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Abstract

The advent of a broad class of two-dimensional (2D) electronic materials has provided avenues
to create and study designer electronic quantum phases. The coexistence of superconductivity,
magnetism, density waves, and other ordered phases on the surfaces and interfaces of these 2D
materials are governed by interactions which can be experimentally tuned with increasing preci-
sion. This motivates the need to develop spectroscopic probes that are sensitive to these tuning
parameters, with the objective of studying the electronic properties and emergence of order in
these materials.

In the first part of this thesis, we report on spectroscopic studies of the topological semimetal
antimony (Sb). Our simultaneous observation of Landau quantization and quasiparticle interfer-
ence phenomena on this material enables their quantitative reconciliation - after two decades of
their study on various materials. We use these observations to establish momentum-resolved scan-
ning tunneling microscopy (MR-STM) as a robust nanoscale band structure probe, and reconstruct
the multi-component dispersion of Sb(111) surface states. We quantify surface state parameters
relevant to spintronics applications, and clarify the relationship between bulk conductivity and
surface state robustness. At low momentum, we find a crossover in the single particle behavior
from massless Dirac to massive Rashba character - a unique signature of topological surface states.

In the second part of this thesis, we report on the spectroscopic study of charge density wave
(CDW) order in the dichalcogenide 2H-NbSe2 - a model system for understanding the interplay of
coexisting CDW and superconducting phases. We detail the observation of a previously unknown
unidirectional (stripe) CDW smoothly interfacing with the familiar triangular CDW on this mate-
rial. Our low temperature measurements rule out thermal fluctuations and point to local strain as
the tuning parameter for this quantum phase transition. The distinct wavelengths and tunneling
spectra of the two CDWs, in conjunction with band structure calculations, enable us to resolve
two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface
nesting in the CDW phase of NbSe2. Our observations motivate further spectroscopic studies of
the phase evolution of the CDW, and of NbSe 2 as a prototypical strong coupling density wave
system in the vicinity of a quantum critical point.
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Chapter 1

Two Dimensional Electronic Materials

In our everyday life, we see various manifestations of phase transitions. The condensation of

water vapor into water and the freezing of water to ice are examples of structural phase transi-

tions. Loosely speaking, condensed matter physics involves the study of phase transitions and

understanding 'interesting' phases of matter.

The basic properties of electronic systems can be understood using an analogous picture of

electronic phases. In 1900, it was demonstrated that at room temperature, the behavior of elec-

trons in a metal can be described rather well by considering it to be an 'ideal gas' - a collection

of classical charged particles[1]. As the metal is cooled, the electrons start to interact, and this

description breaks down. However, Landau's insightful Fermi liquid theory showed that even in

the presence of interactions, the low energy properties of the system could be understood within

a noninteracting picture by defining the concept of a quasiparticle[2].

When a system of electrons is examined in isolation from its environment, the novelty in elec-

tronic properties and diversity in ordered states is limited. However, the rich physics of electronic

phases that are studied today unfold from the interaction of the electrons with the underlying

crystal lattice. Notably, the last decade has witnessed the emergence of several classes of two-

dimensional electronic materials, which display unusual electronic properties and provide much

promise towards the creation of designer electronic phases. This chapter describes some of the

properties encompassing these diverse set of materials, and examines the pros and cons of con-

ventional electronic probes in studying them.

1.1 The Advent of 2D Electronic Materials

Over the past few years, several materials that exhibit two dimensional electronic properties have

been realized. The 2D electron systems in these materials are either formed at the interface or

surface of 3D materials, as in the case of oxide interfaces and various topological materials; or are

17



1. Two DIMENSIONAL ELECTRONIC MATERIALS

roj Topological
Crystal insut or

Figure 1-1: Examples of 2D Electronic Materials. (a) The honeycomb atomic lattice of graphene, which
gives rise to its remarkable Dirac fermion properties (0 BBC). (b) A field-effect transistor device made out
of thin flakes of the transition metal dichalcogenide MoS 2 (@ Nature Nanotechnology). (c) A schematic
representation of counterpropagating spin-polarized surface states on a topological insulator. (d) The dou-
ble Dirac cone band structure of a typical topological crystalline insulator (@ Osaka University). (e) A
schematic depiction of the crystal structure of transition metal oxide heterostructures, with metallic 2D
systems at their interfaces (@ Science Magazine).

thin systems, e.g. graphene, silicene, and transition metal dichalcogenides; or epitaxially grown

thin film materials. Several of these systems display great promise towards realizing novel physics

and applications - with high mobility, tunable carrier density and ambipolar transport properties.

A defining characteristic of several of these materials is the influence of the crystalline lattice in

determining the electronic properties. This leads to marked changes in the energy-momentum re-

lationship, or band structure, of the electronic quasiparticles, and in some cases, to the emergence

of ordered phases.

The most fundamental way in which a lattice interacts with the electron system is through

the introduction of translational and rotational symmetries. This can have a marked effect on the

band structure of the electron system, giving rise to fundamentally new kinds of physics. For

example, the honeycomb lattice structure of graphene (Fig. 1-la) directly leads to its remarkable

Dirac fermion-like properties[3], and the crystalline mirror symmetry in rock salt structures leads

to the presence of robust surface states in topological crystalline insulators (Fig. 1-1d)[4]. An-

other way in which the lattice can markedly influence electronic properties is through the intrinsic

properties of the lattice ions. If the ions have a static magnetic moment, this can lead to ordered

magnetic phases. The symmetry, size and extent of atomic orbitals of the lattice ions can also lead

to a crossover between itinerant and local physics, as in the case of several correlated materials.
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1. Two DIMENSIONAL ELECTRONIC MATERIALS

a Spin-Orbit Coupling b Electron-Phonon Coupling

Figure 1-2: Cartoon Representation of Spin-Orbit Coupling and Electron-Phonon Coupling Effects. (a)
A schematic depiction of the interaction between spin and orbital degrees of freedom of an electron in a
crystalline lattice with heavy atoms, known as spin-orbit coupling. (b) Schematic depiction of the interac-
tion between a traveling electron and vibrations of ions in the crystal, known as electron-phonon coupling.

The effects of the lattice on the electron systems examined in this thesis are in a different cate-

gory from the above, and involve dynamic interactions.

In crystalline lattices with heavy ions, the electric field experienced by a traveling electron

translates to a magnetic field proportional to its velocity in the rest frame of the electron. The

dipolar interaction of the electron spin with this effective magnetic field is therefore equivalent

to the coupling of the electronic spin and orbital degrees of freedom (Fig. 1-2a), known as spin-

orbit coupling (SOC)[5]. SOC can split the degeneracy of electronic bands with finite angular

momentum (p, d, f-bands, e.g. Fig. 3-3a), modifying the band structure of several semiconducting

materials. If the SOC is strong enough, the induced splitting can be so large as to invert the

electronic band structure, leading to the existence of topologically ordered phases. The surface

states arising from such a topological phase are examined in the first part of this thesis.

Electrons traveling through a crystalline lattice can also interact with the vibrations of the

lattice ions, known as phonons, as shown in Fig. 1-2b. This electron-phonon coupling (EPC) can

renormalize the electronic band structure[1], and is sensitive to substrate properties in several 2D

materials[6]. At low temperatures, sufficiently strong EPC can lead to the formation of ordered

phases such as superconductors and density waves. The latter is the topic of the second part of

this thesis.

1.2 Tunability of 2D Materials

The excitement surrounding the realization of several classes of 2D electronic materials is, to a

great extent, due to the degree of control one has in determining the properties of the system.

Various parameters of 2D systems that are realized through epitaxial growth or mechanical exfo-
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1. Two DIMENSIONAL ELECTRONIC MATERIALS

liation can be tuned, enabling controlled and reversible access to diverse set of quantum phases.

Importantly, these properties can be modified after the growth process, offering the experimenter

unprecedented control over the system of interest. Here we outline some of the experimental tools

which enable the tuning of the electronic properties of these materials.

1.2.1 Electric Field Effect
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Figure 1-3: Electric Field Effect Tuning of Electron Density. (a) A schematic representation of electric field
effect control of electron density. A metallic electrode gate, used to apply the electric field, is separated
from the 2D system by a dielectric spacer. (b) A resistance color plot on MoS 2 as a function of carrier
density (controlled by electric field effect) and temperature, showing a quantum phase transition from a
band insulator at low density to a dome-shaped superconductor at high densities (adapted from [7]).

It has been known for some time that the application of an electric field through capacitive

techniques can be used to control the electron density in a 2D system, and this forms the basis

of the MOSFET technology used in modern transistors[8]. Typically, the 2D system of interest is

placed on a dielectric material, which lies on a metallic electrode, known as the gate, as shown

in Fig. 1-3a. When a voltage is applied on the gate electrode relative to the 2D system, capacitive

effects cause a change in the electron density of the 2D system. In a so called field-effect transistor,

one can deplete and enhance the carrier density by varying the gate voltage, and therefore tune

the 2D system through insulating and conducting behaviors[8]. While in principle doping the

system with charge carriers could be used to control the carrier density, this has the undesirable

effect of also introducing disorder. Therefore, gating is viewed as a cleaner tuning parameter for

this purpose.

Recent advancements in materials chemistry, synthesis, and fabrication techniques have tremen-

dously increased the available range of electron densities within a single sample[9]. Several clean

2D systems now exist that can be gate-tuned to produce ambipolar transport[10-12]. The develop-

ment of new dielectrics such as HfO2 and SrTiO 3 with high breakdown voltages has enabled the

application of large electric fields, offering greater control over the carrier density[9, 11]. Further-
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more, the recent emergence of electrochemical gating as a means to vary electron densities over

2-3 orders of magnitude has generated much excitement[13]. These advancements have enabled

the tuning of several 2D systems through quantum phase transitions from insulating to supercon-

ducting behavior, as shown in Fig. 1-3b for MoS 2[7].

1.2.2 Strain
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Figure 1-4: Nanoscale Strain Induced Electric and Magnetic Fields. (a) The observation of smooth mod-
ulations in chemical potential induced by surface rippling of the topological insulator Bi 2 Te3 by Okada et.
al. has led to proposals of controlled straining of these materials using piezoelectric devices (adapted from
[14]). (b) The observed modification of the electronic properties of graphene by substrate-induced strain,
corresponding to the existence of pseudo-magnetic fields above 300 T (adapted from [15]).

The introduction of strain has emerged as a novel route towards the engineering of electronic

properties of several 2D materials[16]. Strain can be introduced in these materials by changing (or

removing) the substrate that the material is grown or placed on, by introducing adatoms on the

substrate surface, or by using piezoelectric devices to control the substrate.

Strain can modify the phononic properties of the lattice, and can also tune the strength of

electron-phonon coupling. This can lead to a change in electronic dispersion[6] or introduce a

band gap[17]. We will show later on that the interplay of strain and electron-phonon coupling can

have remarkable consequences on density wave order in the strong coupling limit[18].

Other remarkable effects of strain have been observed in recent years that have led to increased

efforts towards strain engineering. For example, Okada et. al. found that surface rippling on

the topological insulator Bi 2Te3 introduces a smooth spatial modulation of the chemical poten-

tial(Fig. 1-4b), which likely arises from strain-induced electric fields[14]. The electric field effect

produced by moderate amounts of strain was found to be an order of magnitude larger than the

corresponding effects of spatially modulated doping[14]. Meanwhile, Levy et. al., in their stud-

ies of graphene grown on Pt(111) substrate reported the formation of 'bubbles' on the nanometer

lengthscale[15]. In these highly strained regions, they noted a substantial modification of elec-
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tronic behavior, corresponding to the existence of magnetic fields up to several hundred Tesla

(Fig. 1-4b) - an order of magnitude above the highest achievable magnetic fields in a laboratory

setting. The observation of these strain-induced electric and magnetic fields therefore have gen-

erated several proposals for controlled strain modification of these materials, using, for example,

piezoelectric devices[14].

1.2.3 Doping, Inhomogeneity and Coexisting Orders

CuxBi 2Se 3: Superconductivity LAO/STO: Superconductivity and Magnetism
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Figure 1-5: Nanoscale Variation and Spatial Coexistence of Ordered Phases. (a-b) STM studies of the
superconducting order parameter in the doped topological insulator CuBi2Se 3 (adapted from [19]). The
spectroscopic linecut in (b), taken along the white line in the topograph (a), shows marked variation in the
superconducting gap. (c-d) Scanning SQUID mapping of coexisting ferromagnetic and superconducting
orders at the LAO/STO interface (adapted from [20]). (c) shows a SQUID magnetometry image, with
spatial variations indicative of ferromagnetic order. (d) shows a SQUID susceptometry image, mapping the
superfluid density with position.

The properties of several of these 2D materials are inhomogeneous on the nanoscale. For

example, it has been shown in single-layer graphene that the chemical potential[21] and the Fermi

velocity[22] vary on the nanoscale due to disorder effects, and similar reports have emerged from

studies of Bismuth-based topological insulators[23].

More remarkably, electronic order also shows nanoscale variations in these materials. In the

doped topological insulator CuzBi2Se 3 , which undergoes a superconducting transition at - 3.7 K[24],

the superconducting order parameter shows marked spatial variations (Fig. 1-5a-b), likely due to

local variations in the doping[19]. In the heterostructure interface system LAO/STO, supercon-

ducting and ferromagnetic orders are reported to coexist on the nanoscale (Fig. 1-5c-d, [20]). The

ability to grow several of these materials epitaxially, and to systematically introduce dopants of-

fers promising routes to generate and study the interplay of various quantum phases.

1.3 Conventional Band Structure Probes

The existence of several tuning parameters to control the properties of these 2D materials there-

fore motivates the utility of tools that can utilize this large parameter space, measure the electronic
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properties, and detect the emergence of ordered phases in these materials. Here we briefly exam-

ine the pros and cons of the most commonly used band structure probes in the context of studying

these 2D materials.

1.3.1 Quantum Oscillations

The detection of oscillations in transport and thermodynamic properties as a function of applied

magnetic field is the oldest and most established technique of measuring the Fermi surface of elec-

tronic systems[25]. As detailed in § 2.3.1, an external magnetic field quantizes the electronic band

structure into Landau levels (LLs), and the Fermi energy, EF can be tuned through LL maxima

and minima by varying the magnetic field (or the carrier density). The resulting modulation in

the density of states at EF manifests as oscillations in the measured transport and thermodynamic

properties, e.g. electrical and thermal conductivity, susceptibility, heat capacity etc. The period-

icity of the oscillations with inverse magnetic field is a direct measure of the associated closed

Fermi surface contour, and the temperature dependence of the oscillation amplitude can be used

to extract the quasiparticle mass.

Quantum oscillation studies and related techniques are tremendously useful in measuring the

properties of the Fermi surface, and are sensitive to several of the parameters detailed in § 1.2.

However, the inability to probe the physics of electronic states away from SF is a major limitation

in understanding the properties of these materials. To gain more information about electronic

states away from EF, we turn to spectroscopic probes.

1.3.2 Angle-Resolved Photoemission Spectroscopy

Angle-resolved photoemission spectroscopy, commonly known as ARPES, has emerged as the

standard band structure probe of 2D materials in the past two decades[26]. A photon beam in-

cident on the material of interest leads to the emission of photoelectrons from the surface, and

by measuring the energy and momentum of the ejected photoelectrons, their energy and in-plane

crystal momentum can be deduced, leading to a near-direct measurement of the 2D band struc-

ture, e(kx, ky), for filled states[27]. Steady progress in the generation of high fidelity photon beams

and in the measurement of photoelectrons has enabled ARPES to achieve - few meV energy res-

olution and < 0.01 A- 1 momentum resolution[26]. More recently, ARPES systems with a base

temperature of 1 K have been constructed to study ordered phases that emerge at low tempera-

tures.

The ability to directly measure filled state band structure makes ARPES a vital probe for study-

ing 2D systems. However, despite its many advantages, ARPES is faced with some limitations -
chiefly the inability to measure the band structure of empty states1 , a base temperature of 1 K, and

'Inverse photoemission, an ARPES-like probe designed for this purpose, has limited utility, and low energy and
momentum resolution
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the inability to apply magnetic field. In the context of the tunable parameters discussed in § 1.2,

we note the inability to perform simultaneous ARPES measurements.

1.3.3 The Need for a Complementary Band Structure Probe

In order to fully explore the fascinating avenues created by the discovery of these myriad classes

of 2D electronic materials, we need to complement existing band structure probes. For example,

to study the emergence of ordered phases below 1 K in several of these materials, we need a probe

that can operate at dilution fridge temperatures, with temperature-limited energy resolution. To

study field-induced ordered phases, the probe should be able to measure electronic properties in

the presence of a magnetic field. To study the physics of ordered states with particle-hole aysm-

metry, the probe should be sensitive to empty states.

Moreover, to explore the parameter space of these 2D materials, it would be desirable to in-

clude the ability to gate-tune the carrier density, controllably strain the sample, and perform epi-

taxial growth and doping in conjuction with the spectroscopic measurements. Crucially, in order

to study the nanoscale variation in electronic properties and ordered phases, the probe should

have spatial resolution.

These requirements naturally motivate the use of spectroscopic scanning tunneling microscopy

(STM) to study these materials. In the following chapter, we will examine the potential of STM to-

wards the spectroscopic study of 2D materials and discuss the limitations it faces currently, which

we will resolve in the first part of this thesis.
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Chapter 2

The Scanning Tunneling Microscope: A

Nanoscale Spectroscopic Probe

The scanning tunneling microscope (STM) has proved to be an incredibly useful tool to study

the structural and electronic properties of condensed matter systems on the atomic scale. Here,
we detail the phenomenon of quantum tunneling, the underlying principle of STM, and detail the
construction and data acquisition modes of our STM instrument. We describe the origin of Landau

quantization and quasiparticle interference - two phenomena that enable momentum resolution
with spectroscopic STM, and highlight the quantitative limitations faced by STM currently - as a
band structure probe of 2D materials.

2.1 Quantum Tunneling and the STM

The underlying principle of the scanning tunneling microscope (STM), which enables the atomi-
cally resolved study of sample surfaces, is that of quantum tunneling. In its simplest incarnation,

one can think of the STM as comprising of a sharp tip, say a piece of wire with a single atom
dangling at the end, held a distance z (typically a few angstroms) away from an atomically flat

surface, called the sample (Fig. 2-1a). A bias voltage, V, is applied to the sample, and the current,

I, is measured at the tip.

In a classical picture, no current is expected to flow between the tip and sample due to the

circuit break corresponding to the nonzero tip-sample separation. However, quantum phenomena

govern the physics at atomic length scales, and a finite current is observed, arising from electron

tunneling between the conducting tip and sample. In a simplistic picture, one can consider the
problem to be equivalent to tunneling across a barrier of finite height, 4 = (qt + 0,)/2, the average

work function of the tip and the sample; and finite width, z (Fig. 2-1b). Therefore, for small

voltages (eV < q), the tunneling current, proportional to the tunneling probability, is given by the
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Figure 2-1: Electron Tunneling on the Atomic Scale. (a) A schematic representation of electron tunneling
between an atomically sharp tip and an atomically flat sample surface separated by a vertical distance z.
(b) Spectroscopic depiction of the tunneling process, modeled as quantum tunneling across a finite barrier
of width z[28], with the barrier height corresponding to the work functions of the tip and sample, #tip and

osample respectively.

following expression under the WKB approximation[29, 30]:

IF(z) ~Io exp -2z ) Io exp (-2z) (2.1)

The tunneling parameter, K is of order 1 A- for typical metals (corresponding to q$ 4-5 eV).

Therefore, a 1 A change in z corresponds to an order of magnitude change in current - which gives

the STM its extraordinary sensitivity to sample corrugations. Under typical circumstances for our

instrument, the O(pA) limits for detecting the tunneling current corresponds to - 500 fm limits

on determining the z-corrugation.

The precise determination of z, together with the ability to control the movement of the STM

tip with picometer precision, allow the STM to measure the sample topography on the atomic

length scale[31]. A more detailed schematic of an STM measurement is shown in Fig. 2-2a. The

x, y, z positions of the STM tip relative to the sample (with x, y directions defined to be in the

plane of the sample) are controlled by mounting the tip on a piezoelectric tube. By applying

voltages to the 'piezo', the tip is manipulated in these three directions. While recording the sample

topography, the tip is typically held in constant current feedback, i.e. the tip is rastered on the

surface while using analog feedback to maintain a constant current by moving the tip in the z

direction, and the resulting z-position is recorded as a function of x and y.

The STM head that has been used to perform the experiments described in this thesis is shown

in Fig. 2-2b. The tip-sample configuration, annotated in the figure, is flipped in the microscope,
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Figure 2-2: The Scanning Tunneling Microscope. (a) A schematic representation of an STM tip held in
feedback above an atomically flat sample surface. The STM tip is mounted on a piezoelectric tube, and the
voltages applied on the tube (X±, Y±, Z) move the tip in the respective directions. Constant tip-sample
separation is maintained while rastering the tip over the surface using the constant current feedback loop.
(b) A picture of the STM head used to perform the experiments described in this thesis. Note that the
tip-sample configuration is inverted in comparison to the schematic in (a).

as compared to the schematic in Fig. 2-2a. The tip is brought in close proximity to the STM using

a Pan-style vertical coarse positioner[32]. The design of the STM allows for maximal rigidity, re-

ducing vibrations, and allowing the study of the same sample region over long durations. With

the addition of a cryopumped 1 K stage, the instrument can be operated over 2-50 K and in mag-

netic fields of up to 9 T. The majority of the experimental results reported in this thesis, unless

stated otherwise, were acquired at temperatures between 4-9 K, with no measurable temperature

dependence over this range.

2.2 STM: Topography and Spectroscopy

A constant current topograph acquired on the topological material Bi 2 Se3 As, is shown in Fig. 2-3a.

The topograph shows an atomically resolved hexagonal lattice. In addition, extended triangular

features - both bright and dark - are observed, which correspond to single-atom impurities - lat-

tice vacancies and substitutions. That single atom impurities (size ~ ao, where ao is the lattice

constant) appear as extended features with a well-defined shape and symmetry that is associated

with the lattice - suggests that the origin of such features is electronic, not topographic.

2.2.1 Spectroscopic Sensitivity of the STM

The sensitivity of the STM to electronic information can be understood by going beyond the sim-

plistic model in Eqn. 2.1 and considering the tunneling process for fermions, following the work

of Bardeen[33]. Using Fermi's golden rule, the tunneling current between two metallic electrodes
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Figure 2-3: STM Topography and Spectroscopic Information. (a) A prototypical STM topograph acquired
on Bi2Se3AsB, showing an atomically resolved hexagonal lattice and three different kinds of triangular
single-atom impurities. The extended manifestation of these single-atom impurities corresponds to the
spectroscopic sensitivity of the topographic mode of STM. Setpoint parameters: sample bias, V0  -300 mV,
junction resistance, Ra 1 GQ. (b) Schematic illustration of the spectroscopic sensitivity of STM to the local
density of states (LDOS) of the sample, integrated over the applied bias, eV and the Fermi energy, 5 F. The
measured tunneling conductance, dI/dV, is therefore representative of the sample LDOS at energy eV.

with an applied voltage V between them, corresponding to the tip and the sample, across a vac-

uum barrier of width z, can be expressed as

IT(Z) ~ ds |M(z, eV)j 2 Des) Ds(e ± eV) (f (c) - f (e + eV)) (2.2)J-eeV

Here Di(s) and Ds(e) correspond to the density of states (DOS) of the tip and sample, f(s)
is the Fermi-Dirac distribution function, and M is the matrix element for tunneling across the

barrier. Physically, this expression is straightforward to understand from the schematic in Fig. 2-

2b. At zero temperature, a tunneling current can arise only from the displacement of the Fermi

levels of the tip and sample. With an applied voltage V, the Fermi levels are displaced by eV, and

the elastic tunneling of electrons would correspond to the range of energies, eV, encompassed

by the displaced Fermi levels (dotted lines in Fig. 2-2b). The integral represents the number of
available filled (tip) and empty (sample) levels respectively for the tunneling process.

