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Abstract

Engineering change management (ECM) is an essential but challenging cross-functional
discipline within modern product development firms. ECM is best explained as a discipline
because no single process can characterize the complex interactions between stakeholders,
processes, information systems, knowledge management practices and cultural factors that
enable the control of technical design change. One major challenge to product
development projects is gaining actionable a priori insight into the risk of technical design
change in order to allocate resources to mitigate specific risks. This thesis employs
systems thinking skills to identify and analyze corresponding a priori factors within a
product development firm that designs large complex systems. A case study framework
provides qualitative ECM analysis from an enterprise perspective with supporting
empirical stakeholder interview data. Furthermore, the research design employs more
than 7,000 design defects from three large system development programs to experiment
with data-mining models for classifying and predicting technical defects. This research
reveals some ECM risk factors and corresponding enterprise policies in the context of
process, information, and stakeholder interactions. This study also offers both executable
and conceptual quantitative defect models that are appropriate for proactive risk
mitigation within specific ECM processes. Ultimately, this holistic analysis provides policy
recommendations for the selected enterprise, and identifies factors that have general
implications for contemporary industry.

Thesis Supervisor: Olivier L. de Weck

Title: Associate Professor of Aeronautics and Astronautics and Engineering
Systems
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List of Nomenclature and Acronyms

Change: A technical design change to a formally controlled product design document.

Change Factor: The average number of changes per design document required to bring a
design document into compliance with its design requirements inclusive of the full project
period of performance.

Change Notification (CN): Change Notifications or Engineering Change Notice (i.e. ECN); the
formal management document that Configuration Control Boards (CCB) use to initiate,
adjudicate, and approve formal changes to one or more product design document.

Change Propagation: The phenomena by which technical change in one design document
exhibits a causal relationship with a technical change in another design document.

Defect: Technical Design Defect that provides a reason for technical change.

NPI: New Product Introduction.

PDM System: Product Data Management IT application used to manage product
configurations within a product development process.

QDM: Quantitative Defect Management.

Release: The process of placing a design document under formal configuration control; all
subsequent changes require a Change Notification.
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1. Introduction

The study of design iteration is of great interest in contemporary product development.
While some iteration is necessary or acceptable within a new product development cycle,
significant or frequent unforeseen design challenges can significantly impact project
schedule and cost. These design iterations are driven by various factors that act as internal
or external influences on a design team. External influences may range from contractual
changes in scope from changing customer requirements to smaller redesign activities to
account for the obsolescence of parts, or changing suppliers for unique components.
Conversely, product development teams naturally have more control over internal
influences, such as the sequencing design tasks or organization of constituent project teams
to resolve cross-functional challenges that can drive design iteration. Challenging design
iterations often emerge at later development stages in the form of costly technical changes
that drive rework to the previously released design; this rework often propagates in the
form of additional technical change to interdependent component areas that exacerbates
program cost and schedule delays.

This research investigates common factors that contribute to hardware design iterations in
the context of engineering change management within a modern new product development
enterprise. Specifically, this research will focus on contextual social network and process
interactions, which contribute to the outline problem. In concert with the identification of
these factors, this research proposes concepts for data mining and the synchronization of
key processes to help mitigate the impact of unintended hardware design iteration.

The bulk of hardware design work products are usually completed and 'released' within a
relatively short period of time following the development. The Defense Acquisition System
outlines this process as leading to Critical Design Review (CDR), which is the major
program milestone that indicates when a conceived design is ready to move into
fabrication, assembly, and testing stage of development (DOD Instruction 5000.2, 2008).
As the primary work products of hardware engineering, hardware design documentation
(e.g. drawings, models, parts lists) also cue the procurement of supplier parts and
subcontracting of corresponding components. Consequently, hardware formal design
reviews often experience increasing schedule pressure leading up to a release schedule.

1.1 Motivation
Innovation in complex integrated systems require both a focus on continuous improvement
and the ability to manage the implementation of new process interactions and
management information systems. Late stage design iterations within complex integrated
system development can cause significant impact to the dimensions of program execution
known as the Iron Triangle (i.e. Cost, Schedule, and Scope). To control hardware detail
design and mitigate associated risk of technical change, IPTs employ various technical
management processes to synchronize development activity and support decision analysis.
Figure 1 illustrates the focus of this research in the context of major categories and
interactions associated with defense industry system technical processes. Figure 2
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illustrates a higher-level view of which technical management processes are focus areas for
this research. The primary motivation for this research is the application of ECM insight
for improved management of these processes and tools on future NPI projects.

Figure 1. Adapted from 2003 Model for DoD Systems Engineering (DAU, 2003). Research Focus for
Technical Management Processes within the System Engineering "V".

Research
Focus

FeTeam % sa

Figure 2. Adapted from 2003 Model for DoD Systems Engineering (DAU, 2003). Research Focus for
Technical Management Process Interactions.

14



This research also relates to my work experience in configuration management, where I
participated in numerous CM process initiatives and conducted ECM analysis across
numerous NPI projects. After working as a Hardware Configuration Management (CM) line
manager, I have detailed insight into technical management sub-processes that effect ECM,
and their dynamic interactions across different stages of development.

In the book True Change, Janice Klein describes the Outsider-Insider phenomena in the
context of organizations seeking innovative solutions that are tailored to organizational
needs. Her concept states that external change agents often fail to understand the daily
aspects of internal processes they are tasked to improve (Klein, 2004). Klein's research
offers that internal employees can often implement change more effectively, either by
acting as Insiders who look outside of the established business processes for new solutions,
or acting as Outsiders to the business process while still providing unique perspectives as
an internal employee (Klein, 2004).

