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Abstract

In this thesis we present a data-driven neuromuscular model of human walking and
its application to prosthesis control. The model is novel in that it leverages tendon
elasticity to more accurately predict the metabolic consumption of walking than con-
ventional models. Paired with a reflex-based neural drive the model has been applied
in the control of a robotic ankle-foot prosthesis, producing speed adaptive behavior.

Current neuromuscular models significantly overestimate the metabolic demands
of walking. We believe this is because they do not adequately consider the role of elas-
ticity; specifically the parameters that govern the force-length relations of tendons in
these models are typically taken from published values determined from cadaver stud-
ies. To investigate this issue we first collected kinematic, kinetic, electromyographic
(EMG), and metabolic data from five subjects walking at six different speeds. The
kinematic and kinetic data were used to estimate muscle lengths, muscle moment
arms, and joint moments while the EMG data were used to estimate muscle activa-
tions. For each subject we performed a kinematically clamped optimization, varying
the parameters that govern the force-length curve of each tendon while simultaneously
seeking to minimize metabolic cost and maximize agreement with the observed joint
moments. We found a family of parameter sets that excel at both objectives, provid-
ing agreement with both the collected kinetic and metabolic data. This identification
allows us to accurately predict the metabolic cost of walking as well as the force and
state of individual muscles, lending insight into the roles and control objectives of
different muscles throughout the gait cycle.

This optimized muscle-tendon morphology was then applied with an optimized
linear reflex architecture in the control of a powered ankle-foot prosthesis. Specifi-
cally, the model was fed the robot's angle and state and used to command output
torque. Clinical trials were conducted that demonstrated speed adaptive behavior;
commanded net work was seen to increase with walking speed. This result supports
both the efficacy of the modeling approach and its potential utility in controlling
life-like prosthetic limbs.
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Chapter 1

Introduction

Bipedal walking relies upon a complex interplay of several different physiological

systems. The nervous system directs muscle contraction while receiving feedback on

muscle force and state. The muscles actuate the skeleton through elastic structures

known as tendons. The skeleton interacts with the environment, which is in turn

sensed by the nervous system. This highly coordinated network relies on the function

of many different neural and structural components. In this thesis we focus on the

latter, evaluating the role of tendon compliance during locomotion.

Tendons vary in shape, size, and function depending on the requirements of the

muscles to which they are attached. As the interface between muscle and bone, their

properties determine how muscles move. Muscle force, state, and metabolic consump-

tion are all affected by the structural properties of tendon, yet these properties are

rarely evaluated in depth. Here we show how proper consideration of these elastic

elements can lend insight into the roles of individual muscles during walking as well as

improve metabolic cost predictions. We build a data-driven model of human walking

that emphasizes the role of compliance and then apply it in the control of a robotic

ankle-foot prosthesis.
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1.1 Context

Many different approaches have been taken to model human walking. On one side of

the spectrum are purely mechanical systems, such as inverse pendulum walkers and

passive dynamic robots [48, 11]. In many cases these systems are able to reproduce the

gross mechanical features of gait, but must be properly tuned and do not address the

sources of skeletal actuation. On the other side are large scale dynamic optimizations

[3, 39], which seek to model as many muscles of the leg as possible. These models

make some successful predictions but typically significantly overestimate metabolic

consumption. The model presented in this thesis represents a middle ground between

these two extremes. Below we discuss some previous modeling efforts so as to lend

context to the current approach.

1.1.1 Inverse Modeling

Inverse models of locomotion use kinematics measured from motion capture studies

to elucidate neural coordination and/or structural features of the leg during walking.

Neural coordination has typically been studied through large scale models [3, 39]

that replicate the anatomy of the leg as fully as possible. These models include

upwards of fifty leg muscles and dynamically optimize to infer muscle activations.

While sophisticated they typically significantly overestimate the metabolic cost of

walking (by 47% in [3]), likely because they do not carefully model neural-structural

interactions. They use stock values for the parameters governing tendon function,

failing to capture variation among subjects. These models also do not thoroughly

address the issue of redundancy in joint actuation; for a given movement there are

many different combinations of muscle function which could produce the same joint

torque.

Another inverse modeling approach is to infer muscle-tendon structure through

mechanical approximations to muscle function. Endo et al [19] built a model that uses

clutch-spring units in place of most of the major muscles of the leg. This amounts to

the assumption that muscles operate isometrically when activated, which is known to

20



be energetically efficient [53]. While simple, the Endo model is able to reproduce the

kinetics and energetics of human walking. However it cannot be used to explore the

interaction of neural and structural elements as both are included in the clutch-spring

units.

Krishnaswamy et al [35] have successfully explored the interaction in question for

the human ankle during walking. They use EMG data to estimate muscle activa-

tion and a kinematically clamped optimization procedure to infer the muscle-tendon

morphologies of the muscles spanning the ankle. Their results suggest that proper

scaling of the parameters governing tendon function is essential for inferring muscle

force, state, and metabolic consumption. In this thesis we refine the method of [35]

and extend it to the full leg.

1.1.2 Forward Modeling

Forward dynamic models of locomotion assume neural control schemes in order to

produce walking given a set of initial kinematic conditions. One such model is the

reflex walker of Geyer and Herr [21], which relies on physiologically-motivated guesses

of linear reflex loops. While neural control is known to include both feedforward and

feedback components, this model is able to produce stable, terrain adaptive walking

using only feedback. An extension of the model [47] produces speed adaptive behavior

by tuning reflexive control parameters. While intriguing, these models are hard to

verify against ground truth as their hypothesized neural pathways are difficult to val-

idate. They also use stock parameters to describe tendon force-length characteristics,

implying that they would benefit from a means to scale to individual subjects.

1.1.3 Application to Prosthesis Control

Recently forward dynamic, reflex-based neuromuscular models have been applied in

the control of robotic limbs [17]. Feedback-based control schemes lend themselves

naturally to prosthesis control as they rely only on inputs that may be derived from

the on-board sensors of the device. In [17], Eilenberg et al used a simplified version

21



of the model in [21] to control a robotic ankle-foot prosthesis. They observed ter-

rain adaptive behavior, supporting the idea that controllers based on neuromuscular

models can produce biomimetic behavior in robotic limbs.

1.2 Research Objectives

This thesis addresses both scientific and technical objectives. On the scientific side we

employ a data-driven approach to estimate the force and state of individual muscles

during walking. This is accomplished through the combination of two methods; a

hidden state estimation of muscle activation and a system identification of optimal

muscle-tendon morphologies. The latter procedure is based upon the hypothesis

that the muscle-tendon morphology of the human leg has evolved to minimize the

metabolic cost of walking at self-selected speed.

Once a realistic muscle-tendon morphology has been obtained, it may be paired

with a reflex-based neural control scheme to produce a forward dynamic model. Such

a model may be applied in the control of robotic limbs, and here we apply it to a

robotic ankle-foot prosthesis. We evaluate the performance of the control scheme

across speed, looking for adaptive behavior.

1.3 Thesis Outline

In Chapter 2 we provide the biomechanical and physiological background information

necessary to place this thesis in context. We outline the gross mechanics of human

walking, describe the biophysical processes that lead to muscle force generation, and

discuss the interactions among neural control, muscle contraction, and muscle-tendon

structure. We finish with a more precise statement of the problems to be addressed

by this thesis.

In Chapter 3 we present the optimization procedure used to estimate the optimal

muscle-tendon morphology of the leg. We discuss data collection and processing

techniques, estimation of muscle activation, identification of optimal muscle-tendon
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parameter sets, results, and implications of the model.

In Chapter 4 we present a pilot application of our modeling techniques to hardware

control, in this case a powered ankle-foot prosthesis. We demonstrate the potential of

reflex-based control schemes by observing speed adaptive walking behavior in clinical

trials with a bilateral transtibial amputee.

Finally, we discuss the results from a global perspective and address current and

future work in Chapter 5.
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Chapter 2

Background

Studies of human locomotion apply concepts from several different fields. In this

chapter we review the components that are critical to this thesis- the biomechanics of

walking, the biophysics of muscle force generation, and the interaction between neural

control and muscle-tendon structure. We conclude with a more precise statement of

the problems to be addressed by this work.

2.1 Human Walking

The following is a brief introduction to the biomechanics and energetics of human

walking. For a more thorough treatment see [42].

2.1.1 Gait Cycle

Human walking is a cyclic motion with a period known as the gait cycle. The gait

cycle is defined as the time between consecutive heel strikes (or initial ground contacts)

of the same foot. We refer to the time when the relevant foot is on the ground as

"stance" phase and the time when that foot is in the air as "swing" phase. In walking

stance phase lasts for more than half the gait cycle (about 60% at self-selected speed),

leading to a double support phase in late stance. Further divisions of the gait cycle

and their functionality are discussed in [42] and are shown in Figure 2-1.
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Divisions of the Gait Cycle

Figure 2-1: Phases of the gait cycle. Figure is reproduced from [42].

2.1.2 Energetics

Energy consumption during walking comes from the need to move the body forward

in a gravitational field. To accomplish this, work must be done on the skeleton by the

muscles, which requires metabolic energy. The amount of metabolic energy needed

has a quadratic dependence with speed, monotonically increasing from slow walking

speeds to fast[3]. The metabolic cost of transport (MCOT) is defined as this energy

divided by the distance travelled divided by body weight and forms a concave-up

parabola with walking speed. The speed at which the minimum occurs is typically in

the range of 1.2 m/s to 1.6 m/s and is very close to the subject's self-selected walking

speed, leading researchers to believe that human gait is tuned to minimize MCOT.
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2.2 Muscles of the Leg

There are more than fifty muscles used to actuate the legs of the human body [3]. Of

these muscles we are primarily interested in those that move the leg in the sagittal

(front-back) plane, and specifically those that provide significant torque contribu-

tions normal to this plane during walking. Some of these muscles span only one joint

(i.e. the soleus actuates only the ankle) while others span two joints (i.e. the ham-

strings actuate the knee and the hip). The former group of muscles is referred to as

monoarticular while the latter is called biarticular.

Representative drawings of the major muscles of the leg are displayed in Figure

2-2. At the ankle we evaluate the soleus (SOL), gastrocnemius (GAS), and the tibialis

anterior (TA) muscles. The first two of these are on the posterior (back) of the leg,

are joined by the Achilles tendon, and serve to extend the ankle.1 The soleus spans

only the ankle, while the biarticular gastrocnemius actuates both the knee and the

ankle. The tibialis anterior is a smaller muscle and is located on the anterior (front)

of the shin, serving to flex the ankle.

At the knee we once again include the effects of the gastrocnemius as well as two

monoarticular and two other biarticular muscles. The monoarticular knee extensors

are comprised of the powerful vastii (VAS) group, while the monoarticular knee flexor

is the much weaker biceps femoris short head (BFSH). Two other biarticular muscles

span both the knee and the hip; on the anterior side there is the rectus femoris (RF;

an extensor) while on the posterior side there is the hamstring (HAM) group. The

hamstrings are comprised primarily of the semimembranosus (SMEM), biceps femoris

long head (BFLH), and semitendinosus (STEN) muscles which together play a large

role in actuating both the knee and the hip.

At the hip, the rectus femoris serves as a source of flexion torque while the ham-

strings provide extension torque. In addition to these the hip is actuated by several

monoarticular muscles. Since the hip requires fuller three dimensional actuation than

the knee and ankle, many of its muscles act in more than one plane. Promoting

'At the ankle, extension is often referred to as plantarflexion and flexion is referred to as dorsi-
flexion.
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movement primarily in the sagittal plane are the flexors (illiacus (ILL), psoas (PSO))

and extensors (lower gluteus maximus (GMAX)). Causing movement primarily in the

coronal (left-right) plane but also providing significant torque normal to the sagittal

plane are the upper gluteus maximus, gluteus medius (GMED), adductor magnus

(ADDM), and adductor longus (ADDL). The upper gluteus maximus and gluteus

medius primarily move the leg outward, or abduct the hip. Conversely the adductors

move the hip in toward the center of the body. During walking the hip abductors and

the adductor magnus provide extension torque normal to the sagittal plane while the

adductor longus provides flexion torque.

2.3 Muscle Physiology

In this section we briefly describe the structure of muscles and mechanisms by which

they generate force.

2.3.1 Structure

Muscles are the biological motors that actuate the skeleton, enabling motion. They

are tension actuators connected to bones by tendons, which are nonlinear elastic

structures. The muscle-tendon unit has a net length and velocity that is determined

by the orientation of the joints they span and thus may be inferred from motion

capture data. More information is needed to determine the individual lengths of the

muscle and tendon.

Muscles themselves are comprised of several well-defined sub-units. Going from

large to small these divisions are muscles, fascicles, fiber bundles, fibers (i.e. cells),

myofibrils, myosin, and actin filaments. The actin (thin filaments) and myosin (thick

filaments) are arranged in a hexagonal manner.
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2.3.2 Contraction Dynamics

Muscle contraction dynamics are controlled by the nervous system through action

potential trains delivered to the alpha motor neuron. These action potentials are

conveyed to the neuromuscular junction through the axon of the alpha motor neuron

via activation of voltage-gated sodium channels. The arrival of the pulse train at the

neuromuscular junction prompts an influx of Ca 2+ ions through voltage-gated calcium

channels. The incoming Ca2+ ions cause the plasma membrane to release acetylcholine

into the extracellular space, which in turn activates nicotinic acetylcholine receptors

on the neuromuscular junction. This activation opens the intrinsic sodium/potassium

channels of the junction, allowing sodium to rush into the muscle cell and potassium

to filter out.

This flow of ions results in an action potential which propagates through the cell

via transverse tubules, depolarizing the interior of the muscle fiber. The depolariza-

tion wave affects the membranes of the sarcoplasmic reticula, causing them to release

calcium ions into the interior of the cell. This calcium binds to the troponin C of the

thin filaments, allowing the troponin to allosterically modulate the tropomyosin. In

resting muscle the tropomyosin sterically blocks myosin binding sites on the actin fil-

ament, but this modulation allows the tropomyosin to move and thereby allow access

to the actin filament. Myosin then binds to these sites (in the "strong" state), forming

cross bridges and releasing energy stored by the myosin. The myosin subsequently

relaxes, rotating its globular head while releasing ADP and inorganic phosphate. This

allows the filaments to slide past each other longitudinally and the muscles to con-

tract. ATP then binds to the myosin, causing actin to be released and the myosin to

be in the "weak" binding state. The ATP is subsequently hydrolyzed by the myosin,

moving back to the "cocked back" formation seen at the start of cross bridge forma-

tion. The process then repeats as long as ATP and calcium are present near the thin

filament. For a visualization of this sliding filament process see Figure 2-3.

Once the action potentials stop firing, the Ca 2+ ions leave the troponin molecules

and are taken back into the sarcoplasmic reticulum. The tropomyosin reverts to its
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Figure 2-3: Illustration of the sliding filament theory of muscle contraction. Image
credit: Benjamin Cummings, Addison Wesley Longman, Inc.

resting state and the binding sites on the actin once again become blocked, halting

muscle contraction.

