of each well in the device

before and 5 minutes after the introduction of the bolus. These images were used to

calculate the average concentration in each well before and after the introduction of

the bolus.

2.3 - Results & Discussion

2.3.1 - RC-Bioreactor Dynamics

In evaluating and predicting gradient formation in the RC-Bioreactor microfluidic

device, the two relevant processes affecting the concentration profile are molecular

diffusion and advection. Thus the governing mass transport equation is shown

below:

= -DV 2M+i - VM
dt

where M is the concentration, t is time, D is the diffusivity of the solute, and v is the

velocity field. The first term accounts for the solute flux due to diffusion down a

concentration gradient while the second term is generated by advection of the

solute in a velocity field. The velocity field can be determined as a solution to the

incompressible Navier-Stokes equation for the open channels. In the RC-Bioreactor,

the viscous stresses are of much greater magnitude than the inertial forces, allowing
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the inertial forces to be neglected in the analysis. Within the gel regions, the

resistance due to the porous collagen scaffold must be included. The result is the

Brinkman equation that models viscous flow through a porous material:

pV2-V Y - _ VP =O
K

where p is the dynamic viscosity of the media, K is the permeability of the hydrogel,

and P is the pressure. Coupling these two equations, one can model the complete

behavior of the fluid flow and mass transport in the RC-Bioreactor.

The necessity of the low impedance reservoir channels is illustrated with the finite

element model in Figure 2.4.2. Here the device consists of only the source well, the

sink well, and the interconnecting gel region. The source well is loaded with 1 mm

of hydrostatic pressure (10 Pa), the result of adding 7.06 pl more fluid to the source

well than the sink well. The simulation was performed for 1 hour with SDF-1 as the

soluble molecule. Initially the concentration in the source well was 100% and the

concentration in the gel region and sink well was 0%. The velocity was everywhere

zero. The diffusivity of SDF-1 is 1.6x10-6 cm 2/s in PBS (Veldkamp, Seibert et al.

2008) which can be assumed to approximate its diffusivity in a 0.2% w/v collagen

gel. The permeability, K, of the collagen gel was taken to be lx1012 m 2 (Wang and

Tarbell 2000). After 1 hour the high concentration solution has been convected

through the gel as a result of the increased source pressure. Under these conditions,

the average velocity in the gel is 6.5 pm/s and the corresponding Peclet number (the

ratio of convective to diffusive transport) is approximately 61, demonstrating the

dominance of convection.

In order to prevent this convection, the low impedance reservoirs and channels

were included to complete the design of the RC-Bioreactor, Figure 2.4.1. Pressure

differences between the source and sink wells are dissipated through the reservoir

channels much more rapidly than through the gel region. The reservoirs decrease
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the change in concentration due to the exchange of fluid between the source and the

sink. For instance, if there is more fluid in the source well than in the sink well, the

fluid first flows to the source reservoir well, followed by the sink reservoir well,

where this small volume needed to eliminate the pressure difference is diluted,

before proceeding to the sink well itself. In an analogy to electrical circuits where

volumetric flow rate is to electrical current as pressure gradients are to voltage

drops, the RC device can be modeled as an arrangement of resistors and capacitors

as shown in Figure 2.4.3. Each of the channels in the device impose resistance on

fluid flow and determine the flow rate for a given pressure difference. The

volumetric flow rate, Q, of a viscous fluid through a channel with a rectangular

cross-section is similar to the Hagen-Poiseuille equation for laminar, viscous and

incompressible flow:

Q = C t AP
12puLe

where We, He, and L, are the width, height and length of the channel, respectively

and AP is the pressure drop along the length of channel. The resistance of the

channel, R,, is the ratio of AP to Q (analogous to electrical resistance as the ratio of

voltage to current through a resistor) and is given by the expression.

R 12pL
cWH

3

C C

In the gel region, the resistance to flow is dominated by the low permeability of the

hydrogel. Darcy's Law governs the relationship between pressure and flow rate,

their ratio yielding the resistance of the gel region, Rg.

KWH KLAQ=g AP=>.R KW=
!ILg WH

38



The wells in the device store fluid volume just as a capacitor stores charge. The

capacitance of a capacitor is the ratio of the charge stored in the capacitor and the

voltage drop across it. In the wells the relationship between the pressure difference

between the top and bottom of the well and the volume of fluid in the well is

governed by hydrostatics, AP=pgh, where p is the density of the fluid, g is the

acceleration due to gravity, and h is the depth of the fluid. The depth of fluid in the

well is determined by the volume of fluid in the well divided by the cross sectional

area of the well. The capacitance of a well can then be defined as the ratio of volume

to pressure difference,

AP =--pgV => C =rD2
,rD 2  w 4pg

where V is the fluid volume in the well, D is the diameter of the well, and Cw, is the

capacitance of the well.

Using the values for the various dimensions in Figure 2.4.1, the resistance of each

reservoir channel is 6.94x10'O kg/m 4s, whereas the resistance of the gel filled

channel is 2.80x10 13 kg/m 4s, more than three orders of magnitude larger than it

would be if the gel were not present. The capacitance of the source and sink wells is

7.21x10-10 m4 s2/kg and the capacitance of the source and sink reservoirs is 1.28x

10-9 m4 s2 /kg. In Figure 2.4.3 one of the capacitors contains excess charge/voltage

and must dissipate charge to the remaining three. There are two paths through

which the current may travel, one containing the three channel resistors and the

other containing the gel resistor. This process is analogous to the source well

containing excess volume/pressure and dissipating this volume to the other sinks

and reservoirs (neglecting the control side of the device). The channel path contains

three resistors in series and four capacitors in parallel while the gel path contains

one resistor and two capacitors in parallel. The solution to the characteristic

equation for the voltage in each capacitor gives the time constant for the system.

The time constant, r,, for flow through the channel path is on the order of 50 s, and
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the time constant, Tg, for flow through the gel path is 168 minutes. Thus pressure

gradients are quickly equilibrated through the channel path, preventing significant

source solute convection into the gel.

To confirm the time constant the velocity of suspended cells in the channel between

the source and source reservoir well was measured after a 7 pl bolus was added to

the source well with a microneedle injector. The measured maximum velocity was

2.03±0.2 mm/s equal to a volumetric flow rate of 0.484 p1/s. At this flow rate the

time required for the volume to be distributed throughout the device is

approximately 15 seconds. This confirms that dissipation of pressure gradients

occurs rapidly through the bypass channels but exhibits a more rapid time constant

than had been calculated. The discrepancy is likely due to the momentum of the

bolus as it was injected into the well which caused the fluid in the channels to

accelerate more rapidly than if the driving force was a hydrostatic pressure

difference alone.

2.3.2 - Maintenance of Stable Concentration Gradients

The generation and maintenance of a stable concentration gradient between the

source and sink wells is determined by the diffusion coefficient of the biomolecule of

interest and the geometry of the device. In Figure 2.4.4a, a 25 ptg/ml solution of a 10

kDa FITC-Dextran in PBS was loaded into the source side of the RC-Bioreactor while

the sink and control regions were filled with PBS. After 2 hours a linear

concentration gradient was present between the maximum concentration at the

source well and the minimum concentration at the sink well. The gradient remained

constant for the duration of the 24-hour experiment.

The duration of time over which the gradient will remain constant is a function of

the dimensions of the source and sink wells and the hydrogel channel as well as the

definition of "constant." As the solute diffuses from the source well into the sink

40



well, the concentration gradient will diminish and eventually vanish entirely. The

flux of solute is the product of the diffusion coefficient and the gradient of the

concentration field. If, for instance, a "constant" gradient is defined as a gradient in

which the source and sink concentrations do not change by more than 5% (a 10%

change in the gradient slope), then the gradient formed by an 8 kDa molecule would

remain "constant" for more than 2 days. Similarly, the system would require

approximately 21 days for concentrations in the source and sink wells to equilibrate

completely. These estimates presume that the wells are perfectly mixed but are

confirmed by our experimental results. In Figure 2.4.4b the slope of the

concentration gradient was measured daily for a period of 6 days. During days 1

and 2 the gradient remains relatively stable. On day 3 the gradient had decayed by

-10% and by day 5 it has decayed further to 80% of the original value. The relative

stability of the gradient over several days allows the schedule of medium changes in

the device to be dictated by the metabolic requirements of the cells.

By changing the shape of the gel region it was possible to change the profile of the

concentration gradient. In a device with an expanding gel region, Figure 2.4.5, the

concentration gradient adopts a nonlinear profile, exhibiting an exponential decay

with distance from the source region. The gradient developed in less than 2 hours

and remained constant for the duration of the 12 hours experiment. The stability of

the nonlinear gradient should be similar to that of the linear gradient. This is

because the channels and wells (except for the gel region) are identical to those in

the linear gradient device, and the average flux through the gel region, determined

by the source and sink concentration, is similar to the flux in the gel region with the

linear gradient.

2.3.3 - Sensitivity to Pressure Disruptions

A major advantage of the RC-Bioreactor is its ability to dissipate pressure gradients

through the low resistance reservoir channels as opposed to transporting fluid
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through the hydrogel region. Pressure gradients between the different wells or

channels in a microfluidic device are often an inevitable consequence of handling

the device during its operation. Fluid volumes must be precisely dispensed in and

out of the device to prevent volumetric imbalances and hydrostatic pressure

differences. These hydrostatic pressure differences result in fluid flow between

adjacent wells. If this fluid flow occurs in the gel channel the concentration gradient

will be disrupted. Pressure differences can also be caused by inadvertent tilting of

the device which places one well at a higher gravitational potential relative to other

wells.

While the stable concentration gradient is not affected by incidental pressure

gradients created during the initial loading of the device (Figure 2.4.4), we also

explored the effect of more substantial pressure gradients on the soluble profile in

the hydrogel. First this process was characterized in a device without the bypass

channels connecting the source and sink wells. This device contained only a source

well and a control well each connected to the sink well through a gel region. The

device was loaded with a 25 [g/ml solution of 10 kDa FITC-Dextran in the source

well, and a linear gradient was allowed to develop for 6 hours. At that time (t = 0),

an additional 10 p1 bolus of dextran solution was added to the source well creating a

hydrostatic pressure difference between the source and sink wells, Figure 2.4.6.