1.2 Research Objectives and Thesis Questions
The first objective of this thesis is to identify factors that can contribute to technical change
activity, with a primary focus on hardware engineering processes within a new product
development enterprise. This research focused on aspects of hardware product
development processes and the social network layer that contribute to the creation of
corresponding design iterations on similar and complex electro-mechanical systems.

The second objective of this thesis is to develop an executable framework for mitigating
identified endogenous factors by taking proactive steps that can assist decision-makers at
the outset, or during the execution of, a product development program. While this research
includes system and software specific defect data, the primary focus is on the hardware
engineering processes within highly integrated product development programs.

Thesis Questions

Two primary research questions correspond to the hypothesis, and were investigated
through the analysis of an industry product development enterprise and selected program
technical change data. Several secondary questions were outlined by an iterative research
design, which will be addressed in subsequent chapters. The following primary research
questions support the hypothesis:

" What common qualitative factors contribute to unintended hardware technical
change activity in new product development enterprises?

* Can these qualitative insights be integrated with data mining models to develop
leading tactical measures for helping to mitigate hardware technical change?

15



1.3 Hypothesis
This research proposes that an emergent behavior may exist at the enterprise level with
regard to engineering change management, which is not identifiable within any single
process area. From a quantitative perspective, this research also proposes that current
defect containment data can be employed in data mining models to:

* Process defect data more efficiently by quickly identifying relationships in historical
defect data for engineering design teams and defect analysts, including the creation
of visualizations.

" Predict and target defects with a predictive defect mitigation framework, which
leverages historical defect data to create predictive defect models of configuration
items and corresponding leading metrics that design teams can employ in early
design stages of development stages to help mitigate future technical change.

" Employ engineer defect experience by quickly processing and visualizing existing
relationships in PDM data. This may assist engineering managers with staffing
policies, cue training, and enable user attributed checklists and cueing within PDM
workflows.

1.4 Overview of Remaining Chapters
Chapter 2 (Review of Literature) provides essential background information on key topics
that characterize engineering change management including configuration management
and related processes, domain interdependencies, and change propagation. This review
also provides a baseline understanding of analytical methods employed by this research
including enterprise architecture and data mining use of nonparametric models.

Chapter 3 (Research Design) explains the research theory and design, which describes the
methodical approach to analyzing the ECM enterprise, develops a holistic vision, and
evaluates the utility of data mining techniques.

Chapter 4 (Exploratory Case Study of a Hardware ECM Enterprise) characterizes the selected
ECM enterprise in the context of dominant view element interactions and capabilities. This
chapter serves as a preliminary study of the enterprise in order to identify key
relationships, which will be studied in greater detail in the subsequent descriptive case
study.

Chapter 5 (Descriptive Case Study of Enterprise Factors) provides analysis of stakeholder-
derived factors that contribute to technical change within the enterprise, and evaluates
them in the context of key view element interactions.

Chapter 6 (ECM Enterprise Holistic Vision) develops a strategic-level vision for the selected
ECM enterprise given findings from the descriptive case study.
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Chapter 7 (Exploration of Data Mining Models in the ECM Enterprise) follows the strategic
intent of the developed holistic vision by providing a more detailed investigation into the
utility of data mining techniques. This chapter demonstrates how NPI project defect data
was tested with selected data mining models, and provides requirements for their real
world employment.

Chapter 8 (Conclusions and Implication for Technical Management) provides a succinct
summary of findings, implications for technical management, and recommendations for
branches and sequels to this research.

2. Literature Review

2.1 Introduction
This thesis considers previous research related to ECM in the context of design iteration
across stages of new product introduction (NPI) projects, relevant design processes,
quantitative defect management (QDM) techniques, and product data management (PDM)
systems. In addition, selected enterprise architecture and data mining techniques are
reviewed to provide both holistic and detailed techniques for analyzing NPI projects.
Ultimately, this review provides a baseline understanding of previous related research and
analytical methods that will enable a thorough investigation of hardware ECM within a
modern NPI firm.

2.2 Engineering Change Management
Engineering Change Management (ECM) is a holistic term that refers to the collection of
engineering change processes and technical management processes that enable effective
management of design changes from a product configuration baseline and through that
product's lifecycle. However, a review of ECM literature indicates the dynamics of ECM are
generally not well understood (Wright, 1997; Jarrett, 2005). In Wright's (1997) review of
more than 15 years of ECM research, he found that most previous ECM research addressed
engineering change from a manufacturing perspective, where the discipline dealt with
correcting incomplete design actions during production. A notable exception was
Reidelbach (1995), who provided more forward looking observations by outlining steps for
assessing the impact of proposed engineering changes, and observed that firms with long
development cycles were at greater risk for experiencing uncontrolled technical change
than firms with very fast clock speed (Wright, 1997). This is particularly relevant for the
long lead development of integrated combat systems, which entail complex system and
subsystem interactions with large bills of material (BOMs) that mature over several years.
Later, Jarret et al provided more detailed review of the change process within a company,
and expanded the scope of research into the phenomena of change propagation.

An underlying premise of this research is that effective and efficient ECM requires not only
rigid configuration control processes, but more active synchronization of key stakeholders
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and processes to mitigate the impacts of technical change. This relates to two unresolved
research questions posed by Wright's ECM research (1997):

" What are the characteristics of activities and communication channels in an effective
ECM control system?

" What are effective and efficient ECM processes, and can these be defined by a type-
specific or generic basis?