2.3.3 Muscle Force Generation Models

Models of the contraction dynamics specified above take many forms, depending

on the goals of the problem at hand. Famous isotonic release and thermodynamic

experiments by A.V. Hill [25] and others have indicated that muscle force generation
may be modeled in terms of a neural command, the muscle length, and the muscle
velocity. The origins and specific definitions of these three inputs are as follows:

Activation: Muscle activation reflects the neural input to a muscle, which can mod-
ulate contraction through the release of calcium ions from the sarcoplasmic

reticulum. It is defined as the relative amount of calcium bound to troponin
in a muscle, and therefore is a quantity averaged over many muscle fibers. As

defined it ranges from 0 to 1, with higher values indicating more potential for

cross bridge formation and higher muscle forces.
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Length: The length of a muscle affects its output force due to the sliding of filaments

discussed above as well as the passive elasticity of the muscle fibers. The result

of the former is bell-shaped active force-length relation (stemming from the

formation of cross bridges) which scales with activation. The result of the

latter is a quadratic increase with length, independent of activation.

Velocity: The velocity dependence of muscle force stems from the finite amount of

time that cross bridges take to form; if the filaments contract too rapidly fewer

cross bridges will form and less force will be generated. On a macro scale this

resembles a muscle "viscosity," with the muscle output force decreasing as the

fiber shortens more rapidly.

The effects of these three inputs are known to be multiplicative and nearly sepa-

rable [56], with the contractile element force FCE being given by

FCE (t) = (t)fA(CE(t))fv(VCE(t))- (2.1)

Here a is activation, fA(lCE(t)) is the active force-length relation, and fv(vCE(t)) is

the force-velocity relation. The passive aspect of the force-length relation is known as

the parallel elasticity and it provides an additional contribution FPE, with the total

muscle force then being

Fm(t) FcE) + FPE (t) -(2.2)

It should be noted that more sophisticated muscle models exist that do not assume

the separability of the activation, force, and velocity terms. However, as was the case

with this study, the small performance gains that may be derived from these models

often do not justify their additional complexity.

2.4 Tendon Physiology

As mentioned above, tendons are elastic structures that connect muscle to bone. They

act in series to the muscle actuators and are connected at oblique angles known as
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pennation angles. They are passive and are composed of parallel arrays of collagen

fibers, with a dense regular piece of connective tissue encased in a dense irregular

outer sheath. Tendons come in various shapes and sizes, depending on function. The

largest and strongest tendon in the body is the Achilles, which connects the soleus

and gastrocnemius to the base of the foot.

The force-length curve of tendons is non-linear and can be modeled as an offset

exponential. Its slope (the tangent modulus of elasticity) increases for low strains

(in the so-called "toe" region) and remains approximately constant for high strains.

The curve can be fit using four parameters- a slack length, a reference strain, a

shape factor, and an overall scaling factor. These parameters are further discussed

in Section 3.1.4. While most models (including ours) assume tendon action to be

lossless, it should be noted that studies of animal tendons show losses of 6% - 11% of

stored energy due to viscous effects while shortening at physiological rates [60, 56].

As the intermediary between force sources (muscles) and load (the skeleton), ten-

dons play a large role in movement. They determine the impedance seen by the

muscles while modulating the force seen by the load.

2.5 Neural- Structural Interactions

The interactions of the neural controller, muscle actuator, and skeletal "plant" are

summarized in Figure 2-4. The nervous system controls the driving signal seen by

the muscles. The muscles then act through the tendons to actuate the skeleton and

negotiate the environment as desired. The properties/morphologies of the tendon are

critical, as they determine the muscle lengths and velocities required to produce the

desired output behavior. Tendons allow muscles to both operate with high metabolic

efficiency 2 and to regulate their force and state, which are then communicated to the

neural controller via reflexive feedback. This interplay may be understood through

the lens of muscle impedance modulation. The nervous system conveys "intent" to

2Muscle metabolic consumption is largely a function of muscle velocity, as will be discussed in
Chapter 3.
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Figure 2-4: Flow chart describing neural-structural interactions. Artwork from Caji-
gas 2009 via Krishnaswamy 2010.

the muscles while etendons produce a "feel" for the environment. The intermediary

between the two is muscle impedance, which may be evaluated by studying muscle

force and state.

2.6 Neural Control and the Role of Reflexes

Human motor control is believed to be composed of both a feedforward neural drive

and a reflexive feedback component [33],[55]. As shown in Figure 2-4, reflexes dynam-

ically link muscle force and state to muscle activation. While it is not known what

proportion of the neural signal comes from the feedforward signal and how much

comes from the feedback signal, models controlled with only local reflexive feedback

loops have been shown to produce walking simulations that qualitatively agree with
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human gait dynamics and muscle activations [21].

Having a neuromuscular model driven by only feedback would be useful for con-

trolling robotic prosthetic limbs. In this application there is no feedforward driving

signal, but the joint state of the prosthesis may be sensed and fed back to the con-

troller. The joint state can be mapped to muscle-tendon length, which, when com-

bined with a reflex structure, can be used to drive a muscle model. The output forces

of the muscle model would then be mapped to desired torque of the device, allowing

the loop to be closed. Eilenberg et al [17] observed terrain adaptive behavior when

applying this method to control a robotic ankle foot prosthesis.

2.7 Problem Statement

This background information provides context for a more precise formulation of our

objectives. We seek to build a data-driven model of walking that enables determina-

tion of the force and state of each modeled muscle throughout the gait cycle. Doing

so would allow us to resolve the contributions of each muscle to joint torque, solving

the redundancy problem and providing a basis to investigate neural control strategies.

Mathematically we have, at each joint:

T(t) = Fi(t)ri(t) (2.3)

lMTC,i(t) = l,(t) + lm,i(t)cos(Oi(t)) (2.4)

Fi(t) = Fi(t) = Fm,i(t)cos(Oi(t)) (2.5)

Fmi (t) cC a (t)f1 (lCE,i (t))f(vCE,i (t)) + FPE (lCE,i (t)) (2-6)

F,i(t) = ft'i(lt,1, '-i) (2.7)

Assuming that the muscle-tendon lengths lmtc,i can be estimated from geometry, the

remaining unknowns are the muscle activations ai(t), muscle states 1CE,i (t), and

muscle-tendon morphologies rii. In this inverse approach we estimate the hidden

35



state ac(t) using EMG data. We then hypothesize that the human body has evolved

to minimize the metabolic cost of walking at self-selected speed. We apply this hy-

pothesis to determine the unknown muscle-tendon morphologies MiZ and muscle states

1CE,i(t), evaluating the results against empirical studies. The methods and results of

this inverse optimization problem are presented in the next chapter.

Once this inverse problem is solved, the results may be applied in the control of

robotic limbs. In Chapter 4 we discuss how an optimal reflex structure was wrapped

around this model and used to control a powered ankle-foot prosthesis.
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Chapter 3

Muscle-Tendon Morphology

Optimization

As previously described, neuromuscular walking models may be improved by plac-

ing a greater emphasis on the role of compliance. Here we describe a method for

obtaining more accurate metabolic cost and muscle state estimates by determining

the muscle-tendon morphology for an individual human. To achieve this we first col-

lected kinematic, kinetic, electromyographic, and metabolic data from five subjects.

The kinematic data were used to estimate muscle-tendon states and moment arms,

the kinetic data were used to estimate joint moments, and the EMG data were used to

estimate muscle activation. We performed a kinematically-clamped, multi-objective

optimization of the parameters that govern the force-length curve of each tendon,

searching for parameter sets that simultaneously matched the collected kinetic data

and minimized metabolic cost. In the following sections the specifics of this method

as well as its results are discussed.
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Subject Age Mass Leg Length Ethnicity Sport Min. MCOT
DH 24 80.3 kg 0.953 m African Basketball 1.32 m/s
MC 24 72.3 kg 0.927 m Caucasian Running 1.49 m/s
JB 29 68.9 kg 0.933 m Caucasian Running 1.31 m/s
BC 26 65.0 kg 0.902 m Caucasian Running 1.38 m/s
DC 25 65.4 kg 1.028 m Caucasian Running 1.47 m/s

Table 3.1: Relevant characteristics of study participants.

3.1 Methods

3.1.1 Data Collection

Kinematic, kinetic, electromyographic, and metabolic data were collected from five

adult males in a study approved by the MIT Committee on the Use of Human Subjects

and conducted at the Harvard University Skeletal Biology Lab. The heights, weights,

ethnicities, and favorite sports of the study participants are listed in Table 3-1. All

subjects were male and of at least moderate athletic ability, with the runners all being

at a semi-professional level. This group was chosen because EMG signals recorded

from participants with athletic backgrounds are typically cleaner than those obtained

from sedentary individuals. All subjects were pre-screened to avoid gait pathologies

and current injuries. Further details on each data modality are as follows:

Metabolic Data The required data sets were collected in two phases. After in-

formed consent was obtained, the subjects were first outfitted with a portable

oxygen consumption mask attached to a Cosmed K4B2 V0 2 system. This

system employs a standard open-circuit gas analysis technique to estimate

metabolic energy consumption based on measurements of oxygen inhaled and

exhaled [7]. The subjects' were then asked to stand still for'seven minutes

while a basal measurement was recorded. They then walked barefoot on an

instrumented treadmill for seven minutes at each of six speeds (0.75 m/s, 1.00

m/s, 1.25 m/s, 1.50 m/s, 1.75 m/s, and 2.00 m/s), allowing the variation of

metabolic energy expenditure to be measured across speed. These results were

'Basal trials were recorded for BC, DC, and JB.
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quickly tabulated and used to estimate the walking speed where the metabolic

cost of transport (MCOT) was minimal (Table 1).

Once the metabolic cost measurements were completed, the oxygen consump-

tion mask and Cosmed system were removed and the participants were outfitted

for the second phase. In this second phase kinematic, kinetic, and electromyo-

graphic data were collected for two minutes of barefoot walking at each of seven

speeds; the six listed above and the speed where the subject's MCOT was found

to be minimal. The methods for collecting these three data types were the fol-

lowing:

Kinematic Data An infrared camera system (8 cameras, Qualisys Motion Capture

Systems, Gothenburg, Sweden) was used to track the motion of subjects as they

walked in the capture volume. Reflective markers were placed at 43 (bilateral)

locations on the participant's body and their three dimensional trajectories were

recorded at 500 Hz. The marker locations were chosen specifically to track joint

motion, as prescribed by the Helen Hayes marker model.

Kinetic Data An instrumented force plate treadmill (Bertec Corporation, Colum-

bus, OH) was used to measure the ground reaction forces of the subjects as they

walked. Foot contact centers of pressure were also recorded. The treadmill had

two side-by-side belts, ensuring that each foot would be measured separately.

The sampling rate for these observations was 1000 Hz.

Electromyographic Data A surface EMG system (Motion Lab Systems, Baton

Rouge, LA) was used to record activity in fourteen muscles of one leg of each

subject (tibialis anterior, soleus, medial gastrocnemius, vastus lateralis, biceps

femoris shorthead, rectus femoris, semimembranosus, biceps femoris long head,

illiacus, gluteus maximus (lower), gluteus maximus (upper), gluteus medius,

adductor longus, and adductor magnus). Symmetry was assumed for the other

leg, and all channels were sampled at 1000 Hz. The signals were recorded at the

surface using pre-gelled bipolar electrodes (Electrode Store Model BS-24SAF,

part number DDN-20) and amplified 20 times by pre-amplifiers (Motion Lab
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Systems, part number MA-411). Prior to walking trials a maximum voluntary

contraction (MVC) trial was conducted for each muscle group wherein the par-

ticipant was asked to work that particular group as hard as possible. These

trials were used for normalization purposes in muscle activation estimates.

The second phase was conducted separately from the first for practical reasons;

with long trials markers would occasionally become dislodged and the EMG surface

connections eventually degraded.

3.1.2 Data Processing Procedures

The following steps were taken to produce the required model inputs and output

references.

Metabolic Cost Estimation

The metabolic data were used as both (i) a means to find the walking speed where

the MCOT was minimal and (ii) a way to estimate the metabolic cost of walking

across speed. As mentioned previously, we hypothesize that the human body has

evolved to maximize the metabolic efficiency of walking at a preferred speed, and this

"self-selected" speed is taken to be where the MCOT is minimal. Hence the metabolic

data determine the speed where the model should be trained while providing target

metabolic consumption values for the model to replicate at all recorded speeds.

As mentioned above, our system uses a standard open-circuit gas analysis tech-

nique to estimate metabolic energy consumption based on measurements of oxygen

inhaled and carbon dioxide exhaled [7]. Specifically, the formula for metabolic energy

expenditure in kJ is

Metabolic Energy Expenditure = 20.964VAO 2, (3.1)

where V is the ventilation rate (pulmonary or exhaust) and A0 2 is the oxygen con-

centration difference in the inspired and expired air. This equation is known to have

an accuracy of ±3%. The metabolic cost of transport (MCOT) is then defined as
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and typically has a minimum value of about 0.35, which occurs at a walking speed in

the range of 1.2 m/s - 1.6 m/s. To determine the walking speed where MCOT was

minimal for our participants we used a quadratic fit of the MCOT vs. speed plot, as

shown in Figure 3-1. The resulting speeds for each subject are shown in Table 3-1.

Joint States and Moments

To formulate our inverse optimization problem we require joint angle and moment

trajectories. These quantities describe motion on a macro scale and may be estimated

using the collected motion capture and force plate data. The motion capture data

sets are comprised of tracked marker trajectories in 3D space, each representing an

anatomical landmark. The force plate data sets include ground reaction force (GRF)

vectors and the location of the center of pressure (COP) of each GRF.
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After collection, the motion capture trajectories are labelled and have their gaps

filled via a spline-based interpolation algorithm in the Qualisys Track Manager (QTM,
Qualisys Motion Capture Systems, Gothenburg, Sweden) software. The raw force

plate data are processed and low pass filtered with a cutoff of 50 Hz in MATLAB

(Mathworks, Natick, MA). The two data sets are synced and exported to SIMM

(Software for Musculoskeletal Modeling, Musculographics Inc., Evanston, IL).

The SIMM software was chosen for this analysis because of its unparalleled anatom-

ical accuracy. It provides reasonable, subject-specific representations of body seg-

ments, joints, and muscle-tendon units. It also allows the user to access subject-

specific parameter scalings, which proved critical for our analysis. SIMM is based on

a model of an "average" human body that was formulated through cadaver studies

and may be scaled and tweaked for any individual. The scaling is obtained through

an inverse kinematic fit to a static trial and is applied in determining the kinematics

for each subsequent walking trial. The kinematic output is combined with the force

plate data to compute joint torque profiles via inverse dynamics. This step is per-

formed by the SIMM Dynamics Pipeline using the SDFAST (PTC, Needham, MA)

software.