Next, we can choose a tip that has a relatively uniform DOS over the energy range of interest,

so tha Dt () can be taken outside the integral. Several metals are suitable for this purpose, and

we use the alloy PtIr for our experiments.

The matrix element, M, representative of the tunneling process itself, can be described as an

energy-independent square barrier under the WKB approximation (Eqn. 2.1) for eV <- .

Finally at finite temperatures, T > 0, the spectral distribution of electrons, described by the
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density of states, D(e), is convolved with the Fermi-Dirac distribution function:

1f (E, T) = 1(2.3)
1 + exp (( - F) kBT)

Eqn. 2.3 is equivalent to a thermal smearing of the DOS by ~ 3.4 kBT[341, corresponding to

1.2 mV at the liquid helium temperatures used in our experiments. Apart from the spectroscopic

comparisons between data acquired at very different temperatures (§ 8.6.1), where the spectral

convolution with the Fermi function needs to be explicitly accounted for[35], we can ignore the

0(1 mV) smearing effects of the Fermi function. With these approximations, Eqn. 2.2 reduces to

IT (z) ~ exp (-2z) je d D,(E) (2.4)

Therefore, the tunneling current between the tip and sample is exponentially sensitive to the

tip-sample separation, z, and linearly sensitive to the integral of the density of states over energies

from the Fermi level to the applied bias, eVo.

2.2.2 The Data Acquisition Modes of an STM
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Figure 2-4: The Simultaneous Data Acquisition Modes of STM. (a) An STM topograph acquired on 2H-
NbSe 2, showing a ~ 3ao periodic charge density wave (CDW) modulation Vo = -60 mV; Rj = 1 GQ. (b)
A dI/dV spectrum averaged over the field-of-view in (a). Shaded cyan region corresponds to the LDOS
integral resulting the CDW modulation in (a), and the dashed blue line corresponds to the bias voltage for
(c). (c) dI/dV map at +20 mV over the field-of-view in (a), acquired simultaneously with (a) and (b). (b-c):
Vo = -60 mV; Rj = 0.2 GQ; Vmod = 3 mV.

Following Eqn. 2.4, the STM is typically used to acquire topographic and spectroscopic data in

three modes, shown in Fig. 2-4.

First, the constant current topographic mode, detailed previously, involves rastering the tip

over the surface, with lateral tip position ' = (x, y), while maintaining a constant current Io with

bias setpoint V. The measured topographic elevation zSTM( , V, 1o) can be given by
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ZSTM(r VO,I10) ZT * ( d In e 1) (2.5)
V) fo 0dV eD, (r',eV )

Here ZT(r) is the true topographic corrugation of the sample, i(r) is a measure of the local

tunnel barrier height (LBH), and D, (r', eV) is the local density of states (LDOS) of the sample at

energy eV. Such a topograph is shown in Fig. 2-4a.

Second, upon differentiating Eqn. 2.4, we find that the STM can also be used to directly acquire

local spectroscopic information.

dI dV ,V) ~D(i,eV ) (2.6)

Experimentally this is accomplished by initially fixing the x, y, z position of the tip in feedback

(I, V: Fig. 2-2a). The feedback is then switched off, and the bias V is swept over the energy

range of interest, and the differential conductance dI/dV is recorded using a lock-in technique

- producing a spectrum as shown in Fig. 2-4b. As an aside, we caution that a prefactor on the

right hand side of Eqn. 2.6 (not shown for simplicity) can vary spatially in some electronically

inhomogeneous materials, complicating the absolute comparison of spectra acquired at different

spatial locations[36, 37].

Third, by rastering the tip on the surface and acquiring spectra over the field of view, spatial

dI/dV maps can be acquired over a range of bias voltages, with a representative example shown

in Fig. 2-4c. To first order, these maps correspond to the spatial variation of the DOS, as in Eqn. 2.6.

In principle, such maps, when acquired over the requisite spectral range, can be used to measure

the spatial variation of electronic order parameters[38].

Lastly, we note that from Eqn. 2.4 that by sweeping z over 1-2 A and recording the out-of-

feedback tunneling current, one can measure the local barrier height[34]. By repeating this mea-

surement as a function of position, the spatial variation in the local barrier height can also be

measured[36, 39]. This last technique is not used to acquire any results for the experiments de-

scribed in this thesis.

2.3 Spectroscopic STM and Momentum Resolution

The atomic scale spatial resolution of STM, in conjunction with its ability to spectroscopically

measure the single particle DOS has resulted in its extensive use in discerning various electronic

phenomena that manifest in the LDOS of numerous materials[34, 40]. For example, spectroscopic

STM has enabled the visualization of spectral resonances associated with single-atom impuri-

ties in various metals and superconductors[41-431, electronic inhomogeneity associated with spa-
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tially varying order parameters[38], the core structure of vortices and their spatial order in several

superconductors[44-48], and atomic-scale translational and rotational symmetry breaking states

in various materials[37, 49-51]. The ability to combine spectroscopic STM with epitaxial growth

techniques has further enabled the investigation of superconducting order in laterally[52] and

vertically[53] confined structures on the atomic scale. Moreover, the unique spectral sensitivity

of STM to empty states (above EF) has been successfully used to study various phenomena that

exhibit particle-hole asymmetry[42].

In addition to its spectroscopic and spatial sensitivity, STM has also been shown to provide

momentum resolved information through quantitative measurements of two phenomena - Lan-

dau quantization of the DOS in the presence of a magnetic field, and the scattering of electron

waves from single-atom impurities that results in quasiparticle interference patterns.

In a two dimensional system, electrons correspond to well-defined states in momentum space,

known as Bloch states[1]. They can be described by the the energy-momentum relationship, or

dispersion, o(k), where k = (km, ky) is the in-plane momentum. For conventional electrons, also

known as free fermions, the dispersion is parabolic - E(k) = k 2/2m, (Fig. 2-5a). In contrast, for

Diracfermions (massless electrons), the dispersion is linear - E(k) = hvFk (Fig. 2-5d).

In the following sections, we describe the origin of these two phenomena in the context of

2D electron systems (2DES), and discuss how they enable spectroscopic STM to access k-space

information.

2.3.1 Landau Quantization

In the presence of a perpendicular magnetic field B, classical electrons moving with speed ve

experience a Lorentz force Fe = -evJ x B perpendicular to their direction of motion. As a result,

they describe circular (cyclotron) orbits with radius Rc = meve/eB, where ve is the magnitude of

the in-plane velocity of the electron[54]. In the semiclassical picture, the circumference of these

cyclotron orbits is quantized to an integer number of electron wavelengths (27rRc = NAe), with

the electron wavelength given by the de Broglie relation Ae = h/mve. The energy-momentum

relationship of the electrons can therefore be used to deduce the semiclassical quantization of

these cyclotron orbits - known as Landau levels (LLs).

It is found, by solving the Schr6dinger equation in the presence of a magnetic field, that for

free fermions, the LL energies disperse with quantization index N, in the following form

EN,free = 60 + (N + 1/2) hwc (2.7)

Here 60 is the bottom edge of the electron band and wc = eB/me is the cyclotron frequency.

That free fermion LLs in 2D are equally spaced, separated by the cyclotron energy, hwc (Fig. 2-

31



2. THE STM AS A NANOSCALE SPECTROSCOPIC PROBE

a Dispersion M

Conventional
Fermions

SB=O

V)

0

D i r a c 
' IFermions Ed

k

a
U)

4-

01

C

%A

0

C

Energy fl

ED EF Energy

B#-O0

N=O N=1 N=2

hW,

Figure 2-5: Landau Quantization of Two Dimensional Electron Systems. Illustrating the manifestation of
Landau quantization of massive and massless fermions in two-dimensional systems. A schematic picture
of the 2D band structure of (a) massive (parabolic) and (d) massless (linear, or Dirac) is shown. This results
in a DOS spectrum that is spectrally (b) flat and (e) linear respectively. The application of a magnetic field
results in Landau quantization, with (c) equally spaced and (f) unequally spaced Landau levels for these
cases.

5c), can be understood in the following manner. The density of states (DOS) of free fermions at

zero field, Dfree(E) , corresponding to the k-space integral over the parabolic band, is uniform in

energy: Dfree(E) = me/rh2 (Fig. 2-5b). In the presence of a magnetic field, the DOS is quantized

into LLs, and each LL has an identical degeneracy, corresponding to the number of flux quanta,

B/o - eB/h[55]. Therefore, the quantization of a flat DOS into levels of identical degeneracy

results in equally spaced LLs, separated by hwc, as shown in Fig. 2-5c.

In contrast, for Dirac fermions in two dimensions, the linear dispersion (Fig. 2-5c) results in a

linear DOS away from the Dirac point, ED, i.e. DDirac(6) = (A/7rvF) - 1 - 6DI (Fig. 2-5e)[3]. The

degeneracy of LLs being the same as for free fermions, the linear DOS is split into LLs now spaced

unequally, with

EN,Dirac = ED + VFV12ehNB (2.8)

In this case, the N = 0 LL, located at the Dirac point, does not disperse with magnetic field' [3].

1The N = 0 LL does exhibit a small dispersion due to the Zeeman term associated with the electron g-factor, which
we neglect for simplicity.
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2. THE STM AS A NANOSCALE SPECTROSCOPIC PROBE

The dispersion of higher LLs on either side of the Dirac point therefore scales with v/ iB, a distin-

guishing feature of Dirac fermion LLs (Fig. 2-50.

While an infinite number of LLs can exist in principle at all magnetic fields and temperatures,
they are not always experimentally accessible due to broadening effects. The spatial extent of the

LL wavefunctions, equivalent in principle to the radius of the cyclotron orbits, is given by[55]

RN = (2N + )h/eB v2N +1 lB (2.9)

The spatial extent of the LLs can therefore be described in terms of the LL index, N, and the

magnetic length 1B = lh/eB, - 8.5 nm in a 9 T magnetic field. The presence of disorder in

the 2DES and finite temperatures results in scattering of the Landau quantized quasiparticles,

broadening the LLs from the ideal &functions (Fig. 2-5c, f). When the disorder in the 2DES is

low enough such that the mean free path, 1F, is greater than the spatial extent of the LL, RN, the

corresponding LLs are observable. Equivalently, LLs are observable when the electron is allowed

to complete a full orbit (circumference 1rRN) without scattering, i.e. for RN < 1F.

As discussed in § 1.3, transport and thermodynamic measurements are sensitive probes of the

Fermi level DOS, D(eF). In the presence of a magnetic field, Landau quantization corresponds to

oscillations in the DOS(Fig. 2-5c, f). Depending on the experimental conditions, the Fermi energy

EF could in principle be pinned within a LL, or in between two LLs, corresponding to a maxi-

mum or minimum in D(EF) respectively. By varying the magnetic field B, or equivalently the

electron density ne, one can sweep EF through LLs, producing oscillations in D(EF), and conse-

quently in the measured transport and thermodynamic properties. These quantum oscillation

measurements can therefore probe the Fermi level physics of LLs.

Spectroscopic STM has access not only to D(EF), but also to the DOS of filled and empty states.

Therefore STM can, in principle, measure the LL dispersion directly, with the LLs manifesting

as oscillations in the dI/dV spectra (analogous to Fig. 2-5c, f). Additional field-dependent or

density-dependent measurements can enable access to the quasiparticle band structure[56] and

interaction effects[22] respectively. Here we focus on the former - the correspondence between

Landau quantization and the band structure.

LLs correspond to quantized orbits in real space, as well as in k-space. At a given magnetic

field and energy, LL quasiparticles describe closed orbits along constant energy contours (CECs)

in k-space. Therefore LLs at a given magnetic field correspond to CEC slices in k-space, as shown

for the case of graphene in Fig. 2-6a. In the semiclassical limit (large LL index, N), the Bohr-

Sommerfeld quantization relation gives the area in k-space for the Nth LL to be[56]:

27re
AN = irqN - (N + 7) B (2.10)
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Figure 2-6: Landau Level Spectroscopy and Band Structure Extraction. Illustration of how STM LL spectra
can be used to measure a 2D band structure. (a) Quantized LLs at a given magnetic field correspond to
closed contours of constant energy (CECs) in momentum space, as shown for graphene (adapted from
[57]). (b-c) Semiclassical quantization, with the LL index, n and magnetic field, B can be used to obtain
the momentum qn of the LL, and determine the en(qn) LL mode dispersion (adapted from [57] and [56]
respectively).

The phase factor -y, determined by the Berry phase of the quasiparticle, is 1/2 for a free electron

and 0 for a Dirac fermion[56]. Therefore, field-dependent LL spectra can be used to identify N

and -y, and therefore extract the momenta qN. Furthermore, the EN(qN) dispersion can be used

to determine the quasiparticle band structure corresponding to Landau quantized portion of the

Fermi surface (FS). In the case of 2D materials with a single band, this can be used to directly

extract the band structure, as shown in Fig. 2-6b-c for graphene[57] and Bi 2Se 3 [56] respectively.

This technique, from the perspective of a band structure tool, offers the following advantages:

(a) temperature-limited energy resolution, (b) nanoscale spatial resolution at the order of the mag-

netic length, 1B = h/eB, (c) sensitivity to many-body interactions due to its immunity to lim-

itations imposed by Kohn's theorem[58], and (d) sensitivity to disorder and other broadening

mechanisms.

The existence of quantized LLs in STM spectra was reported first by Wildber et al. [59], and

subsequently by Morgenstern et al.[60] - both on 2DES on InAs. While LL spectroscopy in sev-

eral of these systems can be sensitive to the shape of the STM tip and associated induced electric

fields[57, 60], it has been useful for understanding several qualitatively new phenomena. For ex-

ample, it has been used to visualize the existence of nanoscale chemical potential fluctuations [22,

61], to demonstrate the existence of new broken symmetry states[62], and to study the effect of

electron-electron interactions[22] and disorder-induced localization[63, 64] in various 2D systems.
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Figure 2-7: Impurities, Scattering and Quasiparticle Interference. (a) A cartoon illustration of quasiparti-

cle interference from a single impurity. An incoming electron wave with wavevector ki is elastically scat-

tered to wavevector kf. This forms standing wave interference patterns with wavevector q-= kf - ki. (b-c)
Standing wave patterns formed due to quasiparticle scattering from atomic steps and impurities, as seen in
a constant current STM topograph (b). Corresponding conductance (dI/dV(F, V)) maps can be analyzed in
Fourier space to extract the quasiparticle dispersion, q(F), corresponding to the parabolic dispersion of free
fermions (c). Adapted from [65].

2.3.2 Quasiparticle Interference

While the presence of impurities on the surface of 2D materials can limit the observation of LLs, it

can result in the emergence of another phenomenon affording k-space information to STM, known

as quasiparticle inference (QPI). QPI arises due to the elastic scattering of electronic quasiparticles

from a point impurity, and manifests as a 'standing wave pattern', corresponding to the interfer-

ence between incoming and outgoing 'waves' associated with quasiparticle states (Fig. 2-7a).

The real space wavefunction associated with a 2D electron gas is expected to be of the Bloch

form, i(r) = uk(r-) exp (i I - ). The STM conductance dI/dV(?, eV), sensitive to the spatial

variation in LDOS, D(r', E), corresponds to the square of the wavefunction, |k(r) 2, the spatial

variation of which derives entirely from uk(), corresponding to atomic periodicity. This, however,

holds only for perfect translational invariance, which is broken by impurities. In this case, mixed

states are allowed to exist, corresponding to linear combinations of Bloch states with the same

energy. The mixing of Bloch states, e.g. corresponding to momenta ki and kf, results in spatial

variations in the form of interference patterns, with periodicity Aint = 27r/ liit, with q'iit(E)

kf (e) - ki(F).

In the case of an isotropic band, as in Fig. 2-5a, the CECs are circular, and therefore isotropic.

It was shown for this case by Friedel that density modulations introduced by impurity scattering

would be peaked in reciprocal space at kF and 2kF, where kF is the Fermi wavevector[66]. More

generally, the joint density of states (JDOS), equivalent to the autocorrelation of the single-particle

spectral function, A(k, e), is a good measure of the momentum space scattering intensity. The

JDOS is given by
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DJDOS(E, q = CEC (2.11)

For an isotropic dispersion (Fig. 2-5a), DJDOS (e, q) peaks at q = 2krad (E), where krad (E) is the CEC

radius at energy e. For example, at the Fermi energy, this corresponds to a peak at 2kF. Therefore,

the magnitude of the scattering vector, qap1, maps directly to the CEC radius as qQpj = 2krad.

The LDOS oscillations produced by impurities (and steps) can be directly visualized in STM

conductance maps, by imaging standing wave patterns - as shown in Fig. 2-7b for the surface

of Cu(111)[65]. By varying the bias voltage, one can measure the dispersion of the oscillation

periodicity with energy, i.e. qQp1(e). The mapping from qap1 to krad allows a quantitative deter-

mination of the band structure if the CEC shape is known (Fig. 2-7c, [65]). This technique can be

extended to 2D materials with anisotropic band structures, where the JDOS has a well-defined

q-space structure[67].

The temperature-limited energy resolution and field-of-view limited momentum resolution

offered by QPI, in addition to spatial sensitivity, makes it an ideal complement to ARPES as a

band structure probe. Indeed the presence or absence of various scattering modes in QPI studies

have been used to understand the interplay of symmetries with electronic properties in several

2D materials. The absence of a 2kF (backscattering) wavevector in QPI patterns of surface states

has been used to explicitly confirm time reversal symmetry in topological materials (TMs)[68, 69].

Conversely, the observation of the 2kF wavevector has been used to illustrate the breaking of

time reversal symmetry in magnetically doped TMs[70] and the absence of pseudospin protec-

tion in graphene[21, 71]. The utility of QPI in understanding the role of time-reversal symme-

try in topological materials is detailed in § 3. Furthermore, QPI has also been used to visualize

nanoscale chemical potential fluctuations in these materials[14, 21, 23]. In addition to its utility in

studying 2D materials, QPI has proven to be a remarkably useful probe of 2D band structures in

strongly correlated materials, specifically towards studying Bogoliubov quasiparticles, and iden-

tifying pairing symmetry and coherence factors in various high-Tc superconductors[56, 72-76],

and studying hybridization in heavy fermion systems[77].

2.3.3 Landau Quantization and QPI in Graphene: An Apparent Conflict?

While there is great promise towards establishing a quantitative nanoscale band structure probe

through the two complementary techniques of Landau quantization and QPI, we are currently

faced with certain limitations. First, LLs and QPI have never been observed over the same energy

range in the same material, and therefore their quantitative equivalence in measuring the quasi-

particle band structure has yet to be established. More concerningly, independent reports of QPI

and LLs in single-layer graphene on SiO 2 (Fig. 2-8), which should have yielded the same dispersion

value, show discrepancies of up to 40%[21, 78]. The origin of discrepancies has been attributed to

local gating due to the STM tip and to collective modes, but these are yet to be quantified[21, 22].
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Figure 2-8: Spectroscopic STM on Single-Layer Graphene: Comparing Landau Quantization and Quasi-
particle Interference. A comparison of the 'Dirac cone dispersion' extracted from independent measure-
ments of Landau quantization and QPI measurements on single layer graphene (SLG) on Si02. (a) Field

dependent Landau quantization measurements give a linear dispersion with 1LL = 1.07 x 106 m/s (adapted
from [781). (b) Quasiparticle inteference patterns in spatial conductance maps give a linear dispersion with

vgp, = 1.5 x 106 m/s. Both the dispersions reported in (a) and (b) correspond to a nominally identical Dirac
cone, with a 40% discrepancy in the measured dispersion.

From an experimental standpoint, this discrepancy calls into question the complementary use

of LUs and QPI in determining the band structure of 2D materials. Importantly, the determination

of a non-trivial band structure using both these techniques has yet to be performed, in order to

quantitatively establish the momentum resolution of spectrosopic STM. This motivates the work

reported in the first part of this thesis.

37



2. THE STM AS A NANOSCALE SPECTROSCOPIC PROBE

38



Part I

Momentum-Resolved STM on

Topological Materials
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In this part of the thesis, we describe our momentum-resolved spectroscopic studies of the

topological semimetal antimony (Sb).

We begin by motivating the origin of topological order from spin-orbit coupling driven band

inversion, necessiating the presence of robust surface states. We then understand the nature of

these surface states from a phenomenological k - p model. After reviewing previous spectro-

scopic work on topological materials, we outline the key issues that surface-sensitive spectroscopic

probes need to address on these materials, and motivate the need for a momentum-resolved probe

of the topological surface state band structure.

We focus on the (111) surface of the topological semimetal Sb. After describing our character-

ization the homogeneity of the surface topography and preliminary spectroscopy, we move on to

discuss momentum-resolved measurements. First, we examine Landau quantization of the sur-

face states in the presence of a magnetic field, which display Dirac behavior far from the Dirac

point, but deviate markedly from this behavior close to the Fermi energy. We then look at spatial

conductance maps that demonstrate quasiparticle interference.

Noting that these two phenomena overlap over a 300 meV energy range, we identify their

momentum space origin, and combine them to reconstruct the surface state band structure of

Sb(111). We thus establish momentum-resolve scanning tunneling microscopy (MR-STM) as a

band structure probe, and demonstrate its nanoscale spatial sensitivity. We use the measured

band structure to then understand the deviant behavior of Landau levels close to the Dirac point,

in terms of a spin-split Rashba picture, and reveal the true origin of Dirac fermion Landau levels

in topological materials.

Finally, we use our MR-STM studies to establish Sb(111) as a platform to study the effects of

perturbations on topological surface states, and discuss the broader implications of our results

towards device applications and band structure engineering.

The STM experiments reported in this work were done in collaboration with Michael M. Yee,
Yang He, and Jennifer E. Hoffman at Harvard University. The samples used in the work - single

crystals of Sb - were prepared by Dillon R. Gardner and Young S. Lee at MIT. The band structure

calculations were peformed by Hsin Lin and Arun Bansil at Northeastern University.

The results detailed in this part of the thesis have been been submitted for publication.
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Chapter 3

Topological Materials: A Brief

Introduction

The connection between symmetry breaking, phase transitions, and the emergence of order is a

central concept in condensed matter physics[79]. For example, structural translations, most com-

monly encountered in everyday life, are associated with broken translational symmetry; while

magnetic phase transitions are associated with broken rotational symmetry[80]. The biggest tri-

umph in condensed matter physics involves the explanation of the superconducting phase transi-

tion, which breaks gauge symmetry[81]1. Each of these broken symmetries is associated with an or-

der parameter below a transition temperature Tc, which can typically be described in the Landau-

Ginzburg framework[81]. It was therefore very surprising when the quantum Hall (QH) state was

understood in terms of a new phase that does not spontaneously break any symmetries[82, 83].

A simple understanding of this state, imperative to the physics of topological materials, can be

developed using band theory.

3.1 Band Insulators and the Quantum Hall State

The electronic properties of conventional crystalline solids are remarkably well understood within

the band theoretical description[1]. Each band corresponds to a set of extended states, described

by the quantum numbers of crystal momentum, k, and spin, o-. Bands are filled sequentially until

the last electron has been accommodated. If this configuration corresponds to fully filled bands,

then the Fermi energy (eF) lies in the band gap, and the material is an insulator. If on the other

hand, the most energetic electron, and therefore EF, lie in a partially filled band, the material is

a metal. The availability of low-energy excitations around EF in the the latter case is a marked

contrast from the former. The emergence of myriad alternative ground states for a metal, such as

superconductors, density waves, and electronic crystals - are understood to arise from the near-eF

band structure[1]. Due to the absence of alternative ground states, the electronic properties of
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Figure 3-1: Band Picture of Solids. A schematic band structure description of a metal and insulator (lattice
constant ao). Shaded regions indicated filled states, and the dashed red line corresponds to the Fermi

energy, EF.- (a) Filled bands, with FF in the band gap, would correspond to an insulator. (b) A partially filled
band, with EF in the band, would correspond to a metal.

insulators, on the other hand, have been viewed as being less interesting. It is the latter case that

is understood to give rise to the QH state.