2.3 Product Design Iteration: Domain Interdependencies
This section reviews the concept of design iteration in the context of methods that analyze
quantitative or qualitative interdependencies within NPI projects. While the specific
techniques are not employed by this thesis, they do provide fundamental explanation and
visualization into the general phenomena. These techniques were also employed by
referenced change propagation research, which is evaluated by later ECM enterprise
analysis.

Design iterations may result from a variety of new issues that emerge throughout the
system engineering process including adjustments to incomplete or misunderstood
requirements, simple errors in component design and testing, obsolescence or
manufacturability of parts, or complex component interactions between subsystems that
produce the need for technical change. While some iteration naturally facilitates
experimentation, learning, and improvement of a product, there is a tipping point where
the number of rework tasks drives excessive cost and schedule (Eppinger, 2001).
Consequently, project management may look to sequence larger design tasks and assess
tradeoffs to reduce the risk of design iterations, while anticipating some schedule slack and
budget expenditures to resolve some level of expected iteration.

One established method for understanding and planning for product iterations is the
Design Structure Matrix (DSM) (Eppinger, 2012). Figure 3 shows how DSM represents
dependencies (sequential, parallel or coupled) within a single domain (e.g. tasks or people).
In this example, DSM enables the sequencing or repartitioning of project tasks to help
manage feedback loops between tasks that can cause design iteration (Ulrich, 2012).
Eppinger and Smith also leveraged DSM to develop the Work Transformation Matrix
(WTM) to help optimize time and design quality through a "decoupling strategy", and later
used the DSM to develop a higher level predictive model for design iterations (Smith, 1992;
Smith, 2007).
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Figure 3. Notional Product Development Project translated into Design Structure Matrix (DSM).

Danilovic and Browning (2007) later developed the Domain Mapping Matrices (DMM) as an
adaptation of a DSM to model two different domains. This method "enlightening inter-
domain representations" that can identify previously unknown relationships. DMM
analysis provides several benefits for project decision-makers including traceability of
cross-domain constraints, synchronization of cross-domain decision-making, and
integration of a new domain into an existing project (Danilovic and Browning, 2007).

More recently, Bartolomei developed the Engineering Systems Multiple-Domain Matrix
(ES-MDM) to provide a conceptual framework for modeling large-scale complex systems
(Bartolomei et al, 2012). By integrating the primary domains of a socio-technical system
into a matrix, the ES-MSM method enables both technical and management practitioners to
visually represent complex cross-domain relationships (Bartolomei et al, 2012). This
method is a novel way of conceptualizing engineering systems, where the different
domains of system complexity can be organized to help practitioners develop a common-
mental model of an internal and external enterprise landscape. Comparison of matrices
overtime can also shed light on the state of enterprise transformations.

One specific inter-domain aspect of interest is the analysis of coordination-type
communication in NPI projects. Research into NPI organizations has indicated that bi-
directional information transfer between upstream and downstream processes dominates
instances of unidirectional information transfers in either direction (Morelli et al, 1995).
This research lends credence to the importance of interdependent communication linkages,
and especially information feedback from downstream back to upstream development
processes (Morelli et al, 1995). Other research led to the development of the alignment
matrix method for identifying misalignment between design interfaces and design team
interactions (Sosa et al, 2007). Sosa, Eppinger, and Rowles (2007) established a method by
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which design interactions were quantified in a simple design interface matrix, and then
compared to an independently developed team interaction matrix to create the alignment
matrix. This alignment matrix described where an organization is exposed to risk of
communication failures, and identified how system architectural changes, team
organizational changes, or planned lines of communication could mitigate that risk. In
addition to identifying that such misalignments were not random during industry research,
Sosa, Eppinger, and Rowles (2007) found that specific types of product interface attributes
complicated interactions and could be accounted for my program management.

2.4 Engineering Configuration Management
The modern configuration management (CM) discipline began in the 1950s during the
development of tactical and strategic ballistic missiles. It was found that design
configurations of successful prototype missiles were not adequately documented; this often
led to incomplete designs that could not adequately support the mass-production of
reliable missiles. Consequently, early standardization of CM practices led to the wide scale
use of a military CM standard (MIL-STD-973), which was the basis for the current industry
CM standard (G/EIA-649B). G/EIA-649B defines CM as a lifecycle process that "maintains
consistency of a product's attributes with its requirements and product configuration
information". Figure 4 illustrates the five required processes for executing effective
configuration management:

" Configuration Planning and Direction: How CM functions are synchronized.

* Configuration Identification: What configuration items (CI) are under CM control.
Generally, if a component is going into production, it is a CI or a component of a CI.
Often, the contract drives the level to which CIs are specifically identified.

" Configuration Status Accounting (CSA): How configuration information is controlled.
Generally, CSA functions use the PDM system as an IT solution.

" Change Management (aka Configuration Control): How changes to CIs are managed.
Generally, the program Configuration Control Board (CCB) is responsible for
managing these configuration changes.

* Configuration Verification & Audits: How physical product is verified in comparison
to its approved design configuration.
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Figure 4. CM processes and interactions with this research.

In the context of modern NPI projects, CM is a key technical management process that
provides program managers with adequate linkages to the engineering process and
controls over the design. Specifically, CM provides formal control over the design
configuration, and its constituent work products, as they develop from an initial baseline to
a mature design that can enter integration, testing, and manufacturing stages (Wright,
1997). Every component, subsystem, or higher-level system is documented to describe the
'form, fit, and function' of its design, and how they are aggregated to the highest level of the
product. The CM configuration control process then facilitates the control of design
changes on change notifications (CN), which record why and how a design document is
being changed from its baseline configuration (i.e. the first version put under CM control).
CNs are controlled by at least one product data management (PDM) system, which is the
primary IT tool for tracking how the structure of design documents aggregate to represent
components of higher level systems. Tracking how design configurations (i.e. the structure
of documents) dynamically change can be particularly complex. A useful analogy is
thinking of the baseline design configuration (i.e. the structure of design documents) as the"root" of a tree, after which design changes spawn divergent branches that end at the most
current design descriptions, otherwise referred to as "branch tips" (Krishnamurthy, 1995).