Several post-processing steps were performed to produce the average torque pro-

files that were used in the ensuing analysis. First the data sets were broken into gait

cycles as determined by the force plate data. Gross outlier gait cycles were discarded

and the remaining time series were normalized in time to percent gait cycle and av-

eraged. Plots of typical angle and torque profiles and their variation across speed

are shown in Figures 3-1 and 3-2. Note that while SIMM produces a full 3D body

representation, only motion in the sagittal (front-back) plane was considered for this

model.

Muscle-Tendon States and Moment Arms

To study force production by muscles, we must have a means to estimate muscle-

tendon lengths and moment arms. These quantities are related to joint angles through

complex musculoskeletal geometry, which is modeled in SIMM using wrap objects.
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The wrap objects are derived using information from cadaver studies and digitized

bone surfaces[15]. The inputs to the applied method are joint angles and SIMM's

subject-specific musculoskeletal scaling, which are then used to determine muscle-

tendon lines of action and the quantities we seek.

To produce the profiles used as input to the model, we follow the same post-

processing steps as were used with joint angles and moments. Specifically we break

the time series into gait cycles, discard outliers 2, normalize to percent gait cycle,

and average. Plots of typical muscle-tendon lengths and moment arms are shown in

Figures 3-3 and 3-4.

3.1.3 Muscle Activation Estimation

The final required input for our inverse optimization problem is muscle activation,

which represents the control signal from the nervous system to the muscles. This

signal may be estimated using recordings from surface electromyography (EMG). Be-

low we recap the biophysical processes involved in muscle activation, the information

contained in EMG signals, and the mathematical methods employed in estimating

muscle active state.

Biophysics of Muscle Activation

As described more fully in Section 2-3, muscle contraction is initiated by action po-

tential trains delivered to the alpha motor neuron. The arrival of this neural signal

starts a process that results in the release of calcium ions from the sarcoplasmic

reticulum (SR). These calcium ions diffuse through the cell, binding to troponin and

enabling cross bridge formation and thereby muscle contraction. Mathematically the

release of calcium ions from the SR may be modeled as a rapid jump process, while

the spread of calcium through the cell and its binding to troponin may be modeled

as a slower diffusion process. Activation is defined as the relative amount of calcium

bound to troponin in a muscle (averaged over all cells) and therefore gives a direct

2 The outliers for muscle-tendon length and moment arm were assumed to be the same as those
for joint angle/moment, as joint angle can be mapped to the former two quantities.
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Figure 3-5: Biophysics of muscle activation. Figure credit: Krishnaswamy M.S. The-
sis.

measure of the capability of the muscle to generate force in a given state. It may be

estimated using surface EMG measurements, which record a net potential that re-

flects the action potentials, depolarization currents, and ion flows within the muscle.

All of these processes are observed through the filter of skin and fat. The physiology,

mathematical representation, and measurement information for the muscle activation

process are summarized in Figure 3-5.

Neural Excitation Estimation

Many algorithms have been developed for estimating neural excitation from EMG

signals. All such methods seek to determine the driving signal behind the modulated

noise that is measured. The standard means to do this is to find an envelope for the

signal through the use of a low pass filter. This maximal likelihood method was first

investigated by Hogan [28, 29] and has since been slightly modified to account for

artifacts in the data [10]. A Bayesian method developed by Sanger [45] has also seen

wide-spread use recently. For this application we evaluated both methods, finding the

main difference in performance to be the slightly later timing of the estimates from

the Sanger method. We chose to use the Sanger method because its timing was more
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aligned with the required muscle moment profiles. Below we describe the details of

this Bayesian method; for further details on low pass implementation see [10].

The Sanger Bayesian method was developed to more accurately resolve sudden

jumps in neural activity. It models the underlying driving signal as the result of a

jump-diffusion process, namely

dx = e(dW) + (U - x)dN. (3.3)

This equation is to be interpreted in the Ito sense, with x being the neural driving

signal, dW being the differential of standard Brownian motion with rate a, dNy being

the differential of a counting process with /3 events occurring per unit time (the jump

term), and U being a uniformly distributed random variable in [0, 1]. Without the

driving dN term this equation would amount to a random walk. The boundary

conditions are defined to keep x(t) in the interval [0, 1] and are given by

dx = (1 - x)6(t - to), if x(to) > 1 (3.4)

(0 - x)6(t - to), if x(to) < 0.

An approximate solution for the evolution of the probability density of x is the

Fokker Planck Equation,

Dp(xt) _ 
2p(x t)
0 = x2 + /3 [1 - p(x, t). (3.5)

To evaluate this one must define a measurement model for the signal, and Sanger

uses

exp(-emg/x)P(emglx) - x (3.6)

Here P(emglx) is the conditional probability of observing rectified emg = JEMGJ

given driving signal x. This model reflects the observed Laplacian distribution of

EMG signals and wraps all elements of the measurement- the various fibers and

electrical sources, the filter of skin and fat, the placement and impedances of the
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electrodes- into one equation. Combining this with Bayes' Rule

P[x(t)Jemg(t)] = ~m~)Jxt]~~) (3.7)
P[emg(t)]

and approximating (3.5) using second differences one can solve for the maximum a

posteriori (MAP) estimate of x(t), i.e. find the x(t) that maximizes P[x(t) emg(t), emg(t-

1),..].

While Sanger does not make any claims about the physiological relevance of the

resulting driving signal x(t), we may gain some insight by noting the similarities

between his model and the biophysics of muscle excitation outlined above. The jump

process can be mapped to the release of Ca2 1 ions from the SR while the diffusion

term may be mapped to the slower spread of calcium ions through the cell and their

binding to troponin sites. Hence the driving signal x(t) reflects the neural excitation

and distribution of calcium ions during muscle contraction. However it does not take

into account the delay caused by calcium-troponin binding dynamics, and since the

jump rates are symmetric for both increasing and decreasing x(t) it does not model

the known disparity between activation and deactivation time constants [60]. Hence

further filtering is required to adequately model muscle activation.

Activation Estimation

Neural excitation and the muscle active state are linked by a series of slow, second

order events. These include the drift and diffusion of calcium ions as well as calcium-

troponin binding dynamics. Activation buildup is initiated by the the release of

calcium ions from the SR and terminated by those ions unbinding from the troponin

and being re-absorbed by the SR. The process of activation is known to proceed with

a faster time constant than that of deactivation [60, 53], with both numbers being

a function of muscle composition (muscles with a higher fast twitch concentration

have smaller time constants). While it would be ideal to incorporate all of this into

a modified Sanger model (i.e. to allow for variable jump rates in Equation 3.3), a

simpler approach is to apply a shaping filter to the estimated neural excitation. We
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chose the latter approach and employed a relation derived by Raasch [51]:

(U - a) [U/Tact + (1 - U)/Tdeact], U > a
& = (3.8)

(U - a)/Tdeact, U < a.

Here u is the neural excitation, a is activation, and Tact and Tdeact are the activation

and deactivation time constants, respectively. The values of these time constants

for each muscle are listed in Table 3-2. An example of the neural excitation and

activation estimates for one subject's medial hamstring (semimembranosus) muscle

is plotted in Figure 3-6. As described above, the Sanger estimate provides a slightly

later excitation profile than the low pass filter ' The activation estimates are delayed

relative to and remain elevated longer than the excitation signals, as discussed above.

Implementation

The following steps were taken to implement the activation estimation algorithms

described above:

Preprocessing: As in Sanger's work, the raw EMG data first had its mean removed

and then was clipped at 5 standard deviations.4 The signal was rectified and

normalized to the value where it was clipped.

Excitation Estimate: The preprocessed data were evaluated using the Sanger al-

gorithm discussed above. Two small errors in the algorithm were corrected in

the published code and the c and 3 constants were adjusted to 1/2 (1000/Fs/2)

and 5 x 10-31, respectively, to allow the weaker signals to be captured. It was

found that these parameter tunings increased the sensitivity of the algorithm

while preserving its timing. Their downside was a slight loss of sharpness in the

turn on/turn off of muscle excitations, but this would have been lost in the en-

suing activation filter and averaging anyway. The resulting excitation estimates

3Some authors include a 40 ms delay when using low pass filters[4], likely to account for this
timing discrepancy.

4 Sanger used 3 standard deviations while Krishnaswamy [35] used 5 standard deviations.
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were then re-normalized by their values during maximal voluntary contraction

(MVC) trials.

Thresholding The excitation estimates were thresholded by setting any measurement

below a defined value to zero. This had the effect of removing the noise floor

and making the surface EMG estimates more closely resemble the cleaner signals

obtained through the use of fine wire EMG [42].

Activation Estimate: The excitation estimates were passed through the filter of

Equation 3.8 to generate activation estimates.

Removal of Outliers, Averaging: The activation estimates were then broken into

gait cycles (based on the synced force plate data) and obvious outliers were

removed from the data sets. These outliers were caused by a large number

of different factors- motion artifacts, faulty electrode connections, abnormal

subject strides, etc. The results were then averaged over all gait cycles for each

speed and subject.

Addressing Missing Data: Despite our best efforts, some data channels were ob-

viously faulty. This problem typically occurred in measurements of muscles

spanning the hip and was caused by the relatively complicated geometry of

that joint, the preponderance of associated motion artifacts, the muscles being

located deep beneath the skin, and the relative lack of access to that area. In

the event that a channel was not salvageable for a given subject, the trajectory

of that muscle was taken to be the average of the trajectories for that muscle

in all subjects where the measurement was acceptable. Further details of this

procedure are available in Appendix A. We found that we had sufficient data

to model all desired muscles (Figure 3-9) except the adductor longus (ADDL)

and adductor magnus (ADDM).

Plots of the average excitation and average activation profiles across walking speed

for all subjects are shown in Figures 3-7 and 3-8.
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3.1.4 Muscle-Tendon System Identification

Having estimated muscle-tendon lengths and muscle activations from the data, we

may now turn to evaluating muscle force and state. As discussed in Section 2.7,

knowledge of these quantities leaves the fascicle states 1CE,i(t) and muscle-tendon

morphologies 2-i as the only remaining unknowns in the system. A choice of one

implies the other, and we identify the muscle morphologies under the hypothesis that

they have evolved to minimize the metabolic cost of walking at self-selected speed.

In the following we describe an optimization procedure that uses this hypothesis to

infer values for the morphological parameters nij and thereby estimate muscle fascicle

state.

System Model

Our system is defined to include all muscles that make significant contributions to

the components of ankle, knee, and hip torque perpendicular to the sagittal plane

during walking. These muscles are described in Section 2.2. Several muscle groups

were lumped together for simplicity; this was deemed appropriate if all muscles within

a group have similar lines of action and are activated concurrently during walking.

The model is shown in Figure 3-9. For each muscle the net effect of all tendinous

attachments are modeled as one elastic element in series with the muscle. In addition

to the muscle-tendon units a passive ligament was included at the hip to prevent

hip overextension around toe off. This element modeled the contributions of the

iliofemoral ligament and was taken to be a simple rotary spring:

THFL -KHFL(Ohip - 00,HFL)- (3.9)

Note that both the moment and the angle in this equation are defined with flexion

being positive. The equations describing muscle, tendon, and joint level dynamics

are given below.
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Figure 3-9: System model. Note that the soleus and gastroenemius tendons were
modeled separately in the final iteration

Muscle Percent FT Tat [iMs] Tdeact [Ms] W K vmax [lpt/s] 00
TA 25% 68 76 0.49 6.60 6.0 50

SOL 20% 71 79 0.80 6.24 6.4 250
GAS 50% 57 62 0.61 8.40 4.0 170
VAS 50% 57 62 0.55 8.40 4.0 50

BFSH 35% 64 70 0.75 8.40 5.2 230
RF 65% 49 65 0.76 9.48 2.8 50

HAM 35% 64 70 0.75 7.32 5.2 150
ILL 50% 57 62 0.74 8.40 4.0 70

GMAX 45% 59 65 0.77 8.04 4.4 00
GMED 50% 57 62 0.77 8.40 4.0 190
ADDL 35% 64 70 0.74 7.32 5.2 60
ADDM 45% 59 65 0.75 8.04 4.4 30

Table 3.2: Muscle-specific model parameters. Muscle fiber compositions, w, Tact, and
Tdeact were taken from [52].
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Muscle Dynamics The biophysics of muscle contraction and the models that are

used to describe it are discussed in Section 2.3. Here we specify the Hill type muscle

model used in this study, which is similar to the model in [21]. It contains a contractile

element (CE) that represents the active muscle fibers and a parallel elasticity (PE)

that represents the elastic structures surrounding the muscle. The force produced by

the contractile element is

FCE = aFmaxflWlCE)fv(VCE), (3.10)

where a is the muscle activation, ICE is the contractile element length, VCE = iCE

is the contractile element velocity, and Fmax is its maximum isometric force. fl (iCE)

and fv (VCE) are the active force-length and force-velocity relations and are given by

-1 (iCE"2 2 ICE~ 1
fl (IC) -I(IC 2+2(CE - -+-1 (3.11)

W2 lopt W2 1 opt W2

and

v ax+VCE VCE <0
fv (VCE) Vmax-KvCE'(12

N - (N-1)(Vmax-VCE) VCE > 0.
7.56KvC E kmax

In (3.10) 1opt is the fascicle length where maximal active force is produced and w

determines the width of the active force-length relation. In (3.11) Vmax is the maximal

muscle velocity, K is a curvature constant, and N = 1.5 is the muscle force (in units of

Fmax) at the muscle's maximum lengthening velocity. The active force-length relation

(3.10) comes from [54] and was chosen because, while similar to the relation in [21],

it allows scaling based on fiber composition. The parallel elasticity produces force

according to

F (CE-lopt )2 ICEFmax 1"Pt > l Eop,
FPE (lCE) = - (3.13)

(0, ICE <lopt.

Note that this quadratic elastic element is only engaged for ICE > opt- Finally, we
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include a buffer elasticity

Fmax I E(CE--l 0pt(1-w CE 1t( -

FBE (CE) = 'opt (3.14)
0 iCE > 1t (I - w)

that prevents the muscle fascicle from shortening excessively. It is a rarely engaged

numerical tool and does not reflect a physical characteristic of muscle. The total force

produced by the muscle fascicle is then

F(a, ICE, VCE) = FCE(Ce, ICE, VCE) + FPE (ICE) - FBE (iCE). (3.15)

The inputs a, ICE, and VCE all vary with time.

Tendon Dynamics As described in Section 2.4, tendons are non-linear elastic el-

ements that join muscle to bone. Their force-strain relation may be modeled as [56]:

exp A -1

Fma e Arf) ) > 0
FSE(A) max exp(K)- (3.16)

0, A < 0

where

A = ISE - s(3.17)
is'

is the strain of the tendon beyond its slack length 1,1. Here Fmax is the maximum

muscle isometric force, Keh is a shape factor, and Aref is a reference strain. Keh

determines where the force-length curve transitions from its flat lower ("toe") region

to its nearly linearly behavior for large strains. Aref is the strain where FSE= Fmax.