In conventional metallic systems, the transverse or Hall resistance is found to be linear with

magnetic field, B, and used to determine the density and sign of charge carriers[1]. It was later

found that sufficiently large magnetic fields can cause electrons to describe quantized cyclotron

orbits, known as Landau levels (LLs). Such Landau quantization results in oscillations of lon-

gitudinal resistance R,,,, periodic in 1/B[25]. In two dimensions, the peaks and troughs of R,,.

(Fig. 3-2b) correspond to metallic and insulating states respectively. It was therefore quite sur-

prising when in the insulating state, mesoscale devices fabricated on two-dimensional electron gas

(2DEG) systems (e.g. Fig. 3-2a), showed RH to be quantized (RH = ~e2 for integer v) with

measurement-limited precision, independent of geometric details and mobility (Fig. 3-2b).

This quantization of Hall conductance (-H = R1 = V e2/h) corresponds the presence of bal-

listic metallic states on the edge of the bulk insulator[82, 85]. In the insulating state, EF is pinned

within the 'band gap' between LLs in the bulk (Fig. 3-2c). However, at the edge, EF is pinned to

the LL modes, and the edge is therefore conducting(Fig. 3-2c). What is more surprising, however,

is the robust dissipationless nature of the quantization and its insensitivity to deformations and

disorder, indicating a topological origin of the quantization.

A detailed understanding of the topological nature of the QH phase was developed by Thou-

less et al.[86], who established a fundamental distinction between classes of insulators with gapped

band structures. The distinction between these classes of insulators is insensitive to smooth de-

formations and is derived from the total curvature (Berry phase) of the band structure across the

Brillouin zone (BZ). This distinction is quantified in terms of a topological invariant (Chern num-
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Figure 3-2: Edge States 8 auH Effect. (a) A schematic representation of the device geom-
etry of a Hall bar patterned on a 2DEG, with the electron current flowing from the source to the drain. The
magnetic field points out of the plane, and quantized Hall resistance (in (b)), arises from edge states, indi-
cated in red. (b) Transport measurements on such a Hall bar device (adapted from [84]), showing plateaus
in the Hall resistance, RH (red curve), at magnetic fields corresponding to zeros in the longitudinal resis-
tance R,_ (black curve). (c) The edge state picture of the QH state. While in the bulk, SF is between two
LLs (cyan), corresponding to an insulating state, on the edge, it is pinned to a metallic mode (blue), which
corresponds to the observed QH plateaus.

ber), nc, and it was shown that nc = v for the quantum Hall insulator, and 0 for a trivial insulator,

and thus that there is a topological transition between these two states[86, 87]. Therefore, it was

established that the 2D insulating state generated by an applied magnetic field could have a non-

trivial topology. However, the zero field analog of such a topological state remained in oblivion

for over two decades.

3.2 Spin-Orbit Coupling and the Quantum Spin Hall Effect

The 2D honeycomb lattice model was the first theoretical playground for studying topological

band structures. It was initially suggested that locally broken time-reversal symmetry (TRS),

changing sign with lattice periodicity, could produce a topological QH state (os, = e2 /h)[88].

When a 2D honeycomb lattice was experimentally realized in the form of single-layer graphene,

Kane and Mele realized that the coupling of spin and orbital degrees of freedom could create

nontrivial band topologies while preserving TRS[89]. They quantified the topology of the band

structure in terms of a Z2 invariant. The change in this invariant between topologically distinct

phases results in the existence of a nontrivial edge mode at the interface[90]. However, the small

magnitude of spin-orbit coupling (SOC) in graphene meant that this was difficult to realize in

practice, rather, it directed investigations of materials with strong spin-orbit coupling.

In the atomic orbital picture of band theory, SOC splits the degeneracy of the p band (Fig. 3-3a,
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Figure 3-3: Band Inversion and the Quantum Spin Hall Effect. (a) A cartoon illustration of spin-orbit
coupling (SOC) effects on band structure. Moderate SOC splits the p band, while strong SOC can invert the
s and p bands. (b) SOC-induced inversion of valence and conduction bands in HgTe (left), compared with
CdTe (right) (adapted from [91]). The inversion of the r 6 and 178 bands (dashed grey lines) introduces a
nontrivial band topology in HgTe. (c) Schematic of a transport measurement device on HgTe quantum well
heterostructures. Ballistic conduction (red lines) is expected from spin-polarized edge states. (d) Transport
measurements on quantum wells heterostructures of HgTe/CdTe, showing ballistic conduction (o, =
2e 2 /h) for devices with quantum well thickness d > dc (dc ~ 6.5 nm), in agreement with theory (adapted
from [92]). Inset shows a schematic of the heterostructure.

center). Typically this splitting is much smaller than that between the s and p bands. However,

in materials with heavy elements, the ensuing strong SOC can split the p-band by a large enough

magnitude to invert the s-p band structure (Fig. 3-3a, right). Bernevig et al. found that such an

SOC-induced inversion occurs between the 2D band structures of the semiconductors CdTe and

HgTe (Fig. 3-3b, [91, 93]). The change in parity associated with the inversion in HgTe corresponds

to a topological phase transition. Bemevig et al. further suggested that a heterostructure consisting

of a HgTe quantum well of thickness d sandwiched between CdTe layers (Fig. 3-3d, inset) would

have topological edge modes for d > d, (d, ~ 6.5 nm)[91].

This was experimentally verified by Kbnig et al., who performed longitudinal transport mea-

surements on devices fabricated on HgTe/CdTe heterostructures (Fig. 3-3d, inset). While devices

with d < dc were found to be insulating, corresponding devices with d > d, showed ballistic

conductance with o = 2e2 /h (Fig. 3-3d). Bernevig et al. had predicted the existence of such

dissipationless edge states, analogous to the QH edge states. In this case, the SOC introduces op-

posite chiralities for up and down spins, resulting in two counterpropagating modes (Fig. 3-3c).

The modes are dissipationless so long as TRS is preserved, as spin-flip backscattering, which can
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mix these modes, would be forbidden[93]. With an applied source-drain bias, the two modes with

opposite spin on each edge (Fig. 3-3c) produce a net charge current corresponding to o-__ = 2e 2 /h.

Subsequent nonlocal transport measurements have verified the presence of these dissipationless

edge modes[94], providing potential avenues to control and manipulate these modes.

3.3 Band Inversion and Topological Surface States

Following the work of Kane and Mele[90], and Bernevig et al. [91] for two dimensional systems,

the generalization of a state with nontrivial Z2 invariants to three dimensions was formulated

independently by the groups of Fu, Kane and Mele[95]; Moore and Balents[96]; and Roy[97],

thereby defining the concept of a topological insulator.

3.3.1 Bulk-Boundary Correspondence

1 Trivial insulator j Topological Insulator C Trivial insulator j Topological insulator

1; Edge EE
Modes

Vacuum Bulk Vacuum Bulk

m>OJ Im O I> < > - -

m>llm > n>n < a> aa b a b

Figure 3-4: Band Inversion and Topological Surface States. (a, b) Schematic illustration of the emergence
of metallic modes at the edge of an insulator. SOC-induced bulk band inversion and the bulk-boundary
correspondence necessitate the existence of edge modes in (b) (c.f. (a)). (c, d) Schematic illustrations of the
SS band structure (blue) spanning the bulk gap for trivial and topologically protected states (partly adapted
from [87]). SSs are required to connect at time reversal invariant (TRI) momenta, and can either do so in a
pairwise fashion (c), or can rigidly connect the valence and conduction bands (d).

It was realized that in an insulator with an SOC inverted band structure, additional parity

considerations could lead to a topological band structure, with the Z2 invariant, vo = 1[95]. At

the interface of a topological insulator with a trivial insulator, such as vacuum, the change in the

topological invariant is associated with the bulk band gap going smoothly to zero and changing

sign (Fig. 3-4b). The bulk boundary correspondence necessiates the presence of metallic edge

modes (surface states for a 3D material) at the interface, associated with the change in sign of the

band gap[87]. Therefore, there is a direct correspondence between an insulating band structure

with the Z2 invariant, vo = 1, and the existence of protected, metallic states on the surface of such

an insulator[95].

Fu and Kane went further to provide a recipe for determining Vo for a given material based on

the the band structure[951. For a spin-1/2 system that preserves TRS, Kramers theorem requires

the existence of two-fold degenerate eigenstates, corresponding to the two values of spin. SOC
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breaks this spin degeneracy at all momenta except at time reversal invariant (TRI) points, e.g.

k = 0, ±r/a (a is the lattice constant). The requirement of twofold degeneracy at TRI momenta

can be accomplished by either connecting these points pairwise (Fig. 3-4c), resulting in trivial

edge states that can be gapped out depending on the choice of EF, or in a manner as to rigidly

connect the valence and conduction bands (Fig. 3-4d), which cannot be gapped out for any choice

of SF. Note that for the former case (Fig. 3-4c), an even number of states cross EF between two TRI

momenta, while for the latter case of topological surface states (SS), an odd number of states cross

EF - for any choice Of EF. Importantly, the crossing of these states at TRI momenta is protected by

Kramers degeneracy - the crossing cannot be gapped out if TRS is preserved. Fu and Kane also

found that for crystals with inversion symmetry, additional parity considerations can be used to

easily identify the Z2 invariant[98]. Using this technique, they predicted the binary compound

Bii_,Sb; to be a topological insulator for x > 0.07[98].

3.3.2 Topological Protection of Surface States
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Figure 3-5: ARPES Measurements of Topological Surface States. (a) ARPES dispersion of SSs of Bi_,1 Sb,
(x = 0.1). The SSs are spin-polarized (indicated by red arrows), and cross EF five times between TRI
momenta r and M, indicating their topological nature (adapted from [99]). (b, c) ARPES measurements
of SSs of Ca-doped Bi 2Se3 , doped to tune EF into the bulk band gap (adapted from [100]). The linearly
dispersing SSs cross at F to form a single Dirac cone (b), with a prototypical circular Fermi surface (c), and
spin polarization indicated by red arrows.

Following the prediction by Fu and Kane, angle-resolved photoemission (ARPES) measure-

ments by Hsieh et al. confirmed the topological nature of the Bii_,Sb_ band structure by (1) show-

ing that the SS cross EF five times between TRI momenta - an odd number of crossings (analogous

toFig. 3-4d)[101], and (2) measuring the spin polarization of the SS, and showing it to be consistent

with theoretical predictions[99]. These measurements of the topological SSs, shown in Fig. 3-5a,

laid the foundation for the experimental investigation of these materials.

A topological insulator, or in general, a topological material (TM), is defined to be a ma-

terial with a bulk band structure corresponding to a nontrivial Z2 topological invariant. As a

consequence of the bulk boundary correspondence, the surface of a TM is required to host dis-

sipationless metallic modes. These modes are spin-polarized, with spins pointing in the plane

of the surface (Fig. 3-6a). Notably, the spin and momentum of the SSs are locked to each other.
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Dirac Point
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k

Figure 3-6: Schematic Representation of a Topological Surface States. (a) A cartoon illustration of a
topological material (TM), with the bulk band structure resulting in protected, counterpropagating states at
the surface. The SSs are spin-polarized, with locked spin (red) and momentum (blue) degrees of freedom.
(b) Schematic band structure of a prototypical TM, with protected, SSs (blue), corresponding to helical Dirac
fermions, spanning the bulk band gap. Their crossing at the Dirac point (6D) is protected due to TRS.

Therefore, for a fixed energy, a given direction of momentum corresponds to a unique in-plane

direction of spin, and vice versa (Fig. 3-6b) - a property known as helicity. This expected helicity,

coupled with the fact that the SS dispersion would be linear from the TRI point, associates these

SSs with helical Diracfermions - following an analogy from high energy physics. This association

has led to a fascinating set of predictions towards realizing analogs of high energy phenomena

in TMs, including axions and dyons[87, 93, 102]. The suggestion of using interfaces of TMs with

superconductors to generate and control Majorana fermions also serves as a motivation towards

topologically protected quantum computing applications[87, 93, 103].

The observation of spin textures in Bii_.Sb, consistent with theoretical predictions was there-

fore strongly indicative of the helical Dirac nature of these SSs. However, a complicating factor

in Bii_,Sb., is the spectral coexistence of several SSs, only some of which correspond to Fig. 3-4d.

Furthermore, the small band gap of Bii_,Sb_ did not offer sufficient promise towards transport

detection of SSs, which would be dominated by bulk states. This prompted a search for materials

with a large bulk band gap and simple SS band structure. Therefore, the experimental discov-

ery of Bi 2Se 3 as a single Dirac cone TM with a ~ 300 mV gap[104], confirmed by band structure

calculations[105] was very well received. Further work by Hsieh et al. [100], demonstrating chem-

ical potential tuning via chemical doping (Fig. 3-5b), and the existence of a simple, Dirac cone with

spin-momentum locking (Fig. 3-5c), generated much excitement in the transport community. The

theoretical prediction[105] and experimental observation of other TMs in the binary chalcogenide

class - Bi2 Te3 [106, 107] and Sb 2Te3 [107] - opened the doors for developing TMs and studying their

properties using various experimental and theoretical techniques.

An important consequence of the helical Dirac nature of the SSs is manifested in its scattering

signature. For a simple 2D system with a circular FS in the absence of spin texture, the electronic

DC susceptibility, x(q, w = 0), peaks at q = 2kF, and therefore the mobility of typical 2D systems
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Figure 3-7: Suppression of Backscattering of Topological SSs. (a-c) Illustration of the interaction between

a topological SS and a nonmagnetic impurity (partly adapted from [93]). Elastic backscattering of the SS
is required to flip the spin by 180* due to spin-momentum locking, accomplished either by rotating the
spin by -7r (a) or +7r (b). The destructive interference between (a) and (b), results in the suppression of
backscattering, and therefore forward transmission (c).

is typically limited by 2kF scattering, also known as backscattering. In TMs, the locking of spin

and momentum degrees of freedom means that a momentum flip, corresponding to 2kF scatter-

ing, is also required to flip the spin. As shown in Fig. 3-7a-b, this spin flip can be achieved in

two distinct ways, corresponding to rotating the spin by +7r respectively. Note however that the

spin degree of freedom for a spin-1/2 fermion needs to be rotated by 47r to bring it back onto

itself, and hence the relative rotation of 27r between the scattered configurations of (a) and (b) cor-

rresponds to a phase difference of 7r for scattering from nonmagnetic impurities. Therefore, these

configurations interfere destructively, resulting in the complete suppression of backscattering. The

absence of backscattering, detectable using STM measurements, was shown to hold for Bil-_Sb,

by Roushan et al.[68] and for Bi2Te3 by Zhang et al.[69] and Alpichshev et al.[108]. Note that this

suppression only holds while the impurities preserve TRS. Magnetic impurities can change the

phase difference between incident and scattered electrons, and therefore induce backscattering, as

demonstrated by Okada et. al. [70]. The absence of backscattering makes the spin-polarized SSs of

TMs viable candidates for spintronics applications.

3.4 Phenomenological k -p Model of Topological Surface States

In the presence of TRS, SSs at a given energy form Kramers doublets (kT, -k ) . The Dirac cone is

thus helical, and spin 9' and momentum k are locked in the x - y plane. For a mirror plane surface

state, the Hamiltonian reads[87]:

WiSS OC VF (k x 6) (3.1)

The spin-resolved ARPES measurements on Bi2Se3 indeeed show an isotropic (circular) FS,

which is spin-polarized, in agreement with Eqn. 3.1, leading to a geometric Berry's phase of 7r[100].

Note that this ideal single Dirac cone band structure corresponding to linear dispersion (6(k)=
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Figure 3-8: ARPES on Bi 2Te3 : Hexagonal Warping. (a) ARPES measurements of the SS dispersion on
the TM Bi 2Te3 (adapted from [106]). Note the slight difference between the F - K (top) and P - M (bot-
tom) dispersions, the latter noticeably deviating from linearity away from the Dirac point (DP). (b) ARPES
measurements of the CECs of the TM Bi2Te3 at energies increasingly away from the DP (eD = -330 mV)
(adapted from [108]). The CECs evolve gradually from being isotropic (circular), to a hexagon, and subse-
quentiy to a hexagram, or snowflake shape for c - 6D > 200 mV.

hvFk)[100], is similar to the case of single-layer graphene[109].

In contrast, corresponding measurements of the SS band structure of Bi2Te3 (Fig. 3-8a) yielded

slightly different results. Chen et al.[106, 108] found that at energies s significantly above the Dirac

point (DP) eD the constant energy contours (CECs) of Bi2Te3 are no longer circular. The CECs

warp to become hexagonal at intermediate energies (c - 8 D > 150 mV) and hexagram, or snow-

flake like (e - 8 D > 200 mV), at even higher energies (Fig. 3-8b). This hexagonal warping was
further proposed as the explanation for the scattering modes observed in the spectroscopic STM

measurements on Bi2Te3[69, 108].

The FS deformation was explained by Liang Fu using a phenomenological k -p approximation1

about the P-point, with addition of a warping term to the SS Hamiltonian[110] that introduces x-y
anistropy. The isotropic SS Hamiltonian in Eqn. 3.1, the starting point for the model, can be written
as

7-oOC VcF (kxoy - yz (3.2)

Noting that the topological SS Hamiltonian still has to obey the C3 crystal symmetry and TRS,
the next order terms correspond to a correction of the Dirac velocity, v(k) =vF (1 ±a/k2); a mass

term to introduce particle-hole anisotropy, 7-m = k2 /2m; and a warping term, 7-t = A (k3 ±

k!)o[11]. This introduces the following material parameters: a', corresponding to the Rashba

Sk-p theory is a perturbative low momentum approximation used to calculate the band structure of semiconducting
materials[55].
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SOC interaction; m, the band mass; and Aw, the warping strength. Note that the corrections stated

above are cubic in k_,y,z in accordance with TRS, apart from the k2 term, which does not break TRS

either. Furthermore, the warping term, 'W, has the underlying C3 crystal symmetry, and uniquely

introduces the x - y anisotropy that we require. The resulting Hamiltonian, to cubic order, is[110]:

k2
. - + VF (1 ± /k

2 ) (koy - kyCz) + Aw 3)z (3.3)
2m

By diagonalizing Eqn. 3.3, the SS dispersion, to cubic order, is found to be[110]:

k 2
E±k'-t (1 + a'k2) k2 ± k6 cos2 (30) (3.4)

2m±

Thus the SS dispersion can be thought to form two 'cones' correpsonding to E± (k), where 6 is

the angle with respect to the x-axis in k-space (F - K). The band structure has six-fold symmetry,

due to the C3 symmetry of the cos2 (30) term, and TRS. A contour plot of Eqn. 3.4, shown in Fig. 3-

9e, was found to be quantitatively consistent with the CEC evolution of Bi 2Te3 for E > eD[110]-

Finally, since 71w couples to cxz, we expect some out-of-plane spin polarization at large enough

energies (E - eD) 2 . This out-of-plane spin texture of Bi2 Se3 was measured using circular dichroism

ARPES[111], following the observation of similar hexagonal deformation of CECs in this TM[112].

The phenomenological k -p model for topological SS developed by Fu originates from a linearly

dispersing Dirac cone. However, we can use the same k -p model to visualize the emergence of

the SS Dirac cone from conventional electrons in the following manner (Fig. 3-9a-d). We start

with a parabolic dispersion, corresponding to free electrons with mass m and degenerate spins:

e(k) = k 2 /2m (Fig. 3-9a). The inversion symmetry of the crystal is broken at the surface, and this

would generate Rashba SOC for the two separate spin channels[1131, resulting in Rashba-split

parabolas, described as:

R (3.5)2
6±~k) 2m -± aRk (3-5)

2m

The Rashba split bands of the form shown in Fig. 3-9b, are observed on the surface of several

metals, e.g. Au(111) or Bi(111)[114, 115]. In this case the SS do have spin texture, but are connected

in the manner similar to Fig. 3-4c. Topological SSs are simplistically required to connect the va-

lence and conduction bands, and therefore the outer 'cone' in Fig. 3-9b needs to fold down. This

can be accomplished by forcing the outer cone to fold down at large momenta (as in Fig. 3-9c), by

adding a k3 correction to the Rashba parameter:

2The z spin polarization, (o--.), has a periodicity of cos(30) around the CEC.
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Figure 3-9: k.p Theory and Surface State Band Structure. (a-d) A schematic description of the emergence
of topological SSs from conventional parabolic dispersion, using the Fu k -p model[110]. The parabolic
dispersion in (a) is split by Rashba SOC in (b), with splitting strength vo. The Rashba SSs on the outer cone
can be folded downwards by adding a cubic velocity correction (Eqn. 3.6) (c), with the resulting disperser
corresponding in principle to topological SSs. Hexagonal warping can introduce anisotropy between the
dispersions along the r - K and r - M directions.

uss (k) - - a/k2  (3.6)

ET1 2m ± Rk 1±

The SS band structure thus generated (Fig. 3-9c) could in principle correspond to topological

SS. The addition of a warping term defined by Fu[110] results in a dispersion similar to Eqn. 3.4:

TS W/ k2
E SW(k) - ± aRk -/I + a'k2 + A2 k6 cos 2(30) (3.7)2m

We will use this phenomenological k - p description in the following chapters to understand

and quantify our STM measurements of the topological SS of Sb(111).

3.5 Towards Better Topological Materials

The Bi 2X3 (X = Se, Te) class of TMs have been extensively studied over the past few years using

numerous experimental and theoretical techniques. The spectroscopic investigation of SS band

structure, using ARPES, and scattering signatures, using STM, have been detailed in § 3.3.2-§ 3.4.
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Measurements of quantum oscillations in these materials at high magnetic fields do show signa-

tures of SS Landau quantization[116, 117], as do STM measurements of Landau quantization in

these materials[56, 61]. Transport techniques have also reported the observation of weak anti-

localization[ 118], conductance fluctuation[119], and ambipolar transport[12] phenomena associ-

ated with SSs. Furthermore, transport and spectroscopic measurements using optical techniques

have reported the coupling of light polarization with the spin of SS[120, 121]. Substantial progress

has also been made with the growth of TM thin films using molecular beam epitaxy (MBE), by

demonstrating the thickness limit of TMs[122, 123] and the demonstration of anomalous phenom-

ena associated with topological SS[124-126].

3.5.1 Topological Materials and Growth Issues

a b1 Chemical Potential Fluctuations
F

[)V10m eViV *240

Momentum

Figure 3-10: Present Limitations of Topological Materials. (a) Band structure schematic of an undoped
TM, showing the Fermi energy, EF, to be pinned to the valence band, attributed to growth defects. (b) The
typical chemical potential landscape of the Bi2X3 (X = Se, Te) class of TMs, chemically doped (1-3%, substi-
tutional) to pin EF in the bulk band gap. The chemical potential fluctuates by tens of mV, and corresponds
to a SS mean free path of ~ 25 nm (adapted from [23]).

Despite the progress in the investigation of SSs, the main focus in experimental TM research

continues to be towards developing better TMs. The reasons for this are twofold.

First, in undoped Bi2 X3 TMs, EF is typically pinned within the bulk bands (e.g. Fig. 3-10a).

As a result, the contribution of SSs to transport measurements is ~ 5 - 10%, amidst a strong

bulk background[119]. The origin of this phenomenon has been attributed to intrinsic defects

and vacancies originating during the growth process. Intensive modification of growth recipes

for undoped TMs have not succeeded in substantially increasing the SS contribution to transport

measurements[12, 118].

Second, while the chemical potential of Bi2 X3 can be tuned into the band gap by substitutional

doping, e.g. Ca, Cu etc. at the Bi site; or e.g. As at the X site - this introduces a separate set of prob-

lems. STM studies by Beidenkopf et al. have shown Bi2 X3 compounds to have poor screening char-

acteristics. The chemical potential landscape created by bulk dopants is unscreened over several

nanometers, introducing potential fluctuations of tens of mV on the nanometer length scale[23].