The concentration profile in the gel region was immediately disrupted as the FITC-

dextran solution was convected through the gel in order to eliminate the pressure

gradient. The concentration gradient was almost completely abolished as the

concentration became relatively constant throughout the gel. After 6 hours the

concentration gradient had not returned to a linear profile confirming that the time

scale to for the system to reach equilibrium is on the order of hours as estimated

above.

This experiment was repeated in the RC-Bioreactor with the channels and reservoir

wells connecting the source and sink wells. Both the source well and source
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reservoir well were filled with the FITC-dextran solution. After the linear gradient

had developed a 10ptl bolus of dextran solution was added to the source well. The

concentration profile in the device did change immediately, as noted by comparing

the initial and t=O curves in Figure 2.4.7a. However only a small fraction of the

additional solute was convected through the gel region, while the majority of the

bolus was transported through the reservoir channels. As a result, within 10

minutes of the bolus introduction, the concentration gradient within the hydrogel

has returned to a stable, linear profile.

To investigate how the flow through the bypass channels affects the concentration

in the different wells the concentration in each well was measured before and after

a 10[l bolus was injected into the source well and the pressure gradients were

eliminated, Figure 2.4.7b. The largest concentration change occurred in the sink

reservoir well which receives high concentration fluid directly from the source

reservoir well. The sink well did not experience a significant concentration change

because any high concentration fluid that reaches the sink well is first diluted in the

sink reservoir well. This dilution also occurs with the control reservoir and control

wells, and their concentrations do not change after the introduction of the bolus.
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2.4 - Figures
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Figure 2.4.1 - RC-Bioreactor Schematic
(a) A schematic representation of the RC-Bioreactor in 2 dimensions.
The unshaded channels represent the sink and sink reservoir. The
dark shaded region represents the source and source
reservoir/channel as well as a channel connecting the source and sink
reservoirs. The lightly shaded region is the mirror image of the dark
shaded source region and serves as an internal control for each
experiment The blue region is the location of the hydrogel in which
the relevant concentration gradient forms, and the red region is the
analogous control hydrogel. The chemical species of interest is placed
in the source well and source reservoir. The remainder of the device
is filled with a control solution. (b) A 3D representation of the RC-

Bioreactor constructed from PDMS and bonded to a glass coverslip.
The diameter of the source, sink, and control wells is 3 mm, and the
diameter of the source, sink , and control reservoirs is 4 mm. The

hydrogel channels are 1.5 mm long, 0.6 mm wide, and 0.120 mm tall.
The remaining channels are 20 mm long, 2 mm wide, and 0.120 mm
tall.
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Figure 2.4.2 - Pressure Gradients Disrupt Concentration
Gradients Between Source and Sink Wells
Initially the gel region and the sink well did not contain any solute.
The high concentration source well was loaded with a 1mm
hydrostatic pr e difference relative to the sink well. Without the
low resistance circuit thre ressrdifference must be dissipated via
fluid flow through gel region. This fluid flow is accompanied by
convection of the solute into the gel. The solute is modeled as SDF-1
with a diffusivity of 1.6x10-6 cm 2/s and the permeability of the gel
region is x 10-12 M2 . The simulation was executed for 1 hour.

45



Cr---v RC AV C,

Rc RC

Rg

C e v sV V CW

Figure 2.4.3 - Electrical Circuit Analogy
An analogous RC electrical circuit can be used to depict how the low
resistance channels dissipate pressure gradients more rapidly than
the high resistance gel region. . Movement of that fluid volume is
volumetric flow just as the movement of charge is current. Wells
store volume as capacitors store charge, and channels resist the flow
of volume just as resistors resist the flow of charge. In this circuit the
sink and source well capacitors are separated by the gel resistor, and
voltage differences between the two capacitors will result in current
through the gel resistor. The resistor and capacitor in series actually
serve as a low-pass filter with a time constant on the order of hours.
However by adding additional resistors and capacitors in parallel
(resistors are open channels with much less resistance to fluid flow
than the hydrogel filled gel channels and capacitors are wells), the
signal is filtered further and provides a path with a time constant on
the order of seconds through which fluid can flow in order to equalize
pressures.
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Figure 2.4.4 - Stable Concentration Gradients in the RC-
Bioreactor
(A) A 10 kDa FITC-dextran molecule was used to model the diffusion
of a similarly sized protein such as SDF-1. The dextran solution (25
pg/ml) was loaded into the source well and source reservoir. The
sink well, control well, sink reservoir, and control reservoir were
filled with PBS. The device was placed on a fluorescent microscope
and images were acquired every hour (representative time points
shown) for 24 hours. To prevent evaporation the device was covered
with a glass cover slip during image acquisition. Within 2 hours a
linear concentration profile is achieved in the gel region and
maintained for the duration of the experiment. (B) The dextran
gradient was tracked over the course of 6 days and the average slope
of the concentration profile is shown for each day. The slope remains
constant for the first 48 hours and on day 3 the slope has decayed by
10%.

47



100 0 hours

2 hours

80 -4 hours
6 hours
8 hours

C 60 10 hours
- 12 hours
c)

240
0

20-

0 500 1000 1500 2000
Position in Gel [microns]

Figure 2.4.5 - Exponentially Decaying Gradient in Modified RC-

Bioreactor
By changing the geometry of the gel region (as shown in the inset) a

non-linear concentration profile with an exponential dependency was

achieved in the RC device. Fluorescent images were acquired every 2

hours for 12 hours.
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Figure 2.4.6 -Pressure Differences in the Absence of RC Bypass
Channels
In a device without the low resistance bypass channels (consisting of
only the source, sink, and control wells connected by 2 hydogels) a
gradient was allowed to develop across the experimental gel region
for 6 hours by placing a 25 pig/ml FITC-dextran solution in the source
well. Then 10 pd of the dextran solution was added to the source well
and the gradient was imaged every 10 minutes for an additional hour.
The gradient was disrupted and after 6 hours did not return to its
original profile.
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Figure 2.4.7 - Equilibration of Pressure Differences in RC-
Bioreactor
(A) In the RC-Bioreactor with the bypass channels, although the

concentration profile changed slightly with the addition of a 10l

bolus to the source well, within 10 minutes the gradient returned to a

linear profile. Images were acquired every 10 minutes for 1 hour

after the introduction of the bolus. (B) The source well and reservoir

were filled with a 50 gg/ml solution of FITC-dextran and the

concentrations in all of the wells and reservoirs were measured

before and after the addition of a 10 [d injection into the source well.

The sink reservoir (location 3) experiences the greatest concentration

change while the concentrations in the sink well, control well, and

control reservoir remain relatively unchanged.
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CHAPTER THREE: CHEMOTAXIS IN RC BIOREACTOR

3.1 - Introduction

Previous efforts confirmed that gradient generation within the RC Bioreactor

rapidly achieved linearity, decayed over a sufficiently long timescale, and exhibited

resistance to hydrostatic pressure perturbations. Gradient validation enabled a

series of proof-of-concept experiments to validate the system's ability to replicate

chemotactic responses in vitro. To assert suitability in the context of multiple forms

of 3-D migration, cells were chosen to represent three different classes of migration.

Vascular smooth muscles cells are mesenchymal cells, typically located within

extracellular matrix components capable of fibroblast-like migration. Jurkat T-

lymphocytes may exhibit features of both malignant cell types and plasma cells such

as the neutrophil. Finally, bovine aortic endothelial cells are noted for epithelial-

basement membrane interactions and collective cell migration as in angiogenesis.

Successful chemotaxis in these cell types suggested that hypothesis based

experiments without known ligand-cell chemotactic partners might be possible.

Satellite cells are a population of progenitors within skeletal muscle capable of

contributing to newly generated myocytes in response to tissue damage. While

many pathological and traumatic processes may result in acute muscle damage,

contraction induced damage, and/or inflammatory myopathies, suitable recovery

often lacks complete or rapid muscle regeneration (Tabebordbar, Wang et al. 2013).

The search for effective therapies targeting skeletal muscle regeneration is ongoing

and satellite cells, expressing the chemokine receptor CXCR4, are a promising

candidate for stimulating endogenous muscle repair (Ratajczak, Majka et al. 2003).

CXCR4 and its ligand, stromal-derived factor 1 (SDF-1), are expressed in many

progenitor cells and are implicated in recruitment of stem cells during development

and regeneration (Miller, Banisadr et al. 2008). The SDF-1/CXCR4 axis may

51



represent a therapeutically relevant approach to improve skeletal muscle repair by

enhancing the recruitment and/or proliferation of resident satellite cells, thus

motivating the pairing of skeletal muscle tissue and SDF-1 gradients in the RC

Bioreactor.

3.2 - Methods

3.2.1 Cell Migration Assays

Vascular smooth muscle cells (VSMC's) were cultured in Dulbecco's Modified Eagle

Medium (DMEM) supplemented with 1% penicillin/streptomycin, 1% L-glutamine

and 10% fetal bovine serum (FBS). Bovine aortic endothelial cells (BAEC's) were

cultured in DMEM supplemented with 1% penicillin/streptomycin and 10% FBS.

Jurkat T lymphocytes cells were cultured in suspension with RPMI-1640 medium

supplemented with 1% penicillin/streptomycin and 10% FBS. Immediately after

the collagen gel polymerization, devices were filled with PBS to prevent any air

bubble formation around the gel region. The PBS was aspirated from the device and

the sink well was filled with 40 ptL of a cell suspension at a concentration of lx106

cells/ml. 10 pL of media were placed in the source and control wells to create a

pressure gradient and thus interstitial flow from the sink well into the source well.