Throughout the performance of an NPI project, there are also identifiable clusters of design
change activity as reported by Eckert; smaller ripples and larger blossoms refer to the
varying magnitudes of change activity (Eckert et al (2004). Often these patterns emerge
from specific events or stages of the Integrated Product Development Process (IPDP).
Ripples may occur following the initial release of a configuration baseline, after which
design defects are formally resolved and corrected as changes. Also, specific events like the
integrated testing of a particular subsystem or obsolescence of key component may drive
more significant change activity. Figure 5 illustrates change patterns and evolving
configuration baselines in comparison to the common IPDP.
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Figure 5. Change Patterns and Configuration Baselines in context of an IPDS.

2.5 Quantitative Defect Management (QDM)
One form of design change analysis is called Quantitative Defect Management (QDM). In
the context of design iteration, QDM employs analysis of defects in development stages
after the stage when their parent design document was originally released. This common

industry method aligns processes and tools to capture categorical and continuous defect
attributes from approved CNs to enable later statistical analysis and lessons learned.

QDM processes employ existing configuration control processes to explain the documented
"reason for change" on each CN in terms of subordinate defects for each design document

being changed. This research uses the term 'defect' to broadly describe an error that is

causing its parent design document to not satisfy a design requirement. While the term

may be construed as describing only a design mistake, in the context of this research,

defects include all unintentional design errors (i.e. mistakes) and intentional development
actions that only later are discovered to be deviating from defined system requirements

(which may themselves be incomplete). Therefore, the term defect captures all mistakes
that a designer should have known about, and the development actions that were

unforeseen. Unique classes of attributes then describe each defect via temporal,
qualitative, and quantitative measures. These attributes also indicate the dynamics of

when the defect was identified with respect to specific system waterfall stages. Figure 6
illustrates this basic process.
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Figure 6. Basic Configuration Control Process employing PDM System and Quantitative Defects
Identification.

QDM analysis is usually framed in the context of higher-level stages in the system
engineering waterfall process. Defects that are identified later than the stage of original
document release are considered uncontained defects, which are more strongly correlated
to costly rework tasks later in a project.

Figure 7 illustrates a defect containment matrix for a notional software program, which
segregates the document origination stage from the stage in which a defect was detected;
defects identified below the gray diagonal indicate uncontained defects (Campo, 2007).
For example, in the upper left corner of the matrix, we see that a large number of Advanced
Design document defects (i.e. 950) were detected in the Preliminary Design Stage, which
followed the Requirements Stage where those documents were originally released. Defect
containment matrices are useful for posteriori tracking of program performance, which
may cue project managers to conduct more detailed root cause analysis within those stages
take corrective actions.

Stage Detected Sta Orignated
Advanced Desi reliminary Desi Detail Design lV&V Manufacturing Operations Total

Advanced Design 1000 1000
Preliminary Design 950 13502300
Detail Design 725 1250 18503825
IV&V 550 720 1050 80 2400
Manufacturing 220 250 320 45 so 885
Operations 0 56 5 5 31
Total 3445 3575 3226 130 55 10 10441

Figure 7. Notional Defect Containment Matrix within IPDS.

2.6 Change Propagation: The Phenomena of Systemic Technical Change
Assessing the full impact of a proposed design change is the primary challenge for all
stakeholders within an ECM enterprise. Change Propagation (CP) is a condition where one
design change drives further need for change in the technical design of interconnected
components (i.e. physical or functional) or the administrative attributes of design
documents (i.e. nomenclature, UID codes, part numbers, etc). Consequently, CP is a result
of change impact not being fully understood before implementation. Interestingly, military
and industry CM standards do not discuss this phenomena, or the processes and data
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management techniques that are necessary to identify and track such conditions.
However, research has observed and analyzed the phenomena across different industries
and NPI projects. Jarret el al (2005, p. 9) proposed four reasons for why change
propagation can occur:

" "oversight" of known system component connectivity.

" "lack of systems knowledge" with regard to component interconnectivity with other
systems components.

" "communication failure" across interdependent design activities on the same
component.

" "emergent properties of complex systems" due to non-linear interactions like
mechanical vibration.

Research conducted by Monica Giffin (2007) on Change Propagation in Large Technical
Systems, and by Michael Pasqual (2010) on a Multilayer Network Modeling of Change
Propagation for Engineering Change Management. Giffin (2007) and Pasqual (2011)
provided innovative and invaluable insight via the empirical analysis of relationships
between design change documents (similar to CNs) at the endogenous change-network and
social-network layers within a single program. Giffin (2007) relied on parent-child
relationships, where a change document exhibited a causal relationship with subsequent
change document; and sibling relationships, where two change documents, where linked to
prior parent document, as the fundamental CP network connections.

Giffin's (2007) innovative use of DSM to model change propagation corroborated previous
research by Jarrett et al (2005), which indicated that few design changes actually led to
follow-on change propagation. Interestingly, Giffin's network CP analysis also confirmed
previous research by Eckert et al (2004) by identifying that some components exhibited
identifiable propagation behavior with how they interacted with other system components;
individual subsystem behavior was then expressed with one of three metrics including
Change Acceptance Index (CAI), Change Reflection Index (CRI), or Change Propagation
Index (CPI). For example, some components acted as "multipliers" of change, by
propagating changes to multiple other components within the system (Eckert et al., 2004).