The four parameters defining this tendon model (Fmax, 1,, Keh, and Are!) are all

morphological. The first two represent the size and the geometry of the muscle-tendon

unit while the last two represent material properties of the tendon itself. It is these

parameters that we will optimize to determine muscle state and force.

57



Muscle-Tendon Complex Dynamics Muscle and tendon act in series but are

typically oriented obliquely. The angle between the two is known as the pennation

angle 0 and varies with time. The forces exerted by the tendon (SE), muscle (CE),

and muscle tendon complex at large are:

FMTC(t) = FSE(t) =FCE(t (t), CE(t), CE (t))Cos(0 (t)). (3.18)

The total length of the muscle tendon complex is

lMTC(t) = lSE(t) + lCE(t)COS(O(t)). (3.19)

The pennation angle 0(t) varies so as to keep the width of the muscle approxi-

mately constant [60] and so can be written as a function of fascicle length:

0(1CE) = sin' p (3.20)
ICE

Here the angle 0 is the pennation angle when ICE lopt (which is very near the

resting length of the muscle [56]). It was found that allowing this angle to vary was

necessary to obtain muscle fascicle trajectories that produced human-like metabolic

cost estimates.

Joint Dynamics Finally we note that all muscles contribute to joint torque through

their time-varying moment arms ri(t):

Tmod = E FMTC,i (t)ri(t). (3.21)

We seek to determine each muscle-tendon force FMTC,i(t) and thereby resolve the

issue of redundancy in joint actuation.

Model Inputs

There are two categories of inputs for each muscle in our model: (i) a(t), lmtc(t), and

r(t)- all estimated from the data and (ii) muscle-tendon morphological parameters rie
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Figure 3-10: Muscle-tendon system identification procedure.

which will be identified via optimization. A flow chart of the procedure is shown in

Figure 3-10.

Data Each muscle of the model was provided with fixed, averaged trajectories of

a(t), lmtc(t), and r(t). Average trajectories were chosen as the model represents a

simplified version of the actual in vivo system and we expected it to deal better with

averaged rather than individual trajectories. This was especially critical with the

activation estimates, as the EMG measurements were much more prone to noise and

artifacts than the motion capture and force plate data sets.

Morphological Parameters Given the data inputs to the model, the muscle fas-

cicle force and state are determined by the Hill-type contraction dynamics. These

dynamics are parameterized by several values; notably muscle maximum isometric

force Fmax, length where active muscle force is maximal 1opt, fiber composition FT,

tendon slack length 1,1, tendon shape factor Kah, and tendon reference strain Aref. We

evaluated the consequences of varying all of these variables, finding differing levels of
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sensitivity for each. In the final analysis we fixed all of the variables to which the

model was insensitive, choosing to vary Fmax, Keh, Aef, and an overall scaling factor

for 1,1 and 1opt. This last factor was chosen to ensure that the muscle operated in

reasonable regions of its force-length space while preventing overfitting. The ratio

isi/lopt is known to vary significantly amongst muscles but not significantly in the

same muscle amongst subjects [15], justifying this choice.

Parameter Identification Problem

To find the parameters that produce correct muscle force and state estimates we

require an additional assumption. To that end we hypothesize that the muscle-

tendon morphologies of the muscles comprising the leg have evolved to minimize

the metabolic cost of walking at self-selected speed. Given the fundamental impor-

tance of bipedal walking as a means of transport this assumption seems plausible.

Here we define self-selected speed to be the speed where MCOT is minimal. We seek

a solution set of morphologies dij that match the measured joint torques at the ankle,

knee, and hip while using the smallest possible metabolic cost. To find that set we

perform a multi-objective optimization with metabolic and kinetic cost functions, as

described below.

Metabolic Cost Function Muscle metabolic consumption is known to depend

on several factors including size, excitation level, activation level, length, velocity,

force, and active force production [53]. Empirical studies on muscle shortening [25]

and and lengthening [57] have demonstrated the rough shape of metabolic cost when

plotted against muscle contraction velocity. It is intuitive that the metabolic cost of

shortening is significantly higher than that of lengthening, as the muscle does positive

work on the skeleton during shortening. A summary plot of these empirically observed

trends is shown in Figure 3-11.

In this work we estimate metabolic consumption for each muscle through a relation

derived by Umberger et al[53],[52]. This function has demonstrated exceptional pre-

dictive power in a number of applications and is the most widely-accepted metabolic
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cost measure in the field. It expresses metabolic power per unit mass E as the sum

of four terms:

k= A + hM + hSL -WCE- (3.22)

Here hA is the activation heat rate, which is associated with the transport of Ca 2

ions from the sarcoplasmic reticulum. hM is the maintenance heat rate; both it and

the shortening/lengthening heat rate hSL are due to actomyosin interaction. ZLCE is

the mechanical work rate of the contractile element, normalized to muscle mass. For

a given muscle, these terms depend on Fmax, l0pt, FT (the percentage of fast-twitch

muscle fiber), neural excitation, muscle activation, CE length, CE velocity, CE force,

and CE isometric force. For a full mathematical description of these terms see [53]
and the supplementary materials of [52].

To estimate full body metabolic cost, we first integrate k for each muscle of the

leg, multiply by the appropriate muscle mass, and sum. Only one leg was modeled

here so we assumed symmetry for the purposes of estimating cost in the other leg.

For each muscle i the mass Mi is estimated to be

Ai = pFmax,ilopt,i (3.23)
07

where p = 1059.7kgm- 3 is the density of muscle and - = 0.25MPa is its specific

tension. The metabolism for the rest of the body is estimated by multiplying the

remaining mass by the measured basal rate Ebas ([W/kg]) of standing. The final

metabolic cost in the model Cmet in a time window T is then

Cmet = M (t) dt + M - M basT, (3.24)

where M is total body mass and the sums are taken over all modeled muscles in

both legs.

Kinetic Fit Cost Function In addition to minimizing metabolic cost, we seek

solutions that most accurately reproduce the measured joint torques. We define the

61



Empirical Muscle Metabolic Consumption
as a Function of Muscle Velocity

0.25-
Hill 1938 Empirical

+ ATP Hydrolysis Empirical
Hill 1964 Spline-Fit

E 0.2 . Hill 1964 Empirical
?-Hill 1938 Line-Fitx
E ATP Hydrolysis Line-Fit

0.1-

0.1

E0.05 -0 .~ 0

- -0.5 0 0.5 1
Normalized Fascicle Velocity (v/vmax)

Figure 3-11: Empirically motivated metabolic cost function from [35].

corresponding cost Ckin as

R 2ni + Rie + r2
Ckin = 1 ankle nee + (3.25)

3

where the coefficient of determination R 2 is defined to be

R 2 1 _ Ei(Ydat,i - Ymod,i)2 (3.26)
EZ(Ydat,i - ydat,i)

2

In this way we measure the agreement of the model's kinetic output with the corre-

sponding measured moments.

Optimization Implementation

The optimization of muscle tendon parameters rij was implemented as a multiob-

jective optimization using the metabolic and kinetic costs Cmet and Ckin described

above. Below we elaborate upon (i) the tuning choices made, (ii) the optimization

bounds, and (iii) the optimization algorithm.
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Tuning Choices Many options regarding model and optimization variables were

investigated before settling on the following tunings:

* Fm.x, Ksh, Aef, and a scaling factor that multiplies both opt and 1i while pre-

serving their ratio were chosen as the final muscle-tendon optimization variables.

Optimization of just 1,1 (as opposed to scaling 1,1 and lopt) was found to have

similar results but sometimes led to upper leg muscles operating in unexpected

regions of the force-length curve. A constrained optimization that varied l,

and lopt separately was also evaluated but found to have difficulty converging

to a reasonable region. Optimization of muscle fiber composition and the nor-

malization factor for scaling of neural excitation signals were also explored but

decided against as neither was found to significantly impact results.

" Both the low pass filter and Sanger methods for estimating neural excitation

were evaluated for use in the optimization. The Sanger method was chosen due

to its more consistent timing with the required muscle activation profiles.

" Both the modified Geyer muscle model described above and model derived by

Van Soest et al[54] and tweaked by Umberger et al[53] were investigated for

application in the model. The Van Soest model accounted for activation and

length dependence in the muscle force-velocity relation but its results were not

found to significantly differ from those of the modified Geyer model. Hence the

simpler, more numerically stable modified Geyer model was employed.

" The soleus and gastrocnemius tendons were modeled separately after finding

that little change was incurred by including a separate compliance representing

the Achilles.

" Due to the poor quality of the EMG signals gathered from the adductor longus

and adductor magnus and their relatively small torque contributions normal to

the sagittal plane, these two muscles were removed from the initial analysis.

However a second analysis was conducted wherein these muscles (and the other
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Table 3.3: Parameter bounds for optimization problem.

muscles of the hip, who also had poor EMG quality) were excited by profiles

from literature [42]. Results of both analyses are given below.

* Each optimization solution was allowed to run for two gait cycles so as to

sufficiently account for initial numerical transients. It was found that adding

more gait cycles did not significantly impact the results, so we chose to evaluate

two to minimize computational burden.

Bounds There are four parameters to be optimized for each muscle in the model

with two additional parameters describing the hip flexor ligament. The bounds for

these optimization variables were based upon values taken from the literature and

scaled values from SIMM, as shown in Table 3.3. The maximum isometric force

(Fmax) values for each muscle were constrained to fall in a window surrounding the

scaled value from SIMM. The scaling factor for 1,1ack and 1opt was chosen to ensure the

muscle fascicle length stayed within reasonable physiological operating ranges. The

bounds for Ksh and Aref were taken from [56]. The bounds for the spring constant of

the hip flexor ligament was chosen so that the ligament could provide anywhere from

none to all of the required hip flexion moment near toe off. The engagement angle

was chosen so that the tendon could engage with the hip no more than 100 flexed, as

its physiological role is to prevent overextension.

Optimization Algorithm The model was constructed using MATLAB and Simulink

(The Mathworks, Natick, MA). Computations were carried out using the Mathworks

Cloud Center, a computer cluster operated through Amazon Web Services. The opti-
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Parameter Lower Bound Upper Bound
Fmax 0.5 * Fmax,SIMM 3.0 * Fmax,SIMM

181, t opt mult. Ensure 1m < iopt(I + w) Ensure Im > lopt(l - w)

Ksh 2 5
Aref 0.02 0.09

OHFL -718 min(Ohip)
KHFL 0 2 * max (Thip)/min(Ohip)j



Table 3.4: Optimization settings in MATLAB.

mization algorithm employed was MATLAB's gamultiobj, a controlled elitist genetic

algorithm that is a variant of the NSGA-II algorithm [14]. The relevant algorithm

settings are given in Table 3-4. Note that both the population size and number of

generations were taken to be deliberately large to force the optimizer to thoroughly

search the space.

3.2 Results

The optimization scheme described above was run for each of the five study partici-

pants. Parameters were sought that both minimized the metabolic cost of transport

of self-selected speed walking and maximized the fit to the kinetic data. Because we

found the results to be limited by the poor quality of the EMG measurements in the

muscles spanning the hip we present results under two conditions; first using only

measured EMG profiles and then with the excitation profiles for the monoarticular

muscles spanning the hip (ILL, GMAX, GMED, ADDL, ADDM) being replaced by

profiles from the literature [42]. The second case is not ideal but demonstrates the

potential for improvement in model results if reliable EMG profiles can be obtained

around the hip.

A typical solution space is shown in Figure 3-12. The red dots represent the

Pareto front; that is the set of solutions where it is not possible to improve upon

one objective without compromising on the other. Each point along that front is

optimal for some choice of weighting of the two objectives. In the ideal scenario the
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Optimizer Setting Value
PopulationSize 1000

EliteCount 25
Generations 100

MutationFen mutationadaptfeasible

CrossoverFraction 0.8

Vectorized On

PopInitRange Full Space
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Figure 3-12: Typical solution space for optimization problem.

solution space would form a sharp corner and the Pareto front would converge to

one solution that optimizes both objectives. That is not seen to be the case in our

problem, possibly because of imperfections in the data and inaccuracies introduced

by the lumping together of muscles. Hence our task is to find the region of the Pareto

front where the solutions predict the true human muscle behavior.

3.2.1 Choosing an Optimal Solution

To choose an optimal parameter set, we examine all solutions along the Pareto front.

As can be seen from Figure 3-12, three regions are evident. On the left are solutions

with relatively low metabolic cost but which fail to track the measured joint torque

profiles. The performance of these solutions is typically accounted for by Fmax values

that are too small. On the far right are solutions with the best kinetic agreement but

high metabolic costs. In essence these solutions are overfitting; they try to drive one

or more muscles harder than they should so as to force agreement with the observed

kinetics. Un-modeled muscles and deficiencies in the data sets (EMG in particular)
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preclude a perfect fit, so this extra effort is non-physical. The solutions that represent

the human should be somewhere between these two extremes, producing a good

kinetic fit at a reasonable metabolic cost.

To determine where the optimal solution lies, we consult the metabolic energy

budget of each subject. Figures 3-13 (all excitations estimated from EMG) and 3-14

(monoarticular hip muscle excitations from literature) plot the fraction of full body

metabolic cost consumed by each muscle as a fraction of the maximal average R2

that the model achieves for kinetic fit. As can be seen from the plots, the budget

is fairly consistent for low to moderate average R2 and energy expenditure, then

sees one or a few muscles begin to dominate as the high R2/metabolic cost range is

approached. Typically one to three muscles overexert themselves to force a marginally

better kinetic fit, differing from the distribution of cost at lower energies. Physically

this would lead to fatigue of the muscle in question, or in it being modeled as much

larger than its actual size (since muscle mass is proportional to Fmax). Hence for each

optimization we chose a cutoff point just before the questionable muscles begin to

ramp up their loads. The optimal solution is defined as the point along the Pareto

front with maximal kinetic fit below this cutoff. It should be noted that for some

subjects the vastus lateralis (VAS) increases its load along virtually the whole Pareto

front. This is likely due to the large size of this modeled muscle; if it does not

adequately match the knee extension moment in early stance the optimizer will throw

progressively more energy into that muscle to improve the fit, which dominates the

metabolic cost. In this case we based the cutoff upon a different muscle so as to

capture the sudden change in regime described above. As can be seen from the

figures, the approach worked more cleanly when excitation profiles from the literature

were employed at the hip (as should be expected). Table 3.5 displays the cutoffs and

muscles upon which they were based for each case.

3.2.2 Metabolic Cost Predictions

The optimal solutions are plotted with respect to their solution spaces and measured

metabolic cost in Figures 3-15 and 3-16. In these figures the dark gray bands are the

67



BC Frac. Cost vs. Frac. Max R 2

0.15

0.1

0.05

0.3

0.25

0.2

0.15

0.1

0.05

0

0.25

0.2

0.15,

0.1

0.05!