This flow caused the cells to accumulate on the surface of the collagen gel. The

devices were incubated for 3 hours at 37 'C in order to allow the cells to adhere to

the collagen surface. The medium within the source and source reservoir wells was

replaced with medium supplemented with PDGF-BB (4nM), VEGF (0.1 and 1.0 nM),

or SDF-1 (1.0 and 10 nM). The sink and sink reservoir wells were filled with un-

supplemented control medium. To prevent evaporation without limiting gas

exchange with the environment, devices were incubated in a high humidity chamber

at 37 'C and media was changed daily. After 48 hours the devices were fixed with

4% paraformaldehyde and stained with DAPI. Fixing and staining were performed

overnight to allow the PFA and DAPI molecules to diffuse throughout the gel region.
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Images of both the experimental and control gel regions were acquired at 1oX

magnification.

3.2.2 Explant Migration Assay

Skeletal muscle explants were harvested from anterior tibialis muscles of C57B16

mice. Following euthanasia, mice were perfused with 10ml of DMEM and sterilely

isolated muscles - freed of fascia, nerves and tendons - were placed on ice in DMEM

as well. Mincing of tissue produced explants with diameters of approximately 1-

1.5mm which were suspended in the cell/sink well of poly-d-lysine coated modified-

RC-Bioreactors. Modification included the removal of the two gel region support

posts adjacent to the cell well. Matrigel was injected bilaterally through the gel

filling ports, flowed into the cell well and surrounded the explant. Following

incubation at 37'C for 20 minutes, devices were filled with DMEM supplemented

with 10% FBS, 10 mM HEPES, and 1% penicillin/streptomycin. The location of

source wells and reservoirs were randomly assigned in each device and media

therein was supplemented with 200 nM SDF-1. Media were changed every two days

and cells were fixed and stained on day 5.

3.2.2 Data Analysis

The location of each cell in each gel region was stored and categorized into bins at

100 iim increments into the gel. With sufficient magnification individual cells could

be identified manually. When cells were closely crowded and difficult to distinguish

from one another the manual identification tended to underestimate the number of

cells, biasing the result toward the null hypothesis. In the VSMC (N=4) migration

assay the bin data for the experimental and control regions were averaged and

compared using a Student T-test. In the BAEC (N=5) and Jurkat (N=4) assays, the

control bin data were first subtracted from the experimental bin data from each

device. The scaled data were averaged for each concentration and compared using
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Student's T-test. Data were further analyzed using the Bonferroni correction for

multiple comparisons.

3.3 - Results & Discussion

3.3.1 VSMC migration toward PDGF-BB

Platelet derived growth factor has been shown to induce chemotaxis of vascular

smooth muscle cells in vitro (Bornfeldt KE 1994). Figure 3.4.1 shows the

comparison of migration of VSMC's toward a 4.0 nM solution of PDGF-BB versus a

control. The images have been reoriented such that in both the PDGF-BB and

control cases, the direction of migration toward the PDGF-BB (or control) well is

from left to right.

While is it clear that the response to PDGF-BB is greater than that of the control, it is

difficult to comment definitively on the relative number of migrating cells and the

distance these cells have migrated solely from the images. A single metric could be

calculated to describe the chemotactic response but some information regarding the

complete cell distribution would likely be lost. Figure 3.4.1 uses a histogram

approach to compare the number of VSMC's which have migrated a given distance

into the gel regions. At each distance, there were more cells present in the PDGF-BB

gel region than at the corresponding distance in the control gel, achieving statistical

significance in the 0-100 and the 100-200 pLm ranges before the Bonferroni

correction. In both cases the number of migrating cells decreased as one moved

farther into the gel.

3.3.2 Jurkat T lymphocyte and endothelial cell chemotaxis

In addition to comparing migration toward a chemoattractant versus a control, we

used RC-Bioreactor to quantify a dose response for a single factor. Figures 3.4.2 and
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3.4.3 compare the migration of Jurkat T Lymphocytes toward a known

chemoattractant SDF-1 (Hesselgesser, Liang et al. 1998) at two different

concentrations, 1 nM and 10 nM, as well as the migration of bovine aortic

endothelial cells to VEGF-A (Vernon and Sage 1999) at concentrations of 0.1 nM and

1 nM, respectively. Both cell types exhibited a dose-dependent chemotactic

response, but cell-type differences in migratory patterns are observed. The Jurkat

cells exhibited a similar response to the VSMC's in that the number of cells at each

location decreases with increasing distance into the gel. In contrast, the maximal

endothelial response occurs at an intermediate value, 400-600 pim. Both the high

and low VEGF-A concentrations induced endothelial cells to migrate a short distance

into the gel - the major difference between the responses occurring at an

intermediate distance in the gel where there were markedly more cells in the high

concentration case. The endothelial cells migrated as single cells and did not form

tube-like structures as they entered the gel. This behavior is likely a result of the

short time period in which the cells were allowed to form cell to cell contacts and

organize into a monolayer before the chemotaxis assay began.

Media in the devices were replenished daily, but this process does not have a

profound effect on the gradient and cell behavior for at least two reasons. First,

during the brief time during which the source or sink well is empty the pressure

difference will cause flow primarily through the bypass channels as was the case

after the 10 p1 bolus injection. Second, as shown in Figure 2.4.7, even if the gradient

is disrupted during the media loading process the profile will return to a steady

state value in less than 2 hours.

3.3.3 - Skeletal Muscle Tissue Explant

Although previous experiments were performed with homogenous populations of

cultured and isolated cell lines, such protocols may present significant artifacts into

experimental protocols. Namely isolation procedures may result in un-pure cell
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populations and the physical and chemical requirements of isolation may adversely

affect viability or induce undesirable cellular responses. Moreover, introducing

primary cells into tissue culture conditions may result in dedifferentiation, loss of

differentiation potential, or altered gene expression each of which may be

inconsistent with conditions in vivo (Proudfoot and Shanahan 2012). The

acquisition of tissue samples in a minimally aggressive manner more favorably

reflects in vivo cell behavior and holds greater promise for therapeutic translation.

Such considerations suggested that satellite cell biology, in which cells reside

between skeletal muscle sarcolemma and basement membranes, would be

conducive to explant culture rather than serial-digestion based isolations (Pasut,

Jones et al. 2013).

Normally in the RC-Bioreactor, the ends of each gel region feature a square post

extending from the glass bottom surface to the PDMS ceiling. As the pre-

polymerized gel is added to the device, adhesion to the post and surface tension

within the fluid present a barrier to flow beyond the confines of the gel region and

into the adjoining wells. Because nutrient transport limited the size of the explant

to approximately 1-2 mm 3 , a single explant was incapable of positioning adjacent to

the two gel regions on either side of the cell well. Placing the explant in the center of

the well, however, would require cells to migrate on the 2-dimensional glass surface

before entering the gel. Moreover chemotaxis would only be possible among cells

adjacent to the glass surface rather than throughout the explant surface area.

Eliminating the two posts proximal to the cell well allowed the pre-polymer

solution, in this case the Matrigel m basement membrane matrix, to flow beyond the

gel region and bilaterally engulf the tissue explant. Modeling of the SDF-1 gradient

within this continuous gel region indicated the presence of a shallow gradient

adjacent to the explant (Figure 3.4.4), thus necessitating larger source well

concentrations (200 nM) an order of magnitude greater than typically employed

with Jurkat T-lymphocytes.
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In response SDF-1 gradients, cells emanating from skeletal muscle explants

preferentially migrated in the direction of an ascending SDF-1 gradient, Figure 3.4.5.

Compared to the control case, in the absence of SDF-1 gradients, 50% of cells

migrated to toward either gel region exhibiting a 1:1 non-preference for either

direction. In the presence of 200 nM SDF-1 source gradients 66.15 ± 0.07% of cells

were located outside of the explant in the direction of the SDF-1 gradient.

AMD3100, a potent antagonist of CXCR4, abolished the preferential migration

toward SDF-1 when included in culture media. In the presence of AMD3100 50.64 ±

0.11% of cells migrated toward SDF-1, effectively exhibiting the same 1:1 response

of the control setting without SDF-1 gradients. Interestingly migrating cells adopted

a tubular morphology and appeared to fuse into multinucleate bodies, indicative of

myoblast fusion during myogenesis (Capers 1960). Although molecular

characterization of migrating/differentiating cell is ongoing, these results confirm

the chemotactic potential of SDF-1 in the context of skeletal muscle explants.
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3.4 - Figures
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Figure 3.4.1 - Migration of Vascular Smooth Muscle Cells in RC-
Bioreactor
Vascular smooth muscle cells were loaded into the sink well of the RC-

Bioreactor and media supplemented with 4 nM of PDGF-BB was

added to the source well and reservoir. The sink and control wells

and reservoirs were filled with control media. (A) Migration of

vascular smooth muscle cells from left to right toward 4 nM PDGF-BB

and the matching control from a sample device. (B) Comparison of

migration toward PDGF-BB vs control. The number of cells at each

location decreases with increasing distance into the gel. A particularly

marked difference between the PDGF and control gels is observed in

the first 200 pm of the gel region. n = 4. 1oX, arrows indicate

direction of migration.
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Figure 3.4.2 - Dose Dependent Migration of Jurkat T-
Lymphocytes in RC-Bioreactor
(A) Migration of Jurkat T lymphocytes from left to right toward a 1 nM
solution of SDF-1 and a 10 nM solution of SDF-1. (B) Dose response of
Jurkat T lymphocyte migration toward SDF-1 concentrations. 1X.
White = DAPI, Arrows indicate direction of migration.
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Figure 3.4.3 - Dose Dependent Migration of Bovine Aortic
Endothelial Cells in RC-Bioreactor
(A) Migration of bovine aortic endothelial cells from left to right

toward a 0.1 nM solution of VEGF and a 1 nM solution of VEGF. (B)