Pasqual later leveraged Giffin's data to analyze the social-network implications of CP and
develop a holistic Multilayer Network Model for Change Propagation across the social-
network layer, change-network layer, and product layer (2011). His study included the
development of metrics that identified how individual engineers contributed to overall
technical change within the system.
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2.7 Enterprise Architecture (EA)
The growing complexity of socio-technical challenges in modern business have led
decision-makers to consider more holistic views and systems thinking (Nightingale, 2004).
Legacy views of companies as machines have been replaced by the view of companies as
organisms, which are more interconnected within larger business ecosystems (Nisbet,
2009). This paradigm recognizes that enterprises exhibit unique higher-level system
properties, "soft properties", and behaviors that emerge from the interactions between
enterprise elements and stakeholders (Nightingale, 2004). Enterprise Architecting (EA) is
one such strategic approach for using systems architecting principles to analyze business
enterprises as complex systems. EA employs management science and engineering
systems principles to provide a suite of visualization and analytical techniques that
characterize enterprise landscapes in the context of eight enterprise views elements,
enterprise stakeholders, and the business ecosystem that enterprise operates within
(Nightingale, 2012). With an understanding of the existing enterprise, decision-makers can
leverage the approach to understand potential misalignments and generate
transformational concepts and plans for future (Nightingale & Rhodes, 2012). Figure 8
illustrates the ten EA view elements that are used to frame the internal and external
influences of an enterprise. Figure 9 provides a notional enterprise example where key
element interactions function to achieve a market imperative.

Figure 8. Adapted from MIT ESD38 Lecture 1 (Nightingale & Rhodes, 2012). Ten Enterprise
Architecting (EA) Elements: Characterizing the Internal Landscape and External Ecosystem.
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Figure 9. Ten Enterprise Architecting (EA) Elements: Example of Reducing Time to Market Imperative
(Nightingale & Rhodes, 2012).

EA employs different techniques to capturing the current state of the enterprise and
checking alignment between elements and stakeholders. These may include:

" Stakeholder Value Comparisons and Exchanges
" Stakeholder Salience Venn Diagrams
" Element or Stakeholder Network Diagrams
" Interviews to identify emergent enterprise capabilities and "soft properties"
" X-matrix comparison of strategic objectives, stakeholder values, key processes, and

metrics
" Statistical graphics and visualization

2.8 The Process of Data Mining for Business Intelligence
In the current age of 'Big Data', more business are measuring and recording parametric
data from key business processes. As more processes and interactions are recorded in
databases, there is substantial opportunity for mining those large and varied datasets for
business intelligence. One method for leveraging key relationships from the wealth of
information in these data sets is the use of models. We know from basic psychology that
even the most disciplined professionals can exhibit inconsistent and opinion-based
decision-making, or are subject to emotional bias or fatigue. However, with the use of
appropriate data and human expertise, data driven models can quickly and consistently
identify key relationships that can provide a competitive edge over conventional unassisted
decision-making (Bertimas et al, 2012).
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This research recognizes that sophisticated PDM systems have enabled engineering firms
to aggregate 'data warehouses' with parameterized engineering data from NPI projects.
Data mining is a technique that can be used to explore data and build predictive models to
support a decision-making task. The process leads to the identification of patterns and
relationships between relevant variables, and then models those features in a way than be
generalized in comparison to new data. Fundamentally, data mining seeks to accomplish
the following (Nisbet, p.34):

* Improving the understanding of data by revealing previously unknown
relationships.

" Developing models that predict or forecast events, which support alternative
decision-making.

Classification versus Prediction

Classification is the process of grouping data into categories of variables (Nisbet, p.235).
Prediction is the process of identifying variables within the input data that are good
predictors of a specific target variable (Nisbet, p.50). The difference between the two can
be subtle; for instance, if a decision tree is built with a sample dataset to find groupings of
data (i.e. classifiers), then this is a case of classification. However, if that same model is
then tested against a new dataset to find unknown groupings within that new data, then
that model is being used for prediction. However, some texts use the classification
nomenclature when using categorical data, and prediction when using numerical data
(Shmueli, p.13).

Data Mining Heuristics

When considering models, it is important to consider common heuristics that govern good
modeling practices and identify boundaries (i.e. confidence levels) for models and their
deployed applications. Just as a book is sometimes judged by its cover, novice model users
sometimes misinterpret models as representing truth or believe in the best model; but the
value of models should instead be measured by what indicators or features they can
accurately represent (Nisbet, 2009). This cautionary heuristic is important for both
modelers and subsequent consumers of model analysis, who should understand that
application boundaries of a model are just as important as where a model succeeds to
convey useful relationships (Nisbet, 2009). This is particularly important when we
consider that models (especially non-linear ones) perform poorly when applied outside the
bounds of known data from which they were built (Nisbet, p. 774).

Another heuristic is explained by Occam's Razor, which in the context of models, explains
that when two methods produce similar results, the simpler of the two is best. This simple
rule prescribes two important lessons. The first is best explained by the famous
statistician, Leo Breiman, who expanded on Occam's concept by comparing model
simplicity versus accuracy (Briemen, 2001). Breiman describes that simplicity provides for
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interpretability of model function, accuracy, and limitations; but often this interpretability
comes at a cost to predictive accuracy (Breimen, 2001). Secondly, Occam's Razor also
relates to the generalization of a model. The value of a model is derived from its ability to
provide accurate results (i.e. generalize) when applied to various new sources of data. In
data mining, each additional explanatory variable used to build the model will also
introduce a new dimension for the model to emulate. Consequently, if a model is overfit to
the unique features of the dataset it was built upon, then that model is likely to perform
poorly (and not generalize) when analyzing new data in the future. This trade-off between
the inclusion of variables and model generalization is referred to as the 'curse of
dimensionality' (Schmueli, p.145).