This severely restricts the mean free path in doped TMs to e.g. - 20 - 30 nm[23]. Additional com-

plications are introduced by band bending phenomena found to occur at the surface[100]. These
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phenomena result in the spectral coexistence of topological SSs with a Rashba 2DEG created at the

surface[127-129], and the interaction between these two 2D systems is still a subject of debate[130].

To circumvent these issues, considerable effort has been devoted to the synthesis of ternary and

quarternary TMs, which have shown up to 60% SS contribution to transport measurements[131,

132]. However, these materials are tuned off-stoichiometry to achive bulk insulating behavior.

The corresponding effects on the mean free path of SSs continues to be investigated[131].

While the eventual objective of achieving dissipationless SS transport remains achievable, it is

clear that local, surface-sensitive spectroscopic tools such as ARPES and STM would play a key

role towards understanding SS physics and guiding TM development.

3.5.2 Spintronics Metrics of Topological Materials

1[Small Angle Ej Spin-Momentum
. ScatteAnge Decoherence

Z/y Scattering
flSurface-Bulk

Scattering
A OBackscattering

Figure 3-11: Spintronics Metrics for Topological Materials. (a) A cartoon depiction of a spin transport
device fabricated on a TM. Counterpropogating SSs could potentially transfer a pure, ballistic spin current
from source to drain. (b-e) Scattering mechanisms which can limit the efficacy of SSs towards spin transport
applications, corresponding to elastic, small angle scattering (b), scattering from the surface to the bulk (c),
decoherence of the spin-momentum locking (d) and backscattering from magnetic impurities (e).

As outlined in § 3.3.2-§ 3.4, SSs on TMs are spin-momentum locked, protected from backscat-

tering, and cannot be gapped out by external TRS-preserving perturbations. Notably the spin

polarization of the FS has been found to persist up to room temperature in the Bi 2X3 class[100].

Therefore, these spin-polarized SSs can potentially be used for dissipationless spin transport. A

schematic of such a potential device, shown in Fig. 3-11a, would have counterpropagating spin-

polarized SSs - with the spin-momentum locking ensuring a pure, ballistic spin current with zero

charge current. To develop TMs towards spintronics applications, we look at the various mecha-

nism that can affect the SS spin current, and suggest means to quantify the relevant SS properties.

First, we note that while the spin-textured SSs are not allowed to backscatter, small-angle scat-

tering off non-magnetic impurities is allowed (Fig. 3-11b). Another allowed mechanism is the

scattering of SSs into spectrally coexisting bulk states (Fig. 3-11c). In fact, surface-bulk scattering

in Bi 2Se 3 has been suggested as the mechanism responsible for static interference patterns below
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ED - at the onset of the valence band[1331, and for the suppression of Landau quantization at the

onset of the conduction band[56]. Both these mechanism could cause dissipation and could heat

up the spin device. The upper limit of the sum total of these scattering mechanisms can be quanti-

fied by the SS mean free path, A3. Second, the spin current signal could also be diminished by the

decoherence of spin-momentum locking (Fig. 3-11d), thereby providing a spurious spin current

for a net zero charge current. We note from § 3.4 that the strength of spin-momentum locking is

quantified by the Rashba parameter, aR. Finally, the topological protection of SSs is absent when

TRS is broken, e.g. in the presence of magnetic impurities, which can cause backscattering (Fig. 3-

11e). In such a scenario, the SS response to the magnetic perturbations is quantified by the g-factor.

For strong immunity to magnetic perturbations, a small value of the g-factor is desirable.

Using these metrics as a starting point, we can quantify the utility of TMs for spintronics appli-

cations. Further, we will quantify the band structure of Sb(111) using momentum-resolved STM

and determine the relevant set of metrics for this material.

3Strictly speaking, this should be A\/ansport as the mean free path measured from say tunneling could be affected by,
for example, collective modes. However, Atunneling does place an upper bound on AtansPort
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Chapter 4

Spectroscopic STM Studies of the

Topological Surface States on Sb(111)

Here we report on our spectroscopic STM studies of the cleaved (111) surface of the topological

semimetal Sb. We first detail the topographic and spectroscopic characterization of the surface,

and subsequently report on the simultaneous observation of Landau quantization and quasipar-

ticle interference phenomena, associated with the topological surface states of this material, over

a 300 meV energy range.

4.1 Experimental Techniques and Characterization

Single crystals of Sb were grown using the following method[99]. High-purity antimony (99.999%,
supplied by Alfa Aesar@ in shot form (10.15 g, 6 mm) was sealed in an evacuated quartz tube, and

heated in a box furnace to 700 'C for 24 hours. The furnace was cooled slowly (0.1 'C/min) to

500 'C, and subsequently cooled to room temperature.

Our measurements were performed using a home-built STM at liquid helium temperatures.

Single crystals of Sb were cleaved in-situ in cryogenic ultrahigh-vacuum to expose the (111) face,

and inserted into the STM. Mechanically cut Pt-Ir tips, cleaned by field emission and characterized

on gold, were used for the measurements. Spectroscopy data were acquired using a lock-in tech-

nique at 1.115 kHz, and conductance maps were obtained by recording out-of-feedback dI/dV

spectra at each spatial location. Three single crystal samples of Sb(111) were investigated in this

work, and their correspondence to the data shown in the manuscript is detailed in Tbl. 4.1.
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Figure Sample

4-1 a 3
a 3

b, c 1
4-4 a 1

4-6, 4-7 all 1
4-8, 4-10 all 2

4-9 a, b 1,2
4-11 all 3

4-12, 4-13, 4-14, 4-15 all 1

Table 4.1: Sample Tabulation. A tabulation of the samples investigated in this work, and their correspon-
dence to the data shown in the manuscript. The chemical potential varied between samples by up to 15 mV,
and dispersions varied by up to 5%.

C

B 11.27 A
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C
2.25 A

[BS
11.51 A

A
Z low toll h ig h 4.31_ A

Figure 4-1: Topography and Crystal Structure of Sb(111). (a) STM topograph of Sb(111) showing an atom-
ically flat surface. Setpoint parameters: sample bias, Vo = +200 mV; junction resistance, Ri = 10 GQ. Inset
shows the atomically resolved hexagonal lattice (V = +200 mV; Ri = 125 MQ). (b) The layered hexagonal
structure of Sb(111), with the unit cell consisting of three bilayers.

4.1.1 Topographic Characterization of the Surface

Sb(111) has a layered hexagonal structure and R3 space group symmetry (space group no. 166).

The unit cell (Fig. 4-1b) consists of three bilayers of Sb atoms, with lattice constants ao = 4.31 A (in-

plane) and c = 11.27 A (out-of-plane). The crystal typically cleaves between the weakly coupled

bilayers shown in Fig. 4-1b.

The (111) surface of Sb shows large atomically flat regions and atomic steps (Fig. 4-la, Fig. 4-2),

free from modulations associated with electronic inhomogeneity, except in the immediate vicin-

ity of sparse single atom surface impurities. The surface displays a hexagonal lattice with the

expected periodicity. The magnitude of atomic corrugations on Sb(111) is much lower than in

semiconducting TMs due to screening effects from bulk bands, detailed further in § 4.1.2.
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Figure 4-2: Prominent Topographic Features on the Sb(111) Surface: Impurities and Atomic Steps. (a) A
topograph acquired over part of the field-of-view shown in Fig. 4-2a. Topographic variations seen over this
field-of-view are associated with single-atom impurities, with no visible nanometer-scale potential fluctua-
tions. (b) Topograph showing of a series of atomically flat terraces on Sb(111), perpendicular to the Bragg
(' - M) direction (V = +200 mV; Rj = 10 GQ). (c) A linecut through the topograph in (b), perpendicular
to the terraces.

Fig. 4-2 shows in more detail the observed topographic features on the Sb surface. In Fig. 4-

2a, we note the presence of two distinct kinds of single-atom impurities, one of which breaks the

C6 symmetry of the lattice. Neither of these two kinds of impurities have been reported in STM

studies of other TMs[14, 56, 134]. The presence of a third kind of impurity is noted in Fig. 4-la,

which is more similar to conventional impurities reported in other TMs[14, 56, 134]. Over flat

regions of the sample, any modulations in the topographs (Fig. 4-1a, Fig. 4-2a) correspond directly

to visible impurities on the surface. These impurities do not noticeably change the local chemical

potential, but do scatter surface state quasiparticles to generate quasiparticle interference (QPI)

patterns, detailed in § 4.3.

The other prominent topographic feature is associated with the presence of atomic steps. Some

regions of the Sb(111) surface consist of several atomic terraces formed perpendicular to the Bragg

(F - M) direction, shown in Fig. 4-2b. The step height between adjacent terraces is ~ 0.38 nm

(Fig. 4-2c), consistent with the expected bilayer spacing (Fig. 4-1b). The effects of scattering and

transmission through these steps has been explored in detailed in the previous work of Seo et

al.[135], and is also examined in § 4.4.

The comparison between topographs acquired on Sb with those reported on other TMs (Fig. 4-

3) is rather striking. All these material surfaces have a hexagonal lattice, and therefore the struc-

tural contribution of the lattice to the topographs is nominally similar. However, the electronic

contribution to the STM topograph, appearing as a result of the second term in Eqn. 2.5, are

markedly different between Sb and other TMs. Notable in the Bi 2X3 TMs (Fig. 4-3b-c) and com-
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low high Z: low high

Figure 4-3: Representative Topographs of Other Hexagonal Topological Materials. (a-c) STM Topographs
acquired on the TMs BiSb_,, (a, adapted from [68]), Bi 2 Te3 (b, adapted from [70]), and Bi 2Se 3As, (c).
All three topographs show nanometer lengthscale modulations attributed to fluctuations of the chemical
potential[23].

pletely dominating the topographic measurements in BiSbi_ (Fig. 4-3a) is the electronic inho-

mogeneity, understood to be associated with poorly screened bulk dopants and defects[23]. The

contrasting topographs imaged on Sb suggest that the chemical potential on the surface of Sb(111)

is homogeneous in comparison to other TMs, a fact which is detailed quantitatively in § 5.3.3.

This homogeneity is associated with the presence of bulk bands proximate to the surface states, as

detailed in the following section.

4.1.2 Surface State Band Structure and DOS Spectroscopy
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Figure 4-4: Spectroscopy and Band Structure of Sb(111). (a) A typical dI/dV spectrum on Sb(111), with
cusp-like features at EBot, SS, and erop, corresponding to extremal features in the SS band structure defined
in (b) (Vo = +300 mV; Rj = 500 MQ; Vmod = 3 mV). (b) Schematic band structure of the semimetal Sb(111)
with topological surface states (dark blue) intersecting at the Dirac point, ED. The SS connect the bulk
valence (green) and conduction (cyan) bands. Extremal band features EBot, Es, and ETop are labeled. The
spectral range of the observed LLs and QPI is indicated.
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Energy Scale First Usage Definition

EBot Fig. 4-4b Bottom SS band edge
ED Fig. 4-4b Dirac point (intersection of SSs)
EW Fig. 4-4b Warping energy for outer SS band
ES Fig. 4-4b Saddle Point: F - K turnover of outer SS band

EF Fig. 4-4b Fermi energy
ETop Fig. 4-4b Top SS Band Edge: F - M turnover of outer SS band

En Eqn. 4.3 Semiclassical LL energy (Dirac or Rashba formulas)

EN Fig. 4-7 Empirically measured LL peak energies

Eint,D Fig. 4-10b Intercept of Semiclassical Dirac LLs (VB-fit)
Eint,R Fig. 4-10c Intercept of lowest Rashba-like LLs (B-linear fit)

Table 4.2: Energy Scales. A tabulation of the important energy scales of Sb(111) surface states used in this
work. Note that the absolute values of these energies vary by up to 15 mV between samples.

The typical dI/dV spectrum acquired on Sb is shown inFig. 4-4a. While the spectrum is ex-

pected to be representative of the DOS, it would have contributions from both the surface and bulk

bands. In particular, we note the presence of prominent cusp-like features in the spectrum. To un-

derstand the origin of these features and the shape of the spectrum, we turn to a schematic of the

Sb band structure, shown in Fig. 4-4b. This schematic is obtained from first principles calculations,

which qualitatively reproduce the band features.

Unlike Bi2 X3 and BixSbi_- (x < 0.2) TMs, which have a bulk band gap, Sb is a semimetal with

a negative band gap[136]. As can be seen in Fig. 4-4b, the bulk valence and conduction bands

overlap for > 300 mV. Notably, the bulk band structure of Sb does have the topological invariant,

vo = 1, and therefore the bulk bands near EF are inverted. This necessitates the existence of

topological SSs (blue lines in Fig. 4-4b) that connect the valence and conduction bands. However,

the peculiar bulk band structure of Sb results in the SS bands deviating markedly from the ideal

Dirac cone structure observed in Bi 2 Se3 and Sb 2Te3 . The energy scales referred to in this work are

detailed, along with their definitions, in Tbl. 4.2.

The SSs band structure near the F-point appears similar to that of Rashba SOC split parabolas

(e.g. Fig. 3-9b) with a lower band edge at £Bot. They cross at F to define the Dirac point ED, with

the crossing protected by Kramers theorem in the presence of time-reversal symmetry (§ 3.3.1).

However, unlike typical Rashba SSs, the topological nature of Sb SS requires the outer Rashba

cone to turn down and connect to the valence band (e.g. Fig. 3-9c). This results in the formation

of extremal features in the outer Rashba cone, one of which is a saddle point (s), and the other is

a band edge (esTop). The asymmetry between these two features can be described by the presence

of hexagonal warping, as detailed in § 3.4. The energy E, corresponds to the onset of noticeable

warping on the outer Rashba cone.

Therefore, the cusp-like features in the dI/dV spectrum (Fig. 4-4a) can be well-explained by

the extrema in the SS band structure (Fig. 4-4b). The steps in conductance at - -240 mV and
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~ 270 mV are associated with 2D band edges - EBOt and 6 Top respectively. The sharp peak at

-110 mV corresponds to the logarithmic singularity associated with the 2D saddle point at es.

We note in particular the importance of this saddle point, which signifies a crossover between the

appearance of the SS bands as Rashba-split parabolas (below es) to an isolated Dirac cone (above

eS).

a12  1Bi2Se3  b Sb2 Teal E -105 me B 2 Fe Te3
0.4 :1.2 E2  190 meV

i0.8 -C
(U E, ~ 40 meV
U

C S0.2 :0.6-

ED

C
C I

0.0 _________ _ 0.0 '0.04
40 0.C -40 -200 0 -200 0 200 400 -200 0 200

Sample bias (mV) Sample Bias (mV) Bias Voltage (mV)

Figure 4-5: Representative STM Spectra on other TMs. (a-c) Representative STM spectra acquired on the
TMs Bi 2Se3 (adapted from [56]), Sb 2Te3 (adapted from [123]), and Bi 2Te3 (adapted from [70]). Note that in
(a-b), the DP directly corresponds to the spectral minimum, while in (c), only SS band edge features can be
identified, as in the case of Sb(111).

Finally, we highlight the absence of a conductance minimum associated with the Dirac point

in Sb. Direct spectroscopic access to the DP is precluded due its spectral coincidence with other

SSs and bulk bands. This is in marked contrast to the STM spectra acquired on TMs Bi 2 Se 3 and

Sb 2 Te3 (Fig. 4-5a-b, [56, 123]), where the bulk band gap and conventional Dirac cone structure

results in a spectral minimum at ED. The spectra in Sb are similar to those observed on Bi2Te3,

with prominent SS band edges. While the absence of direct access to the DP is a limitation, the

presence of a bulk band continuum proves to be a distinct advantage in Sb(111), screening out

tip-induced band bending artifacts[137] and chemical potential fluctuations[23, 68].

4.2 Landau Quantization of Sb(111) Surface States

In the presence of perpendicular magnetic fields above 4 T, conductance oscillations correspond-

ing to quantized Landau levels (LLs) were observed in dI/dV spectra on Sb(111) (Fig. 4-6). The

LLs emerge as modulations on top of the background (zero field) spectrum. We note that the LLs

are unequally spaced in energy, as expected for Dirac fermion surface states, and are sharpest at

EF, evincing lifetime broadening. We observe up to 27 such LL oscillations - more than the num-

ber reported in any other TM[56, 70, 123, 137], despite the presence of bulk bands throughout this

energy range (Fig. 4-4b).
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Figure 4-6: Landau Quantized STM Spectrum. Representative dI/dV spectrum acquired in a 9 T magnetic
field (red), compared with the zero field spectrum (dashed black). The oscillations in the 9 T spectrum
correspond to quantized Landau levels. Setpoint Parameters: Vo = +100 mV; Rj = 0.2 GQ; Vmod = 0.4 mV.

4.2.1 Normalization and Fitting of Landau Quantized STM Spectra
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Figure 4-7: Normalization and Fitting of Landau Quantized STM Spectra. (a) Representative dI/dV
point spectrum acquired in a 9 T magnetic field (red), compared with zero field point spectrum (dashed
black). The two spectra were acquired within 5 nm of each other (identical data to Fig. 4-6). The green lines
indicate the first few empirically identified LL indices. Setpoint parameters: Vo = +100 mV ; Rj = 0.1 GQ,
Vmod = 0.4 mV. (b) The 9 T spectrum in (a) is divided by the 0 T spectrum to remove the bulk background,
and a weak quadratic background (likely due to tip drift effects) is subtracted from the ratio, resulting in
the normalized data shown as red dots. The data is fit to a sum of Lorentzian peak profiles over the range
of observed LLs (dashed blue line). (c) The peak positions of the observed LL indices, N, extracted from
the Lorentzian fit in (b). (d) The peak widths of the observed LL indices, N, extracted from the Lorentzian
fit in (b).
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We assign empirical indices starting with N = 1 to all such B-dependent LL peaks (Fig. 4-7a).

Employing a polynomial background subtraction on the dI/dV spectrum acquired in field[56, 61]

was not found to be sufficient for analyzing the LLs in Sb(111), due to the due to the prominent

cusps in the conductance background generated by the SS extrema (Fig. 4-4), which cannot be

removed by this process. The LL dispersion was therefore analyzed by normalizing the point

spectrum acquired in field to that acquired at zero field - within 5 nm of each other. The spectra

were recorded sufficiently far from impurities, which may introduce artifacts (Fig. 5-8). After the

normalization, a weak quadratic background was subtracted from the ratio, resulting in the data

shown in Fig. 4-7b. This weak background likely arises from tip drift effects in the z-direction over

the ~ 10 s data acquisition process. While peak-like features were occasionally observed in the

normalized spectrum at energies below the N = 1 LL that could in principle correspond to lower

LLs, these could not be consistently reproduced.

To extract the positions and widths of the LLs, in order to analyze the LL dispersion, the data

in Fig. 4-7a was fit to a sum of Lorentzian peak profiles, given by:

Gfit (e) = yo + z 24c . wi (4.1)
Nm 7 4(Ei-n,2

Here, Nmin and Nmax correspond to the indices of the lowest and highest observed LLs. The full

spectrum is fit simultaneously using the following parameters - an overall offset yo, and three

independent parameters for each LL: center ec, width w, and amplitude A. The quality of the

Lorentzian sum fit is shown in Fig. 4-7b.

The energies of the LL peaks, EN, thus determined, are plotted against the empirical LL index,

N Fig. 4-7d. Meanwhile the set of Lorentzian fit parameters wi correspond directly to the inverse

LL widths plotted in Fig. 4-7d.

4.2.2 Magnetic Field Dependence and Landau Level Index Identification

LLs correspond to quantized orbits in real, as well as momentum space. Therefore, the energy-

momentum Landau quantization can be used to measure the quasiparticle band structure corre-

sponding to the LLs. To do so, we note that, as detailed in § 2.3, the semiclassical Bohr-Sommerfeld

quantization relation gives the area in k-space for the nth LL[561 to be

= rq- (n + -y) . 27reB/h (4.2)

The factor -y, determined by the Berry's phase of the quasiparticle, is 1/2 for a free electron

and 0 for a Dirac fermion[56]. For the surface states of Sb(111), the measured Berry's phase of 7r

would correspond to y = 0 (strictly speaking, for 6 > es)[99]. It remains to determine the offset
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Figure 4-8: Magnetic Field Dependendence and Index Identification of Landau Levels. (a) B-dependence
of LLs, showing representative dI/dV spectra, vertically offset for clarity. Dashed blue lines are guides to
the eye following the first four LLs. Setpoint Parameters: Vo = +100 mV; Rj = 0.1 -0.2 GQ; Vmod = 0.4 mV.
(b) The eN(qN) dispersion of LLs at three representative magnetic fields (from the data in (a)), for different
values of the offset parameter No, used to define the semiclassical (Bohr-Sommerfeld) momentum for Dirac

fermions, qN V/(N + No) B, where N is the empirically observed LL index. The dispersions have been
vertically offset by 75 mV for clarity; horizontal green dashed lines denote the same reference energy for
each dispersion. Horizontal gray lines denote es for each dispersion, indicating the energy above which we
expect the Dirac dispersion to hold. The offset value No = 0 is found to give the best collapse of -N(qN)
spectra for different magnetic fields onto each other, above es.

No = N - n between the empirical index N and the actual semiclassical index n.

To determine No, we performed detailed magnetic field dependent measurements from 4-9 T

(representative spectra in Fig. 4-8a). Fig. 4-8b shows the e(q) LL dispersion obtained for a few

values of No using the peak positions at three representative magnetic fields. We find that No = 0

gives the best collapse of EN(qN) values for different magnetic fields in the Dirac regime (e > es),

confirming that the empirical LL index N is equivalent to the semiclassical LL index n.

4.2.3 Landau Quantization: Dispersion and Lifetime

Fig. 4-9a shows the LL peak energies, EN, plotted against the empirical LL momentum, v 'NiB
(No = 0). For energies e > ES, the dispersions obtained at different magnetic fields collapse

on to a single curve - validating the Dirac fermion semiclassical approximation with n = N,

and demonstrating that the Landau quantization arises from a single pocket. From Fig. 4-4b, we

conclude that the LL wavevector qN corresponds to the area of the inner F-centered pocket. We

note that the between the two samples examined in Fig. 4-9a, the chemical potential varies by

~ 15 mV and the dispersion by ~ 5%.

The LLs peaks are sharpest around the Fermi energy, eF (Fig. 4-6). This is quantified in Fig. 4-
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Figure 4-9: Landau Quantization: Dispersion and Lifetime of Surface States. (a) Dispersion of LL ener-
gies EN vs- momentum v~/N for two samples, based on the semiclassical approximation for Dirac fermions.
Grey band shows the crossover energy below which the Dirac fermion description breaks down. (b) The
LL inverse peak widths for two samples, measured using Lorentzian fits (e.g. Fig. 4-7b), showing lifetime
broadening away from eF.

9b, where the inverse peak width, representative of the quasiparticle lifetime, is peaked at EF, and

broadens away from it. We note that the energy dependence of the lifetime broadening is mono-

tonic, in contrast to other TMs, where self-energy effects have been suggested to be prominent[56].

Such monotonic lifetime broadening can be well explained within the Fermi liquid picture, where

quasiparticles with energy E away from the Fermi energy decay by creating particle-hole excita-

tions. The phase space of available excitations results in the quasiparticle lifetime having a 1/E2

energy dependence, which adequately describes our observataions. Finally, the measured lifetime

at SF (~ 0.16 mV-) corresponds to a mean free path, 1F ~ 65 nm, varying by ~ 20% between two

samples, likely due to sample-dependent disorder.

Dirac fermion LLs are unequally spaced in energy, with the dispersion of the nth LL with

magnetic field given by

En(B) = ED + VD -2ehnB (4.3)

To quantify the Dirac character of the LLs, we performed detailed magnetic field dependent

measurements over 4-9 T on Sample 2. The resulting LL 'fan' plot is shown in Fig. 4-1Oa.

