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Abstract

In this thesis, we search for the plasma and field configurations that can exist under

stationary conditions around a collapsed object such as a black hole. Regimes where

the iso rotational condition corresponding to negligible magnetic field diffusion have

been considered. Under the basic assumptions made in this analysis, we find axisym-

metric radially localized solitary plasma configurations. We identify the constraint

that restricts separability of solutions in the radial and vertical directions. Taking

different limits of the ratio A,/A' we find plasma configurations with a solitary or

a pair of rings. Considering the restrictions imposed by the constraint equation and

the basic assumptions we suggest problems for further investigation.

Thesis Supervisor: Bruno Coppi
Title: Professor of Physics
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Chapter 1

Introduction

For a currentness plasma disk surrounding a compact object, a spectrum of char-

acteristic modes has been identified (Pringe, 1981), in which both gravitation and

toroidal rotation play a key role. The modes that can be excited (Coppi, 2009) are

standing in the vertical direction and are found to be axisymmetric as well as the

spiral type. The relevant driving factors are the plasma differential rotation and the

vertical temperature gradient along the density gradient. These "thermo-rotational"

modes satisfy the 'frozen-in-law' E + V x B/c = 0, that is they cannot be excited in

the resistive plasmas disks where the magnetic field diffusion is significant.

Therefore we can argue that simple currentless plasma disks when immersed in a

vertical seed magnetic field will evolve toward different stationary plasma and field

configurations. This justifies the efforts made in the papers (Coppi and Rousseau,2006;

Coppi, 2011) to identify these configurations. For simplicity we deal with an axisym-

metric configurations.

In this thesis, we show that under certain limitations solitary plasma rings can

form, and the vertical temperature profile and the gradient have a significant influence

on their properties. Dealing with simple axisymmetric currentless plasma disks we

determine the conditions necessary for obtaining solutions that are separable in the

radial and the vertical directions. The conditions are indeed non-trivial and have

significant effects on the plasma configurations that we obtain. In Chapter 2, we

outline the relevant form of the equations that govern the evolution of these plasma
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configurations. We start with a discussion of the basic assumptions made in this

simplistic analysis. Then we derive the Master Equation (Coppi, 2011), that relates

the plasma density profile to the magnetic surface function. In Chapter 3 we use the

vertical equilibrium equation to obtain the plasma pressure and temperature profiles.

This allows us to check that the solutions of the Master Equation is consistent

with the realistic pressure and temperature profiles. In Chapter 4 we outline the

constraints on separability of solutions in the z and r - R variables. We identify

three different conditions that are later used in analyzing solutions of the Master

Equation at different limits. In Chapter 5 we obtain plasma configurations in two

important limits: A2/A2 < 1 and A2/A2 < 1. Moreover we note the collapse of ring

pairs as this ratio is increased above the threshold value of 2/3. Chapter 6 summarizes

and discusses the analysis of these solitary plasma configurations suggesting problems

for further investigation.
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Chapter 2

The Master Equation

We begin our study of the magnetic surface and plasma density profiles by obtaining

a convenient form of the total momentum conservation equation. As we will see later

in this chapter, this allows us to relate the plasma density p to the magnetic surface '.

However before we get to that we would like to clearly state a set of basic assumptions

that we make throughout this discussion.

2.1 Basic Assumptions:

Since we deal with the simplest of plasma and field configurations that can, at least

theoretically, exist around around compact collapsed objects with strong gravitational

fields, such as black holes, we limit our analysis to axisymmetric geometries and make

the following assumptions [3]. Given the axisymmetric geometry it is suggestive to

use cylindrical coordinates (r, <, z).

(a) We consider perfectly conducting plasma conditions. This consequently gives

V = av + (?P)r e (2.1)

where V is the plasma flow velocity and 0 = 0(r, z) is the magnetic surface

function.

(b) We take av ~ 0 as no appreciable poloidal flow velocity is included in the
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theory, and

S~Q G('0)r e0 (2.2)

(c) The relevant particle distributions in the phase space are predominantly Maxwellian

and for the purposes of this case we refer to a scalar pressure P = pI.