Another important heuristic deals with predictive models and understanding when input
could be "accepting leaks from the future" (Nisbet, p.741). Modern product data
management systems hold tremendous amounts of technical and managerial data, but
often do not easily parse what relationships were known at the time (Nisbet, p.743).
Consequently, it is not uncommon for retrospective analysis of data to lead to building a
model that can only work with knowledge of the future. Conversely, project failures or
those that are prematurely cancelled naturally result in lack of documentation, since
businesses want to cease unprofitable or then unfunded activities as fast as possible. This
is not uncommon in NPI projects, and can introduce "survivor bias" into historical studies
of current NPI projects. This heuristic raises the importance of data preparation for
understanding key relationships or holes in historical data, which may require consultation
with subject matter experts.

Initial Data Selection and Exploration

This process starts with a clear understanding of the question(s) that is driving the data
mining effort. In the context of this research, data mining analysis was used to understand
the patterns of uncontained defects in similar NPI programs, and determine if that data can
lead the creation of basic and useful explanatory or predictive models for engineering
processes. This process started with the aforementioned initial selection of variables that
were available and related to technical defects, as well as initial processing to support
subsequent data exploration. The key tools that enable data exploration are descriptions
and visualizations, which may include descriptive statistics, correlations, and various forms
of graphical data plots. The focus of this activity is to understand the multi-dimensional
sample space that is represented by a multivariate data set, and identifying high-order
features that are unique to that sample space (Elder, p.745).

Data Preparation and Reduction

Data exploration supports the identification of interesting data features to use in a model,
while at the same time identifying which characteristics are the most important
relationships. Understanding these opportunities within the data enables data
preparation, variable selection and dimension reduction, which all support more accurate
and deployable models. For example, if a model used two or more variables that described
the same features within a data set, the modeling algorithm may over-fit the outcome to
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that specific feature. This example of variable redundancy should be avoided, because it
reduces model effectiveness and generalization to new data sets that may not exhibit those
same features.

When preparing data, it is important to use only those variables that are absolutely
necessary to characterize the important relationships. In this way, Occam's Razor
articulates a fundamental heuristic of simplicity when architecting models. But when
evaluating and designing solutions to complex problems, it can be a challenge to determine
in which dimensions simplicity is most valuable. In the context of data mining, Occam's
heuristic relates to the principle of parsimony, which generally explains that simplicity is a
desired characteristic of models because the N independent variables governs an N-
dimensional solution space for a model. Consequently, more effective models reduce the
number of input variables to the fewest number that are necessary to explain the variation
and features within the data set.

Building, Evaluating, and Deploying Models

The process then considers various techniques to build and validate models, followed by
the selection of the best model based on evaluated model performance. Finally, the
selected model can be deployed to support the decision-making.

Multi-Layer Perceptron (MLP) Neural Nets

Neural nets were named after the human neuron because they were perceived to learn
through algorithmically across various nodes in a similar fashion to interactions between
neurons. Modern neural nets use an aggregation processes that sums input variables
combined with an activation process that employs a linear or logistic function to reach an
output node (Nisbet, p.129). As seen in Figure 10, these functions forward propagate
through an architecture of nodes to achieve a desired final target node. One common way
of improving the performance of neural nets is employing back-propagation, which
changes the weighting of a misclassified outputs and iterates to improve the performance
of only those functions that had performed poorly (Nisbet, p.131). Consequently, neural
nets can be very flexible and improve the fit of the model to the data; this form of neural net
is called afeedforward neural net with back-propagation (Nisbet, p.131).

29



Input
Layer

Middle
Layer

Feed-Forward
Processes

Output

Back-propagation
Function

Node

Figure 10. Example of a feed-forward with back-propagation neural net architecture.

Classification & Regression Trees (CART)

Classification & Regression Trees is a fundamental modeling method that produces easily
interpreted visualizations of the model construction; they are similar in appearance and
function to common binary decision-trees. The algorithm uses recursive partitioning to
separate an N-dimensional space of the input data into "non-overlapping multidimensional
rectangles"; recursive means that one partition (i.e. decision-node) is dependent on
previous partitions and continues to produce branches until a terminal 'leaf is reached
(Schmueli, 166).

After the algorithm develops the full tree, it is important to prune away unnecessary tree
branches to prevent over-fitting of the tree model to the training data; this is another way
to preserve the ability of the model to generalize to new data. Pruning is done by selecting
tree decision nodes and cutting away successive terminal 'leafs' to essentially make a
decision-node into a terminal 'leaf node (Schmueli, 180). The algorithm then determines
measures the effect of the pruning on model accuracy to determine if that branch is
necessary to retain. This process is done successively to find the most efficient CART
model.

Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines are similar to regressions trees, where the
algorithm uses smooth basis functions (instead of branches) to fit the model to regions of
the input data. The method is also useful for feature selection in the data because it
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selected basis functions according to their contribution to an accurate output (Nisbet, 82).
In this research it was used for classification with multiple response variables.

Ensemble Modeling and Boosted Trees

One of the best modeling techniques is to use groups of models to overcome the
shortcomings any one particular model. Known as ensemble modeling, this technique
requires that models be somehow joined to produce a composite response that is generally
better than any one of the constituent models (Nisbet, p.304), provided these model are
generally accurate and provide some varied behavior. Figure 18 illustrates how increasing
the number of component models within an ensemble can increase model performance.