We fit the field-dependence of the LL dispersion to the form expected for Dirac fermions (Fig. 4-

10b):

EN(B) = Eint,D - VD V'e NB (4.4)

and to the form expected for conventional fermions (Fig. 4-10c):
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Figure 4-10: Landau Quantization: Quantifying the LL Crossover Behavior. (a) A LL 'fan' plot, showing
the measured positions of the first 20 LLs observed for magnetic fields from 4-9 T (identical to Fig. 4-8b).
The dotted lines are guides to the eye. (b-c) Fits to the LL dispersions in (a) using vK-dependence in (b),
expected for massless Dirac fermions; and B-linear dependence in (c), expected for massive fermiions. The
curves show the fit slope and intercept corresponding to each of the LL indices, with the shaded blue and
pink regions representing error bars. The data show a crossover, indicated by the vertical grey bar around
N = 6, from B-linear behavior for N < 6 to x/i-behavior for N > 6. The values of the parameters VD,

Eint,D, and Eint,R determined from the data are indicated by horizontal blue and red lines.

&N(B) = eint,R + C -B (4.5)

For LL indices N ;> 6, the Dirac form fits our data consistently, with intercept eint,D = -278 mV,
and dispersion v*~ =4.42 eV-A, the latter consistent with the reported ARPES dispersion of the cen-
tral SS pocket[136]. In contrast for the lower LLs (N < 6), the dispersion monotonically deviates
from the ideal v'iN-fit, and the dispersion velocity v* -+ 0 as we approach the DP (blue curve in

Fig. 4-l0b). This is unphysical for an isolated Dirac cone, and is in marked contrast to the expecta-
tion and observation of linear dispersion near the Dirac point in other TMs[14, 56, 110, 123, 137].
We emphasize that higher order corrections to the single Dirac cone dispersion are expected to
contribute only for larger momenta, as observed in other TMs[14, 56, 110].

In this range however, we find that the B-linear fit (Fig. 4-l0c) gives a constant intercept

(6int,R = -194 mV), suggesting that the quasiparticles behave like massive fermions in this regime.
That the range of energies for N = 1-6 approximately corresponds to the energy range Cbot < E <

es suggests that the Rashba picture of SOC-split parabolic bands is more appropriate for analyz-
ing the single particle behavior here. We will return to these low energy states after a quantitative
reconciliation of the higher energy LLs with QPI.
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4.3 Quasiparticle Interference of Topological Surface States

To examine the quasiparticle interference arising from the scattering of SSs from single-atom im-

purities, spatial conductance (dI/dV(r)) maps were recorded on several samples. These dI/dV(?, V)

maps were acquired over large (80-190 nm) fields of view, affording high q-space resolution (~

0.004 A- 1, or 0.3% of the BZ). Drift effects over the long time scale (3-5 days) of data acquisition

were minimized by (a) relaxation for - 6 - 8 hours over the region of interest before data acqui-

sition to reduce piezoelectric creep, and (b) keeping the temperature constant to within 200 pLK to

reduce thermal effects.

As exemplified in Fig. 4-11a-d, impurity scattering creates striking interference patterns in spa-

tial conductance on Sb(111). The interference patterns are markedly different around the distinct

kinds of impurities noted to exist on the sample surface (Fig. 4-2a), appearing more triangular

around one kind of impurities, and more hexagonal around the other. The periodicity of the in-

terference patterns changes monotonically through Fig. 4-11a-d, the wavelength decreasing with

increasing energy (sample bias).

For quantitative determination of the dispersing QPI modes, the conductance maps were nor-

malized, Fourier transformed, and six-fold symmetrized to improve the signal-to-noise[23, 68, 70,
122]. In the Fourier space conductance maps shown in Fig. 4-11e-h, we note the presence of peaks

along both the F - M and F - K reciprocal directions, which disperse towards higher wavevectors

with increasing energy.

Conductance linecuts were then extracted along the high-symmetry (F - M and F - K) re-

ciprocal directions through the Fourier transformed maps (e.g. Fig. 4-11e-h) for all energy layers.

These linecut plots (e.g. Fig. 4-12 and Fig. 4-13) clearly show the QPI modes as intensity peaks that
disperse approximately linearly with energy (Fig. 4-12a-b) over ~ 300 mV from the DP, the F - M

mode having been reported previously[135, 1381. The prominent modes seen in such data sets are

labeled as qr-M,1 and qr-K respectively. The Fourier positions of the QPI modes were measured

by fitting the linecut data to a Lorentzian peak profile for each energy layer.

4.3.1 Scattering in Magnetic Field

The application of an external magnetic field breaks time-reversal symmetry. In principle, this

would mean that backscattering is no longer forbidden. We would expect the SS spins to tilt from

being perfectly in-plane, with the magnitude of tilt determined by the ratio of the Zeeman energy

to the Fermi energy, Oz = g/BB/eF. Therefore, the onset of field-induced backscattering can in

principle determine the SS g-factor. In addition, the onset of LLs is expect to manifest spatially

around impurities in the form of QPI modes corresponding to bound LL states at finite magnetic

fields[139].
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Figure 4-11: Quasiparticle Interference: Conductance Maps in Real and Reciprocal Space. (a-d)
dI/dV(r, V) maps at sample bias -140 mV (a), -80 mV (b), -20 mV (c), and +50 mV (d), exemplifying standing
wave patterns generated by scattering from impurities. (e-h) Fourier Transforms (FTs) of (a-d) respectively,
showing distinct conductance peaks along the F - M and - K reciprocal directions. FTs have been six-fold
symmetrized to improve signal quality.
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Figure 4-12: Quasiparticle Interference: Conductance Plot of Dispersing Modes. (a, b) Conductance
linecuts through the FTs along the 17 - M (a) and r - K (b) directions, generated from 190 nm spatial maps.
The prominent dispersing modes along each direction are labeled qr-M,1 and qr-K-
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Figure 4-13: Quasiparticle Interference: Dispersing Modes in a Magnetic Field. (a-d) Linecuts through
the FTs generated from 140 nm spatial dI/dV maps, along the r - M (a, c) and F - K (b, d) reciprocal
directions. The maps were acquired at 0 T (a, b) and 9 T (c, d) over the same spatial region. The quasiparticle
dispersion is unchanged to within 2% in the presence of a 9 T magnetic field. Setpoint parameters: V =
+200 mV; Ri = 0.2 GQ (a); Vmod = 10 MV.

To examine the effects of magnetic field on the scattering modes, conductance maps were

recorded over the same -140 nm spatial region at 0 T and 9 T magnetic fields (Fig. 4-13) with

all other experimental parameters held identical. No change is observed in the QPI dispersions in

the presence of a magnetic field. Identical QPI modes are seen at 0 T and 9 T with the dispersion
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unchanged to within 2% (c.f. [139]). No field-induced backscattering was observed, as detailed

further in § 5.2.2.

4.4 Scattering from Step Edges
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Figure 4-14: Scattering and Interference from Step Edges. (a) A linecut through the topograph in Fig. 4-2b,
perpendicular to a series of atomic terraces on the Sb(111) surface (identical to Fig. 4-2c). (b) Conductance
(dI/dV(x, V)) map generated from a linecut perpendicular to the steps, with dispersing oscillations corre-
sponding to scattering from the steps. Oscillations along the vertical direction correspond to states bound
between the step edges[135]. Setpoint parameters: Vo = +200 mV; Rj = 10 GQ (a), 0.2 GQ (b); Vmod = 2 mV.

We had previously noted the observation of several atomic terraces formed perpendicular to

the Bragg (F - M) direction on some regions of the Sb(111) surface (Fig. 4-2b-c). Measurements

of spatial conductance ((dI/dV(x, V)) across a series of terraces, shown in Fig. 4-14b show os-

cillations emanating from the edges that disperse with energy, as reported previously by Seo et

al.[135]. These dispersing oscillations should, in principle, be identical to QPI along the r - M di-

rection. As expected, these oscillations are much stronger in intensity than the impurity scattering

detailed previously, due to the larger perturbative effects of atomic steps. We also note the pres-

ence of confinement states, more prominent between nearby steps (e.g. the series of resonances

between Steps 1-2). These quantized resonances are analogous to the bound states of a quantum

well, and have been examined in detail in the previous work by Seo et al.[135].

The scattering of SS from atomic step edges can be analyzed similarly to the previous QPI

results, by Fourier transforming the conductance data for each atomic terrace. This results in con-

ductance linecuts along the r - M direction, as shown in Fig. 4-15 for the three terraces indicated
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Figure 4-15: Quasiparticle Interference: Dispersing Modes on Atomic Terraces. (a-c) FT of the conduc-
tance in Fig. 4-14b from three large terraces indicated in Fig. 4-14a, showing two prominent dispersing

modes along the r - M direction, labeled qr-M,1 and qr-M,2-

in Fig. 4-14a. The most prominent mode observed in these linecuts, qr-M,1 is nominally identical

to the analogous mode observed in impurity QPI (Fig. 4-12a). However, step edge scattering al-

lows the extraction of an additional mode along the F - M direction which onsets at - -120 mV,

corresponding to the warping energy, e,. Both these modes are observed in all three wide terraces

imaged in this work.

The application of a magnetic field has no effect on the quasiparticle dispersion, and Landau

quantization is found to exist along with the quantization of bound states. The quasiparticle dis-

persions obtained over terraced regions using Landau quantization and QPI are compared with

analogous dispersions over flat regions in § 5.3.
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Chapter 5

MR-STM Band Structure and

Rashba-Dirac Crossover of Topological

Surface States

Having detailed the simultaneous observation of Landau quantization and quasiparticle inter-

ference phenomena associated with the surface states of topological Sb in the previous chapter,

we now identify their momentum space origin. Subsequently we report, for the first time, their

quantitative reconciliation (to 3%), after two decades of their observation in various materials. We

therefore establish momentum-resolved scanning tunneling microscopy (MR-STM) as a robust

nanoscale band structure probe, and reconstruct the multi-component dispersion of Sb(111) sur-

face states. We quantify surface state parameters relevant to spintronics applications and clarify

the relationship between bulk conductivity and surface state robustness. Finally, we understand

the anomalous behavior of the low index Landau levels detailed in the previous chapter as arising

from a crossover in the single particle behavior from massless Dirac to massive Rashba character

- a unique signature of topological surface states.

5.1 Identification of LL and QPI Modes

The e(q) dispersions of all quasiparticle modes measured over the same spatial region are shown

in Fig. 5-1, with the addition of qr-M,2, which is acquired from a nearby step edge. The marked

variation in the dispersion of the various modes is reflective of the multi-component SS band

structure of Sb(111). The notable features in Fig. 5-1 include (a) the onset of qr--M,2 at a slightly

higher energy, corresponding to Ew, compared to the other QPI modes; (b) the identical dispersion

of qr-M,1(E) and qr-K(E) for 6 < Es, and their deviation above Es; and (c) the overlap of LL and

QPI dispersions over - 300 mV.
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Figure 5-1: MR-STM: Compilation of Dispersing Modes. A compilation of the e(q) dispersions recorded
over the same atomically flat spatial region (note - qr-M,2 is acquired from a nearby step edge, Fig. 4-15a)
using Landau quantization (Fig. 4-9a, red) and QPI (black and blue, from Fig. 4-12a-b).

To identify the momentum space origin of these dispersing modes, we examine schematics of

the CECs in Fig. 5-2, which display three qualitatively different shapes over the energy range of

interest. For ED < E < Ew, the CECs are concentric spin-polarized circles (Fig. 5-2b), corresponding

to the spin-split Rashba parabolas. Here, the only allowed scattering mode is inter-band scattering

between parallel spins, and therefore qr-M,1 (E) and qr-K (e) both correspond to this mode, and are

identical. For Ew < e < es, the outer Rashba cone acquires a warped snowflake shape (Fig. 5-2c),

which corresponds to the onset of intraband scattering on the outer cone, observed as the qr-M,2 (E)

mode[135]. Meanwhile, the k-space origin of qr-M,1 (E) and qr-K(e) is the same as before.

Finally, for E > 6s, the outer cone is no longer closed (Fig. 5-2d). While the qr-M,1(e) mode

remains the same as before, qr-K(E) now corresponds to intra-band scattering across the outer

'pocket', analogous to qr-M,2 (e). Above Es, the LL wavevector, qLL (E), is well defined, and corre-

sponds to the area of the inner pocket - the only closed CEC over the energy range of interest.

Therefore, the dominant F - M QPI mode, qr-M,1 (e), corresponds to inter-band scattering be-

tween parallel spins the the entire observed energy range. In contrast, the F - K QPI mode qr-K (e)

corresponds initially to inter-band scattering below ES, and transitions to scattering between sec-

tions of the outer pocket for e > es. We note the kink and slight change in magnitude of qr-K(E)

around ss (Fig. 5-1), corresponding to this crossover from inter-pocket scattering to intra-pocket

scattering. This crossover signifies the turnover of the outer cone and confirms the topological

nature of the surface states, in contrast to conventional Rashba SOC split states known to exist on

TM surfaces[127-129].
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Figure 5-2: Sb(111) Band Structure and Identification of Dispersing Modes. (a) A zoom-in of the SS band
structure shown in Fig. 4-4b over the energy range of interest (c.f. Fig. 5-1). (b-d) Schematic evolution of the
SS constant energy contours (CECs), with the in-plane spin polarization (red arrows) and q-space location
of the dispersing modes from Fig. 5-1 overlaid. The characteristic energy ranges of the CECs are shown in
(a) (red braces) . From the Dirac point (ED) up to energy es, the CECs correspond to a Rashba-split double
cone structure (b-c). The outer cone acquires a warped snowflake shape above an intermediate energy Ew
(c). Above Fs, the CEC topology changes, and the outer SS band no longer corresponds to a closed contour
(d).

5.2 Measuring the SS Band Structure

Having determined the momentum space origin of all observed dispersing modes, we note that

several of these modes overlap over a - 300 meV energy range. Therefore, these modes can be

used to extract the multi-component SS band structure in the following manner.

For E > ES, we note the presence of three modes: qr-M,1(E), qr-K(6), and qLL(E); and need to

determine three band features in this energy range. First, we use qr-K (E), arising from scattering

between the outer pockets for E > Es, and its direct correspondence to the F - M dispersion of

the outer pocket to find 8 out(kr-M) = E(qr-K/V/3). Second, this information, in conjunction with

the scattering vector qr-M,1 between the inner and outer pockets, can be used to determine the

r - M dispersion of the inner pocket as 6in(kr-M) = E(qr-m,1) - Eout(kr-_M). Finally, the Landau

quantization wavevector qLL, which corresponds to the area of the inner pocket, can be used to

deduce its F - K dispersion.

Furthermore, we can deduce the band structure for E < ES - for the inner pocket by employing

a k -p fit to the e > ES data (detailed in § 5.2.1); and for the outer pocket by using the inter-band

QPI in this energy range (qr-K(E) and qr-M,1(e)), and the k -p fit to the inner pocket. We thus use

qLL (E), qr-K (E), and qr-mM,1(E), in conjunction with the k -p fit to our data, to measure the SS band

structure, shown in Fig. 5-3.
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Figure 5-3: MR-STM: Surface State Band Structure. The MR-STM dispersion e(k) of the SS band structure,
deduced as detailed in the text. Solid cyan lines correspond to a polynomial fit to the data points. Solid
green lines correspond to an extrapolation using the Fu k -p model[110].

We therefore introduce MR-STM - a combination of LL and QPI spectroscopy - which is nec-

essary to reconstruct such a multi-component band structure. The MR-STM band structure agrees

with ARPES measurements of filled states to within 10%, comparable to the variation between

ARPES measurements[136, 138]. Furthermore, the dispersion of the inner pocket, measured inde-

pendently by Landau quantization and QPI above es, is consistent to 3%, as detailed below.

o LL Dispersion p
* QPI Dispersion .

50 .+3

0 p...

E 13
-50

0.04 0.06 0.08 0.10
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Figure 5-4: MR-STM: Inner Pocket Dispersion from Landau Quantization and QPI. The dispersion of the
inner SS pocket measured using LL and QPI techniques over the same spatial region. The observed ~ 3%
difference between the techniques is consistent with hexagonal warping, which results in a difference in
dispersion along the F - M and F - K directions.

The lack of spatially and spectrally coexisting LL and QPI measurements, in conjunction with

up to 40% discrepancies in independently reported LL & QPI dispersions on the same material

(graphene)[21, 781 has hindered their use as complementary band structure probes. Our simulta-

neous observations of LL & QPI in Sb(111) allow us to directly compare the dispersions obtained
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using these techniques. In Fig. 5-4, we compare the measured dispersion of the inner pocket in

the Dirac regime (E > es) from LLs (EN(qN)), and QPI (e(qr-M,1 - qr-K/V3)). The measured dis-

persions, Vin,LL =4.20 eV.A and vin,QPI =4.07 eV.A, are consistent to - 3%. The slightly higher

dispersion for Vin,LL is consistent with the expected contribution of hexagonal warping[110].

5.2.1 k -p Fit and Spintronics Parameters

The MR-STM band structure in the Dirac regime (E > Es) can be fit to the five-parameter k -p band

structure for topological surface states proposed by Fu[110], the details of which are described in

§ 3.4:

E+(k) = EO,D + k2 /2m + V2(1 + ak2 )2 . k2  .A (16g - 24k2k 2 + 900k4 ) (5.1)

The fit is performed using the MR-STM data acquired in Dirac regime, with the additional use of

the energy scales Es, EBot, and CTop. The best fit to our measurements on Sample 1 corresponds to

the following parameters values: offset, ED = -220 mV; mass, m = 0.094 me; Rashba parameter

vo = 0.94 eV-A; velocity correction, a = 130 A- 2 ; and warping parameter, Aw = 200 A- 3 . We note

that the k . p model is a small-k approximation, and we therefore use it to estimate the SS band

structure near the F-point, in order to determine the MR-STM band structure for e < Es. We note

the utility of several of these parameters, notably vo and l (the latter was determined in § 4.2.3),

towards spintronics applications. This is discussed further in § 5.5.

Because the k -p fit is valid for small momenta (k - 0), it can also be utilized to understand the

aforementioned deviant behavior of the low energy quasiparticles participating in LLs for N < 6

(§ 5.4).

5.2.2 Absence of Field-Induced Backscattering

As detailed in § 4.3.1, no change is observed in the QPI dispersions in the presence of a magnetic

field. This is further shown by a representative linecut at a single bias layer in Fig. 5-5b. First,

identical QPI modes are seen at 0 T and 9 T with no measurable difference in dispersion (dashed

green line in Fig. 5-5b. Second, no field-induced backscattering modes are observed, as shown by

the absence of peaks at the expected positions indicated by dashed blue lines in Fig. 5-5b. The

robust protection of SSs from backscattering, even at magnetic fields up to 9 T, is indicative of a

low SS g-factor in Sb(111).

5.3 Spatial Sensitivity of MR-STM

So far we have detailed the ability of MR-STM, the complementary use of LLs and QPI, in mea-

suring the SS band structure of Sb(111) up to 100 mV above EF - a regime inaccessible to ARPES,
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Figure 5-5: Quasiparticle Interference: Absence of Field-Induced Backscattering. (a) Schematic k-space
CECs of Sb(111) for E > es, indicating the location of the observed QPI mode along the F - M direction,
qv-M,1 (green) and the expected location of spin-flip backscattering modes (dashed orange) which could
be induced by a magnetic field. (b) Comparison of the conductance linecuts at 0 T (black) and 9 T (red),
acquired along the F - M direction at -80 mV (a representative energy layer), extracted from Fig. 4-13a,c
respectively. The solid green line indicates the prominent QPI mode qr-M,1, while the dashed orange lines
indicate the expected positions of spin-flip backscattering modes, which we do not observe even at 9 T.

a filled states only probe. Now we demonstrate the nanoscale spatial resolution of MR-STM.

5.3.1 Variation Between Flat and Terraced Regions

a
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Figure 5-6: MR-STM Measurements: Variations Between Flat and Terraced Regions. Comparison of the
(a) LL and (b) QPI (F - M, 1) dispersion obtained over atomically flat regions (red) and terraced regions
(blue), ~ 200 nm away from each other. Both the LL and QPI dispersions indicate a consistent, non-rigid
difference in the band structure between the two regions, demonstrating the nanoscale spatial sensitivity of
MR-STM.

Having established MR-STM as a self-consistent band structure probe, we explicitly demon-

strate its nanoscale spatial sensitivity by comparing the MR-STM measurements recorded on

atomically flat regions (Fig. 5-1) with those on terraced regions (Fig. 4-14), separated by - 200 nm,

in Fig. 5-6. Both the LL & QPI (F - M,1) measurements indicate a non-rigid band structure change

between the regions, corresponding to a chemical potential offset of - -15 mV, and an increase in
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dispersion of - 5% in the terraced regions.

The step edges must have broken bonds, which may cause charge redistribution as well as

structural distortion, either of which may bear responsibility for the non-rigid changes in band

structure. Previous STM measurements on various electronic materials have reported nanoscale

fluctuations in chemical potential[21, 23, 61], and our observations of nanoscale non-rigid band

structure variation underscore the importance of using STM as a local band structure probe.

5.3.2 Variation Across Terraces
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Figure 5-7: MR-STM Measurements: Variations Across Atomic Terraces. A comparison of the QPI (F' -
M, 1) and LL dispersions recorded at the three terraces indicated in (Fig. 4-14a). Small (< 2%) deviations
in the dispersion across the terraces are observed. Note that these deviations are consistent for both the
MR-STM techniques: red points are above the others at high energies for both (a) and (b).

The measured dispersion of the ' - M,1 QPI mode is consistent to within 2% across the ter-

races (Fig. 5-7a), and also agrees with the results reported by Seo et al[135]. Additionally, our LL

spectroscopy measurements (Fig. 5-7b) show a similarly consistent dispersion across the terraces.

Finally, the small deviations between the dispersions of the terraces are consistent for both the

MR-STM techniques.

5.3.3 Chemical Potential Homogeneity

Unlike other Dirac materials[ 14, 21, 23, 68], Sb(111) does not display marked nanoscale inhomo-

geneity. While the quasiparticle interference around single-atom impurities do result in standing

wave patterns in spatial conductance maps (Fig. 5-8a), the LL peak energies are spatially consis-

tent to within 2 mV (Fig. 5-8b-c), and the chemical potential is therefore an order of magnitude

more homogeneous than in Bi 2Se3 [23]. We suggest that the presence of a parallel bulk conduction

channel could play a role in the electronic homogeneity observed in Sb(111).

Finally, the observed chemical potential offset (~ 14 mV) and up to 2% variations in the surface

state dispersion (Fig. 4-9a) could be attributed to the variation in impurity concentrations between
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Figure 5-8: Spatial Homogeneity of Landau Quantization. (a) A dI/dV(F, V) map acquired at 9 T,
+117 mV, corresponding to the average bias value for the N = 4 LL peak. (b) Spatial variation in the
N = 4 LL energy. Observable variations are associated with QPI or impurities. V = +100 mV; Ri = 0.1 GQ
(a); Vmod = 1.2 mV. (c) A histogram of the variation in the N = 4 LL energy shown in (b), corresponding to
a mean value of (117 ± 1) mV.

samples. We note that ARPES measurements of the surface state dispersion of Sb(111) report

discrepancies of a similar magnitude[136, 138].