(d) The relevant Lorentz force does not have any toroidal component and the cor-

responding magnetic field configurations are given as a function of the magnetic

surface function by

B [Vip x e ± I(+()e0] (2.3)

where I(*) is the toroidal plasma current. In this case, the Lorentz force FL is

simply given by
1 dI

FL= 4 2  A* + I- d1 (2.4)
4,7rr2 d#p

where

A,=- I r 7P) (2.5)
e z2 + r rr Or

(e) For simplicity we include a Newtonian potential (G. In particular, for the

relatively thin plasma structures that we analyze we have

VtG -ez (2.6)
Lr + r

where

V G- =Q2 r2 (2.7)

and QK is the Keplerian angular frequency.

2.2 Deriving the Master Equation

We begin by analyzing the total momentum conservation equation

-P( + 2 r-) = -p +-J x (2.8)
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where p is the plasma density. Taking the curl of both sides we observe that

Vx ( pG±A 2+ p r2 _-x LOr~

fO( ONG

lz Or

('G
Or

Oz

+ 2r)

± Q2 r)

O
ar

OP
Oz

ez]

a4o

+ pr2 OQ
5z

OP G -.
19r az f1

and

-V x -p+-Jx
c

-V x (!fxf)
(C

=- x -Jx
(c

= - (VI ) x $
(41r

=- V x (B-VB)
4ir

where we use J = (V x B)c/47r. This can be further reduced by expressing the

magnetic field in terms of the magnetic surface function using equation (2.3). We get

-i x (!x $)cV X JB

or ± { z (r ]
(2.11)

We can further simplify equation (2.9) by expanding PG in z 2 /R 2 and Q ~ QK + JQ-

This allows us to write the Master Equation that relates the magnetic surface
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[ r( + I )dl N=1
47rr
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function Vb to the plasma density p.

a (Op 3zap 1
2QKr-pEQ) -± K~~I-±-_ _

Oz Or 2 r 5z 47rr 2

(2.12)

r dO arz Oz Or

We now consider a localized plasma in an interval Ir - RI < R around r - R and we

introduce characteristic scale distances over which r - R and z vary by A, and A;

respectively. This reduces the Master Equation to

O 20 p 1 fF(83 O~ _ -O 4f
2QKR -p6Q) + Z 2K 4R 2  3 O

(2.13)

47rR2 { z Or2 ar Or z22 Or

We have p = p(r.,22 ), b = (r*,i 2) for r, (r - R)/A,, and =- z/A, and

A2 < A << R. In particular, we consider p to be a positive even function of both

r, and 2. This implies that 6Q and V; are odd functions of r, and even functions of 2.

For p ~ 4o + V)1 where V? =- BORr, IV), I < ko and BO is the seed magnetic field. This

gives

Q (dQ / d* (2.14)
5 dr dr(2

Furthermore if we consider the asymptotic limits for which RA, > A2 > A2, the

Master Equation reduces to

- a2D p ~ 47rR2 j9Z ar ar3 09Z

(2.15)

+47rR2 2 + zO2) ]
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where

Q2 = -R Q2 (2.16)
D dr k (.6

is the differential rotation. In fact, pQ2 is the driving factor for the field configurations

given by 01i. Another important feature being, the scale distance A, does not affect

equation (2.15) in the limit A2/A2 < 1. (Coppi and Rousseau, 2006).
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Chapter 3

Plasma Pressure and Temperature

Profiles

We begin by extracting the vertical equilibrium equation from the total momentum

conservation equation (2.8). As we will see in this chapter, this allows us to determine

the expressions for the plasma temperature and pressure profiles. It is an important

exercise to analyze the behavior of these profiles and check that they are realistic.

3.1 Gravitational Pressure PG and Temperature TG

The vertical equilibrium equation that involves the plasma pressure p confined both

by the gravity and the plasma currents can be written as

-= -Q2 z p + FLz (3.1)

where FL is the Lorentz force. Now the corresponding plasma temperature can be

related to the plasma pressure and density. The plasma temperature is given by

T = M(3.2)
p 2

19



where mp is the average mass of the .particles which constitute the plasma. The

electron and ion temperatures are considered equal. Then p can be separated into

P = PG ± PL. This allows us to write

Or)
2 - _Q2 zp (3.3)j 2 

-KZ

This is the gravitational confinement of the relevant plasma structure. Then we write

PG = -p (3.4)

For

A 2  2TG TG( 2

m = '= ='Z'2C r (3.5)

and

PG = PG*(r*) exp Co (3.6)

we obtain

p = p,(r*)Co(f 2 , r*) exp - 2 Co(r, z'2) dz' (3.7)

where IG is reference value for the TG (gravitational) contribution to the temperature.