Dose response of migration of bovine aortic endothelial cells toward

VEGF concentrations. 10x. White = DAPI. ** P < 0.01, arrows indicate

direction of migration.
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Figure 3.4.4 - Concentration Gradients in Explant Migration RC-
Bioreactor
(Left) - The skeletal muscle explant, approximately 1-1.5mm in
diameter, is placed in the cell/sink well of the modified RC-Bioreactor.
The red shaded channels represent the presence of chemoattractant,
while the blue channels serve as an internal control. (Right) - A finite
element model of diffusion in the modified RC-Bioreactor (magnified
diagram of boxed region on the left). The explant is located within a
continuous gel spanning both the experimental and control gel
channels. The modeled SDF-1 gradient decays from the source well to
a shallow slope adjacent to the explant (dashed circle). Opposite the
SDF-1 gradient, the control gel has a nearly uniform and zero
chemoattractant concentration.
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Figure 3.4.5 - Satellite Cell Migration to SDF-1 in RC-Bioreactor
(A) Skeletal muscle explant in the RC-Bioreactor sink well with an

increasing SDF-1 gradient to its left. Nuclear staining reveals an

abundance of cells to the left of the explant indicating migration

toward the SDF-1 source. (B) Actin staining suggests cells emanating

from the explant may be fusing into multinuclear aggregates, a

process that is known to occur in differentiating myoblasts. (C)

Quantification of migrating cell preferences in the modified RC-

Bioreactor. Cells preferentially migrate toward SDF-1 as opposed to

control wells when explants are exposed to a 200nM SDF-1 source

gradient. AMD3100 abolishes this preferential migration confirming

an SDF-1/CXCR4 dependent mechanism.
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CHAPTER FOUR: 2D GRADIENT BIOREACTOR

4.1 - Introduction

Microfluidic technology and the dissemination of soft lithography fabrication have

ushered in a new wave of approaches. These techniques feature chemotaxis in two

and three dimensions, under continuous fluid flow, in the presence of linear and

non-linear gradients, and spanning time lengths from hours to days at a time (Lin

and Butcher 2006; Li, Chen et al. 2007; Keenan and Folch 2008; Zervantonakis,

Chung et al. 2010). More recently competing and moving gradients have been

created to study the integration of and adaptation to multiple signals (Brett,

DeFlorio et al. 2012).

Morphogenesis, however, primarily in the context of development, has been

primarily studied through in vivo genetic models while few in vitro models of

gradient induced patterning have been developed (Park, Kim et al. 2009; Amadi,

Steinhauser et al. 2010). While exposing cells to a single gradient might

demonstrate concentration dependent gene expression in response to a single

molecule, understanding how additional molecules might influence this behavior

demands a more sophisticated approach. To this end, a new microfluidic system is

described and characterized - capable of maintaining concentration gradients along

orthogonal vectors in a single plane. In the 2D Gradient (2Dg) Bioreactor device,

cells are exposed to combinatorial gradients, mutually superimposed and

perpendicularly aligned.

The gradients exist in 2.5 dimensions, where the concentration field is uniform in a

limited "third" dimension, but cell growth occurs in a three dimensional matrix of

extracellular matrix components. This device enables two broad classes of

experimental approaches. First, two morphogen gradients may be orthogonally
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situated in a uniform or heterogeneous field of cells. As an enhanced surrogate to a

high-throughput multi-well plate approach, multiple combinations of two

morphogens exist in a single chip. Furthermore, each individual sub-region, as

defined by the unique combination of molecular concentrations, is physically

juxtaposed to and chemically communicating with adjacent sub-regions enabling

emergent paracrine signaling and/or migration. In the second class, chemotaxis,

stimulated by competing gradients may be induced on a localized or diffuse

population of cells.

4.2 - Methods

4.2.1 - Device Fabrication

The 2Dg-Bioreacor was fabricated in a manner similar to the RC-Bioreactor

described in Sections 2.2.2 and 2.2.3. A few departures from this established

protocol, however, were necessary. First, wafers (Stanford Microfluidics Foundry,

Palo Alto, CA) featured etching depths of approximately 250ptm which produced

taller channels in the 2Dg-Bioreactors. 2Dg devices were also thicker, approximately

15mm, in order to accommodate various connections between the device and

plastic tubing necessary for continuous flow. Following plasma treatment, devices

were bound to Corning@ plain glass microslides, 50 x 75mm, and then coated with

poly-d-lysine. Collagen hydrogels were introduced into the 2Dg-Bioreactor through

each for four gel filling ports. The pre-polymer solution was injected sequentially

through each port until fluid entered the central square region and the entire gel

region was contiguously filled.

4.2.2 - Gradient and Flow Characterization

After collagen polymerization, 2Dg devices were filled with approximately 200p1 of

phosphate-buffered saline (PBS, pH 7.4) by wedging a pipette into the output well
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and back-filling the four input wells. In order to prevent evaporation or convection

through the gel filling ports, four sterile 5mm diameter glass cover slips (Warner

Instruments, Hamden, CT) were plasma treated and bound to the top surface of each

device, sealing each port from ambient communication. Flow was established using

positive pressure or negative pressure. In the positive pressure setup, four 25ml

glass gastight syringes (Model 1025 TLL, Hamilton Company, Reno, NV) were filled

with appropriate solutions and loaded into a standard PHD Ultra infuse/withdraw

syringe pump (Model 703006, Harvard Apparatus, Hollistion, MA). Tygon PVC

tubing, 1/16" inner diameter, (McMaster-Carr Supply Company, Elmhurst, IL) with

14 gauge Type 304 stainless steel blunt needles (McMaster-Carr) as interconnects

were connected to syringes and forward filled to dispel air form the tubing. Male

luer lock plastic was removed from 14 gauge blunt needles in order to mate the

tubing with the four 2Dg inlet wells. The same tubing and interconnects were used

to connect the outlet well to a plunger-less 25ml plastic syringe collection reservoir

(BD Biosciences, Franklin Lakes, NJ). Syringe pump infusion drove fluid through the

tubing and device and into the collection reservoir.

In the negative pressure protocol, 3ml plastic syringes (BD Biosciences, Franklin

Lakes, NJ) were connected directly to the four inlet wells with 14 gauge blunt

needles. A single, large plastic syringe was filled with PBS, loaded into the syringe

pump, and connected to Tygon tubing. After discharging air from the tubing, it was

attached to the 2Dg outlet well. Each inlet syringe was filled with the appropriate

solutions, which were then drawn through the device and into the syringe by

operating the syringe pump in withdraw mode.

Fluid profiles were observed in devices by suspending fluorescent 1pm polystyrene

microspheres (Life Technologies, Carlsbad, CA) in PBS and imaging channels with a

high shutter rate camera. Gradients were visualized by loading appropriate inlet

syringes with 50mg/ml fluorescein isothiocyanate or rhodamine B isothiocyanate

conjugated dextran, average molecular weight 10kDa, (Sigma Aldrich, St. Louis, MO).
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After initiating flow within the device, images were acquired at 1.25X magnification

and analyzed with MATLAB software (Mathworks, Natick, MA).

4.3 - Results & Discussion

4.3.1 - Design and Operation

The design of the 2Dg-Bioreactor is shown in Figure 4.4.1. Four channels with

separate inlets and a common outlet surround a cross-shaped gel region, bounded

by support posts. Depending on the fluid composition in each of the four channels,

gradients are formed across the gel region as shown in the finite element model in

Figure 4.4.2. Fluid within each channel specifies the concentration boundary

conditions in the North, South, East and West wings of the gel via direct physical

communication. The gradients or non-gradients in each of the four wings determine

the four boundary conditions along the edges of the square central gel region. Thus

a horizontal gradient in species A is formed by placing a high concentration of

species A in channels 1 and 3 and a low concentration in channels 2 and 4. The

North and South wings develop species A gradients while the West wing features a

uniform, high concentration profile and the East wing is uniformly low. The western

border of the central square is thus given a high concentration boundary condition

and the eastern border a low concentration boundary condition. Diffusion from the

West wing to the East wing produces a horizontal gradient within the central

square. Simultaneously, the gradients within the North and South Wings establish a

linear gradient boundary condition along the north and south borders of the central

square preventing the vertical skewing of the horizontal west-to-east flux.

In order to create a superimposed gradient in species B in the central square, high

and low concentrations of species B are included in channels 1 & 2 and channels 3 &

4, respectively. B gradients, decreasing from north to south, form in the West and

East wings, the North wing is uniformly high, and the South wing is uniformly low.

As with species A, the boundary conditions along the central square are
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appropriately specified such that a uni-directional flux of B occurs from north to

south with the concomitant production of a gradient perpendicular to the species A

gradient. In addition the orthogonal gradients within the central square, the four

wings also exhibit unique combinations of the two soluble compounds. In the North

and South wings, species A gradients are superimposed on uniform high and low

backgrounds of species B, respectively. Similarly, in the West and East wings,

species B gradients are superimposed on uniform high and low concentrations of

species A, respectively. Thus five different experiments may be observed in a single

2Dg-Bioreactor.

The fluid velocity within the device was calculated to balance the convective

transport of solute through the channels with diffusion through the gels and

between the channels. At a very high velocity, very little diffusion would occur,

gradients would develop slowly, and cellular metabolic demands would not be met.

Alternatively, at a very low velocity diffusion between the gel would deplete solute

from the high concentration solutions before exiting the device, equilibrating the

high and low concentration solutions and producing shallow gradients. The Peclet

number, Pe, is a dimensionless parameter that compares the relative magnitude of

advection in the presence of bulk fluid flow to diffusion in the presence of

concentration gradients. A control volume entering the 2Dg-Bioreactor experiences

a transit time, Tadv, due to advection of

L channel

Vfluid

where Lchannel is the length of the channel and Vfluid is the linear fluid velocity. The

time-scale for diffusion between two channels, Tdiff, is given by:

W 2
T g'el

diff - D

where Wgel is the width of the gel region normal to the fluid flow and D is the

diffusion constant of the solute. A suitable Peclet number, where advection occurs

10 to 100 times more rapidly than diffusion, is then defined as:
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where the fluid velocity is a function of the appropriate Peclet number.