5.4 Landau Quantization Anomaly and Rashba-Dirac Crossover

In the Rashba picture of an SOC-split parabolic band, shown in Fig. 5-9a, LLs are separated by

the cyclotron energy, hwc. An additional term dependent on the Rashba parameter and g-factor,

further splits each LL, indexed by n, for n > 0, according to[140, 141]:

ER(n = 0) = EO,R + (1/2) ' (hWc + 9/LBB)

6R(n > 0) = EO,R + hwcn ± (2/4 + (2mv02) nhWc (5.2)

Here, wc = eB/m is the cyclotron energy, 6 = (1 - 1/2 gm*)chw, m* = m/me is the effective mass,

and g is the electron g-factor. The upper and lower Rashba-split branches qualitatively correspond

to the inner and outer Rashba 'cones', respectively. Fig. 5-9b shows a comparison of the Rashba

formula fit to the LL dispersion measured on Sample 2, using the parameters EintR = -194 mV

(from Fig. 4-10b); m* = 0.094 me, vo = 0.94 eV-A (from k -p fit to Sample 1); and g = 2 - to the

lower LLs; along with a comparison of the Dirac fit to the higher LLs with Eint,D = -278 mV

and v* = 4.42 eV-A. The Rashba fit shown, deriving from the upper Rashba branch (Fig. 5-9a),

qualitatively reproduces the measured dispersion. The underestimation of the dispersion for N >

1 can be understood to arise from cubic corrections to the dispersion of the outer cone, which is

not accounted for in the parabolic approximation above. We further suggest that this crossover

might explain the anomalous LLs reported near the Dirac point in Bi 2Te3 [61].
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Figure 5-9: Landau Quantization: Quantifying the LL Crossover Behavior. (a) Schematic illustration of
Rashba-split LLs for e < es, calculated using the MR-STM-determined k -p fit parameters (green bands).
The Rashba SOC splits conventional LLs (dashed black) into upper (solid black) and lower (solid grey)
branches. The experimentally observed LLs at 9 T (solid red lines) correspond qualitatively to the upper
Rashba branch. (b) Fits to the magnetic field dispersion of the first 20 LL indices based on the Rashba (red)
and Dirac (blue) formulations. The Landau quantized quasiparticles evolve from massive Rashba character
with Eint,R = -194 mV below E, to massless Dirac-like above El with Eint,D = -278 mV.

5.5 Towards Better Topological Materials

Our studies of SSs on Sb(111) shed light on several fundamental issues pertaining to TMs. First,

the existence of up to 27 LLs arising from a single, robust cone - despite the presence of proxi-

mate surface and bulk bands throughout the energy range - is surprising. It had been speculated

that in the Bi 2X3 class of TMs, the onset of bulk bands induces surface-bulk scattering, limiting

the observed range of LLs[56]. In contrast, our demonstration of robust Landau quantization in

a semimetal suggests that even in the presence of proximate bulk bands, closed surface state con-

tours strongly maintain their topological character. Second, the emergence of the Dirac character

of Landau quantized quasiparticles from the Rashba dispersion reveals the signature of topologi-

cal SSs, and draws a marked contrast with Dirac fermions in graphene, which arise from a spinless

tight-binding model[57].

Our results have practical implications for the development and growth of TMs. The use of

TMs for spintronics devices will require strong spin-momentum locking, long mean free path, and

small g-factor. We note the quantitative distinction between the Rashba parameter vo = 0.94 eV-A

(extracted from the k - p fit) and the Dirac velocity vD = 4.2 eV.A, and clarify that the former is
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the spin-momentum locking parameter relevant towards spintronics applications. We quantify

the mean free path, lF = 65 nm (Fig. 4-9b), apparently limited only by visible surface defects in

Sb (Fig. 4-2a). Further theoretical work to quantitatively reconcile the measured N < 6 LLs with

Eqn. 5.2 may enable the determination of the g-factor in Sb as well.

The search for better TMs has gravitated towards insulating ternary and quaternary materials,

tuned off-stoichiometry to enhance the SS contribution in transport measurements[100, 131, 132].

However, our observations suggest that the presence of a bulk continuum in a semimetal sup-

presses chemical potential fluctuations[23], actually enhancing the mean free path rather than

diminishing the lifetime of SS quasiparticles as had previously been speculated[56, 133]. We there-

fore suggest that epitaxial heterostructures, with the appropriate use of semimetals, is an alternate

avenue towards better TMs. Finally, our observation of a crossover of quasiparticle character from

massive Rashba-like to massless Dirac-like on a robust single SS cone, suggests alternative band

structure engineering routes to tuning the properties of SSs[142, 143].
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In this part of the thesis, we describe our spectroscopic studies of the charge density waves

(CDWs) in the transition metal dichalcogenide 2H-NbSe2 .

We begin by motivating the origin of CDW order as a Fermi surface instability driven by a

divergence in electronic reponse in one-dimensional (1D) systems, and show its extension to two

dimensional (2D) systems. We outline the possible role of the Fermi surface and that of coupling

to collective modes in driving the CDW transition. Following this, we examine the current un-

derstanding of the CDW transition in NbSe 2 , discussing the debated issues of the CDW driving

mechanism and the magnitude of the spectral gap, directly motivating our experiments.

We then discuss our STM studies of NbSe 2 - specifically the discovery of a quantum (zero tem-

perature) interface between a triangular (3Q) and a stripe (1Q) CDW with different wavelengths.

We first examine the origin of the quantum phase transition from the commonly observed 3Q

phase to the hitherto unobserved IQ phase, and show it to be driven by local strain. Following a

phenomenological description of this phase transition, we discuss the relevance of our observa-

tions to strongly correlated systems evincing analogous charge order.

Following this, we use the the IQ - 3Q CDW interface, in conjunction with band structure

calculations, to address the two major debates in NbSe 2 . First, the distinct wavelengths of the

CDWs demonstrate that FS nesting plays a negligible role in setting their magnitude. Second,

the distinct tunneling spectra of the IQ CDW region help us disentangle the 3Q CDW spectra to

expose a particle-hole asymmetric gap riding on top of a strong inelastic background. We then

discuss the relevance of these observations to other CDW systems.

The STM experiments reported in this work were done in collaboration with Michael M. Yee,

Yang He, Eric W. Hudson, and Jennifer E. Hoffman at Harvard University. The samples used

in the work - single crystals of 2H-NbSe2 - were prepared by Wilfried Kruger at the University

of Kiel. The supporting ARPES measurements reported here, used to generate the tight-binding

band structure, were performed by Dirk J. Rahn and Kai Rossnagel at the University of Kiel. Band

structure calculations and fits to the STM spectra were peformed by Jasper van Wezel and Michael

R. Norman at Argonne National Laboratory.

The results detailed in this part of the thesis have been been published in [181.
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Chapter 6

Charge Density Waves in Two

Dimensions

While a classical phase transition separates two states of matter at different temperatures, two or-

dered ground states of a material at zero temperature are separated by a quantum critical point

(QCP). The competition between proximate ordered phases near the QCP can dramatically influ-

ence a large region of the phase diagram[144]. While the fluctuations from competing quantum

states lead to exotic physics even at higher temperatures, low temperature studies of these states

can lead to a better understanding of the root of the competition.

Density waves - charge or spin ordered states of collective origin driven by instabilities of

the Fermi surface - exist in close proximity to superconductivity in several classes of correlated

materials[145-147], and various proposals have recently emerged to study their interplay in the

presence of strong inhomogeneity in these systems[148]. However, density waves have been dif-

ficult to isolate in the presence of chemical disorder, and the suspected causal link between com-

peting density wave orders and high temperature superconductivity is a subject of much debate.

In this light, it is surprising that charge density waves (CDWs) are not fully understood even

in the weakly correlated and stoichiometric transition metal dichalcogenides (TMDCs). While a

classic CDW arises from strong Fermi surface nesting, resulting in a sharply peaked susceptibil-

ity and a Kohn anomaly at the CDW wavevector, the quasi-2D transition metal dichalcogenides

(TMDCs) are known to deviate from this picture[149].

6.1 Fermi Surface Instability and Density Waves

The conventional picture of a density wave is that it arises from the instability of the Fermi surface

(FS) to a charge modulation with a periodicity related to the Fermi wavevector, kF. The origin
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Figure 6-1: Susceptibility, Fermi Surface Nesting and Density Wave Formation. (a) The non-interacting
susceptibility, y (q, w = 0) of a free electron gas in one, two and three dimensions. While Xo (q) diverges
in one dimension at q = 2kF, it does not display such singular behavior in two and three dimensions (b-c)
Pictorial Fermi surface (FS) 'nesting' representation of the susceptibility for (b) one and (c) two dimensions,
with the FS shown in blue, and the nesting vector 2kF in dashed orange. A 1D FS nests perfectly, while an
isotropic 2D FS does not nest well.

of such an instability can be understood by examining the response of the electron system to

charge perturbations in momentum space. When an electrostatic potential, q(q) is applied to a d-

dimensional electron system, it leads to a rearrangement of the electron density, and the resultant

distribution can be expressed in terms of an induced charge pind (q, as [150]

Pind(ql = X(q qM (6.1)

In other words, the response is quantified by the Lindhard function, also known as the static

susceptibility, x(qY, w = 0), defined as

(6.2)x =k f +,y

Here f is the Fermi function, and ek describes the band structure of the electron system.

6.1.1 Fermi Surface Instability and Density Waves in One Dimension

For a 1D electron system with parabolic dispersion, this expression is straightforward to evaluate[151],

and is found to be

(6.3)XID(q) = -e 2 D(eF) 10 q - 2kpq - 2kF

Thus, the response of a 1D electron system to charge perturbations diverges to infinity at q =
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2kF, as shown in Fig. 6-1a (green curve). This divergence can be well understood within a FS

nesting picture. The FS of a 1D electron system consists of two points at ±kF. The wavevector

connecting these two points represents the entire joint density of states at EF, and the electron

system is therefore unstable to external perturbations at this wavevector (Fig. 6-1a). The system

thus spontaneously breaks translational symmetry at zero temperature, resulting in a uniform

charge modulation with periodicity ACDW = 27W/(2kF) - known as a charge density wave.

A consequence of the divergent response at 2kF is that the screening response of the electron

gas is enhanced at this wavevector, reducing the repulsive forces between the ions forming the

underlying lattice. This leads to softening of the energy required to induce crystalline vibrations,

or phonons, at 2kF, and is known as a Kohn anomaly[l]. Furthermore, below the transition tem-

perature TCDW, it produces static distortion in the atomic lattice (typically 1 - 2%) with ACDW

periodicity, known as a Peierls distortion[152].

The formation of such a density wave phase in the presence of weak coupling between the elec-

tron gas and phonons can be understood with an analogy to the BCS picture of superconductivity,

also a FS instability. The density wave phase is equivalent to the condensation of electron-hole

pairs that form spin singlets with finite momentum (2kF), and can therefore be described by an

order parameter of the BCS form,

A CDW AI exp (iy ) (6.4)

where JAI and W represent the magnitude and phase of the order parameter respectively.

Therefore, in direct analogy to a superconducting transition, the phase transition to a CDW ground

state results in the opening of a spectral gap in the single particle density of states around eF, the

magnitude of which directly corresponds to ACDW[151]. For a 1D system, the spectral gap is

required to be centered at EF.

6.1.2 Density Waves in Higher Dimensions

The concept of a FS nesting driven instability leading to a CDW can be generalized in a straight-

forward manner to electron systems with highly aniostropic band structure that are approxi-

mately one-dimensional, i.e. quasi-1D systems. Several experimentally realized material sys-

tems have such strongly anisotropic band structures that can be approximated to be quasi-1D,

such as transition metal chalcogenides of the MvX 3 form (e.g. NbSe3 ), transition metal bronzes

of the A0 .3MoO 3 form (e.g. Ko.3MoO 3 ), and several classes of inorganic and organic linear chain

compounds[151, 153].

In the case of electron systems with dimensionality d > 1, i.e. band structures with higher
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dimensional character, nesting cannot connect the entire FS. In the extreme case of isotropic band

structures, FS nesting connects only small portions of the FS (e.g. Fig. 6-1c), and the divergence

of the response X(q) progressively weakens in 2D and 3D, as shown in Fig. 6-1a (red and cyan

curves)[151]. The existence of CDW order in higher dimensional electron systems, e.g. transition

metal dichalcogenides[154], rare earth tritellurides[155], and (potentially) cuprate superconductors[1561,

is reconciled with the conventional nesting picture by examining smaller portions of the FS. If suf-

ficiently large portions of the FS are nested as to lead to a lower energy ground state, then a CDW

is understood to reside over these FS regions. This allows for the momentum space coexistence

of CDW with other ordered states, and motivates us to examine the energetics of density wave

formation.

6.1.3 Energetics of Density Wave Formation

In the conventional picture of density waves, the dominance of FS nesting at a certain wavevector,

(bDW) leads to a peak in the bare susceptibility, xo(, w = 0) at ECDW- In the presence of electron-

phonon coupling, this results in the softening of the corresponding phonon mode at qCDW, known

as a Kohn anomaly, and this results in a transition to a CDW phase[157]. More generally, Chan and

Heine[158] have derived the condition for the formation of a stable density wave phase (further

discussed in[157]) to be:

4 >(q)2  + (20 (q) - f(q) (6.5)
hwo Xo(q)

Here, q(q) is the electron-phonon coupling parameter, wo is the unrenormalized phonon en-

ergy, and 0(q) and V(q) are the Coulomb and exchange interactions respectively. In the conven-

tional FS nesting driven scenario, qCDW is determined by the peak in Xo(q), i.e. the right hand side

of Eqn. 6.5[157, 158].

However, for materials with two- or three-dimensional band structures without notable anisotropy

(e.g. dichalcogenides), the divergence of Xo(q) is logarithmic or less. Therefore, the susceptibil-

ity xo(q) may have a broad peak over a range of wavevectors, corresponding to a broad Kohn

anomaly. In such a weak-nesting scenario, the q-dependence of the left hand side of Eqn. 6.5 as-

sumes importance, and the electron-phonon coupling term TI(q) can in principle determine qCDW-

6.2 Density Wave Physics and Superconductivity in NbSe 2

2H-NbSe2 (henceforth refererred to as NbSe2) is a layered TMDC which has emerged as a model

system for understanding the interplay of coexisting CDW and SC phases[154]. NbSe2 under-

goes a transition to an incommensurate CDW phase at TCDW ~ 33 K[154, 159]. The CDW wave-

length (- 3 ao, ao being the lattice constant) is known to vary with temperature (below TCDW)

in this material[159]. However unlike other TMDCs[154], the phase transition to a incommensu-
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rate CDW phase is not followed by a transition to a commensurate phase. On the other hand, it

does undergo a transition to a superconducting phase below Tsc ~ 7.2 K[154, 159]. The spatial

coexistence of CDW and superconducting phases in this material has generated much recent in-

terest from the perspective of understanding coexisting and competing orders in more strongly

correlated materials[160-162].

Extensive studies using ARPES and STM measurements, in conjunction with transport mea-

surements, have shown that the superconducting order parameter in NbSe 2 has s-wave symme-

try, and is anisotropic in momentum space[163-165]. Leading-edge shift measurements of ARPES

spectral weight find large portions of the multi-band FS to be gapped below Tsc upon the onset

of superconducting order, with an average gap size, Asc ~ 1 meV. The physics of the supercon-

ducting phase can therefore be well described within the intermediate coupling BCS picture with

an anisotropic order parameter[163].

The onset of the CDW phase, found to be very prominent in X-ray and STM measurements[ 159,

163], has a much weaker signature in transport and thermodynamic measurements[166]. Often

the transport characterization of samples with lower residual resistivity ratios do not show a clear

anomaly at TCDW (see e.g. Fig. 7-1b), and the samples continue to display metallic behavior down

to the superconducting transition. It has been subsequently understood that unlike a quasi-1D

system, where large portions of the FS are gapped out by density wave order, the CDW in NbSe 2

exists over a small (~ 3%) portion of the FS. Unlike the well-understood superconducting phase in

this material, the mechanism and spectral manifestation of the quasi-2D CDW in NbSe 2 continues

to be a subject of debate, and will be detailed in § 6.3.

The coexistence and interplay of superconductivity and CDW orders in NbSe2 has also re-

ceived recent attention. Transport studies with hydrostatic pressure by Suderow et al. [160] demon-

strated the suppression of CDW order (later confirmed by X-ray measurements[162]), and en-

hancement of superconducting order with increasing pressure, suggesting a possible competition

between the two phases. Meanwhile, temperature-dependent ARPES measurements by Kiss et

al.[161] indicated the enhancement of the superconducting gap magnitude over the FS regions

connected by the CDW wavevector, suggesting that the presence of CDW order could boost su-

perconductivity. In contrast, more recent ARPES work by Rahn et al.[165] at much lower temper-

atures suggests a possible momentum-space competition between CDW and superconductivity.

The disagreement over the nature of interaction, or lack thereof, between these orders stems in

part from the limited understanding of the CDW phase, which we will detail in the following

section.

6.3 CDW in NbSe 2 : Ongoing Debates

The density wave phase in NbSe 2 in particular, and dichalcogenides in general, has been a subject

of much theoretical and experimental interest. Following the discovery of CDW order in dichalco-
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genides, early theoretical work focussed on the emergence of the density wave instability from

saddle point singularities in the density of states near EF[1 6 7 ]. Meanwhile, it was also realized

that the conventional Peierls mechanism of density wave formation, based on the weak coupling

limit of electron-phonon interactions, may not be adequate to describe the intermediate coupling

physics in dichalcogenide systems[168], and that a description analogous to the Eliashberg the-

ory for superconductivity[169] may need to be considered. However, few theoretical efforts were

directed towards this.

A limiting factor in understanding the momentum space manifestation of the density wave

was the lack of experimental and theoretical tools to determine the FS and band structure of NbSe 2

with adequate precision. This was duly rectified in the 90s with the emergence of angle-resolved

photoemission and improved density functional theory techniques. However, despite extensive

experimental and theoretical efforts over the past two decades[157, 161, 165, 170, 171], several

key facts about its familiar tri-directional (3Q) CDW in NbSe2 remain unresolved. Most notable

among these are the role of FS nesting in determining its wavevector q' Q, and the magnitude of

the spectral gap and its role in the energetics of the transition.

6.3.1 CDW Driving Mechanism

oq y
E- -I - 1I I

4 -E- T= 250 K-
- - "T=50K

C

o -A- T = 33 K

0

0.4- 0.0 0.2 0.4 i-

E ,

0.0 0.1 0.2 0.3 0.4 0.5
(h, 0, 0) (r.I.u.)

Figure 6-2: Experimental Evidence for the Driving Mechanism of the CDW in NbSe 2. (a-b) Inelastic
X-ray scattering measurements of the dispersion of the phonon associated with the CDW. Unlike a typical
Kohn anomaly, the softening of the phonon is found to extend over a broad range of wavevectors around
qCDW (shaded grey region), indicative of an electron-phonon coupling driven CDW (adapted from [157]).
(b) The Fermi surface of NbSe2 as measured by ARPES experiments, showing reduced intensity at regions
of the inner K barrel connected by q Q (dahed light green lines), indicative of a FS nesting driven CDW
(adapted from [170]).
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The quasi-2D TMDCs, notably NbSe2, are known to deviate from the picture of a sharp Kohn

anomaly at the CDW wavevector. Angle-resolved photoemission (ARPES) studies of NbSe 2 have

been unable to uniquely identify regions of the FS nested by the CDW wavevector qQ. Dif-

ferent studies have reported the purported nested regions as being the F-barrel[172], the outer

K-barrel[161], the inner K-barrel[165, 170] and unoccupied parts of the FS[173]. However, with

improving precision and comparisons with DFT calculations, it is now reasonably well agreed

upon that the end-points of the inner K-barrel (yellow points in Fig. 6-2b) are connected by 9Q.
However, it is still debatable as to whether this is strong evidence for a FS nesting driven CDW

transition.

Meanwhile, recent first-principles LDA calculations[149], ARPES studies[165] and inelastic X-

ray scattering measurements[157] indicate the presence of a broadly peaked susceptibility and a

soft, overdamped phonon over a wide range of wavevectors around q3Q, suggesting that the q-

dependence of the electron-phonon coupling could possibly play an important role in driving the

CDW transition.

6.3.2 CDW Spectral Gap

STM: 35 mV'Gap' ARPES: 3 mV'Gap'

ab
1;il4 5.

10

-7 Sample Bias mV) 5 7520 40 8mp 80 0012014

Figure 6-3: Spectral Gap of CDW in NbSe 2: STM vs. ARPES. (a) Average STM dI/dV spectrum, showing
kinks at ~±35 mV (eK), the minimum 6mim offset from 6 F by ~16 mV, and marked asymmetry about 6 F-
Setpoint parameters: V0 -80 mV; Rj = 0.2 GQ; Vmod = 3 mV. The ±35 mV kinks have historically been
interpreted as the CDW gap[45]. (b) ARPES ineasurements of the momentum-resolved spectral CDW gap
using the shift of the spectral weight leading edge, compared with a reference in k-space. This technique
shows a gap feature of 3-5 mV at regions nested by SQ (b) with an anomalous temperature dependence (c)
(adapted from [170]).

The size of the spectral CDW gap in NbSe2 is another issue of contention, with disagreements

between STM and ARPES measurements corresponding to an order of magnitude.

Fig. 6-3a shows the typical STM spectrum recorded on NbSe2. The spectrum has marked

asymmetry about 6 F, with the spectral minimum centered at ~-- 16 mV, in addition to prominent

kinks at ±35 mV (±8K). These ±35 mV kinks in tunneling spectra have been historically identified

as gap edges[45], and correspond to an anomalously large energy scale for the corresponding
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TCDW (2 FK/ 3 .5 kBTCDW ~ 7.05).

While ARPES has historically been unable to locate a CDW gap in k-space, recent studies

using leading edge shifts of spectral weight have identified a ~ 3 mV gap feature on the inner

K-barrel[165, 170]. However, the magnitude and temperature dependence of the gap, as well as

its role in the energetics of the CDW transition remain a subject of debate[149, 1651. Note that

it has always been implicitly assumed, both in ARPES and STM studies, that the spectral gap is

centered at the Fermi energy, EF.

These debated issues of the CDW driving mechanism and the spectral gap motivate our spec-

troscopic STM studies of NbSe 2.
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Chapter 7

Quantum Phase Transition from

Triangular to Stripe Charge Order in

NbSe 2

Having motivated the key debated issues concerning the charge density wave in NbSe 2, we detail

our experimental observations of a quantum interface between the known triangular CDW and a

stripe CDW with a distinct wavelength, the latter unreported thus far. We show that the quantum

phase transition between these two CDWs is tuned by local strain, and suggest the proximity of

NbSe2 to a density wave quantum critical point.

7.1 Material and Methods

a e b

0.8-

0.4-

QSe
*Nb 0 50 100 150 200 250

Temperature (K)

Figure 7-1: Crystal Structure and Sample Characterization. (a) The layered hexagonal crystal structure of
2H-NbSe2, with alternating sandwiches of Se-Nb-Se. (b) Temperature dependence of the resistance for the
sample batch used for this study, showing a superconducting transition at ~ 7K.
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2H-NbSe2 is a layered transition metal dichalcogenide with a hexagonal structure and D'h
space group symmetry. The unit cell (Fig. 7-la) consists of two sandwiches of Se-Nb-Se. The

crystal typically cleaves between the neighboring Se layers, coupled by weak van der Waals forces.

Single crystals of 2H-NbSe2 were grown by chemical vapor transport using iodine as the trans-

port agent. A transport characterization of the sample batch used in this work is shown in Fig. 7-

1b. The superconducting transition is observed at TSC - 7 K. The residual resistivity ratio (RRR),

defined as the ratio of resistances R(295 K)/R(7.5 K), is ~ 16.

Measurements were performed using a home-built STM at temperatures between 2-10 K (un-

less indicated otherwise). Magnetic fields of up to 5 T were used to suppress the superconducting

state as needed. Single crystals of 2H-NbSe 2 were cleaved in situ in cryogenic ultrahigh-vacuum

and inserted into the STM. A mechanically cut PtIr tip, cleaned by field emission and character-

ized on gold, was used for the measurements. Spectroscopy data were acquired using a lock-in

technique at 1.115 kHz. The topographic and spectroscopic signatures of the lQ ribbons detailed

in this work have been verified with several tips.

7.2 The Triangular (3Q) Charge Density Wave

4

low
Z

Figure 7-2: STM of the 3Q CDW. (a) Atomic resolution topograph showing the ~ 3 ao periodic CDW. Yel-
low lines are overlaid on a one atom shift of the CDW maximum (phase slip). (b) Fourier Transform (FT) of
a larger (- 45 nm) topograph, displaying a 3Q CDW. Primary CDW wavevectors, q and q (yellow circles),
a secondary CDW wavevector, 4j + q (blue circle) and Bragg vectors (dashed red circles) are indicated. Set-
point parameters: sample bias, Vo = -50 mV (a), -60 mV (b); junction resistance, Rj = 2.5 GQ (a), 0.1 GQ
(b).