* ** *n ~ I
*

0.8 0.85 0.9 0.95
Frac. of Max R2

DH Frac. Cost vs. Frac. Max R2

0 0

.6 0.7 0.8 0.9 1

Frac. of Max R2

MC Frac. Cost vs. Frac. Max R2

6. 0

0.8 0.85 0.9 0.95
Frac. of Max R2

0.2

0.15

0.1

0 .05

1

0

0'

0.3

0.25

0.2

0.15

0.1

0.05

1

Figure 3-13: Metabolic budgets for all subjects plotted vs.
vertical line in each plot represents the chosen cutoff point.
tions were estimated using only collected EMG data.

DC Frac. Cost vs. Frac. Max R 2

* ** n m s

0.85 0.9 0.95
Frac. of Max R2

JB Frac. Cost vs. Frac. Max R 2

311
0.8 0.85 0.9 0.95 1

Frac. of Max R2

* TA
* SOL
* GAS
* VAS
* BFSH
* RF
* HAM

ILL
* GLU
* GMED

kinetic agreement. The
Here hip muscle excita-

68

LL

0

Cs
0

LL

0

U

I



BC Frac. Cost vs. Frac. Max R2

0.9 0.95 1
Frac. of Max R2

DH Frac. Cost vs. Frac. Max R 2

0.7 0.8 0.9 1
Frac. of Max R2

MC Frac. Cost vs. Frac. Max R2

~~.40

dEhab.Ep.Wrb~~'~

0.85
Fr

DC Frac. Cost vs. Frac. Max R 2

0.2 .

0.15

0.1:.

0.05
io

0.

0.2

0 0
S0.1

0.1

0.0

0.9 0.95 1
ac. of Max R2

40.

$e.

0.85 0.9 0.95 1
Frac. of Max R2

JB Frac. Cost vs. Frac. Max R2

3

22

0.85 0.9 0.95 1
Frac. of Max R2

* TA
* SOL
* GAS
* VAS
* BFSH
* RF
* HAM

ILL
* GLU
* GMED
* ADDL
* ADDM

Figure 3-14: Metabolic budgets for all subjects plotted vs. kinetic agreement. The
vertical line in each plot represents the chosen cutoff point. Here literature values
[42] were used to estimate neural excitations in the monoarticular muscles spanning
the hip.

69

0.15

0.1

0.05

0
0

U-

0.3

CD

0.25

0.2

0.15

0.1

0.05

0.25

0.2

0.15

0.1

0.05



Mono. Hip Excitations from Data Mono. Hip Excitations from [42]
Subject Cutoff R 2 (% of Max.) Muscles Based Upon Cutoff R 2 (% of Max.) Muscles Based Upon

BC 0.955 TA 0.975 TA, GMED
DC 0.960 VAS, GMAX 0.945 GMED
DH 0.970 TA 0.940 GMED
JB 0.900 GAS 0.880 GAS, VAS
MC 0.960 GMED 0.960 GMED

Table 3.5: Cutoffs used to determine optimal solutions and the muscles they were
based upon.

full range of minimal MCOTs observed from all subjects while the light gray bands

are the minimal MCOT for the subject being plotted.

The numerical MCOT estimates from both methods are compared with the em-

pirically measured values in Table 3.6. From these we see that both methods produce

accurate metabolic cost predictions when averaged over all subjects. However only

the method which includes literature-derived excitation estimates at the hip allows

for accurate metabolic prediction for individual subjects. This is not surprising given

the noisy nature of our data sets and the relatively pristine condition of the wire

EMG data sets obtained in [42]. There is undoubtedly some inter-subject variation

unaccounted for when using these profiles with the rest of our data set; however the

most critical piece for the analysis is the timing of the excitation profiles and these

are known to be relatively consistent across subjects.

We can also visualize the ability of the model to estimate metabolic cost by looking

at the superposition of all solution spaces and where it falls relative to empirically

measured metabolic cost (Figure 3-17). We observe that (for both methods of deriving

hip muscle excitations) the solutions begin to transition from high cost, maximal

kinetic fit to low cost, poor kinetic fit in the region of human metabolic cost.

3.2.3 Resolving Redundancy in Joint Actuation

One of the stated objectives of this work was to resolve the redundancy in joint

actuation, i.e. to determine the contributions of each modeled muscle to joint torque.

With estimated muscle-tendon lengths, moment arms, activations, and morphologies

in hand we can now evaluate the roles of individual muscles. Figure 3-18 shows the
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71



0,.

0.8.

0.7

0.6-

O 5
S0.5-

0.4 f

0.3

0.1

3.2 0.25 0.3 0.35 0.4 0.45 0.5 0.
Metabolic Cost of Transport

Solution Space

0.9

0.8

0.7-

O 6 -
cc0.6-

0.4

0.3 - - - ,-.,r. ..

0.1 -

9.2 0.25 0.3 0.35 0.4 0.45 0.5 0.
Metabolic Cost of Transport

S(

0.9

0.8

0.7

S0.6-

0.5

0.4

0.3-

0.2

0.1

3.2 0.25 0.3 0
Metabol

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

07

0.6

0.5

0

0

0

0

Solution Space

L
*- .. .,, a$ -

2 0.25 0.3 0.35 0.4 045 0,5 0,55
Metabolic Cost of Transport

Solution Space

.4-

.3-

1 - . .* .*

9.2 0.25 0.3 0.35 0.4 0-45 0.5 0.55
Metabolic Cost of Transport

)lution Space

c -

A-

.35 0.4 0.45 0.5 0.55
Ic Cost of Transport

Figure 3-16: Best solution for each participant and its relation to measured MCOT
(light gray band) and MCOT range for all participants (dark gray band). Here
literature values [42] were used to estimate neural excitations in the monoarticular
muscles spanning the hip.

72



Total Solution Space
1 ,

0.9-

0.8-

0.7-

0 0.4

0.32

0.1 - - --

0.4
0.25 03 0.35 0.4 0.45 0.5 0.55 0.6

Metabolic Cost of Transport
Total Solution Space

1

0.9-

0.8

0.7-

0.6-

.2 064-

0.3-

0.2-

0.1

0 -
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Metabolic Cost of Transport

Figure 3-17: Total of all solution spaces. The top plot was formed using hip muscle
excitations derived exclusively from EMG data while the bottom plot was formed us-
ing literature profiles [42] to estimate neural excitations for the monoarticular muscles

spanning the hip.

73



Subj. Empirical MCOT Mod. MCOT (Data) Mod. MCOT ( [42])
BC 0.38 t 0.01 0.34 0.38
DC 0.32 t 0.01 0.35 0.32
DH 0.35 + 0.01 0.39 0.38
JB 0.37 t 0.01 0.37 0.36
MC 0.34 + 0.01 0.33 0.35

Mean 0.35 + 0.02 0.36 ± 0.02 0.36 ± 0.02

Table 3.6: Metabolic cost estimates from data and both versions of the model. The
first model column uses monoarticular hip excitations from the data while the second
uses profiles from [42].

breakdowns at the ankle, knee, and hip for one subject. It should was observed that

the muscle-by-muscle breakdown was quite consistent among our five subjects.

3.2.4 Evaluating Muscle State

As discussed previously, knowledge of joint kinematics, muscle-tendon morphology,

and muscle activation allows for the exploration of muscle force and state. Figure 3-

19 shows the length and velocity trajectories for each muscle fascicle for one subject.

Both the fascicle length and velocity predictions are fairly consistent among subjects,

with the exception of the overall offset of the fascicle length relative to 1opt. However

if the fascicle length is expressed in terms of strain relative to its length at heel strike,

all subjects show similar fascicle length trajectories.

In general, muscle fascicle state is very difficult to measure. Ultrasonography is

the only current means to obtain these profiles, and it is really only practical for

the relatively short, distal muscles of the leg. In figure 3-20 we compare our fascicle

trajectories with the profiles available from published ultrasound studies. In each

case we plotted the appropriate muscle for only the subject who was most closely

matched to the average height and weight of the empirical study. The soleus and

gastrocnemius profiles came from Ishikawa et al[31], while the vastus lateralis profile

came from Chleboun[9]. In all cases qualitative agreement is observed. We believe

that observed differences come from (i) the difference in walking speed between our
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study and the literature, (ii) natural variation in the kinematics of early stance,

which affects the initial muscle length for normalization, and (iii) uncertainty in the

breakdown of what constitutes muscle and what constitutes tendon in such studies.

Knowledge of muscle force and state also allows for the power output of the muscle

tendon unit to be broken into individual contributions from the muscle and tendon.

These outputs are plotted for one subject in Figure 3-21. Note the large contribution

of the tendon (red), particularly in the more distal muscles where tendons are longer

relative to the fascicle.

3.3 Discussion

In this study we have investigated the interplay of neural control and muscle-tendon

structure in human walking. Using a hidden state estimator for muscle activation and

an optimization-based system identification technique for inferring structural param-

eters we have generated estimates of muscle metabolic consumption, force, and state.

Metabolic consumption is found to quantitatively match empirical measurements in

four out of five subjects and on average. While in vivo measurements of muscle fas-

cicle length are rare, our model does qualitatively match published profiles for the

soleus, medial gastrocnemius, and vastus lateralis. We hope that future empirical

studies, perhaps with implantable sensors, will be able to further validate the results

of our model.

There are many observations and predictions that can be made using our estimated

muscle state profiles. As can be seen in Figure 3-11 and was emphasized in [19],

muscle is metabolically efficient when operating isometrically. This quality is utilized

in our results as the tibialis anterior, soleus, gastrocnemius, biceps femoris short

head, rectus femoris, illiacus, gluteus maximus, and gluteus medius all undergo long

stretches of the gait cycle where they are nearly isometric. A.V. Hill [26] demonstrated

that skeletal muscle maximizes its operating efficiency while shortening at VCE .

-0.1 7vax, and nearly all of the muscles of the leg are seen to spend a portion of

the gait cycle operating in that region. Hill also showed that muscles maximize their
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power output at around VCE ~ -0.30vmax [26]. In our study we see that the soleus

and gastrocnemius operate near that speed just before toe-off, providing the power

required to transition from stance to swing. However most other muscles appear to

move more slowly during self-selected speed gait, seeking to maximize efficiency.

While our approach does provide several predictions that corroborate with em-

pirical measurements, it is somewhat limited by our data set and some of the as-

sumptions made in building the model. Most notable is the poor quality of the EMG

data in the muscles spanning the hip. As seen above, the metabolic predictions of

the model may be improved by using literature-based data for the neural excitations

of the monoarticular muscles spanning that joint. While this does not account for

subject-to-subject variation it should at least provide the correct timing for neural

stimulation profiles, and our results indicate that this is of critical importance. We

would likely improve our results by using fine wire EMG to measure these muscles,

enabling predictions under a broader set of conditions. In particular we would like

to validate our model for walking at different speeds. As one walks faster the hip

muscles significantly increase their activation; without proper EMG data this scaling

is unknown so the model is missing a fundamental input. One could imagine deter-

mining the muscle-tendon parameters using measurements of walking at self-selected

speed and then applying and testing them under a variety of different conditions-

differing speeds, differing terrains, possibly even running.

One other way the model could be improved is through the inclusion of more

muscles. For instance the deficiency exhibited in ankle moment during late stance

is likely due to the exclusion of smaller plantar flexor muscles which are known to

engage during that time [42]. Similarly the lumping of the three hamstring muscles

(semimembranosus, semitendinosus, and biceps femoris short head) may be respon-

sible for some of the deficiencies observed in the knee flexion moments throughout

the gait cycle. Further resolution of these and other muscle groups where the muscle

activations are not quite concurrent and the muscle-tendon lines of action are not

quite aligned would likely prove beneficial. A thorough data collection using wire

EMG on this expanded muscle set could greatly improve the predictive power of this
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Chapter 4

Pilot Application to Powered

Ankle-Foot Prosthesis Control

Control schemes for powered ankle-foot and knee prostheses would benefit greatly

from a means to make them inherently adaptive to different walking speeds. One

approach to achieving this is to emulate the intact human leg, as it is capable of

seamless adaptation. Human locomotion is known to be governed by the interplay

among legged dynamics, morphology, and neural control including spinal reflexes. It

has been suggested that reflexes contribute to the changes in joint dynamics that

correspond to walking at different speeds. It is therefore natural to seek adaptive

prosthesis behavior through control by a neuromuscular model driven by reflexes.

In this chapter we describe the application of a simplified version of our model in

the control of a powered ankle-foot prosthesis' . The control scheme was tested by

a transtibial amputee walking at three speeds and seen to produce speed adaptive

behavior; net ankle work increased with walking speed, highlighting the benefits of

applying neuromuscular principles in the control of adaptive prosthetic limbs.
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4.1 Background

The human ankle generates net positive mechanical work during gait at moderate to

fast walking speeds. During stance phase, commercially available ankle-foot prosthe-

ses only store and release elastic strain energy and thus cannot generate net ankle

work. To restore biological ankle function, self-contained powered prostheses have

recently been developed with the capability to reproduce physiological levels of net

mechanical work [5],[27],[50]. While these prostheses can reduce the metabolic cost

of the wearer [6], many control challenges remain in realizing the potential of these

devices for walking under diverse conditions, such as varying terrains and speeds. To-

ward this end, we here focus on the advancement of a speed adaptive control strategy

for a powered ankle-foot prosthesis.

To develop a speed adaptive controller, we consider the biomechanical changes

in human ankle behavior across speed. A change in walking speed corresponds to a

change in the relationship between ankle joint state (angle and derivatives) and joint

torque. One way to encode these speed-adaptive variations in a prosthetic control

scheme is to program the prosthesis with fixed mathematical functions defined by

parameters that vary across speed [50]. However, this strategy requires supervisory

controllers to explicitly vary function parameters as walking speed changes [50]. An

alternative is a method described in [30], which uses tibia global angular position

and angular velocity to measure gait cycle location regardless of stride length, thus

enabling speed adaptation. This has the advantage of not requiring walking speed

measurements from the device, preventing measurement errors and latency in pa-

rameter changes from affecting performance. We propose another method to achieve

inherent speed adaptability by implicitly encoding speed-correlated torque-state vari-

ations in a biophysically inspired function. This method also does not require an

explicit measurement of walking speed and may provide more potential for adapt-

ability over a broader range of conditions.

Such a function can be developed by emulating muscle reflexes, i.e. muscle be-

haviors that are mediated by neural circuits that are confined to the spinal cord [33].
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It has been suggested [55] that afferent feedback is important in enabling walking

speed-dependent biomechanical changes. Reflexes offer a dynamic means to rapidly

communicate mechanical changes to the neuromuscular system, and so may enable

joint power generation to be appropriately timed across speed [55]. Thus, reflexes

may provide a biophysical basis for closed-loop feedback control of ankle dynamics

across speed.

Human motor control is believed to be composed of both a feedforward neural

drive and a reflexive feedback component [33],[55]. Nonetheless, models controlled

with only local reflexive feedback loops are able to produce walking simulations that

qualitatively agree with human gait dynamics and muscle activations [21]. This purely

feedback-based approach has been applied to a powered ankle-foot prosthesis to con-

trol it as if it were driven by a human muscle with a local force feedback reflex

[17]. This system exhibited slope-adaptive behavior but the use of a force-feedback

reflex alone, without parameter interventions, did not result in the biological trend

of increasing net ankle work across speed [16]. Empirical studies such as [2] have

established the existence of length-based as well as force-based afferent feedback to

the plantar flexors during stance in walking. Hence, other reflexes may be required

in tandem with force feedback to produce speed-adaptive functionality, although the

specific reflex pathways required and the quantitative details of their contributions

are not yet known.