4.3.2 - Convective Diffusion Characterization

The pressure gradient issues that were addressed in the RC-Bioreactor were also

relevant in the 2Dg-Bioreactor. Pressure differences between parallel channels

would induce interstitial flow through the gel region, which, when a concentration

gradient existed between channels, would disrupt the linear gradient in the gel wing

and incorrectly specify the corresponding boundary condition along the central

square. Merging the outlets of each channel into a single outlet imposes a single

outlet pressure for each of the four channels. Identical flow rates caused by

identically driven syringes and positive pressure flow, or uniform inlet pressure and

negative pressure flow should create roughly identical pressure distributions within

each channel. Figure 4.4.3 illustrates the fluid streamlines at the convergence of two

channels in a positive pressure-driven device. A pressure difference between the

two channels would tilt streamlines toward the low pressure region as the two

flows meet. In Figure 4.4.3, streamlines remain parallel after merging of flows,

suggesting that the two channel pressures are identical upstream.

Fluorescently labeled dextrans allowed visualization of concentration gradients in

the 2Dg Bioreactor. Both positive and negative pressure driven flows produced two

perpendicular sets of symmetric, linear concentration regions within the central

square and four wings Figures 4.4.4-6. The gradients span only an intermediate

range of concentrations within the central square due to local

depletion/accumulation at the "uniform" high and low concentration boundaries,

respectively. These local changes may diminished by creating a device in which the

channels and wing regions are three times taller than the central square. In this
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case, the flux across the central square produces smaller changes in the

concentration at the adjacent wing sections due to their increased volume.

Nonetheless, these experimentally derived gradients confirm the ability to create

perpendicular gradients in the 2Dg-Bioreactor.
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4.4 Figures
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Figure 4.4.1 - 2D Gradient Bioreactor Design
Schematic of 2Dg-Bioreactor showing four inlets that converge in a
single outlet. The gel region is bounded by the channels and can be

divided into North, South, West, and East wings according to the

compass as well as a central square region where the four wings
converge. Channels are 1mm in width and the gel region wings were

either 1.0 or 1.5mm in width. Channel height was typically 250 pm.
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Figure 4.4.2 - Finite Element Model of 2D Gradient Formation
The combination of four different input solutions into the 2Dg-
Bioreactor produces two orthogonal gradients - a horizontal gradient
in species A and a vertical gradient in species B. In addition to the two
overlapping gradients in the central square, single species gradients
in the North, South, West, and East wings are superimposed on high
or low backgrounds of the second species. Simulation was performed
for 6 hours with constant concentration boundary conditions along
the cross-shaped gel region.
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A

B

Figure 4.4.3 - Fluid Streamlines in 2Dg Bioreactor
Fluorescent beads 1Rm in diameter were suspended in the 2Dg-
Bioreactor channels with a flow velocity of l l/min (A) and 5pd/min
(B). To fluid streams converge and streamlines remain parallel to the
direction of bulk fluid flow indicating that the pressures just upstream
to the convergence point are appropriately matched.
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Figure 4.4.4 - North and South Wing Horizontal Concentration
Gradients Formed in 2Dg Bioreactor
A north-to-south descending gradient of FITC-Dextran was generated
in the 2Dg-Bioreactor. (A) Horizontal gradients at two points in the
North wing exhibit uniformly high concentrations as compared to (B)
horizontal gradients at two points in South wing at uniformly low
concentrations.
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Figure 4.4.5 - West and East Wing Vertical Concentration
Gradients in 2Dg Bioreactor
A north-to-south descending gradient of FITC-Dextran was generated
in the 2Dg-Bioreactor. Thus vertical gradients are present in the West
(A) and East (B) wings. At two points in either wing, the

concentration gradient decreases linearly from north to south,

achieving and maintaining a linear profile for several hours.
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Figure 4.4.6 - Central
Bioreactor
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Square Concentration Gradients in 2Dg

A north-to-south descending gradient of FITC-Dextran was generated
in the 2Dg-Bioreactor. (A) Horizontal gradients at three locations in
the central square demonstrate uniform, constant concentration
profiles. (B) Vertical gradients at three locations are linearly
decreasing from North to South.

75

A

B

0een Ho~zonI21028
220

U-01
210 2 nrs

210. 618

205 - 81a

200 -U-- 12 1710

10

1B)

t o 10 ?2 00 25 -

(74rwnV,fi01844

210~ 2 lo

210 81r80

2701 U 8 ro

12 010

18 W -- I

175 U

170 4 4

215

185

185

Green veibod559

-. 01

W 218IT-

U - 3- 10180s

1 ITS

Isa

C r
210 - ' 2180

21 10

200 -a- 2tsL

175
17 3o 150 220 300

(seen VeM,37M

I



CHAPTER FIVE: VENTRAL NEURAL TUBE MORPHOGENESIS

5.1 - Introduction

The roles of Wnt signaling in the developing vertebrate ventral neural tube have

been suggested previously, but a holistic reconciliation of seemingly contradictory

functions has not yet been demonstrated (Ulloa and Marti 2010). While it may be

clear that Wnt signaling is active in the ventral neural tube, whether it functions to

promote or suppress the expression Shh induced genes remains contextually

unclear, Figure 5.4.3. Wnt functions in two distinct roles via its Tcf effectors. In the

first instance, Tcf repression strongly inhibits the expression of Nkx2.2 in the p3

domain, thus setting a threshold of Shh/Gli activity beyond which Nkx2.2 may be

expressed (Wang, Lei et al. 2011). Conversely, in the second instance Tcf repression

inhibits Gli3R activity, an inhibition that is reversed when Tcf becomes an activator

in the presence of Wnt stimulation.

It has been shown that Wnt expression is limited to the dorsal midline in the

developing neural tube. Thus, of the ventral progenitor domains, the p3 domain is

farthest from the region of high Wnt expression and hence an ideal region to be

dependent on the absence of Wnt activation for the proper initiation of its genetic

program. Tcf-repression would be most resilient in a regulatory scheme where its

critical function is employed at the farthest distance from its own repressor, namely

Wnt activity. Indeed a cis-regulatory enhancer region containing Tcf and Gli

consensus binding sites has been identified upstream of the Nkx2.2 promoter (Lei,

Jeong et al. 2006). Gli activation must overcome Tcf repression in order to initiate

Nkx2.2 expression (Wang, Lei et al. 2011). Outside of the p3 domain, Nkx2.2

expression, must also be restricted from other more dorsal regions in the neural

tube where increased Wnt activity, and hence decreased Tcf-repression of Nkx2.2, is

present. Such inhibition is augmented by the presence of Wnt antagonists such as

76



sFRP2 (Lei, Jeong et al. 2006). Additionally, the stimulus of Nkx2.2 expression,

Shh/Gli activity, decreases dorsal to the p3 domain. Together, a ventral to dorsal

decrease in Shh/Gli activity, a dorsal to ventral decrease in Wnt activity, Tcf cis-

regulatory inhibition of Nkx2.2, and sFRP2 antagonism of Wnt signaling present a

potent barrier to Nkx2.2 expression throughout the neural tube.

Although Gli3 is known to have both activator and repressor functions (Jacob and

Briscoe 2003), it is thought to function primarily as a repressor (Gli3R) in the neural

tube (Persson, Stamataki et al. 2002). Gli3R activity is most prevalent in the dorsal

aspects of the neural tube, and mouse Gli3> mutants show no defects in the

expression of ventral genes (Stamataki, Ulloa et al. 2005). Intermediate and dorsal

regions, however, exhibit a ventralized phenotype - as if a higher concentration of

Shh had been present. Thus Gli3 represses Shh induced genes in regions of

moderate to low Shh activity. These regions are also closer to the roof plate where

Wnt proteins are produced. Evidence suggests that Wnts antagonize Shh signaling

by inducing Gli3R expression by relieving Tcf-repression of Gli3R (Lei, Jeong et al.

2006). In the absence of Wnt signaling, Tcf represses Gli3R expression and Tcf

consensus binding sites have been identified in the Gli3 enhancer region. Positive

Wnt signaling converts Tcf to its activator form which allows Gli3R expression to

increase, reducing Gli activator function.

Herein lies the potential conflict in which Tcf represses Shh induced Nkx2.2

expression while also repressing Gli3R and effectively promoting Shh activity,

Figure 5.4.3. Wnt signaling should then simultaneously promote Nkx2.2 expression

while inducing Gli3R and suppressing Shh activity. Novel microfluidic technology

enabled the simultaneous creation of Shh and Wnt gradients in the context of neural

gene induction. By combining these two signals the conditions where Wnt might

function as a positive or negative regulator of Nkx2.2 may be elucidated.
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5.2 - Methods

5.2.1 - Embryonic stem cell culture and differentiation

The Olig2-GFP reporter ES cell line was developed as described previously (Hai-

Qing, Elizabeth et al. 2003). An Nkx2.2-tdTomato reporter line was created by

electroporating the construct in cells with a wild-type or Rosa26-Gli1-FLAG

background (Vokes SA, Ji H et al. 2007). Cells were cultured separately on 0.1%

gelatin coated flasks in Gasglow Minimum Essential Media supplemented with 15%

KnockOutTM Serum, 1X Non-essential amino acids, IX sodium pyruvate, 0.1 mM 2-

mercaptoethanol, 1% penicillin-streptomycin, and 1000 units/ml leukemia

inhibitory factor.

To induce differentiation the Olig2-GFP and Nkx2.2-tdTomato cell lines were mixed

in a 1:1 ratio in DFNB medium: DMEM-High glucose, F-12 Medium, and Neurobasal

Medium in a 1:1:2 ratio supplemented with 1% penicillin-streptomycin, 1% L-

glutamine, 10% KnockOutTM Serum, and 55pM 2-mercaptoethanol. Hanging drops

were formed with 500 cells per 12 pl droplet and embyroid bodies were allowed to

form for 2 days.

5.2.2 - Sonic Hedgehog Morphogen Gradient Validation

A collagen prepolymer solution was used to seed embryoid bodies in the RC devices.