Fig. 7-2a shows the prototypical low temperature STM topograph acquired on NbSe2 , with

an atomically resolved hexagonal lattice with periodicity ao = 3.45 A. In addition, we note the

presence of a 3ao periodic superstructure modulation along all three lattice directions. This mod-

ulation arises from the CDW phase in NbSe 2 , which is locally commensurate. Occasional CDW

phase slips are seen in topographs, as indicated by the yellow lines in Fig. 7-2a, resulting in an

overall incommensurate periodicity.
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The Fourier Transform (FT) of such a topograph is shown in Fig. 7-2b. The notable features

include Bragg peaks (dashed red), corresponding to the atomic periodicity and primary CDW

peaks (yellow circles), indicating a CDW periodicity of q Q ~ 0.328 Qo (i.e. wavelength, A3 ~

3.05 ao), where Qo is the Bragg vector. The 2% deviation from a commensurate CDW below 10 K,

as measured from STM, is consistent with previous bulk X-ray measurements on NbSe2 [159, 162,

174]. However, in contrast to previous X-ray work[162], we note the presence of a secondary CDW

wavevector in our FT (Fig. 7-2b, blue circle). This is equivalent to the vector sum of primary CDW

wavevectors, and confirms the microscopic 3Q nature of the CDW on the surface. The absence

of this peak in X-ray measurements[162] could be attributed to a slight difference between the

CDWs on the surface and in the bulk. It is possible that the unambiguously 3Q CDW on the

surface decouples to spatially separated IQ phases in the bulk. Importantly, the CDW modulation

periodicity is consistent between the bulk and the surface.

7.3 A Unidirectional (1Q) Charge Density Wave

low
z

Figure 7-3: The 1Q - 3Q Interface. Topograph showing an atomically smooth interface between the 3Q
(bottom) and 1Q (top) CDWs. The topograph has been leveled by removing a polynomial background to
clearly show the CDW interface. Setpoint parameters: Vo = -50 mV; Rj = 1 GQ.

Our primary experimental discovery is shown in Fig. 7-3. In some sample regions, we find

the 3Q CDW forming an atomically smooth interface with a hitherto unreported unidirectional

(1Q) CDW. The 1Q CDW has a unique wavevector q'Q along a single 3Q direction with a visibly

different periodicity, and the two CDWs smoothly merge over a few nanometer length scale. We

note the presence of such interfaces at temperatures at our base temperature (2 K).

Spatial modulations in CDW systems have been studied extensively by STM over the past two

decades[175]. Several of these systems display inhomogenous phases near the transition temper-

ature, TCDW[154, 175]. For example, observations of short range hexatic order above TCDWI176],

consistent with a 2D melting description[1771, have been reported in some dichalcogenide sys-
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tems. In other systems, notably 2H-TaSe2, a triclinic CDW (qi = q2 # q3) has been reported at

temperatures above Tcomm, corresponding to the transition from an incommensurate CDW to the

commensurate phase[154, 175]. The presence of impurities has been shown to pin the CDW even

above TCDW[ 1 7 6 , 178], and in some cases can lead to thermally induced unidirectional order[1791.

Meanwhile at low temperatures, the relative strengths of CDW order along the three lattice di-

rections has been found to vary even at low temperatures, attributed to chirality of the order

parameters[180] and polaronic effects[181]. Finally, local annealing of dichalcogenide samples has

been shown to generate structural interfaces between 2H and iT polytypes, leading to CDWs

with different periodicities (- 3 ao vs. - Vd-ao), oriented ~ 13' with respect to each other[182].

In contrast, our observation of the CDW interface persist down to temperatures T < TCDW,

ruling out any phases arising from thermal fluctuations. That the 1Q CDW is oriented along

a single 3Q direction, and further that the CDWs form an atomically smooth interface with no

lattice discontinuities, rules out the possibility of a NbSe2 polytype interface. Finally, the absence

of CDW modulations along the other two lattice directions rule out chiral order or smooth spatial

variation of order parameters.

Therefore, we claim that our observations represent a quantum (T = 0) interface between the

known 3Q CDW on NbSe 2 and a unidirectional (lQ) CDW with a distinct wavelength, the latter

examined in more detail below.

7.3.1 Topography of the 1Q Charge Density Wave

AL
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0 0.25 0.50 0.75
q (Bragg Units)

Figure 7-4: The 1Q - 3Q Interface. (a) A zoom-in STM topograph of the top left quadrant of Fig. 7-3,
clearly showing the 1Q CDW. The red arrow points along the 1Q CDW direction (qlQ). (b) FT of the out-
of-feedback current at +50 mV over the region in (a). The dominant CDW wavevector (yellow circle) and
Bragg vector (dashed red circle) are indicated. (c) Linecut of the FT intensity parallel to the red line in (b)

from the center to the Bragg peak, in units of the Bragg vector Qo. The dominant peak, qiQ 2/7Qo (solid
blue arrow) and its harmonics (dashed blue arrows) are identified, and are distinct from the 3Q wavevector
q3Q (dashed green line). Setpoint parameters: Vsampie = -50 mV; Ri = 0.2 GQ.

Fig. 7-4a shows a zoom-in topograph of the 1Q CDW region, with the red arrow parallel to the

CDW wavevector qlQ. The FT of the out-of-feedback current over this region (Fig. 7-4a) shows
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the reciprocal space signature of the unidirectional CDW. In addition to Bragg peaks (dashed red

circles), we see a prominent peak at qlQ 0.286 Qo (yellow circle), corresponding to a wavelength

AiQ ~ 3.5 ao, 15% larger in magnitude than A3Q. A more careful examination of the topograph

suggests the presence of a ~ 7ao periodicity as well. This, and the other periodicities associated

with the 1Q CDW can be visualized by extracting a FT linecut along along qlQ, shown in Fig. 7-

4c. We find that the linecut consists of six peaks (excluding the Bragg peak), corresponding to

harmonics of 1/7 Q0, with the dominant peak, qiQ ~ 2/7 Qo, corresponding to the fundamental

1Q CDW periodicity.

7.4 Topographic 'Ribbons' Pinning the 1Q CDW

5 nm

Z: 0 73 (pm) Z: 0 80 (pm) Z: 0 29 (pm)

Figure 7-5: Topographic Ribbons and the 1Q CDW. (a) Topograph showing formation of 1Q CDW along
a 'ribbon'. Ribbons are typically 10 - 20 nm in width, and elevated by 20 - 40 pm. Dashed yellow lines
indicate the approximate extent of the ribbon; the red arrow points along the 1Q CDW direction (kQ). (b, c)
Topographs showing 'ribbons' of unidirectional (1Q) CDW, intersecting to form an X-junction (b) and a Y-
junction (c), with CDW wavevector tq-l varying between the arms. Setpoint parameters: Vsampie = -50 mV
(a-c); Rj = 5 GQ (a,b), 1 GQ (c).

The 1Q CDW typically appears in regions which persist in one direction with apparent 20 -

40 pm topographic elevation, forming a 10 - 20 nm wide 'ribbon' structure (Fig. 7-5a).These rib-

bons are found to extend across the entire field-of-view accessible to our STM, and terminate only

upon intersecting with another such ribbon oriented differently, forming X- and Y-junctions

(Fig. 7-5b-c). The confinement of the unidirectional CDW to such topographically elevated fea-

tures suggests that strain tunes the transition between the 1Q and 3Q quantum phases. The obser-

vation of X and Y-junctions between ribbons with differently oriented qlQ (Fig. 7-5b-c) rules out

extrinsic uniaxial strain and suggests instead locally varying strain, perhaps due to underlying

defects causing nanoscale buckling of the top few atomic layers.

We note that the topographic elevation ZSTM(, Vo, 1o) as measured by maintaining a constant

current Io with bias setpoint Vo at lateral tip position r- (x, y) can be given by
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ZSTM V, VO, 10) ~ ZT (r) + -In(.)
S1 /o dV eD (r, eV)

Here zT(r) is the true topographic corrugation of the sample, K(r) is a measure of the local

tunnel barrier height (LBH), and D (r', eV) is the local density of states (LDOS) of the sample at

energy eV. Because of the logarithmic sensitivity of ZSTM (r', Vo, I) to the integral of the LDOS

from the Fermi energy, EF (corresponding to V = 0) up to the bias setpoint eV, STM topographs

may contain electronic artifacts masquerading as geometric effects. Therefore, we present two

pieces of evidence for the true geometric elevation of these ribbons.

7.4.1 Evidence for the Topographic Origin of the 1Q Ribbons

a- Ribbon Orientation
nO,24 - Single

- X-Junction
Y-Junction

Z:.0 lo73 (pm)

Figure 7-6: 1Q 'Ribbons': Orientation. (a) STM topograph of a 1Q - 3Q interface (top arm of X-junction,
also shown in Fig. 7-5a), demonstrating the definitions of the relative orientations OR,QO, between the ribbon
(green arrow) and the nearest Bragg vector (dashed red arrow), and 0R,qi, between the ribbon and 1Q
wavevector q-lQ (solid red arrow). (b) A visual illustration of the spread of values in Thl. 7.1. The dark blue
(single), green (X-junction) and cyan (Y-junction) lines describe the orientation of the various ribbons with
respect to the 1Q wavevector qiQ along the Q0,1 Bragg vector (solid red arrow) and another Bragg vector

QO,2 (dashed red arrow).

First, a tabulation of the relative orientation OR, of the ribbon to the nearest Bragg vector of

the underlying hexagonal lattice for the various ribbons imaged in the study shows a seemingly

random spread from -30' to 300 - the full range of available angles (Tbl. 7.1, Fig. 7-6b). Further-

more, these ribbon structures can intersect to form X- as well as Y-junctions (Fig. 7-5b-c), and

the angle between intersecting ribbons varies from 400 to 600. The fact that ribbon orientation

does not respect lattice symmetry strongly suggests a true geometric, rather than electronic origin

of their apparent height. We contrast this observation with enhanced STM topographic corruga-

tion associated with predominantly electronic features in a wide range of other materials, which

respect the symmetry of the hexagonal[56, 71] or square[156] lattice.

Second, the measured height of these ribbons in STM topographs exhibits < 5% dependence
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Ribbon Type [RQj N ) 6RQ()

X-Junction -28 32
X-Junction -16 44
X-Junction -14 46
X-Junction 27 27
Y-Junction 19 19
Y-Junction 21 21
Y-Junction 28 28

Single 1 61
Single 2 62
Single -11 49

Table 7.1: A table detailing the values of the angular orientations OR,,o and OR,TQ (defined in Fig. 7-6a)
observed in the various 1Q ribbons studied in this work, with the first entry corresponding to Fig. 7-6a.

5 10
Position (nm)

15

Figure 7-7: 1Q 'Ribbons': Bias Setpoint Dependence. (a, b) Topographs of 1Q ribbons over the same
spatial area acquired with different bias setpoints: -100 mV (A) and -400 mV (B), with Rj = 10 GQ in
both. The dashed yellow lines indicate the approximate extent of the ribbons, and the dashed green circles
enclose triangular impurities, visible in B with a 50 - 70% larger apparent height than in A. (C) Linecuts
taken through the topographs in A (red) and B (blue) transverse to the lower ribbon, along the dashed white
arrows. The measured ribbon height varies less than 5% between bias setpoints -100 mV and -400 mV. The
linecuts have been laterally averaged over a 3 nm width indicated by the dashed grey lines..

on bias setpoint within 400 mV below the Fermi energy (Fig. 7-7). We note that this energy

range over which the measured height of the ribbons is invariant is much larger than the spec-

tral range of CDW variation in the DOS (- 50 mV). We further note the contrast between the

bias-independent ribbons, and single atom impurity resonances, whose measured 'height' varies

by 50 - 70% between Fig. 7-7a and b. Therefore we conclude that the measured height (20 - 40

pm) and width (10 - 20 nm) of these ribbons has a predominantly geometric origin.

Having established the topographic origin of these ribbons (Fig. 7-6 and Fig. 7-7), we suggest

that these ribbons are likely a topographic rippling of the top few layers. These ribbons may arise

during the cleaving process due to underlying growth defects which can intercalate between Se-

Nb-Se sandwich layers. We note that similar topographic ribbon deformations have recently been

observed in another layered chalcogenide (Bi2 Te3)[14].
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Figure 7-8: Schematic of the Ribbon Distortion. A cartoon representation of the lattice distortion caused

by the formation of such a ribbon, modeled as a half period of a sinusoid. The red circles correspond to

rows of displaced Se atoms, while the dashed red circles represent their original undistorted positions. The

ribbon has height h (40 pm) and width W (10 nm), resulting in a total lateral distortion of SW ~ 45 pm

across the ribbon.

7.4.2 Estimating the Strain in the Ribbon Region

We estimate the in-plane and out-of-plane lattice strain associated with the topographic ribbon

features. Using the maximum topographic elevation of an observed ribbon (40 pm), we can put

an upper limit on the out-of-plane distortion by assuming that a minimum of 2 sandwich layers

are elevated (any fewer, and the defects causing the elevation would be likely visible in our to-

pographs). The out of plane distortion is therefore < 3% (40 pm/12.54 A) of the unit cell spacing.

To measure the in-plane distortion, we first use the Lawler-Fujita algorithm[183], which can de-

termine the lateral location of atoms with precision - 2% of the lattice spacing[184, 185]. With this

algorithm, we do not observe any change in the lattice constant across the ribbon, which places a

direct experimental upper limit on the in-plane distortion of - 2%.

However, we can estimate the actual in-plane distortion indirectly from the measured out-

of-plane distortion, by modeling the ribbon as a half-period of a sinusoid with height h (40 pm)

and width W (10 nm) (Fig. 7-8). The total lateral deformation due to such a ribbon is 6W ~

45 pm, corresponding to ~ 0.06% of the lattice spacing. As this is well below the resolution of the

Lawler-Fujita algorithm, it is not surprising that the in-plane distortion is not detectable in STM

topographs. From the upper bounds of 3% on the vertical strain and 0.06% on the lateral strain, we

note that the magnitude of the strain field leading to the formation of these ribbons is moderate, in

comparison to some other correlated materials[186, 187]. We also note that while the magnitude

of lattice distortion of these ribbons may seem small in the context of the observed quantum phase

inhomogeneity, a comparison with other known materials suggests that strain of this magnitude

can be sufficient to drive a transition to the unidirectional CDW phase[155].

We previously discussed the ribbon orientation with respect to the lattice (0 R,'O); we now

consider the ribbon orientation with respect to the 1Q CDW wavevector (OR,iQ), also detailed

in Fig. 7-6b-c. In a simple picture of the strained ribbon structure, we would expect the ribbon-

induced strain to couple strongly to the 1Q CDW orientation either parallel or perpendicular to

the ribbon, and thus we would expect to observe values of OR,qiQ either between 0 -30' or between

60 - 90'. Yet we often find 0 R,qiQ to be in the 30 - 60' range as well. Insufficient statistics prevent

us from inferring a clear connection between ribbon orientation and &jQ orientation, but the wide
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distribution of relative angles suggests the complexity of the interaction.

7.5 Landau Description of the 1Q - 3Q Quantum Phase Transition

Our work motivates the utility of the 1Q -3Q interface in NbSe 2 as a platform to explore competing

quantum phases in the weakly correlated limit, as a step towards understanding them in strongly

correlated systems. In the Landau picture of CDWs[188], a quantum phase transition between

3Q and 1Q states can arise by tuning the coefficient of the interaction term between the three

inequivalent CDW propagation directions (though in our case, the magnitude of q differs between

the two states). In NbSe2, even at low temperatures T < TCDW, where the amplitude of the order

parameter is already large, moderate strain is seen to have a strong influence, indicating that

the system is intrinsically close to the QCP separating these states. We note that a related phase

transition between the observed 1Q CDW phase and a 'hidden' 2Q phase has been suggested, but

not directly visualized, in the rare-earth tritellurides[155, 189].

7.5.1 Landau Description of the 1Q - 3Q Transition with Equal Wavevectors

To understand how moderate strain can drive a 1Q - 3Q transition in NbSe 2 at temperatures

T < TCDW with CDW wavevectors identical in magnitude, consider the general form of the

Landau free energy[188]:

F = dx [A a2 + B a 3 + C a4 + D {| 10212 + 1020312 + 110212 (7.2)

Here, the charge density modulation is described as p(x) = po(x) [1 + a], with a -0 1 + '02 +

03, and the order parameters ?I1,2,3 corresponding to the three inequivalent CDW propagation

directions. The final term in this expansion, proportional to D, represents the competition between

the different CDW components over the available states at the FS. The 3Q CDW state with all 0 1,2,3
non-zero is the minimum energy state if D > 3C/2[188]. For smaller values of D, a 1Q state with

0i' $ 0 but Oj = Ok = 0 results.

Alternatively, the 1Q state can be stabilized by the application of strain, which favors one of

the CDW propagation vectors over all others. Our observations indicate that a moderate strain

field can drive the transition, even at temperatures well below TCDW. At such low temperatures,

higher order terms contribute more strongly to F, so that the large influence of only moderate

strain can be taken as an indication that the 1Q and 3Q states are close in energy. The system may

thus be intrinsically close to the quantum critical point separating these states.
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7.5.2 Landau Description of the 1Q - 3Q Transition with Change in Wavevectors

Our observations correspond to a transition not only from a 3Q to a 1Q phase, but also to a change

in the CDW periodicity, indicative of weak nesting at the CDW wavevector in NbSe2. In this case,
the Landau free energy description is more involved, and can be expressed more generally as

.F = d A a2 + B a3 + C a(3 + D ) 12 + 1020312 + 121 (7.3)

j - iq + F X x j (7.4)

In comparison to Eqn. 7.2, we now include two additional terms that depend on the magni-

tude of the CDW wavevectors {j}. The term proportional to F ensures that the directions of
the CDW components are aligned with those of the preferred wave vectors q1,2,3, while the term

proportional to E sets the sizes of the CDW propagation vectors.

If the Fermi surface is well-nested, only one possible set of propagation vectors q1,2,3 needs to

be taken into account. However, in the presence of only weak nesting and an extended range of

soft phonon modes, as is the case in NbSe2 [157], there may be multiple choices for the sizes of the

CDW propagation vectors which are close in energy. This situation can be included in the Landau

free energy by generalizing the term proportional to E, and writing it as

FnonestingocJdxE E(q - -( -iqb (7.5)
q :

In the well-nested case, the function E(q is sharply peaked around the nesting vector qo, and

may be approximated by Eyo. In the case of NbSe2 on the other hand, the flat and shallow

phonon spectrum suggests that the function E(q) may likewise be relatively flat, thus allowing
even relatively small external influences like uniaxial strain to have a significant effect on the
preferred size of the CDW propagation vector.

Additionally, the presence of uniaxial strain also influences the other terms in the free energy

by explicitly breaking the three-fold rotational symmetry of the material. Ignoring terms like

f dx 0 1 b2, which will integrate to zero, and setting B = 0, the first line of Eqn. 7.3 in the presence
of uniaxial strain becomes

.Fstrain oc dx A1  2 + Cl + Dj lj+1j+21 (7.6)
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Here j is defined modulo 3, and D' includes the cross terms originating from the term propor-

tional to C in Eqn. 7.3. In the presence of uniaxial strain, the coefficients Aj, Bj and Cj may be

different for different CDW components j. If the strain on the sample is large enough, a situation

could arise in which A3 is negative for one of the components, but positive for the other two. This

would then result in a 1Q rather than a 3Q structure. In the strain ribbons on NbSe 2 however, the

strain is relatively moderate, and is observed to result in a 1Q structure even far below the CDW

transition temperature. Since we know that in the 3Q state all components Aj become more nega-

tive as temperature is lowered below TCDW, it would require an increasingly large strain to force

the system into a 1Q state this way. It is therefore likely that the dominant effect of the presence of

moderate uniaxial strain in NbSe 2 is to change the values of the components D .

That only moderate strain suffices to favour the 1Q state over the original 3Q state, even at low

temperatures where the higher order terms in the Landau expansion acquire more weight, sug-

gests that the 1Q and 3Q states were already close in energy. The system may thus be intrinsically

close to the quantum critical point separating these states.

7.5.3 Cuprate Charge Order: 'Stripes' v. 'Checkerboard'

Stripes ' Checkerboard'

Figure 7-9: Schematic of Possible Charge Order in the Cuprates. (a-b) Pictorial depiction of possible static
charge order in the cuprates, corresponding to unidirectional 'stripes' (a) or a bidirectional checkerboard
(b), lying on either side of a quantum critical point.

Our observation of the local effect of even moderate strain in driving a quantum phase tran-

sition between density waves calls for a reinvestigation of possible phase inhomogeneity in other

strongly correlated systems, where larger strain may occur[186, 187].

In the cuprate superconductors, an analogous phase boundary between unidirectional (1Q)

charge 'stripes' and bidirectional (2Q) 'checkerboard' (Fig. 7-9) has been predicted[190, 191]. The

introduction of quenched disorder results in discommensurations in the 2Q phase and disordered

orientational order in the 1Q phase, making them hard to distinguish - especially in the cuprate

BSCCO, thought to be in proximity to the IQ - 2Q phase boundary[190, 191]. Recent STM stud-

ies of the - 4 ao charge order in BSCCO have had conflicting interpretations, with independent
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suggestions of fluctuating 2Q and lQ order[156, 192]. However, the influence of strain, from the

supermodulation lattice buckling, or from randomly distributed dopants, is seldom accounted for.

Previous studies have shown that both these strain phenomena correlate with nanoscale elec-

tronic inhomogeneity[186, 193]. A possible explanation is local stabilization of the 1Q state, pro-

ducing 1Q -2Q and 1Q- 1Q interfaces, analogous to Fig. 7-5. While the presence of strong disorder

(up to 12% strain variations on a nanometer length scale[186]) complicates the interpretations in

BSCCO, we stress the importance of isolating and modeling strain effects for better understanding

and control of the phase transitions in cuprates. Finally, the microscopic visualization of the role

of strain in stabilizing new order suggests a controlled route towards engineering novel quan-

tum phases and interfaces and studying symmetry breaking in strongly correlated materials. In

this regard, we suggest a connection to the emerging importance of strain as a route to high-Tc

superconductivity in novel iron-based materials[194, 195].
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Chapter 8

Strong Coupling Origin of the Charge

Density Wave in NbSe 2

We use our observation of a 1Q - 3Q charge density wave interface on NbSe 2, in conjunction with

band structure calculations, to resolve the longstanding questions of the CDW wavevector and

spectral gap. First, we use the distinct CDW wavelengths to demonstrate that FS nesting plays

a negligible role in setting their magnitude. Second, we use the distinct tunneling spectra of the

1Q CDW region to disentangle the 3Q CDW spectra, and expose a particle-hole asymmetric gap,

riding on top of a strong inelastic background.

8.1 Phenomenological Picture of a 'Nearly Commensurate' 1Q CDW
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Figure 8-1: Phenomenological Model of the 1Q CDW. (a) Phenomenological model of the observed 1Q
CDW wavelength, AQ ~ 3.5 ao. The atomic periodicity is indicated by green circles and the phase of the
CDW order parameter from the model is shown in blue[174]. A topographic linecut (red dots) is extracted
along the red arrow inFig. 7-4a (along qlQ), filtered to remove atomic corrugations, and overlaid for com-
parison. (b) Simulated FT intensity (blue line) from the cartoon CDW modulation, for comparison with
experimental FT peak positions (red dots, shown in Fig. 7-4c).
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8. STRONG COUPLING ORIGIN OF THE CHARGE DENSITY WAVE IN NBSE 2

The dominant Fourier peak for the 1Q modulation, 1Q ~ 2/7 Qo (Fig. 7-4c), corresponds to

a wavelength, AQ ~ 3.5 ao. No similar periodicity has thus far been reported in any TMDC

system[154]. In addition, as noted in § 7.3, the FT of the 1Q CDW region shows a rich harmonic

structure.