Here we propose that a neuromuscular modeling framework, when duly consider-

ing the interplay between musculoskeletal dynamics and neural control, can provide

insight into reflex pathways contributing to ankle function in walking gait. Specifi-

cally we hypothesize that a neuromuscular model composed of length, velocity, and

force feedback in the posterior leg muscles, when used to control a powered ankle-foot

prosthesis, can exhibit speed-adaptive behavior by producing a trend of increasing

ankle joint net work with increasing walking speed. To evaluate this hypothesis, we

first developed the proposed modeling framework based on kinematic, kinetic and

electromyographic gait data from an intact-limbed subject. We then used the re-

sulting neuromuscular model to control a powered ankle-foot prosthesis worn by a
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transtibial amputee walking at three distinct speeds.

4.2 Methods

4.2.1 Modeling

Reflexes, among other neural pathways, dynamically link muscle force and state to

muscle activation [33]. To specify a reflex-based controller one would require profiles

of muscle force, state, and activation, all of which are difficult to access. Muscle state

has a nonlinear dependence on tendon action and-joint mechanics. Activation cannot

be known in silico without quantifying the neural control pathways involved, which

are unknown a priori and are what we set out to find in the first place. As a resolution

to this difficulty we chose to estimate activations from electromyographic (EMG)

data of healthy walking subjects, since the data already incorporates the dynamic

effects of neural control within the subject. With the activations (effective control

commands) and ankle angles from gait data, we actuated a dynamical model of the

plant (consisting of ankle muscle-tendon units) and estimated muscle state profiles.

The estimates of muscle state and activations were used to derive a reflex architecture

that may contribute significantly to walking, as well as to quantify reflex parameters

that are consistent with the muscle-tendon dynamics. This overall framework, shown

in Figure 1, emphasizes the interplay of legged dynamics with neural control.

The biological data forming the basis of the above modeling scheme were composed

of kinematic, kinetic and EMG measurements. Data were collected with approval

from the MIT Committee on the Use of Humans as Experimental Subjects at an

instrumented motion analysis facility in the MIT Computer Science and Artificial

Intelligence Lab. After obtaining informed consent, a healthy male participant was

asked to walk barefoot at self-selected speed (1.25m/s). Standard motion capture

techniques (described in [35]) were employed to collect the kinematic and kinetic

data. Surface EMG recordings were obtained from the soleus, medial gastrocnemius,

lateral gastrocnemius and tibialis anterior muscles of one randomly chosen leg in the
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Figure 4-1: (a) Musculoskeletal model applied in prosthesis controller. The two plan-
tar flexors are modeled as muscle-tendon complexes while the dorsiflexor is modeled
as a unidirectional rotary spring-damper. (b) Block diagram describing an individ-
ual reflex-based controller. The input is composed of joint angles 0 (ankle and knee
for GAS; just ankle for SOL) and the output is the muscle contribution T to ankle
torque. The four blocks represent the geometrical mapping from angle to 1mc and an-
kle moment arm (Geom) , the reflex structure (Reflex) , the stimulation-to-activation
dynamics (Eq. 3, block Stim-Act), and the Hill-type muscle model [21],[17] (Hill).
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presence of a physician. A total of 25 walking trials within 5% of self-selected speed

were collected. The walking trials were repeated on multiple days (with consistent

calibrations) to test the robustness of modeling and estimation techniques to day-to-

day differences.

Muscle activations were estimated from EMG data using a technique reported

in [35]. Standard preprocessing techniques [10] were applied to the signal before

applying a causal, recursive, and vectorized implementation of the Bayesian algorithm

described in [45]. This algorithm models muscle activation as a slow diffusion process

driven by calcium sourcing and sinking jump processes and produces an output x(t).

This output does not take into account the difference in activation and deactivation

rates, which is critical to the timing of activation buildup. Consequently x(t) was

passed through the calcium-activation dynamics described in [60]:

[at ( - 1
da(t) + (+ -- )x(t))] a(t) = x(t), (4.1)

dt ± Tact Tact

where 0 < -y = a < 1. The activation time constant Tact was set to be 9 - 10

ms with the deactivation time constant set to 45 - 50 ms [60], [59],[56].

All steady state walking data and resulting estimates therefrom were split into

gait cycles, time-normalized to percent gait cycle (%GC) coordinates, and ensemble

averaged for modeling and analysis. Ankle joint angles and muscle contributions

to ankle torques were obtained by processing the motion capture data in SIMM [15]

(Software for Interactive Musculoskeletal Modeling, MusculoGraphics Inc., Evanston,

IL).

The muscle activations, joint angles and joint torques were used to estimate indi-

vidual muscle force and state profiles in walking, using a muscle-tendon model and a

method from [35] as described below.

The dynamics of the primary leg muscle-tendon units contributing to ankle func-

tion in normal walking were modeled. The anatomical correlates of the model (shown

in Figure 1) include the large muscle-tendon units actuating ankle rotation in the

sagittal plane - namely the soleus and gastrocnemius (with medial and lateral heads
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represented as one effective muscle) plantar flexors with the Achilles tendon split

amongst them, and the tibialis anterior dorsiflexor. All three muscle-tendon units 2

were modeled using (a) Hill-type muscle dynamics [21],[17] and (b) a common non-

linear tendon model [38]. Each muscle and tendon were dynamically connected in

series at a fixed pennation angle with each other.

Morphological parameters (muscle maximum isometric force, tendon shape factor,

reference strain and slack length) defining the model were chosen as those that most

efficiently relate the muscle activations and biological joint angles with the biological

joint torques [35]:

M(M I, a(t), 0(t)) --+ [C, T(t)] (4.2)

where the model M is actuated with muscle activations a(t) and joint angles 0(t)

from the biological gait data, and muscle-tendon parameters M- are obtained as those

that minimize metabolic consumption C, subject to the constraint of matching the

output torque T(t) to the biological ankle torque. C was computed using empirical

measures of muscle metabolic power as a function of contractile element velocity

[25],[36]. Bounds on the morphological parameters were chosen to ensure consistency

with values reported in the literature [60], [59],[56]. Because of errors starting up the

model the cost C was counted starting at 4% of the gait cycle and ran until the end of

stance (since the the swing cost was small and relatively flat in the parameter space).

The errors starting up the model came from two sources. First, since impact dynamics

are highly variable and thus the input data shows increased variability immediately

following heel strike, it is difficult to fit the model torque to the experimental average

during this phase of gait. Secondly, the model has state (muscle fascicle length

and velocity) and since there is no input data before heel strike (the model is only

trained on stance) there is a brief interval required for the model to converge to the

correct fascicle state. Note that the plantar flexors that are the dominant torque

sources in the ankle [42] are inactive during the omitted period. Using the values of

2The tibialis anterior was modeled in the same way as the plantar flexors here but replaced with
a rotary spring-damper in the prosthesis controller described later.
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i thus obtained and the inputs a(t) and 0(t), estimates of muscle force and state

profiles were calculated by numerically solving the muscle-tendon model in MATLAB

Simulink@ [35].

As noted in [35], the resulting model provides empirically inaccessible estimates of

individual muscle force. It also results in muscle-tendon morphologies that can be used

to predict empirically realistic individual muscle states [35]. Since the morphological

features link joint level leg dynamics with neural activations, it is a scheme well suited

toward identifying the reflexes that facilitate the interplay of legged dynamics with

neural control [35].

Reflexes respond to changes in muscle force and state (relayed by the spindle and

golgi tendon sensors in muscles) to contribute to neural stimulation of the muscle

and in turn muscle activation [33]. Therefore trends in the muscle force, state, and

activation profiles may be used to identify feedback control pathways that contribute

to observed state changes. If one ignores the effects of non-reflexive neural drive, a

purely feedback-based control structure may derived. In reality feedback does not

fully characterize the neural contributions to muscle activation in human gait; for

instance central pattern generators (CPG) may also play a role [8], [40]. Nonetheless

researchers have suggested that distal muscle-tendon units (such as those spanning

the ankle) are likely to be primarily influenced by feedback pathways since they have

greater proprioceptive feedback and are more influenced by contact forces [21],[13].

With this in mind we use the observed trends in the estimated muscle variables to

motivate a feedback-based control model and evaluate its performance.

Figure 4-2 shows vertically aligned plots of the estimated gastrocnemius muscle

activation, force, length, and velocity. It is apparent that there is an early stance

period of muscle stretch and low activation, followed by a coincident rise in activation

and near-isometric operation in mid-stance. This sequence of events points to a

possible contribution from the stretch reflex amongst contributions from other reflex

pathways. A notable feature in the mid-stance profiles is the similarity in shapes of

force and activation profiles. This positive correlation between force and activation

could be facilitated by positive force feedback. The primary characteristic seen in
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late stance is that of muscle shortening and a coincident fall in activation. It is

possible that the change from isometric operation to concentric operation (shortening)

drives the fall in activation via length and velocity feedback pathways. Similar trends

were observed in the soleus muscle. From here on we focus on only the soleus and

gastrocnemius muscles as these provide the dominant contribution to ankle torque

during stance phase in walking[42].

While the analysis above motivates our purely feedback-based control architecture,

it does not quantify the mathematical form of the reflexes or the control parameters

defining the feedback functions. Here we specify a simple linear feedback structure

similar to that used by [21] for both plantar flexor muscles, wherein changes in muscle

length, velocity and force are communicated to the spinal cord (with a delay) and

are amplified by a gain to collectively generate neural stimulation to the muscle. The

stimulation x(t) of an individual muscle is given by

x(t) = GF(F(t - AtF) - F0)u(F - F,)

+G,(I(t - Ativ) - 1,)u(I - 1,)

+Gv(v(t - At1 ) - v,)utlv| - vO), (4.3)

where GF, G1, and Gv are the gains and AtF, At,, and Atv are the time delays

for the force, muscle length, and muscle velocity terms respectively. The functions

u(F - Fo), u(l - lo), and u(JvJ - vo) are unit step functions that ensure the feedback

terms are only enabled when the threshold values of FO, l, and vo (all positive) are

exceeded. The time delays represent the path length from muscle to spinal cord and

spinal cord back to the neuromuscular junction. Each delay was taken to be 20 ms

[22],[49], [34]. The stimulation defined in (3) translates to muscle activation a(t) via

the dynamics of cross-bridge formation as specified in equation (1).

The free parameters governing the relation between muscle force and states F(t),

1(t), and v(t) and neural stimulation S(t) are the gains GF, G1, and Gv and thresholds

FO, 10, and vo. Although a static inspection of trends in the muscle activation, force,
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and state profiles was used above to motivate the reflex architecture, the unknown

parameters were identified with a fitting scheme that included the dynamical muscle-

tendon model. This was done so as to account for effects of the Hill-type muscle

dynamics and the tendon action in a self-consistent manner. The six parameters

were chosen so as to minimize the mean squared error between the feedback-driven

activation and the muscle activation estimated from EMG data. The fit was imple-

mented using a genetic algorithm followed by gradient descent in an effort to avoid

the numerous local minima that occurred in the mean squared error. The muscle-

tendon parameters were taken to be fixed to their optimal values (determined via

(2)) while fitting the reflex parameters, with each muscle being treated separately.

The enforced bounds for each parameter were determined using the force, length, and

velocity profiles given by the muscle-tendon model driven by biological data. Specifi-

cally, the reflex gains were allowed to range from zero to a gain that would dominate

the net muscle activation, given these nominal force, length, and velocity profiles.

The threshold on the length term was allowed to range from the minimum to max-

imum contractile element length in stance, while the velocity threshold was allowed

to vary from zero to the maximum absolute value of velocity observed in stance. The

boundaries on the force threshold were chosen to ensure that positive force feedback

was engaged sufficiently early to make a large contribution, as expected from [21].

4.2.2 Application to Prosthesis Control

This neuromuscular model was then applied to produce an entirely feedback-based

controller for a powered ankle-foot prosthesis. The ankle controller took as input an-

kle angle, knee angle, and walking state (stance or swing phase) and produced plantar

flexor torque based on the neuromuscular models of the soleus and gastrocnemius.

The start of the gait cycle in the hardware controller was defined to be consistent

with the biological data. Dorsiflexion torque was provided using a unidirectional ro-

tary spring-damper to model the contribution of the tibialis anterior (TA) dorsiflexor.

The dorsiflexor choice was made for simplicity and justified by the comparably small

amount of torque produced by the dorsiflexors during stance [42], which could ade-
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quately be represented by a spring engaged in early stance [41]. Details are described

below.

To evaluate the viability of our model for controlling a prosthesis across speed, the

model was used to control a prosthetic apparatus comprising a powered ankle-foot

prosthesis and an instrumented actuated knee brace worn by an amputee. The ankle

and knee joint states of the apparatus were measured and used to provide realtime

input to the neuromuscular model simulated by an on-board microcontroller. The

resulting torque command from the neuromuscular model was used to produce ankle

torque while a knee controller adjusted the torque produced by the knee brace. This

configuration, shown in Figure 3, was set up to enable the prosthetic apparatus to

behave as if it were a human lower-leg with reflex-controlled muscles acting at the

ankle.

4.2.3 Powered Ankle-Foot Prosthesis

As in [17], this study made use of a powered ankle-foot prosthesis (iWalk, LLC, Cam-

bridge, MA [32]) having a size and weight (1.8 kg) similar to the intact biological

ankle-foot complex. The prosthesis included a brushless motor, ballscrew transmis-

sion, and Kevlar leaf-spring that together comprised a series-elastic actuator (SEA)

[43]. The specifications of this drivetrain are listed in Table 1. The SEA was capable

of producing torque about the revolute ankle joint, analogous to the torque produced

by the plantar flexor and dorsiflexor muscles about the human biological ankle joint.

The robotic ankle's theoretical torque capability exceeded 300 Nm. A unidirectional

parallel spring engaged when the ankle was dorsiflexed and thereby assisted the SEA

during walking [5]. A compliant carbon-fiber leaf-spring attached to the base of the

prosthesis acted as a foot.

4.2.4 Knee Clutch

Since the gastrocnemius acts at both the ankle and knee, a spring-clutch was mounted

at the knee brace to provide the knee flexion action of the gastrocnemius. The
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Figure 4-2: Gastrocnemius activation, force, contractile element length, and contrac-
tile element velocity estimated by the data-driven muscle-tendon model. Only stance
phase is shown, with zero percent gait cycle representing heel strike (as is the case in
subsequent figures).