Simply from the above expressions we notice that PG and p are separable in r, and f2

only if Co(r., z' 2) is independent of r. For simplicity we assume that (dTG/&r, = 0).

However we have to verify that this is compatible with the Master Equation on

imposing the co-rotation condition

6 Q 0 7(3 .8 )
QK

This allows us to write the magnetic surface function as

dCO [_ f 2 p - 2

) = ?,(r,)fo (z2 exp [- jCo(2)dzI (3.9)

where fo(dCo/dz 2 = 0) = 1 allows for separable magnetic surface functions. We will

further elaborate on the separability of solutions in the next chapter. In fact we shall

20



see that relatively simple solutions maintaining the separability of the dependence of

on r. and 22 for inhomogenous TG temperature profiles, (dTG/dz2 $ 0) can not be

easily found.

3.2 Lorentz Pressure PL and Temperature TL

Now we focus on the other half of the plasma confinement pressure; the contribution

from the Lorentz force. We note that

PL =I (JrBO - JOBr)
az C

1 d0(A dI

47rr 2 (9z d* p (3.10)

I I a[2 +f 1 ap2]+Ia,92?
8w7 R2 a I + + 192 (r

This can be integrated to get

I 1  p 2 1 2P
P[ 87rR2 + + a2 A 2 p2 (r ) (3.11)

Now an important criterion for selecting acceptable solutions of the Master Equa-

tion would be the positive and finite temperature condition. We require that the

total temperature T = TG + TL = mp(pG + PL) (2p) to be both positive and finite.

21



22



Chapter 4

Separable Solutions of the Master

Equation

As mentioned in the previous chapter, separation of variables in the expressions for p

and V is not always possible. In fact as we shall see in this chapter, there is a specific

constraint condition that has to be met for there to be such separable solutions of

the Master Equation.

If we adopt the expressions (3.7) and (3.9) for p and 7P, respectively, and define

VY*= N Vk*(

P*= PNfi*(r*) (4.1)

Ar~ 8PNI )1/3
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where ?,P and p,, are dimensionless and /, ~ 1.

Plugging these expressions into the Master Equation gives

, fo, [3 - d2 , d', A 2  d
( *?/*) fo - Cofo + C ~) dr? d

(4.2)

[fo(2fl - Cofo)] + Ar d 2 Q(fo, CO)

where the primes denote partial derivative with respect to 2, fl af/& 2 and

Q = 2fl + (f2)'(2C - 1) - 6fofo' + 3foCl

(4.3)

+ 2 2 [(fr2)' + 2Co(fofo' - f? ) + (f2)'CO' - 1f2(C2' - 2f "fo + C 'f2

All the z dependence are carried by the functions fo and Co and their derivatives.

Clearly, Q = 0 for fo = 0 and CO = 0. We then observe that a separable solution '

of the form as represented in (3.9) is compatible with the Master Equation under

the following circumstances:

(a) if dCo/d 2 = 0 and fo = 1, corresponding to TG = constant.

The Master Equation in this case reduces to

- r*.-, d [d2*~ y )2 ± 2 (4.4
dr* L *r dr z (4.4)

(b) for fo(2 2 ) Co(22) and assuming CO(2 2 ) profiles that are solutions of Q = 0,

besides C6 = 0, can be found. In this case we can use the same expression for

the Master Equation as determined in (a).

(c) for all temperature TG profiles (dC0/dz 2 = 0) in the limit where Ar/A « 1

and can be neglected, provided that fo = Co.
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The Master Equation in this case reduces to

d d2 * _-

dr, r,

25

- 2
\dr,)

(4.5)
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Chapter 5

Solitary Ring Solutions

We now identify solutions to the relevant form of the Master Equation as solitary

plasma rings. We attempt to find separable solutions keeping in mind the constraints

outlined in the previous chapter. We eventually find solutions that correspond to

solitary rings and determine the respective density and magnetic surface function

profiles.

5.1 The A'/A' < 1 Limit:

Considering the difficulty of finding separable solutions when A'/A' becomes signifi-

cant and when TG is in homogenous over A, we begin by focussing on the case where

A'/A' is very small.