The solution was prepared on ice by combining 1oX DMEM, deionized water and Rat

Tail Collagen Type I to produce a final collagen concentration of 2 mg/ml at pH 7.

Day 2 embryoid bodies were collected in a pellet, and approximately 6500 embryoid

bodies were added to 35 p.1 of the collagen pre-polymer solution. Approximately 4

p.l of the suspension was injected into each gel region of the devices and the collagen

was allowed to polymerize at 37 'C for 30 minutes. Devices were then filled with

DFNB medium supplemented with retinoic acid at a concentration of 500 mM. The

source and source reservoir wells of each device were loaded with retinoic acid
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supplemented DFNB and recombinant Sonic Hedgehog protein (R&D Systems,

Minneapolis, MN) at concentrations of 12.5 nM, 25 nM, 50 nM, and 125 nM. Media

in the devices were changed every 24 hours and images of the gel regions were

acquired daily. The cells remained in the devices for 4 days.

5.2.3 - p3 Differentiation Assay: 2-Dimensional Perpendicular Gradients

Nkx2.2-tdtomato reporter ES cells were suspended in 2mg/mi collagen type I gels at

a density of 5x10 6 cells/ml. Devices were incubated at 37'C in humidity chambers

for 30 minutes to allow the collagen gels to polymerize. Each device was then filled

with DFNB medium by firmly inserting a pipette tip into the outlet port and back-

filling the device. Devices were returned to humidity chambers at 37'C for 48 hours,

and media was changed every 12-24 hours. Devices were then connected to syringe

pumps and media reservoirs as described above. To create Shh/Wnt-3a gradients

the 4 input solutions were: (1) DFNB-RA + 0.1nM mouse recombinant Wnt-3a (R&D

Systems), (2) DFNB-RA + 12.5nM mouse recombinant Shh-C2511 (R&D Systems) +

0.1nM mouse recombinant Wnt-3a (R&D Systems), (3) DFNB-RA + 12.5nM Shh-

C2511+ 1.OnM Wnt-3a, and (4) DFNB-RA + 1.OnM Wnt-3a. Media was withdrawn

from each device at a rate of 6pl/min for 4 days, with reservoir replenishment as

necessary. Cells were imaged with ImageJ software which were analyzed with

MATLAB (Mathworks).

5.2.4 - p3 Differentiation Assay: 1-Dimensional Superimposed Gradient

RC-Bioreactor devices were fabricated and seeded with Nkx2.2-tdtomato reporter

ES cells in a 1mg/ml collagen gel at a density of 50x106 cells/ml. After collagen

polymerization, devices were filled with DFNB media and incubated at 37'C in

humidity chambers for 48 hours. Then, media was aspirated from each device and

new media, containing DFNB-RA supplemented with either 0.1nM or 1.OnM Wnt-3a,

was added to each device. The source well was additionally supplemented with
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12.5nM Shh-C2511 to create the Shh gradient. Media was changed daily. After 4

days, devices were imaged and the fluorescent intensity in each gel region was

quantified.

5.2.5 - Gene regulatory network modeling

The system of ordinary differential equations was solved in the MATLAB program

(Mathworks, Natick, MA) using the ode23 solver. System parameters were chosen

such that a tripartite expression pattern between transcription factors Nkx2.2,

Olig2, and Pax6 was observed in response to an increasing Shh input with a

concomitantly low Wnt input. The effect of an increasing Wnt input was observed in

the setting of the highest Shh input.

5.2.6 - Western blots

Nkx2.2-tdtomato reporter ES cells were seeded at a density of 2x105 cells in 1 ml of

DFNB media in Corning Ultra-Low Attachment 24 well plates. After 48 hours, media

was replaced with fresh DFNB medium containing retinoic acid (500nM),

recombinant mouse Shh-C2511 (R&D Systems, Minneapolis, MN) and recombinant

mouse Wnt-3a (R&D Systems, Minneapolis, MN). After 72 additional hours, cells

were lysed in RIPA buffer and transferred to a polyvinylidene difluoride membrane.

Western blot analysis was performed using primary antibodies targeting: dsRed

1:8000 (Abcam, Cambridge, UK); Nkx2.2 0.5 tg/ml (Developmental Studies

Hybridoma Bank [DSHB], Iowa City, IA); Gli3 1 ptg/ml (R&D Systems, Minneapolis,

MN); Pax6 0.5 pg/ml (DSHB); Tubulin 1:1000 (Sigma Aldrich, St. Louis, MO) and

HRP-conjugated secondary antibodies 1:2000 (Bio-Rad, Hercules, CA).

5.2.7 - Quantitative RT-PCR
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RNA was isolated with Trizol Reagent and reverse transcription was performed

using random hexamer primers. For qPCR, technical samples were performed in

duplicate using SYBR Green master mix on an ABI Prism 7900HT machine. Data

was normalized to GAPDH expression and the following primers were used: Pax6-F-

TACCAGTGTCTACCAGCCAAT; Pax6-R-TGCACGAGTATGAGGAGGTCT; Olig2-F-

TCCCCAGAACCCGATGATCTT; Olig2-R-CGTGGACGAGGACACAGTC; Nkx2.2-F-

AAGCATTTCAAAACCGACGGA; Nkx2.2-R-CCTCAAATCCACAGATGACCAGA; Gapdh-F-

AGGTCGGTGTGAACGGATTTG; Gapdh-R-TGTAGACCATGTAGTTGAGGTCA.

5.3 - Results & Discussions

5.3.1 - Sonic hedgehog induced Olig2 and Nkx2.2 expression

Embryonic stem cells seeded in the collagen gel regions continued to proliferate,

eventually merging into one large continuous mass covering the entire gel volume,

Figure 5.4.1. On day 0 a Shh gradient was formed in the gel regions containing the

differentiating cells. Shh stimulates the expression of the transcription factors Olig2

and Nkx2.2 (Dessaud, Yang et al. 2007), and initially Olig2 or Nkx2.2 expression was

undetectable by fluorescent microscopy. On day 3, both Olig2 and Nkx2.2

expression became evident at the edge of the gel closest to the Shh source and by

day 4 the expression had spread farther into the gel. The cells farther from the Shh

source were exposed to lower Shh concentrations and required more Shh exposure

time before activating expression of Olig2 and Nkx2.2, illustrating the interplay

between Shh dosing concentration and dosing time in neural tube development. As

shown in Figure 5.4.1, the expression levels in the untreated control gels were

uniform at baseline levels. In the gels with the Shh gradient both Olig2 and Nkx2.2

expression levels were highest closest to the Shh source and decayed to the baseline

untreated level approximately halfway between the Shh source and sink. This is

consistent with the notion that in the portion of the gel where the Shh concentration

exceeded some critical threshold, expression of Olig2 and Nkx2.2 was stimulated; in
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the remainder of the gel, where the Shh concentration was below the threshold, no

such stimulation occurred.

In response to steeper concentration gradients created by increasing the

concentration of Shh in the source well the concentration at each point in the gel

increased. Accordingly with increasing Shh source concentration the extent of Olig2

and Nkx2.2 expression into the gel region increased as well, Figure 5.4.2.

5.3.2 - Nkx2.2 Reporter Exhibits a Biphasic Expression Pattern

To investigate the opposing mechanisms (Figure 5.4.3) of Wnt on Shh induced

expression of the p3 domain transcription factor Nkx2.2, embryonic stem cells

transgenically expressing tdtomato fluorescent protein driven by the presumptive

Nkx2.2 enhancer (Lei, Jeong et al. 2006; Vokes, Ji et al. 2007) were exposed to

combinatorial gradients of Shh (increasing from South to North) and Wnt-3a

(increasing from West to East) in the 2Dg-Bioreactor, Figure 5.4.4. Compared to the

control scenario lacking a Wnt-3a gradient, tdtomato expression was diminished in

the West wing where the Wnt-3a concentration is only 0.1nM. In the Central region

and East wing where Wnt-3a increases to 1nM, tdtomato expression was increased

to or beyond the level of expression in the control device.

To confirm this result, and isolate the role of Wnt-3a stimulation, Nkx2.2 expression

was stimulated in the RC-Bioreactor where a single, linear Shh gradient was

superimposed on a uniform background of Wnt-3a at either 0.1 or 1.0 nM, Figure

5.4.5. Quantifying the tdtomato fluorescent signal, confirmed that increasing the

Wnt-3a signal from 0 to 0.1nM decreased gene expression while increasing it

further to 1.0 nM reversed this effect.
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This Nkx2.2 reporter model is consistent with a regulatory model governed by the

following 3 relationships,

GljiNkx22-Threshold = f, (W'nt) (1)
GliA = f 2(Shh,Wnt) (2)

Shhkx 2 Threshold = f3 (Wnt) (3)

where fl, f2, and f3 are generalized functions that describe the following

relationships: Equation 1 indicates that the Gli signal required to induced Nkx2.2

expression is a function of the Wnt signal strength, Figure 5.4.6a As the Wnt signal

increases, less Gli stimulation is required to compensate for the diminished

repression of Nkx2.2 by Tcf. Equation 2 indicates that the strength of Gli activation

signaling is directly proportional to Shh and inversely proportional to Wnt, Figure

5.4.6b. Wnt signaling increases the expression of Gli3R which suppresses Gli

activator function. Combining equations 1 and 2 yields equation 3 - the magnitude

of the Shh signal required to induce Nkx2.2 is a function of Wnt, Figure 5.4.6c.

Under certain constraints, equation 3 describes the biphasic role of Wnt, in which

slight Wnt stimulation increases the Shh signal necessary for Nkx2.2 expression and

further stimulation reduces this threshold back toward the Shh threshold present in

the absence of Wnt.