Parameter Units Value
Series Spring: Plantar. Torque Nm/deg 8.38
Series Spring: Dorsi. Torque Nm/deg 27.23

Parallel Spring Nm/deg 14.66
Ankle Transmission Ratio - 175 - 205

Table 4.1: Specifications for the ankle-foot prosthesis. The ankle transmission ratio
took its minimum value at maximum (17 degrees) dorsiflexion and maximum value at
maximum (24 degrees) plantar flexion. The series spring stiffness is direction depen-
dent. The reported spring constants are nominal values. In practice they vary with
angle and applied torque as governed by the geometry of the linkage and series spring
design. However, these variations were experimentally evaluated and subsequently
calibrated out.
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mechanism consisted of a toothed clutch at the free end of a coil spring (spring

stiffness of 66,500 N/m) which acted as a knee flexor on a polycentric knee brace. The

brace was integrated into a prosthetic socket connected to the ankle-foot prosthesis.

When the clutch was engaged via solenoid action, the free end of the spring locked

with respect to the socket and the spring stretched as the knee straightened. The

force developed by the spring produced a flexion torque at the knee joint. Conversely,

when the clutch disengaged no torque was applied at the knee joint. The spring acted

on the knee joint with a moment arm that varied between 0.02 m and 0.03 m as a

function of knee angle. This moment-arm function was designed so the apparent knee

stiffness matched that of the biological knee during level-ground walking [20],[18].

4.2.5 Angle Measurements

The ankle angle and knee angle of the prosthetic apparatus provided the primary con-

trol inputs to the neuromuscular model. To measure joint angle, an AM8192B sensor

from Renishaw (Gloucestershire, United Kingdom [58]) was used to measure the field

angle of a magnet mounted at the joint. Since the foot had some inherent compliance,

its deflection during walking contributed to the overall ankle angle. Therefore, the

measured ankle torque and estimated forefoot spring constant of 22.72 Nm/deg were

used to estimate foot deflection from forefoot loading. This deflection was added to

the joint angle measurement for input to the plantar flexors in the neuromuscular

model and for data analysis. A potentiometer at the knee provided an estimate of

knee joint angle.

Once measured, the ankle and knee angles were passed to lookup tables that esti-

mated the muscle-tendon unit lengths and ankle moment arms of the modeled plantar

flexors. These lookup tables were based off of the musculoskeletal geometry of the

intact subject, as determined by SIMM. The output muscle-tendon unit lengths and

moment arms were then used by the neuromuscular model to compute commanded

torque.
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4.2.6 Electronics

A Microchip Technology Incorporated PIC32MX575F512H, a single-chip, 32-bit, DSP

oriented microcontroller running at 500 Hz was used to run the neuromuscular model

in real-time using the angle and torque sensor data from the hardware as input.

Sensor and internal states could be sent to a data-collection computer via an onboard

IEEE 802.11g wireless radio.

4.2.7 Control

For control purposes, the gait cycle was divided into stance and swing phases. The

phases of gait were determined using the state transitions described in [17]. These

transitions were triggered using moment estimates from strain gauges embedded in

the prosthetic pyramid on the powered ankle-foot prosthesis. During stance phase,

the neuromuscular model provided the primary torque command to the ankle. Since

in biology the plantar flexor muscles dominate ankle torque during the stance phase of

walking [42], neuromuscular models were used to represent them. However since the

action of the tibialis anterior and other dorsiflexors resembles that of a linear spring

early in the stance phase[41] when the torque contribution of the plantar flexors

is small[42], the TA was modeled, for simplicity, as a unidirectional virtual rotary

spring-damper of the form:

T A -(KO + Kv$) KpO + Kv > 0

0 KpO + Kv$ < 0

where TTA is the TA ankle torque contribution, Kp is the spring constant, Kv is

the damping constant, 0 is the ankle angle and 0 is the ankle angular velocity. KP was

fit to best match the ankle torque-angle relation of the intact-limbed subject early in

the stance phase (3.04 Nm/deg) and Kv was experimentally set to 0.0524 Nm-s/deg

to prevent prosthesis foot oscillations at foot-flat. To prevent the TA from fighting the

plantar flexors during late stance, once the magnitude of TTA dropped to zero during

a given stance phase, TTA was suppressed to zero for the remainder of stance (as in
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[17]). During the swing phase, the plantar flexors were turned off by reducing the

reflex stimulations to their baseline values and the TA was made to be bidirectional

to enable full-control of the ankle joint. The TA impedance was also increased during

the swing phase (experimentally tuned to KP = 3.84 Nm/deg, Ky = 0.122 Nm-s/deg)

for achieving early ground clearance. When well into the swing phase, the impedance

of the TA was reset to the stance phase setting in preparation for heel strike. The knee

clutch was engaged shortly after maximum knee flexion in stance phase, as the clutch

passively locked once under load. Once the knee angle returned to the engagement

angle later in stance phase, the clutch released automatically.

4.2.8 Torque Generation and Measurement

Physical torque at the ankle joint was generated by both the motorized drive train and

the parallel spring. The ankle angle sensor and known parallel spring stiffness were

used to estimate the parallel spring torque contribution and the remaining desired

torque was commanded to the motor (Figure 3). The motor current was enforced

using closed-loop current control with a custom motor controller comprising an H-

bridge driven with Pulse Width Modulation.

The total ankle torque was computed by adding the SEA torque contribution

to the parallel spring torque estimate. The SEA torque contribution was estimated

using the series spring deflection and the calibrated stiffness of the series spring.

The deflection, in turn, was computed by comparing ankle angle to motor angle

(measured with an optical shaft encoder). The knee torque was estimated using a

linear potentiometer at the coil spring for spring force along with a moment arm

function relating linear force to knee torque.

4.2.9 Clinical Experiments

Clinical experiments were approved by MITs Committee on the Use of Humans as

Experimental Subjects (COUHES). After giving informed consent, a healthy active

bilateral transtibial amputee participant, height and weight matched to the intact-
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limbed subject, was fitted with the prosthetic apparatus. The participant donned

the actuated prosthetic apparatus on his right leg and wore a conventional passive

transtibial ankle-foot prosthesis on his left leg. Following initial walking trials for

natural adjustment, the subject was asked to walk at three different speeds (0.75

m/s, 1.0 m/s, and 1.25 m/s) across a 5.3 m long path. For each walking trial, the

participant began walking approximately 3 m from the beginning of the pathway and

stopped walking approximately 3 m past the end of the path. The beginning and end

of the 5.3 m path were labeled with markers on the ground. A stopwatch was used

to verify the average walking speed for each trial by noting when the subjects center

of mass passed over each of the markers. A total of 39 trials were captured.

4.2.10 Data Processing

Only steady state gait cycles within 10% of the 3 target speeds were used for analysis.

All gait cycles were re-sampled to span 1000 points. The net work was calculated for

each individual gait cycle by numerically integrating ankle torque over ankle angle

from heel strike to toe-off. An ensemble average net work across gait cycles was then

calculated for each trial.

4.3 Results

4.3.1 Modeling

The optimized muscle-tendon parameters and fit reflex parameters for the dominant

ankle plantar flexors (soleus and gastrodnemius) are shown in Table 2. The reflex

parameter fit was seen to converge within tolerance, with the objective function having

a negligible slope/curvature ratio for each parameter at the minimum. The fit was

conducted 10 times on each muscle starting with differing initial populations in the

genetic algorithm with little effect on the final parameters.

Figure 4 shows the fit to soleus activation and the resulting muscle dynamics. The

R2 values for the activation, force, length, and velocity fits were 0.83, 0.92, and 0.95,



Parameter Units Min. Val. Max. Val. Fit Val.

GAS Fmax (N) 1398 6990 1759
GAS t slack (i) .282 .460 .399

GAS Ksh - 1 5 2.81
GAS Aref - 0.02 0.09 0.042

GAS Gf (1/N) 0 5e-4 1.45e-4

GAS Fo (N) 0 203 78.3
GAS Gi (1/m) 0 10 3.66
GAS 10 (m) 3.05e-2 4.25e-2 3.09e-2

GAS G (s/m) 0 2 0.167
GAS v, (m/s) 0 0.278 2.23e-4

SOL Fmax (N) 3650 18251 7142
SOL 1slack (m) .175 .293 .250
SOL Ksh - 1 5 2.25
SOL Aref - 0.02 0.09 0.083

SOL Gf (1/N) 0 le-4 2.62e-5
SOL Fo (N) 0 543 10.5
SOL Gi (1/m) 0 10 2.44
SOL lo (m) 0.015 2.87e-2 1.75e-2

SOL G (s/m) 0 2 5.65e-2
SOL vo (m/s) 0 0.196 1.29e-3

Table 4.2: Boundaries and fit values for plantar flexor muscle-tendon and reflex pa-

rameters. The muscle-tendon parameters were determined as described in [35] and

fixed during reflex parameter fitting.
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Figure 4-3: Labeled photograph of the prosthetic apparatus and associated labeled
schematic and control architecture. The rotary elements in the ankle-foot prosthesis
are shown as linear equivalents in the model schematic for clarity. In the control
schematic the parallel spring contribution to prosthesis ankle torque, 7p, was sub-
tracted from the desired ankle torque command from the neuromuscular model, rd,
to obtain the desired SEA torque Td,SEA. A motor current command imot was obtained
by multiplying by the motor torque-constant Kt and produced using a custom motor
controller (not shown). The knee clutch was engaged via the solenoid depending on
knee state as obtained from the knee potentiometer.

respectively. The R2 values for these fits in the gastrocnemius were 0.90, 0.94, and

0.94 respectively. The figure also shows the contributions of the different reflexes to

follow the sequence described above. It was found that the positive force feedback

term dominated the fit but was reliant on the length feedback term to time and scale

its buildup. These contributions were roughly maintained when the neuromuscular

model was applied to biological ankle angles at different walking speeds, as evidenced

by Figure 5. Very similar profiles and relative reflex contributions were seen in both

plantar flexors.
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Figure 4-4: Comparison of the soleus muscle dynamics produced by EMG vs. those
produced by reflex feedback to the muscle-tendon model. The top plot shows the
contributions from the force, length, and velocity terms to the stimulation. Here the
stimulation is the solid line, the force term is the dashed-dot line (largest contributor),
the length is the dashed line, and the velocity term (which goes negative) is the dotted
line. On the rest of the plots the dashed curves are the model outputs given EMG-
based activation, while the solid curves are the corresponding variables when the
model activation is determined by the reflex structure in (3). The shaded regions
indicate the times where the force, length, and velocity feedback terms contribute at
least 0.01 to the stimulation. All plots used biological angles for walking trials at 1.25
m/s.
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Figure 4-5: Plot of soleus muscle dynamics produced by the reflex-based stimulation
(Eq. 3) for input ankle angles from walking trials at 0.75 m/s. The top plot shows
the contributions to the stimulation (solid line) from the force (dashed-dot line),
length (dashed line), and velocity terms (dotted line). The remaining plots (from top
to bottom) show the total activation, muscle force, contractile element length, and
contractile element velocity. The shaded regions indicate the times where the force,
length, and velocity feedback terms contribute at least 0.01 to the stimulation.
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Figure 4-6: Comparison of prosthesis ankle and knee angles and torques during the
clinical trials (measured) with those from a height and weight matched subject with
intact limbs (biological). Torque that plantar flexes the ankle is defined to be positive
and moves the angle in the positive direction. Similarly torque that flexes the knee
is positive and increases the knee angle. The biological values are the thick solid
lines (with shaded errors) in each plot while the dashed lines are the values measured
on the prosthesis. In the ankle torque plot the commanded torque is shown as a
thinner solid line, again with shaded error bars. The knee torque plot compares
the torque provided by the clutch-spring mechanism to that provided by the natural
gastrocnemius in simulation. The vertical line indicates toe off in each plot.

4.3.2 Clinical Trials

The results of the clinical trials are summarized in Figures 6, 7, and 8. Figure 6

shows the mean angle and torque profiles for the ankle-foot prosthesis and knee joint

during the 1.25 m/s clinical walking trials. The biological gastrocnemius component

of knee torque was estimated for this plot by feeding joint kinematics and EMG from

the intact-limbed subject into the model from [35]. The resulting gastrocnemius force

was multiplied by the moment arm of this muscle as estimated with SIMM. There is

a qualitative agreement in angle and torque profiles between the prosthesis apparatus

and those of the intact-limbed subject. However, the ankle angle of the prosthetic

apparatus deflected less than the intact biological ankle, resulting in smaller peak

torque. The torque produced by the knee clutch was also seen to be smaller than the

biological counterpart, implying that the spring in the knee clutch mechanism was

too soft.
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Figure 4-7: Commanded ankle angles, torques, and workloops for three speeds in
clinical walking trials. Shown are data for three speeds: 0.75 m/s (solid line), 1.0 m/s
(dashed line), and 1.25 m/s (dotted line). In the torque vs. angle plot heel strike is
indicated with by a circle.

The ankle-foot prosthesis angle and commanded torque for the three target walk-

ing speeds are plotted in Figure 7. The magnitudes of both peak angular deflection

and peak torque are seen to increase with walking speed, with both variables aligning

in percent gait cycle across speed. The third pane in Figure 7 shows an increase in

commanded positive ankle work across speed, a trend that is also observed in intact-

limbed individuals [41]. As can be seen from Figure 8, this trend is also reflected in

the measured net ankle work.

4.4 Discussion

The reflex-based controller developed in this study produced a trend of increasing

net work with walking speed during clinical trials. Looking at the kinematics and
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Figure 4-8: Energy output of the ankle across gait speed. Shown are biological
data, net work as commanded by the ankle-foot prosthesis during clinical trials, and
measured net work during the clinical trials.

dynamics of the prosthetic ankle joint (Figure 7), this trend can be attributed to

at least two effects. First, both the peak ankle angle and peak torque increase at

faster walking speeds. The angle increase is produced by a combination of kinematic

and dynamic changes associated with higher walking speeds, such as increased stride

length and higher dynamic loading of the ankle joint. Although the angle and torque

are interrelated through the dynamics of the amputee subject, an increase in angle

tends to produce correspondingly higher torques3 . The angle and torque remain

aligned in the gait cycle across speed, so increasing both peak values results in a

larger work loop and hence more positive net work. The second effect producing the

trend in net work is the increased ankle plantar flexion in terminal stance at faster

walking speeds. When combined with a torque profile that increases with increasing

speed, this further contributes to the trend in net work.

Although the subject is able to influence the ankle behavior by changing walking

speed, tracking a desired angle trajectory at will is not possible. The subject is

not an infinite impedance position source and is thus reliant on the controller to

produce torques that, when interacting with the human dynamics, produce reasonable

3This observation was verified in simulation by scaling the biological ankle angle trajectory in
magnitude and observing an increased peak torque from the model.
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angles. The observed trend in net work therefore implies that the controller is able

to effectively modulate ankle joint quasi-static impedance (slope of joint torque vs.

state) across speed.

The behavior of the controller can be further understood through simulations that

provide the neuromuscular model with biological ankle angles at different speeds.