There are several ensemble methods that can improve the performance of the models, or
assist in the estimating of their accuracy. Boosting is a method that runs multiple testing
iterations on a model, where successive tests are focused (i.e. weighted) on poor
performing variables during initial model training. A very successful and flexible
implementation of this method is the Boosted Tree (Nisbet, p.249). Another method
associated with CART models is called Random Forests, where many classification trees are
run nearly simultaneously with pruning, and then the model with the most reoccurring
successful output (i.e. majority wins) are selected for use (Nisbet, p.248). Finally, cross-
validation sampling of validation can improve model performance by first dividing the
testing data into several parts, followed by each part being independently used to the test
model against the remaining parts (Nisbet, p.307). This research employed Boosted Trees
as the preferred ensemble method.

Figure 11 illustrates ensemble formulas for a notional ensemble of a support vector
machine, multi-variate adaptive regression spline, and a neural network.

1. Ensemble Example = (CART + MARS + NN)
3

2. Ensemble Variance = (CART - Ensemble)
2 +(MARS - Ensemble)

2 +(NN - Ensemble)
2

3

Given:
CART = Classification and Regressions Tree
MARS = Individual Response of MARSplines Model
NN = Individual Response of Neural Network Model
Ensemble = Individual Response of the Ensemble of Component Models

Figure 11. Equations for (1) Linear Average of Response Ensemble and (2) Ensemble Variance.

2.9 Linking Literature to Research Design
This research has provided a baseline understanding of engineering change management
and related concepts, processes, and techniques that characterize contemporary NPI
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project environments. In addition, this review described fundamental analytical methods
that will enable both holistic enterprise analysis and detailed modeling of design defects.
In the following chapters, we will review the research design that will methodically employ
this knowledge to forward ECM research and propose both enterprise specific and general
measures for controlling technical change.

3. Research Design

3.1 Introduction
The literature review provided some insight into previous research, and common
standards, in addition to significant discussion into the general subject of engineering
change management during new development of complex technical systems. This research
design seeks to analyze the efficacy of the proposed hypothetical framework by
characterizing the salient elements of the selected enterprise, collecting relevant
qualitative and quantitative data, and applying analytical techniques to support the
evaluation.

3.2 Theory and Research Design
This research process starts with the definition of a theory, which provides the lens
through which the research design is developed. This case study framework will attempt
to show important systematic factors at the process and social levels of new product
development that complicate the management of hardware technical change; this research
will also show alignment opportunities between engineering change management practices
with PDM systems that can help mitigate identified factors. This underlying research
theory identifies important research focus and boundaries for both planning and allocation
of research resources. In addition, this theory provides some measure of generalization of
conclusions to other real-world examples, which is ultimately the purpose of pragmatic
research rather than focusing on unique outlying cases (Yin, 1993, p.6).

3.3 A Framework using Case Study Method
The first role of research design is to define a sufficient plan for collecting appropriate
evidence, which can be analyzed to resolve corresponding research questions. The second
role of the research design is to define strategies that provide fidelity to resulting
conclusions, and address rival theories that could provide alternative explanations (Yin,
1993, p.45). This research design considered the theory from holistic perspective, which
considered that quantitative data from specific programs cannot be appropriately analyzed
or applied without first understanding the socio-technical aspects of the selected
enterprise. This assumption led to the design of an iterative framework, which integrates a
series of two single-case studies to answer different sets of questions, which will provide
relevant evidence to the analysis of the proposed hypothesis and thesis questions. The first
exploratory set of questions sought to identify relevant program roles and technical change
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processes within the selected enterprise. The exploratory set of questions was then used
to select and adjust a second set of questions, which informed the execution of stakeholder
interviews. The case study method was chosen to support the investigation of a
contemporary phenomenon in the context of modern design practices, and to logically
support resulting theoretical discussion (Yin, 2003).

Figure 12 illustrates how the research design employs qualitative stakeholder interview
data and quantitative program technical data to logically support thesis development,
answer the defined research objective, and test the efficacy of the hypothetical proposition
(de Neufville and Field, 2010).

Exploratory
Case Study:

SpFd PDt4Wiu

Descriptive Case Study Holistic Vision

Understand the Stakeholder Enterprise Hlistic Vision Concept K Insights&
Enterprise Analysis Characterization Generation Concepts

Iing(14) g Iarufuv 1 TedsmEpe e FA Teniqe } Conclusions
r ec tnhque I

Program Data MDevelopment & MoExploration Evaluation of Models Models

DIiotahwo VnA"N6h
Techauqwe Tot"niqu

Figure 12. Research Design Diagram: Process, Methods, and Techniques.

Figure 13 illustrates the research design in the context of an enterprise architecting
sequencing model (Nightingale, 2012). Consistent with the aforementioned theory, this
research investigates the enterprise, develops a holistic vision from identified
opportunities, and generates supporting concepts. Full development and validation of
these concepts, and a full transformational plan is outside of the scope of this research.
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Figure 13. Adapted from MIT ESD38 Lecture 5 (Nightingale, 2012). Enterprise Architecting Sequence
Model.

Exploratory Case Study

The first case study was an exploratory case study, which was used to understand relevant
elements of the selected enterprise in the context of the research theory; these enterprise
elements are the focus of this case, and therefore function as the unit of analysis. The
exploratory case uses what Yin refers to as special pilot protocol to resolve uncertainty
about how the research should proceed towards the subsequent 'real case study'(Yin, 1993,
p.6); this study seeks to identify which specific enterprise aspects are most likely to have a
causal impact on hardware technical change. Consequently, the primary unit of analysis for
the exploratory case are the relevant enterprise elements, attributes, and qualities. The
exploratory study functions only as a prelude to the 'real case study', which must gather
new data for follow-on analysis.