5.3.3 - Nkx2.2 protein expression is down-regulated by Wnt-3a

Protein-protein interactions between Olig2 and Nkx2.2 transcription factors have

been demonstrated (Sun, Dong et al. 2003) and represent a mechanism by which

neural tube gene regulatory network components exert mutual cross-repressive

influences. The effect of such interactions would be undetectable in a transgenic

reporter model in which tdtomato expression is driven by the presumptive Nkx2.2

enhancer. To investigate this possibility we measured tdtomato and Nkx2.2 protein

expression semi-quantitatively in the presence of Shh and Wnt-3a, Figure 5.4.7.
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Similarly to the 2Dg-Bioreactor fluorescent patterns, compared to stimulation with

1OnM Shh alone, tdtomato was down-regulated with the addition of O.1nM Wnt-3a

but remained unchanged/increased with the addition of 1.OnM Wnt-3a. Nkx2.2 was

also suppressed in the presence of O.1nM Wnt-3a, however, it was further

suppressed in the presence of 1.OnM Wnt-3a. Wnt suppression of Nkx2.2 is

mediated by an up-regulation of Gli3 which increased in a dose dependent manner

with increasing Wnt-3a stimulation. An increase in Gli3, in its repressor role, would

inhibit Shh signaling and promote the expression of more dorsally expressed neural

tube homeodomain proteins. Indeed Pax6, which is expressed dorsal to Nkx2.2 in

the neural tube, and thus maintained by a weaker Shh signal, is concomitantly

increased with Wnt-3a stimulation and Gli3 expression.

5.3.4 - Gene Regulatory Network and Expression

A post-transcription or post-translation intervention on Nkx2.2 gene expression

could account for the difference between Nkx2.2 and tdtomato protein expression

even if the tdtomato reporter accurately reflects Nkx2.2 transcription. However,

differences between Nkx2.2 and tdtomato transcript levels would imply differential

cis-regulatory behavior at the endogenous and transgenic enhancer regions. Pax6,

Olig2, and Nkx2.2 gene expression in response to Shh and Wnt-3a is shown in Figure

5.4.8. In the presence of Shh, Nkx2.2 expression decreases with increasing Wnt-3a,

while Pax6 expression increases. Thus the Nkx2.2 protein expression data

accurately reflects Nkx2.2 transcription suggesting a discrepancy between the

putatively identified Nkx2.2 enhancer and the true combination of Nkx2.2

regulatory elements.

To understand this monophasic down-regulation of Nkx2.2 protein expression in

the context of a biphasic interaction described by Wnt and the Nkx2.2 enhancer the

Balaskas-Briscoe cross-repressive gene regulatory network model (see Figure 5.4.9)

(Balaskas, Ribeiro et al. 2012) was appropriately modified. The new model included

Wnt and Shh as inputs and included both the induction of Nkx2.2 by Wnt via the
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Nkx2.2 enhancer as well as the Wnt mediated suppression of Shh induced Gli

activity, Figure 5.4.10. The resulting differential equations describe the kinetics of

gene expression:

dP a kP

dt N h

No

dN = K 1 -kN-

dt (1+G l+W) O+:h+;h, N

ON 
PN

dG ES ___(~+~)-kGGdt 1+S I+(W 6

WG

This model accurately predicted a tri-stable system dominated by the expression of

single transcription factors as the degree of Shh stimulation increased in the

presence of a minimal Wnt input. The progression from pHigh to OHigh to NHigh

corresponded to progressively ventral positions in the neural tube with

progressively larger stimulation within the Shh gradient. In agreement with

experimental data, when the Wnt signal was increased in the presence of an Shh

input of sufficient magnitude to induce Nkx2.2 expression in the absence of Wnt,

Nkx2.2 expression was down-regulated and Pax6 expression is increased.

These results indicate that the presumptive Nkx2.2 enhancer incompletely

determines the expression pattern of Nkx2.2 in response to Shh and Wnt. While

protein-protein interactions between Nkx2.2 and Olig2 or other factors are possible,

there may also be additional genetic regulatory elements in non-coding DNA regions
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that create additional regulatory opportunities. Identification of this mechanism is

the proximal step in further understanding the role of Wnt proteins in the neural

tube gene regulatory network.
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5.4 - Figures
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Figure 5.4.1 - Shh Gradients Induce Olig2
(A) ES cell reporter lines (Olig2-GFP and
mixed and differentiated in hanging drops.

and Nkx2.2 Expression
NKX2.2-tdTomato) were
Two days later (day 0 of

Shh exposure), embryoid bodies we seeded in collagen gels and

exposed to a concentration gradient ranging from 25 nM to 0 nM
along the length of the gel. On day 3, Olig2 and Nkx2.2 expression
were evident by fluorescent signal at the higher concentration region
in the gel. On day 4 this expression had increased in intensity and
penetration into the gel as regions of lower Shh concentration
received sufficient temporal exposure to induce a response. Measured
day 4 expression for Olig2 (B) and Nkx2.2 (C) compared to untreated
gels shows the extent of differentiation at different points in the
gradient by plotting reporter fluorescent intensity vs. distance from
the Shh source. Expression is highest at the locations in the gel closest
to the Shh source and eventually falls to the baseline level present in
the gels that contained embryoid bodies that were not simulated with
Shh. This indicates the location in the gel where the Shh
concentration is equal to the threshold level necessary to induce Olig2
and Nkx2.2 expression.
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Figure 5.4.2 - Concentration Dependence of Olig2 and Nkx2.2
Expression Penetration
2 day old embryoid bodies were seeded in the gel regions of the RC
device and exposed to Shh gradients produced by 12.5 nM (blue), 25
nM (green), 50 nM (pink), and 125 nM (black) Shh concentrations in
the source well. After 4 days of Shh exposure Olig2 (A) and Nkx2.2
(B) expression in the gel region as judged by fluorescent reporter
intensity was plotted against distance from the source well. The
expression levels at all four of the Shh doses were highest in the in the
regions adjacent to the source wells and decreased to the baseline
levels present in the gels with untreated embryoid bodies (red dashed
line). Increasing Shh doses increased the Shh concentration at each
location in the gel. Thus at higher concentrations the location of the
expression threshold moves farther form the source well and the
Olig2 and Nkx2.2 expression extends farther into the gel.
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Figure 5.4.3 - Opposing Influences of Wnt Signaling on Nkx2.2
Expression
Nkx2.2 expression is dependent on Shh induction of Gli activator
function. Wnt intersects with this pathway to differentially regulate
Nkx2.2 expression in response to Shh induction. In pathway I, Wnt
turns off the repressive actions of Tcf. In the absence of Wnt
signaling, Tcf represses Gli3 which primarily functions to repress Gli
activator activity and hence suppresses Nkx2.2 expression. Positive
Wnt signaling then increase Gli3R allowing increased Nkx2.2 down-
regulation. In pathway II, in the absence of Wnt signaling, Tcf
represses Nkx2.2 expression. Positive Wnt signaling suppresses Tcf
repression of Nkx2.2 leading to Nkx2.2 up-regulation.
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Figure 5.4.4 - Biphasic Expression of Nkx2.2 in the Presence of
Shh and Wnt-3a 2Dg Bioreactor Gradients
(Top-Left) A north-south gradient created by 12.5nM of Shh induces
Nkx2.2 gene expression uniformly in the North wing and non-
uniformly in the West wing, East wing, and central square. Boxed
region - (Bottom-Left) Graphical representation of Nkx2.2 driven
expression tdtomato fluorescence - height and color correspond to
fluorescent intensity. (Top-Right) A west to east 0.0 to 1.OnM Wnt-3a
gradient is oriented perpendicular to the Shh gradient. (Bottom-
Right) - Compared to the control case with a single Shh gradient,
Nkx2.2-tdtomato expression is decreased in the West wing at low
Wnt-3a concentrations, and increased in the central square and East
wing at intermediate and high Wnt-3a concentrations.
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Figure 5.4.5 - Biphasic Expression of Nkx2.2 in RC-Bioreactor
(A) Nkx2.2-tdtomato expressing ES cell line was seeded in the RC-
Bioreactor and media was supplemented with 0.0, 0.1, or 1.OnM Wnt-
3a. A 12.5nM Shh gradient was then created in the experimental gel.
Phase and tdtomato fluorescent images are shown (6X magnification).
(B) Quantification of tdtomato expression in the gel regions shows a
biphasic response to Wnt-3a, first decreasing at 0.1nM and then
increasing at 1.OnM.
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Figure 5.4.6 - Biphasic Model of Nkx2.2 Enhancer
(A) Model describing inverse relationship between Gli signal strength

required to induce Nkx2.2 expression and the magnitude of Wnt

stimulation. (B) Shh concentration is directly proportional to

intracellular Gli activity at any arbitrary level of Wnt signaling. As the

Wnt strength increases, intracellular Gli activity decreases at each

level of Shh signaling. (C) The Shh concentrations corresponding to

the magnitude of Gli activity required to induce Nkx2.2 expression in

the presence of Wnt stimulation produces a biphasic curve. The star

represents a cell in which the local Shh concentration exceeds the

threshold for Nkx2.2 expression. A slight increase in Wnt

concentration (0.1 nM), at a constant Shh concentration, displaces the

cell to a state where the Shh threshold for Nkx2.2 expression exceeds

the local Shh concentration. Further increases in Wnt concentration

(1.0 nM) displace to cell to a state where Nkx2.2 expression is again

permissible.
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Figure 5.4.7 - Protein Expression in Response to Shh and Wnt-3a
(Left) Protein expression in neural progenitor cells treated with 1OnM
Shh and 0, 0.1, or 1.0 nM Wnt-3a. (Right) Quantification of tdtomato
protein expression as a function of Wnt-3a. The biphasic behavior of
tdtomato is not mirrored by the Nkx2.2 protein expression.
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Figure 5.4.8 - Transcription Factor Gene Expression
(A) Pax6 gene expression increases in response to Wnt-3a
stimulation. (B) Olig2 gene expression is absent in the absence of Shh
and is responsive to Wnt-3a signaling. (C) Nkx2.2 expression is also

absent in the absence of Shh and decreases monotonically in response
to increasing levels of Wnt-3a.
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Figure 5.4.9 - Single Input Shh Driven Gene Regulatory Network
(A) Cross-repression between neural tube transcription factors as
described by the Balaskas-Briscoe model. (B) At the lowest level of
Gli, Pax6 expression is highest. (C) A moderate increase in Gli
signaling switches the network output to Olig2 expression. (D)
Further increases in Gli signaling switch the system to maximal
Nkx2.2 expression. This model functions as a tristable switch in
response to increasing levels of Gli activator function.
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Figure 5.4.10 - Dual Input - Shh and Wnt - Gene Regulatory
Network
(A) Cross repressive gene regulatory network in which Wnt (W) and

Shh (S) are the primary inputs. Tristable simulation of GRN, at a

minimum Wnt signal strength, in which increasing levels of Shh

transition the model from Pax6 dominant (B) to Olig2 dominant (C)

to Nkx2.2 dominant (D). Increasing Wnt at a high level of Shh

suppresses Nkx2.2 expression and increases Pax6 expression (E-G).
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CHAPTER SIX: CONCLUSIONS AND FUTURE DIRECTIONS

Two novel devices capable of maintaining stable linear concentration gradients for

the study of cell behavior in a 3-dimensional environment have been presented.