In this limit we have

p = PNPiCO eXp j d2) (5.1)

while

1 ± r~oexp Z201 = ON C eXp - d,12 (5.2)
V1( + r2 2 0O

27



with ,/ = r +/(1+ r) 1 /2, we compute the following derivatives

d , 1
d5r (1 + r2)3/ 2

d_-_ 
(5.3)

dr* (1 + r)/ 2

d3 /, 12r2 -3

dr3 (1+ r) 7/2

Plugging these into the relevant form of the Master Equation, we get

d d2b, - - 21
dr, drV* dr* ]

12r, (5.4)
(1 + r2)4

12r2
P* ( 2+r)7/2

Hence we obtain a pair of radially localized rings. This is as shown in figure 5-1.

5.2 A2/A2 < 1:

We now focus on the effect of finite ratios A2/A2 < 1 taking into account that

separable solutions can be found for TG = constant. We begin with an expression of

01 that has characteristics in common with the expression in equation (5.2), given by

r, = r re (5.5)
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Figure 5-1: Plot of p, as a function of r.. We observe 2 radially localized rings

In order to include the effects of finite Aj/Ai, we take CO = 1. Solving the relevant

form of the Master Equation

_ - d d2p*- (d * , 2 A2 -21
dr, [ dr~ i dr, / A2*

(5.6)

we obtain

,= 2 r2
2 -!r2
r* Ar-)] e-2

A2
Z

(5.7)

requiring that A,/A 2 < 1. We then determine the total magnetic surface function to

be
Ar .12 rAr 'V-o1

) = 7,(r,, f) + r,2 R0= N *e- + r, (5.8)

considering IN/Ar > 0o/R, we can represent the relevant magnetic surfaces by

r,e- + + cr. = constant (5.9)

where E = (COOAr/ONR) < 1.

The relevant magnetic surface and the density profile are as shown in figure 5-2.

29

ri , a . . . . . .



- 2
-4 -2 0 2 4

Figure 5-2: The contour plot shows the magnetic surface function and the single radial
ring is the density profile as a function of the radius for A2/A2 = 4/5 and E = 1/20.

We note that density profile in (5.7) corresponds to a single ring when

2 Ar
2< <1 (5.10)

3A2 -

We observe a pair of rings in the A2/A2 < 1 limit as shown in figure 5-1. Thus we

may also argue that the pair of rings collapse into one ring as the ratio A /A2 is

increased. Figure 5-3 shows the collapse of the pair of rings as the ratio A 2/A2 is

raised above the threshold 2/3.
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1.5

I.

0.5

4-2

Figure 5-3: Plot of density profiles for
and 1 correspond to A2/A2 ratios of 1,

2 4

different A /A ratios. f.(r.
4/5 and 1/2, respectively.

= 0) values of 2, 1.6
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Chapter 6

Conclusions

In this thesis we discuss and analyze the plasma configurations surrounding a com-

pact object. Working under the basic assumptions outlined in Chapter 1 we find

the relevant form of the Master Equation. We also find the restriction on finding

separable solutions that limit our ability to analytically solve for the plasma configu-

rations. We note the possibility of solitary plasma configurations that correspond to

plasma ring(s). This is nonetheless a very simplistic treatment of the plasma configu-

rations surrounding a compact object and the results obtained provide ample avenue

for further work. The following highlights possible questions for further investigation.

One problem for further consideration concerns the stability of these plasma con-

figurations and their evolutions into different axisymmetric or tridimensional config-

urations. In fact, the experimental observation of the so called Quasi Periodic Os-

cillators of X-ray emission, in one of the radiation emission regimes associated with

galactic black holes (Remillard and McClintock, 2006), indicates the need to include

non-axisymmetric configurations into the evolution of the relevant plasma structures

(Coppi and Rebusco, 2008).

Considering the axisymmetric configurations, we note certain restrictions on the

separability of solutions in the r - R and z variables, as shown in Chapter 4. This

suggests the need for computational efforts in studying these non-separable solutions

(Regev and Umurhan, 2008).

And finally, one of the key assumptions made in this analysis is the Maxwellian
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distribution of the phase space. This is a serious limitation considering the fact

that there are important radiation regimes associated with compact objects such as

galactic black holes, have been experimentally observed to be non-thermal (Remillard

and McClintock, 2003). This suggests the need to investigate non-thermal phase space

distributions.
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