This is possible because the muscle states seen in the controller during clinical trials

(with angle input from the prosthesis) are qualitatively similar to those obtained

from simulations (with angle input from the intact-limbed subject). It was evident

in both simulations and clinical tests that the stimulation profiles provided to the

muscles vary little with speed when normalized to percent gait cycle (Figures 4 and

5). This similarity is a result of the consistent timing of the force, length, and velocity

reflex contributions throughout stance. The sequence is preserved across speed by the

length feedback term, which governs the timing and magnitude of force buildup. The

importance of timing is consistent with the findings of Winter [551, who suggested

that walking speed is governed by gains and maintains its timing as a result of afferent

feedback.

One may compare the results of our study to those of previous works. The positive

force feedback term that dominates force production in our model was based on the

studies of [44] and [21]. The length term in (3) represents the stretch reflex while the

velocity term represents negative feedback controlling the rate of muscle contraction.

If the muscle is lengthening too rapidly the velocity term will increase the activation; if

it is shortening too quickly the velocity term will reduce activation. Several empirical

studies [46], [23], [24], [1], [12], [2] have demonstrated the presence of afferent feedback

in the plantar flexors during stance. These studies record the changes in muscle EMG

signals when the gait of a subject is perturbed either by changing the inclination of

the walking surface or by forcing muscle-tendon length changes using an orthosis.

Notably Klint et al. [2] isolated the contributions of force-based and length-based

afferent feedback during different intervals of stance at self-selected walking speed.

They found that force feedback was dominant in late stance but contributed little

during midstance perturbations, where spindle-based feedback likely dominates. This
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sequence is similar to that seen in our plantar flexor reflexes, although our modeling

was done without perturbations. One further study that would specifically address

the role of reflexes in speed adaptation would be a direct comparison of plantar flexor

EMG signals during walking at different speeds between a normal and a deafferented

subject. If reflexes are dominant in speed adaptation, as postulated in this study,

one should see a sluggishness in the adaptation to different speeds of the deafferented

subject.

This study extends the work in [17] by considering the structural morphology of

the ankle plantar flexors and including length and velocity feedback terms. Speed

adaptation is enabled through these changes. It appears that inclusion of the stretch

reflex in both plantar flexors was critical for timing and scaling force buildup, thereby

enabling an increase in positive net work across speed.

Despite the speed adaptation exhibited by our approach, some limitations are ev-

ident. First, the chosen reflex structure does not necessarily reflect the true biological

control scheme. The ability to reproduce this scheme would rely on knowledge of

the non-reflexive neural drive provided to muscles as well as the true structure of

the reflexive feedback. Despite the absence of this knowledge, our scheme provides

functional results. A second limitation of our approach was the simple impedance

approximation used for the ankle dorsiflexor model. This approximation reduced the

quality of the ankle torque fit in early stance; the fit may be improved by including

a dorsiflexor muscle model similar to those used for the plantar flexors.

Despite these limitations, this work may serve as a starting point for several

natural extensions. Different reflex structures may be explored and the effect of non-

reflexive neural drive examined. The interaction of the neuromuscular model with

mechanical effects (human dynamics, ground contact forces, etc.) may be better

understood by conducting a forward dynamic simulation similar to that in [21]. Our

overall approach may be extended to include muscles further up the leg, possibly

leading to speed adaptive control schemes for multiple prosthetic joints. Finally, the

generality of the approach could be tested by studying the behavior of the reflex-based

controller when applied to tasks other than level ground walking. In the design of
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adaptive prosthetic limbs, we believe the application of neuromechanical principles

are of critical importance.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis included both scientific and technical aspects. On the science side, an

inverse computational framework was established for investigating the interplay be-

tween neural control and muscle-tendon structure during walking. The framework

was composed of two pieces; (i) a hidden state estimation of muscle activation using

EMG data and (ii) an optimization-based system identification procedure for deter-

mining muscle-tendon morphology. The approach was used to predict muscle force

and state, resolving the contributions of individual muscles to total joint torques

during walking. It was able to more accurately predict metabolic consumption than

conventional models while providing qualitative agreement with available ultrasound

measures of muscle fascicle length. Many other predictions that are not currently

testable can be derived from the model including muscle and tendon power profiles,

metabolic consumptions of individual muscles, and reflex structures. We hope that

future empirical techniques will be able to further validate the predictions of the

model.

On the technical side, a controller based on the model was developed for a robotic

ankle-foot prosthesis. The controller coupled the optimal muscle-tendon morphology

found by the previous steps to a reflexive feedback-based control scheme to enable

application to the device. Speed adaptive behavior was observed in clinical trials, sup-
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porting the notion that control schemes based on neuromuscular models can produce

biomimetic behavior when applied to prosthetic limbs.

5.2 Scientific Extensions

There are several directions that future modeling studies based on this work may

pursue. Among them are the following:

Model Refinement with Wire EMG, Additional Muscles In this study we

found that the predictive power of our modeling approach was limited by the quality

of the EMG recordings taken. This was particularly problematic in the muscles

spanning the hip, and prevented validation of the model across speed. One could

likely improve the results of the model and broaden its applicability by obtaining fine

wire EMG measurements of the problematic muscles. Signals collected from fine wire

are known to be cleaner and less prone to artifacts than their surface counterparts,

but require more invasive measurements. One could also improve upon the model by

including more muscles of the leg; this would avoid some potentially compromising

muscle lumpings and lead to a more complete picture of the roles of various muscles

during walking.

Forward Dynamic Modeling with Reflexes One way to test the adaptability

of this approach without relying upon EMG measurements is through forward dy-

namic modeling. As discussed in Section 1.1.2, forward-dynamic models driven by

only reflexive feedback have been shown to walk stably across different terrains [21]

and at different speeds[47] (through reflex parameter tuning) . These models may

be improved through data-driven customization for individual subjects and the in-

clusion of more realistic muscle-tendon geometries and morphologies. Our current

work involves scaling the model of [21] (see Figure 6-1) to align with the data-based

SIMM estimates of segment inertias and muscle lines of action for individual partic-

ipants. Using this model, we can re-optimize the muscle-tendon morphologies and

110



D '

GLU
HFL

HAM

B

SOLe F+
F+ VAS

E

GLU F
HFL

VAS

C

GAS
F+

VAS
TA

F- L+

F

GLU
F+ HFL

HAM

F+

Figure 5-1: Reflex-based forward dynamic walking model. Figure credit: Geyer-Herr
2010 [21].

check agreement with the inverse analysis presented in this thesis. We can also inves-

tigate potential contributions from additional reflexes; for instance the stretch reflex

implemented in [37] may be useful. We would hope to improve upon the metabolic

estimates of [21] as well as to observe more terrain and speed adaptive behavior with

this approach.

Three Dimensional Modeling One other obvious extension of this model is to

three dimensions. All considerations in this thesis and in the Geyer-Herr forward

dynamic model are for the sagittal plane, but walking is a three dimensional activity.

The hip in particular is built for other degrees of freedom; our inverse model may

be improved by trying to match hip kinetics for motion in the coronal (left-right)

plane. One could also imagine improving upon the two-dimensional, forward dynamic

representation of [21] by building a representation of the full, three-dimensional SIMM

model in MATLAB Simulink. This would allow for a more realistic optimization of
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muscle-tendon morphology and reflex loops as well as the investigation of behaviors

other than straight line walking. One could imagine using such a three dimensional

model to investigate interactions between a human and an external device such as a

prosthesis, orthosis, or exoskeleton.

Application to Running One final potential scientific extension of this model is to

running. The muscle-tendon morphology identified by our procedure reflects physical

characteristics of the system, so it should be applicable to activities beyond walking.

It would be interesting to compare our results to a similar kinematically-clamped

optimization for running at a self-selected speed, particularly with a highly trained

runner. The hypothesis in the latter case would be that the runner has, through

training, tuned their muscle-tendon morphology to maximize their efficiency at that

pace. Seeing how the two parameter sets are related would lend insight into both the

similarity of the structural requirements of the tasks (walking and running) and the

efficacy of the hypotheses. One could also imagine building a forward dynamic model

of running, again based on reflexive feedback. In this case one would be primarily

interested in the neural adaptations required to run at different speeds.

5.3 Technological Extensions

Many technological extensions of this work are also possible. The application de-

scribed in this thesis may be thought of as a special, basic case of the general control

paradigm shown in Figure 6-2. In the general case a neuromuscular model is used

to control a biomimetic robotic leg using inputs from both intrinsic (from sensors on

the device) and extrinsic (from sensors outside the device) sources. In Chapter 4 we

only used intrinsic sensing and only controlled a robotic ankle-foot prosthesis, but one

could imagine adding other sensors to modulate the reflexive feedback and/or using

the system for coordinated control of more than one joint. Examples of potential

extrinsic sensors include surface EMG electrodes on the residual limb or mounted in-

ertial measurement units (IMUs). In particular this approach would provide a means
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Figure 5-2: Full control paradigm for a biomimetic prosthetic leg controlled by a
neuromuscular model.

to control a robotic ankle and knee together, possibly producing adaptive behavior.

The paradigm could also be applied to control orthoses or exoskeletons, hopefully

leading to an improvement in the performance of such assistive devices.

5.4 Summary

We have described a method for investigating the interaction between neural con-

trol and muscle-tendon structure during walking and its application to a prosthesis

control problem. We believe that further work in this area will greatly increase our

understanding of human locomotion and our ability to produce life-like prosthetic

limbs.
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Appendix A

Addressing Missing EMG Data

As mentioned in Chapter 2, full EMG data sets were difficult to obtain. This was

largely due to the inherent difficulty of collecting surface EMG signals in the muscles

spanning the hip. In this area the muscle geometry is more complex than the more

distal regions and the muscles are buried deeper beneath the skin than the more distal

muscles. The hip area is also less easy to access and more prone to motion artifacts,

increasing the probability of poor measurements.

In tables A.1 and A.2 we show, respectively, the characteristics of all participants

for whom EMG signals were recorded and the muscles for which reasonable profiles

were obtained. Using all muscles with reasonable EMG trajectories across subjects,

we formed average neural excitation and activation profiles for each muscle. These

profiles are displayed in Figures 3-7 and 3-8. When performing the system identifi-

cation optimization in Chapter 3 for a given subject, each unreasonable activation

profile was replaced by the average activation profile for that muscle. As can be seed

from Table A.2 this was a relatively rare occurrence for the muscles spanning the

ankle and knee but was frequently required at the hip. This lack of quality data was

the motivation behind the substitution of excitation profiles from [42] for the muscles

of the hip in the analysis at the end of Chapter 3.

To justify this procedure we performed a Leave One Out Cross Validation (LOOCV)

analysis on the reasonable excitation and activation trajectories for each muscle. We

computed the Pearson r coefficient between each individual profile and the average of
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Subject Age Mass Leg Length Ethnicity Sport Min. MCOT
AD 24 63.9 kg 0.927 rn Caucasian Running 1.40 m/s
AM 22 66.3 kg 0.923 m Polish/Chinese Bicycling 1.50 m/s
EM 27 78.8 kg 0.944 m Caucasian Football 1.20 m/s
DS 24 80.2 kg 0.980 m African Soccer 1.00 m/s
DH 24 80.3 kg 0.953 m African Basketball 1.32 m/s
MC 24 72.3 kg 0.927 m Caucasian Running 1.49 m/s
JB 29 68.9 kg 0.933 m Caucasian Running 1.31 m/s
BC 26 65.0 kg 0.902 m Caucasian Running 1.38 m/s
DC 25 65.4 kg 1.028 m Caucasian Running 1.47 m/s

Table A. 1: Relevant characteristics of all participants from whom EMG data were
recorded. Note that Min. MCOT Speed was only estimated from metabolic data for
subjects DH, MC, JB, BC, and DC. It was estimated using subject preference for
participants AD, AM, EM, and DS.

AD TA, SOL, GAS, VAS, BFSH, RF, HAM, ILL, GMAX
AM TA, SOL, GAS, VAS, BFSH, RF, HAM, ILL, GMAX
EM TA, SOL, GAS, VAS, BFSH, RF, HAM, GMAX, GMED
DS TA, SOL, GAS, VAS, BFSH, RF, HAM, GMAX
DH SOL, GAS, VAS, BFSH, RF, HAM, ILL, GMAX, GMED, ADDL, ADDM
MC TA, SOL, GAS, VAS, HAM, ILL, GMED
JB TA, SOL, GAS, VAS, BFSH, HAM, ILL, GMED
BC TA, GAS, VAS, BFSH, RF, HAM, GMED, ADDM
DC TA, SOL, GAS, VAS, BFSH, RF, HAM, GMAX, GMED

Table A.2: Muscles with reasonable EMG profiles for each subject. Note that GMED,
ADDL, and ADDM were not collected on AD, AM, EM, or DS.

the remaining reasonable profiles. The average value of these r coefficients for each

muscle is shown in Table A.3. The values are, as expected, better for the more distal

muscles and those where there is only one typical behavior. The muscles spanning the

hip do not perform as well, except for GMED. The measured EMG signals for the ad-

ductors (ADDL, ADDM) were not deemed worthy to include in the analysis, as noted

in Chapter 2. Average trajectories for all other muscles were used as needed. Some r

values for included average profiles were small, but likely did not impact the analysis

significantly because these activation signals were typically small in magnitude.
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Muscle Mean Excitation LOOCV r Value Mean Activation LOOCV r Value
TA [0.74 0.76 0.82 0.80 0.78 0.76] [0.76 0.79 0.85 0.82 0.80 0.77]

SOL [0.96 0.97 0.97 0.96 0.95 0.91] [0.97 0.98 0.98 0.98 0.97 0.94]
GAS [0.93 0.93 0.92 0.93 0.92 0.92] [0.95 0.95 0.95 0.95 0.95 0.94]
VAS [0.79 0.91 0.92 0.91 0.92 0.94] [0.80 0.93 0.94 0.93 0.94 0.95]

BFSH [0.52 0.58 0.59 0.72 0.75 0.81] [0.55 0.64 0.64 0.77 0.81 0.86]
RF [0.49 0.50 0.44 0.36 0.39 0.42] [0.52 0.55 0.47 0.37 0.37 0.39]

HAM [0.83 0.85 0.79 0.76 0.76 0.76] [0.86 0.89 0.84 0.80 0.82 0.83]
ILL [0.46 0.57 0.14 0.58 0.41 0.27] [0.51 0.65 0.14 0.66 0.54 0.33]

GMAX [0.45 0.57 0.74 0.70 0.73 0.60] [0.45 0.61 0.79 0.6 0.79 0.65]
GMED [0.81 0.73 0.59 0.62 0.61 0.62] [0.84 0.75 0.60 0.67 0.66 0.64]
ADDL N/A N/A
ADDM [-0.24 0.05 0.37 0.33 0.39 0.29] [-0.31 0.01 0.36 0.37 0.37 0.33]

Table A.3: r values for LOOCV. The six values in each array refer to walking at 0.75
m/s, 1.00 m/s, 1.25 m/s, 1.50 m/s, 1.75 m/s, and 2.00 m/s, respectively. No values
were computed for ADDL because there was only one set of reasonable measurements
of that muscle.
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