We develop a phenomenological understanding of the 1Q harmonic structure following McMil-

lan's Landau theory[174, 188]. Rather than having a uniform 3.5 ao charge modulation, the system

could lower its energy by locking the charge modulation to the lattice with 3 ao periodicity. This

would require compensation by a one atom phase slip every two oscillations, corresponding to a

27r/3 discommensuration, as shown in Fig. 8-la[174]. The resulting harmonic structure shown in

Fig. 8-1b (blue) reproduces all observed peak positions (red dots). Moreover, the rich harmonic

content we observe is another indication of the strong coupling of the electronic modulation to

the lattice. An even better agreement with relative peak heights could be obtained by considering

spatial variations in the order parameter amplitude[174].

8.2 Band Structure of NbSe 2

a 0.4

1.0

0.2
0.5

0.0 .-

C
-0.2 -0.5

- - LDA Calculation
- Nb() Band . ARPES Fit

-1.0 --- Nb2) Band -ARPES Fit

-0.4 - Se Band - LDA Fit
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Figure 8-2: Tight-Binding Fit to the ARPES Measured NbSe 2 Band Structure. (a) ARPES measurements
of the band structure of NbSe 2 along high symmetry directions in reciprocal space, recorded at 33 K. The
ARPES data is fit using a tight-binding approximation, to describe the dispersion of the two Nb-4d bands
(light and dark blue)[165]. (b) The calculated band structure of 2H-NbSe2 along high-symmetry directions,
showing the two Nb-4d bands obtained from (a), and the Se-4p band, modeled as a parabolic fit to LDA
calculations of Johannes et al.[149], compared with the LDA calculations (dashed black lines).

The band structure of NbSe2 close to EF consists of two Nb-4d derived bands and one Se-4p

'pancake'-shaped hole pocket[149, 196]. Close to EF, the Se-4p pancake-shaped hole pocket which

surrounds the PF-point can be modeled by a simple quadratic form,

a2

E=A- a (k+k2) +B (8.1)
4-7r2 x
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With the values of A = -5.4eV and B = -0.65 eV, this model accurately reproduces the

dispersion obtained in LDA calculations by Johannes et al. [149], as shown in Fig. 8-2b.

To model the Nb-4d bands, we use a tight-binding fit to the band structure observed in ARPES

experiments (Fig. 8-2a, [165]). We find that a small (- +16 meV) offset in the chemical potential

relative to the parameters used by Rahn et al.[165] was needed to reproduce the observed DOS

from STM measurements. This offset is within the accuracy of the tight-binding fitting scheme.

The band energies of the tight-binding description are given by [165]:

E = to + t1 [2 cos cos q + cos 2 ]

± t 2 [2 cos 3 cos 7 + cos 2TI]

+ t 3 [2 cos 2cos 27 + cos 4 ] (8.2)

+ t 4 [cos cos 3I + cos 5 cos rj + cos 4 cos 2I]

+ t 5 [2 cos 3 cos 37 + cos 6 ]

where = ikrao and , = }v3'kao and kg is along F - M. The values of the tight binding

parameters (including the offset) used in this work are outlined in Tbl. 8.1. Fig. 8-3a-b show a

direct comparison of the CECs generated using the tight-binding fit with the ARPES data acquired

at EF and -0.1 eV.

Parameter I Nb Band (1)1 Nb Band (2)

to 26.9 219.0

ti 86.8 46.0

t2 139.9 257.5

t3 29.6 4.4

t4 3.5 -15.0

t5 3.3 6.0

Table 8.1: Tight-binding parameters for the two Nb bands (in meV), based on fits to the ARPES data of
Rahn et al.[165].

The Fermi surface of NbSe2 therefore derives from the two Nb bands and the Se pancake

pocket, shown in Fig. 8-3c. It consists of three barrels around the F-point, from each of the three

bands, and two barrels around the K-point deriving from the two Nb bands. While previous

ARPES work indicated that the CDW corresponded to nesting around the F-point[172], more

recent studies suggest that gapped regions of the FS on the inner Nb barrel at the K-point are

nested by q3Q[1 6 5 , 170]. In addition, we note the presence of a van Hove singularity at - -80 mV

associated with the triangular features in Fig. 8-3b.
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Figure 8-3: The Fermi Surface of NbSe 2. (a-b) ARPES measurements of constant energy contours (CECs)
at the Fermi energy, EF (a), and -0.1 eV (b), with the corresponding CECs generated using tight-binding fit
(Fig. 8-2a) overlaid to show the quality of the fit. (b) The Fermi surface obtained using the band structure
fit in Fig. 8-2b, with the BZ shown in black.

8.3 Fermi Surface Nesting and the CDW Transition in NbSe 2
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Figure 8-4: Inconsistencies in the Nesting-Driven CDW Picture of NbSe 2. (a, c) Visualizing potential
FS nesting at the (a) 3Q and (c) 1Q wavevectors by translating the FS (Fig. 8-3c) by (a) q3Q (a) and q-Q
(c) respectively (red) and superimposing onto the original FS (blue). (b, d) Another equivalent visual-
ization of FS nesting, showing the momentum-resolved contributions to the noninteracting susceptibility,

Xo(qCDW, W = 0), for (b) qCDW = q3Q and (d) qCDW qlQ respectively. The comparisons between (a,b) and
(c,d) show that the FS nesting picture for CDWs at q3Q and q'Q are inconsistent with each other.

As a step towards understanding the 13% difference between the magnitudes of the observed

1Q and 3Q wavevectors, we examine their momentum space origin in the conventional nesting

picture of density waves in Fig. 8-4. We note that the upper limit of the lateral strain in the 1Q

regions was found to be 0.06% (§ 7.4.2), and therefore, to first order, the FS would be unchanged

while considering wavevector differences of 13%.
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8. STRONG COUPLING ORIGIN OF THE CHARGE DENSITY WAVE IN NBSE2

The nesting conditions for the two CDWs can be examined by comparing Fermi surfaces dis-

placed by the CDW wavevectors with the original FS. In such a picture, large regions of contact

between the displaced FSs would correspond to classical FS nesting. We find that while the 3Q

CDW could correspond to self-nesting within the inner K-barrel (Fig. 8-4a), as has been suggested

previously[170], the 1Q CDW cannot be explained by this piece of the FS. The 1Q CDW could

instead correspond to the nesting between the inner F-barrel and the K-barrel (Fig. 8-4c). Impor-

tantly, both cases highlight the absence of large parallel regions of the FS nested by the appropriate

wavevectors.

More support for weak nesting at these wavevectors can be obtained by examining the k-space

contributions to the non-interacting susceptibility, xo (q, w = 0), at the two CDW wavevectors. In

a traditional picture of a nesting driven CDW, the contributions to Xo (q at q = qCDW would be

dominated by the nested FS regions. In contrast, we find that for both the 3Q and 1Q wavevectors,

the susceptibility has contributions not only from the nested regions (as identified by Fig. 8-4a,

c respectively), but equal, and sometimes even larger contributions from other k-space regions

(Fig. 8-4b, d). These contributions likely arise from energies far from EF, and are further indicative

of the absence of strong FS nesting in proximity to the CDW wavevectors.

S1.G.... q/Q = 0.286 | 300 K '-- qQ 0 = 0.286
... q/Q =0.333 -33.5K 20 -~ qIQ 0 = 0.328

0-----q/Q 0=0.333
01.4

c r-1.2 -

1.0

I 0 0.1 0.2 0.3 0.4 0.5
M K q/Q0 (along -M)

Figure 8-5: Noninteracting Susceptibility of NbSe 2. (a) The non-interacting susceptibility xo(q,w = 0)
(blue, normalized to its value at 300 K, q = 0), calculated from the tight-binding fit to the NbSe 2 band
structure (Fig. 8-2a) along the high symmetry directions in reciprocal space, compared to its value at 300 K
(grey). (b) The noninteracting susceptibility, Xo (q, w = 0) along the F - M over the region of interest for the
CDW transition, displaying a broad maximum over a range of wavevectors: e 0.25 - 0.4[149, 157, 165].
The CDW wavevectors qiQ, q3Q and Qo/3 are overlaid for comparison.

The stark contrast between our observations of two CDW wavevectors qlQ and q3Q of same ori-

entation but 13% difference in magnitude, and the recent X-ray measurements reported by Feng

et al.[162], provides strong evidence against FS nesting at one particular wavevector as a driv-

ing force for either CDW. While our 13% wavevector difference arose from moderate anisotropic

strain (up to 0.06% in-plane), Feng et al. applied hydrostatic pressure sufficient to induce in-plane

lattice distortions up to 1.6%, yet observed no measurable deviation of the CDW wavevector from

q3Q[16 2 ]. The observed insensitivity of q3Q to hydrostatic pressure would clearly indicate that the
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FS does not qualitatively change in the presence of even relatively large lattice distortions, and

would thus rule out a change in the FS as the source of our observed 13% wavevector difference.

Furthermore, consistent with our experiment and with previous calculations[149, 157, 165], we

find no sharp peak in the susceptibility (Fig. 8-5b) computed from our modeled band structure.

Therefore, our observations and calculations both indicate that the FS can play only a minor role

in determining CDW wavevectors in NbSe 2 . This highlights the key role that the q-dependence of

alternative mechanisms such as electron-phonon coupling may play in driving the transition, and

particularly the manner in which these mechanisms may be influenced by local strain.

8.4 Spectroscopy of the 1Q - 3Q Interface
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Figure 8-6: Spectroscopy Across the 1Q - 3Q Interface. (a-b) Linecut of dI/dV spectra across the 1Q - 3Q
interface (b) taken along the red arrow in (a). (c) Representative spectra in the 3Q (red) and 1Q (green)
regions of (a) overlaid for comparison. The 1Q spectra have a minimum close to EF, a deep V-shape with
reduced asymmetry, and kinks at ±6K. The spectra are normalized at -50 mV. Setpoint parameters: Vo
-50 mV; Rj = 0.2 GQ; Vmod = 3.5 mV.

Recall that the notable features in the typical spectra recorded over 3Q regions are (a) kinks

at ± t35 mV (±6K); (b) the spectral minimum centered above EF, at - +16 mV; and (c) marked

asymmetry in the spectrum about EF. Spectroscopy across the 1Q - 3Q interface (Fig. 8-6) shows

a marked difference between the tunneling signatures of the two CDW regions. Firstly, we note

the continued presence of the ±35 mV kinks in the 1Q region, albeit with slightly reduced promi-

nence. Second, we find that the spectral minimum shifts to close to EF in the 1Q regions. Also, the

asymmetry of the spectra is significantly reduced in the 1Q regions, with increased conductance
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in the empty states. The 1Q spectra are more V-shaped. A direct comparison of typical 1Q and

3Q spectra (Fig. 8-6c) indicates that the 'gap' feature is much deeper in the 1Q region. Finally, the

spectra evolve smoothly between the two regions, and no abrupt changes in the spectral features

are observed.

8.5 A Particle-Hole Asymmetric Spectral CDW Gap
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Figure 8-7: Particle-Hole Asymmetric CDW Gap in NbSe 2 . Calculated DOS for NbSe 2 in the 'normal'
state (black) and in the presence of a 3Q CDW (blue) using q = 0.333 Qo, A = 12 mV, f = 5 mV, compared
with the 3Q STM spectrum (red). The calculations reproduce the observed asymmetry, offset emin, and
shape of the gap structure.

To calculate the DOS in the presence of a 3Q CDW, we impose a coupling between states

connected by any one of the three q-vectors, given by:

WCDW = .-3 c- + h.c.) (8.3)

The strength A of the coupling is taken as a free parameter in the reproduction of the experimen-

tally observed DOS, with a broadening parameter fixed at r' = 5 meV. Adjusting the size of 4

slightly around the observed value of q3Q = 0.328 Qo, we find the best match with STM dI/dV

spectra using 4 = (0.333 ± 0.004) Qo (corresponding to the locally commensurate CDW period-

icity), A = (12 2) meV (which has not been previously apparent from direct observations by

spectroscopic techniques), and f = 5 meV. With these parameter values, the gap structure in the

calculated DOS closely approaches the overall shape, width and center of the gap structure seen

in the measured data within ±30 meV of the Fermi energy EF, as shown in Fig. 8-7.

In particular, we note the strong particle-hole asymmetry of the gap, with the gap center, Emin,
being well above EF. Furthermore, the absence of nesting over large parallel regions of the FS

means that the apparent size of the full gap (- 40 mV) is much larger than 23. The fact that emin

is offset from EF should be unsurprising for a quasi-2D system[197], but had not been understood
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or observed in NbSe2 until now, due to limitations of spectroscopic techniques which are sensitive

to filled states only[170].
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Figure 8-8: Fit Parameter Variation for Spectral CDW Gap. Calculated DOS spectrum using the band
structure fit in the presence of a 3Q CDW, showing the effects of varying the fit parameters, wavevector
4 and gap value E around the best fit values (4 = 0.333 Qo, A = 12 meV, dark blue), compared with
the STM data (red). (a, b) show the effects of varying the wavevector 4 around 0.333 Qo by ±1% and
±2% respectively. (c, d) show the effects of varying the gap value A around 12 meV by ±10% and ±20%
respectively. Error bars for 4 (0.004 Qo) and A (2 meV) are deduced using these variations.

To demonstrate the accuracy of this fit, we show the effects of varying the wavevector 4 by

1 - 2% (Fig. 8-8a-b), and the gap value L by 10 - 20% (Fig. 8-8c-d). Using these fit parameter

variations, we estimate the errors for 4 and A to be 0.004 Qo and 2 meV respectively. The value

of A may however be an overestimate, leading to a systematic error of the same order as the fit

uncertainty, since the described procedure does not take into account the particle-hole symmetric

inelastic background in the experimental DOS. Accurate modeling of the inelastic background

would require detailed temperature dependent spectroscopic data, which is beyond the scope of

this work.

Crucially, we note that the particle-hole asymmetry in the CDW gap, with its minimum cen-
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8. STRONG COUPLING ORIGIN OF THE CHARGE DENSITY WAVE IN NBSE 2

tered above EF, cannot be removed by the subtraction of a particle-hole symmetric background.

Likewise, the striking deviation of our fitted gap parameter (A = 12 meV) from previous results

(four times larger than the 3 meV value detailed by Borisenko et al. [170], and three times smaller

than the 35 meV value detailed by Hess et al.[45]) far exceeds fit or systematic uncertainties.

8.6 Red Herrings Surrounding the CDW Gap

We disentangle the CDW gap from the red herrings in the 3Q spectra through a comparison with

the 1Q spectra in Fig. 8-6c, and through spectroscopy above TCDW shown in Fig. 8-9.

The observed upturn above +35 mV and the kinks at ±35 mV are present in both the 1Q and 3Q

spectra, but are absent in the DOS calculations. Moreover, these V-shaped 1Q spectra resemble

the linear tunneling conductance background historically attributed to the inelastic coupling of

tunneling electrons to a flat bosonic spectrum[198]. That this background is much stronger in

the 1Q region, obscuring band structure effects, is likely a strain-induced phenomenon, which

may be related to the buckling and associated decoupling of the topmost layers in the 1Q region.

Meanwhile, present in both 1Q and 3Q spectra (thus unlikely to be associated with these different

CDWs), yet absent in calculations (thus unlikely to be a band structure effect), are the ±35 mV

kinks, previously and mistakenly identified as the CDW gap[45], which we examine in detail

through temperature dependent spectroscopy.

8.6.1 Spectroscopic Studies above TCDW

1..-0-2 K (roadened)

.-o-40 K

0.9
_EK

0.8

0.7

-.2L0 -5 0 25 50
Sample Bias (mV)

Figure 8-9: Spectroscopy above TCDW. (a) An STM topograph acquired at 40 K, well above TCDW, showing
patches of CDW pinned to defects and impurities. (b) Spectrum acquired at 40 K (red) compared with
that acquired at 2 K, 6 T (blue) on the same cleaved surface (within 300 nm). The 2 K spectrum has been
thermally broadened to 40 K for ease of comparison. The spectral kinks at ±35 mV (±K) are distinguishable
well above TCDW, as shown by the guides to the eye.

To experimentally verify the lack of bearing of the 35 mV kinks on the CDW phase, we per-

formed spectroscopic measurements up to 45 K. We note the presence of the CDW in small regions
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8. STRONG COUPLING ORIGIN OF THE CHARGE DENSITY WAVE IN NBSE2

of the sample, visibly pinned to defects on the surface. We universally observe the presence of the

35 mV kinks in the STM spectra well above TCDW (- 33 K) in all sample regions. A comparison

of the typical spectrum acquired at 40 K to that acquired at 2 K, is shown in Fig. 8-9b. We note

that the data acquired at 40 K are thermally smeared by O(3kBT), i.e. ~ 10 mV, resulting in a

broadening of the kinks. Despite this, the kinks remain distinguishable, and are present through-

out all spatial regions studied in this work. The universal presence of these ±35 mV kinks even

well above TCDW, further demonstrates their lack of bearing on the CDW phase.

ARPES studies observe a prominent band structure kink at a similar energy in the Se F-

pocket[165, 199], attributed to coupling to an optical phonon[171]. We therefore conclude that

this self-energy effect is responsible for the EK kinks in the tunneling spectra as well. The dis-

crepancy between the data and band structure calculations above - 30 mV in Fig. 8-7 can thus be

attributed to the inelastic tunneling background and self-energy effects.

8.6.2 Density of States Calculations for the 1Q Spectra

4-- No CDW
S-- 3Q CDW (0.333 Q0)5 . -- Q CDW (0.286 Q0 )

as40

-100 -50 0 50 100
Energy (meV)

Figure 8-10: DOS Calculation for the 1Q CDW. Calculated DOS spectrum using the ARPES tight-binding
fit - in the presence of a 3Q CDW (4 = 0.333 Qo, blue) and a 1Q CDW (qiQ = 0.286 Qo, green), with

= = 12 meV.

For completeness, we show in Fig. 8-10 the calculated DOS in the presence of a 1Q CDW at the

experimentally observed wavevector, qiQ = 0.286 Qo, using A = 12 meV. The lack of correspon-

dence between this calculation (green curve in Fig. 8-10) and the measured dI/dV spectrum (green

curve in Fig. 8-6c) can be attributed to the increased intensity of the inelastic background in the

buckled region of the 1Q ribbons. This background is evident in the V-shape of the dI/dV spec-

trum in Fig. 8-6c, centered close to EF, as explained theoretically[198] and observed experimentally

across a wide variety of materials[50, 198, 200-205].

8.6.3 Comparison of Band Structure Fits to ARPES Data and LDA Calculations

We also compare our results to a calculation of the DOS based on a tight-binding fit to the full

three-dimensional LDA band structure reported by Johannes et al.[149]. The DOS obtained using
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Figure 8-11: Comparison of Tight Binding Fits to ARPES Data and LDA Calculations. (a) The calcu-
lated band structure of NbSe2 along high-symmetry directions, showing the two Nb-4d bands obtained
from a Slater-Koster tight-binding fit to the LDA calculations of Johannes et al. [149], and the Se-4p band,
modeled as a parabolic fit to LDA calculations of Johannes et al. [149], compared with the LDA calculations
(dashed black lines). (b) Calculated DOS spectrum using the tight-binding fit to ARPES data (Fig. 8-2a,
[165]) compared with the spectrum obtained using a fight-binding fit to LDA calculations of Johannes et
al.[149], shown in (a), in the 'normal' state and in the presence of a 3Q CDW (4 = 0.333 Qo, n = 12 meV).
The DOS spectrum calculated using the fit to the ARPES data better reproduces the gap feature observed
in the STM dI/dV spectrum in Fig. 8-7.

this 3D LDA fit is compared to the results based on the 2D fit in Fig. 8-11b. We find that the

STM data are best reproduced using the band structure observed by ARPES, and that there is a

noticeable difference between the depths of the gaps in the two-dimensional ARPES based and

three-dimensional LDA-based band structure fits (despite independent parameter optimization),

which is indicative of some difference between the surface and bulk dispersions[149].

8.7 Perspectives on CDW Order in NbSe 2

We therefore resolve a longstanding debate about the anomalous CDW gap magnitude reported

by STM measurements[45], and caution that not all EF-symmetric kinks in tunneling spectra are

associated with order (e.g. density wave or superconducting gaps). On the contrary, we em-

phasize that the true CDW signature in NbSe2 is offset from eF, which has confused an active

research community for two decades, and has been disentangled now only by a combination of

spatially resolved filled and empty state spectroscopy of a proximate (1Q) phase, and band struc-

ture calculations[197]. This emphasizes the need for full experimental exploration of proximate

phases in other pertinent materials, combined with quantitative modeling. We further suggest that

controlled local strain, through epitaxy or intentional defects, may be a useful tuning parameter

to access the necessary proximate phases for comparison.

Our discovery provides a new perspective on the role of density wave order in complex sys-

tems. First, our resolution of two longstanding debates about NbSe 2 puts this much-studied mate-
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8. STRONG COUPLING ORIGIN OF THE CHARGE DENSITY WAVE IN NBSE 2

rial on firmer footing as a well-understood model system for CDW studies and competing ground
states in superconductors. We have disentangled the true CDW gap, and clarified that FS nesting

plays a minor role in determining the CDW wavevectors in this material, thereby highlighting the

role of other mechanisms in driving the transition. Second, our revelation of a particle-hole asym-

metric CDW gap emphasizes the limitations of filled-state-only probes, e.g. ARPES, for investi-

gating phases other than superconductivity - which is unambiguously particle-hole symmetric.

Full spectral probes such as STM, in combination with quantitative calculations, are necessary to

understand the competition between superconductivity and particle-hole asymmetric phases.
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Chapter 9

Concluding Remarks

The exploration of the diverse electronic properties and ordered states emerging from the discov-

ery of several classes of two dimensional electron materials over the past decade necessitates the

development of a complement to traditional band structure probes. The nanoscale spatial resolu-

tion, temperature limited energy resolution, access to dilution fridge temperatures and magnetic

fields, ability to measure empty states, and simultaneous access to various tuning parameters for

2D materials including gate tuning of the carrier density and strain - result in the spectroscopic

STM being a promising candidate in this regard. However, a large discrepancy between the dis-

persions measured using Landau quantization and quasiparticle interference (QPI) - the two phe-

nomena that equip STM with momentum resolution - have proved to be a major limitation.

In the first part of this thesis, we reported on the simultaneous observation and quantitative

reconciliation of Landau quantization and QPI over a 300 meV energy range on the topologi-

cal surface of Sb. We therefore introduced momentum-resolved scanning tunneling microscopy

(MR-STM) - the combined measurement of LLs and QPI - as a reliable band structure probe, and

demonstrated its nanoscale sensitivity to band structure deformations as well as chemical poten-

tial shifts, and its ability to measure the band structure of empty states. Armed with the technique

of MR-STM, we addressed several important questions pertaining to the robustness of surface

states in topological materials.

In the second part of the thesis, we demonstrated the indispensable utility of nanoscale spatial

resolution and empty state sensitivity offered by spectroscopic STM. We reported on the imaging

of a quantum interface between two charge density waves of triangular (3Q) and stripe (1Q) nature

on the surface of the stoichiometric superconductor 2H-NbSe2. Our observation of distinct IQ and

3Q CDW wavelengths rules out strong nesting in NbSe 2 and implies that factors such as electron-

phonon coupling play the lead role in driving the CDW transition. Furthermore, by comparing

the IQ and 3Q spectra, we have for the first time disentangled the particle-hole asymmetric CDW

gap, centered above the Fermi energy, from spectroscopic red herrings.
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9. CONCLUDING REMARKS

In conclusion, our work puts spectroscopic STM on a sound platform as a nanoscale probe of

electronic band structure and ordered phases, with several promising applications towards the

study of 2D materials.
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