This work presents a significant advance over previously reported techniques

because the RC-Bioreactor device does not require continuous fluid flow and allows

stable concentration gradients to be formed in a 3-dimensional environment for a

period of days (Li Jeon, Baskaran et al. 2002; Mao, Cremer et al. 2003; Lin, Saadi et

al. 2004; Zhu, Chu et al. 2004; Biddiss and Li 2005; Chung, Flanagan et al. 2005;

Chung, Lin et al. 2006; Diao, Young et al. 2006; Irimia, Geba et al. 2006; Lin and

Butcher 2006; Saadi, Wang et al. 2006; Amarie, Glazier et al. 2007; Cheng, Heilman

et al. 2007; Herzmark, Campbell et al. 2007; Li, Chen et al. 2007; Park, Hwang et al.

2007; Yang, Pi et al. 2007; Cheng JY, Yen MH et al. 2008; Fok, Domachuk et al. 2008;

Kang, Han et al. 2008; Li, Liu et al. 2008; Liu, Sai et al. 2008; Motoo, Toda et al. 2008;

Shamloo, Ma et al. 2008; Sun, Wang et al. 2008; Atencia, Morrow et al. 2009;

Cooksey, Sip et al. 2009; Englert, Manson et al. 2009; Glawdel, Elbuken et al. 2009;

Haessler, Kalinin et al. 2009; Hattori, Sugiura et al. 2009; Jeon, Lee et al. 2009; Joong

Yull, Suel-Kee et al. 2009; Kalinin, Jiang et al. 2009; Kim, Pinelis et al. 2009; Park, Yoo

et al. 2009; Siyan, Feng et al. 2009; Yusuf, Baldock et al. 2009; Zhou, Wang et al.

2009). Other devices produce gradients without continuous flow but are still

limited to 2-dimensional geometries (with limited degrees of gradient stability)

(Abhyankar, Lokuta et al. 2006; Frevert, Boggy et al. 2006; Wu, Huang et al. 2006;

Du, Shim et al. 2009; Kim, Lokuta et al. 2009), while others establish gradients in 3-

dimensional environments but are dependent on fluid flow (Mosadegh, Huang et al.

2007; Saadi, Rhee et al. 2007; Tingjiao, Chunyu et al. 2009; He, Du et al. 2010;

Zervantonakis, Chung et al. 2010). The incorporation of low resistance reservoir

paths prevents convective transport of soluble factors through the hydrogel region

and the disruption of the concentration profile by pressure gradients. This result is

achieved without the incorporation of multilayered microfluidic chips, specialized
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pressure regulators, valves, or continuous fluid flow. The simple design coupled

with the device's resistance to perturbations during handling make the RC-

Bioreactor optimal for cell biology applications, with no prerequisite expertise in

microfluidic technology required.

Chemotaxis assays were performed with 3 different cell types, which each behave

differently in culture. Vascular smooth muscle cells attach to flat substrates and

grow in a 2-dimensional monolayer whereas endothelial cells have the ability to

form a monolayer on 3-dimensional surfaces (Chung, Sudo et al. 2009). Jurkat T

lymphocytes that are normally cultured in suspension were also able to adhere to

and invade the collagen gel. In addition to these and other cell types, the versatility

of the RC-Bioreactor also lends itself to the study of explant biology and other 3-

dimensional cellular aggregates such as embryoid bodies. Results indicate that cells

are induced to migrate from skeletal muscle tissue explants in response to SDF-1.

Additionally, differentiating embryonic stem cells as 3-dimensional aggregates in

the gel region with superimposed a Shh morphogen gradient to show, for the first

time, differential expression of neural tube transcription factors in a Shh

concentration gradient in 3-dimensional differentiation cultures. These results

confirm the accepted paradigm governing the role of Shh in neural development and

motivated future studies with more complex gradients to elucidate the role of

additional signaling gradients, such as Wnts, that affect the spatiotemporal

patterning in the neural tube (Joong Yull, Suel-Kee et al. 2009; Ulloa and Mart

2010).

Finally the RC-Bioreactor design is amenable to simple modifications to enhance its

performance for specific applications. Chemotaxis occurring over 1-2 days and

differentiation occurring over the course of 3-4 days have been observed in the RC-

Bioreactor, but some processes might require longer observation periods. By

increasing the sizes of the source and sink wells relative to that of the gel region a

steep gradient can be maintained for longer periods of time as the flux of solute now

occurs between two larger volumes. Additionally, the integration of larger wells
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increases the availability of media and nutrients, slows the accumulation of waste

products, and eliminates the need for frequent media changes. Although increasing

the well volumes would also reduce pressure gradients caused by volume

imbalances, this would not eliminate the need for the low resistance bypass

channels unless the wells were increased dramatically. Using Darcy's Law the Peclet

number, Pe, for mass transport through the gel can be written as a function of a

volume imbalance AV and the diameter of the wells, (Lek, Dias et al. 2010)

P 4KpgAV
Pe-=

For convection and diffusion to balance (Pe=1) in the presence of a 10 tl bolus and

for a molecule with a diffusivity of 1.6x10-6 cm 2 /s, the diameter of the wells would

need to be 2.8 cm which is nearly 10 times the size of the wells in this paper.

Together, the simplicity of the design that eliminates solute convection through the

gel, the variety of biological systems that can be incorporated into the device, and

the adaptability of the device to new designs that can modulate gradient formation

create an effective tool for interrogating the behavior of cells within a defined 3D

microenvironment and under the influence of a stable concentration gradient.

The 2Dg-Bioreactor enabled the elucidation of the role of Wnt on Shh induction of

Nkx2.2. Wnt effectively suppressed Nkx2.2 expression as confirmed by protein and

gene analysis as well as by modeling the gene regulatory model. The differential

expression of Nkx2.2 and the Nkx2.2-tdtomato reporter suggest that additional,

unidentified, regulatory components exist that govern Nkx2.2 expression but are

not included in the putative Nkx2.2 enhancer. Identification of these regulatory

events will provide mechanistic insight into the observations described here.

The gene regulatory model in which cross-repression between Pax6, Olig2, and

Nkx2.2 result in a tri-stable switch generally exhibits stable transitions from Pax6 to

Olig2 to Nkx2.2 as the Shh input increases. However, there exist conditions where

the transition from Olig2 to Nkx2.2 expression exhibits oscillations. Initially, in
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response to an increasing Shh concentration, Olig2 and Nkx2.2 expressions increase

and together they inhibit Pax6 expression. Olig2 becomes the most highly

expressed gene while Nkx2.2 increases mores slowly. Eventually Nkx2.2 reaches a

level capable of inhibiting Olig2 expression, however, upon the elimination of Olig2

expression, Nkx2.2 inhibits Pax6 alone. This creates a transient increase in Pax6

expression which inhibits Nkx2.2 and allows Olig2 expression to increase. Olig2

eliminates Pax6 expression and the pattern continues, oscillating between Olig2 and

Nkx2.2 dominance (Panovska-Griffiths, Page et al. 2013), Figure 6.1.

A key step in the evolution of this oscillatory behavior is inhibition of Nkx2.2 by

Pax6. There exists evidence to suggest that some or all of this inhibition may be

dependent on Pax6 dependent expression of sFRP2 (Lei, Jeong et al. 2006). This

soluble Wnt inhibitor could then increase Tcf repression of Nkx2.2. This presents an

interesting rationale for the functionally silent role of Wnt as a positive regulator of

Nkx2.2. If Pax6 inhibition of Nkx2.2 requires antagonizing an extracellular field of

Wnt ligands, a single oscillating cell may not be capable of producing quantities of

sFRP2 sufficient to neutralize the Wnt signal, Figure 6.1. Instead, multiple

contiguous cells would be required to locally concentrate sFRP2 to the level

required to abrogate intracellular Wnt signaling. In the neural tube, prior to Shh

production, Pax6 is widely expressed allowing multiple cells to participate in pan-

inhibition of Nkx2.2. However, after Pax6 expression has been eliminated in some

ventral regions, a few cells at the p3/pMN boundary where Nkx2.2 is just barely

induced might lack the coordinated sFRP2 production necessary to re-inhibit

Nkx2.2. Further elucidation of this theory may reveal its role in stabilizing

Olig2/Nkx2.2 oscillations at the p3/pMN boundary.
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Figure 6.1 - Gene Regulatory Network Instability and sFRP2
Mediated Inhibition of Nkx2.2.
(A) A time delay model in which at intermediate Shh levels, Nkx2.2
(red) induction is periodic alternating a dominant expression pattern
with Olig2 (green) as a result of insufficient Pax6 (blue) inhibition. As
it is the inhibition of Nkx2.2 by Pax6 that induces Nkx2.2 expression
to decline, (B) if this mechanism were dependent on the sFRP2
mediated inhibition of Wnt signaling, the lack of coordinated action
between multiple cells might prevent the oscillatory behavior seen in
(A).
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