Supporting Enterprise Architecture Analysis

Enterprise Architecting (EA) was the primary analytical technique for framing and
evaluating the ECM enterprise. This technique is useful because it provides holistic
analysis of the enterprise, while also enabling one to zoom into specific elements and their
attributes. EA techniques also help to identify potential discontinuities between strategy
and underlying relationships within the enterprise, which provide contextual
understanding of the "as-is" architecture. These more subtle but significant process and
organizational relationships are particularly important when identifying the boundaries of
ECM stakeholder selection. The ECM enterprise may vary significantly between different
firms because the underlying responsibility areas cross several functions and involve both
technical and managerial oversight. Consequently, EA analysis not only served to guide
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this exploratory study, but also identified boundary conditions that support or refute
generalization of findings.

Descriptive Case Study

Following the resolution of exploratory questions, a second set of relevant questions were
modified to frame a descriptive case study that gathered new information. Yin's research
indicates this is a critical step to preventing bias via "slippage from the exploratory stage
into the actual case study"(Yin, 1993, p. 6). The primary unit of analysis for the descriptive
case are the representative stakeholders, who can share their perspectives on social and
process factors that either mitigate or exacerbate hardware technical change in the context
of previously studied enterprise elements.

The descriptive case study also informed the selection of comparable new product
development programs, which represent complex integrated system development within
the current enterprise. In the context of this research, the key attributes of a design change
are the individual technical defects that correspond to a particular engineering design
document. Each of these technical design defects have their own attributes, which describe
how the defect relates to the associated design document, the cause of the defect, and the
time dimension of when the defect was originated and later identified. This research
isolates these defect attributes as a secondary unit of analysis, which includes isolation and
statistical analysis of common trends for the purposes of building data mining classification
or prediction models.

Supporting Enterprise Architecting and Data Mining Analysis

Following the exploratory case study and the identification of relevant factors from the
stakeholder analysis, enterprise architecting analysis was used to holistically evaluate
stakeholder empirical data and characterize the "as-is" enterprise. This characterization
enables analysis of important interactions and supports the identification of opportunities
at the social-network and change-network layers within the ECM enterprise. To support
the analysis of enterprise view elements, this study also employed data mining techniques
to explore the dynamics of associated technical defect activity in NPI projects.

Developing a Holistic Vision for the ECM Enterprise

This research design employs the opportunity identified during the descriptive case study
to generate a holistic vision for the future hardware ECM enterprise. This vision provided
context for subsequent recommendations that addressed stakeholders roles and
incentives, sub-process interactions and policy friction.

Exploration of Data Mining Models in the ECM Enterprise

Data mining models were explored to test the underlying theory that such techniques are
of value to the specific enterprise and the general employment of ECM. The data mining
process was then used to analyze program defect attributes with a focus on supervised
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classification techniques. This lead to the careful selection of comparable programs, which
were representative of common enterprise NPI projects. Even within the same enterprise,
different programs may experience unique contractual requirements and pressures that
impact detail design change, particularly at the social network layer (i.e. social network
relationships with suppliers and customers interactions) and the product layer (i.e. unique
design and documentation requirements). Consequently, the comparison of 'apples with
apples' required similarity in the context of common project constraints projects. This was
achievable by selecting programs with the following dimensions of comparison:

Product Focus on new products under the similar dimensions of commodity type, program
schedule, and complexity.

" NPI through First Article Build: New product development projects may employ
varying amount of design reuse from other contracts. The selected programs were
new product development from system design to the production and delivery of the
first article, with similar amounts of design reuse within the sensor components.

" Commodity Type: While all selected programs were employed with different
concepts of operations (CONOPS), they technologically were similar sensor systems
in both scale and design.

* Complexity: All selected programs had comparably sized technical data packages
and numbers of integrated subsystems.

Enterprise Elements Focus on programs that operate within a similar enterprise landscape
and under similar constraints.

* CM Constraints: The project CM plan will determine how CCB and engineering
resources are dynamically applied to control technical documentation in different
phases of development. One CM Plan does not fit all programs, and is both customer
and product specific. The selected programs had similar CM processes and
planning.

" Team Organization: A smaller and internal IPT organizations that employs agile
techniques may have better leverage to control technical change than larger project
that is reliant on coordination with major subcontractors. The selected programs
had similar size program teams without major subcontractors.

* Customer Requirements: Significant differences in customer requirements, design or
testing standards and directly impact CM scope on different contracts. The selected
programs were working for a similar customers in the defense industry, who
employed the similar contractual standards.

Introduction to Product Development Program Data
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Three datasets were analyzed from similar development programs of large sensor systems,
which included complete development from system design to product baseline of the first
article. Each program was described by between 3000-7000 technical defects that were
subordinate to higher level approved Change Notifications. Defects represented system,
software, and hardware component defects that were captured over 6-7 years
development periods of performance. Additionally, there was an associated originator for
each technical defect, since each technical defect corresponds to a parent approved CN.
Each program defect dataset included more than 100 originating engineers, which enabled
the analysis of the experience distribution via initial data exploration. From this
distribution, three engineers were chosen for more detailed analysis based on the
statistically significant number of defect records they authored (i.e. n>10m; where n= # of
records, and m = # of explanatory variables).

Initial Selection of Explanatory Variables

At the outset, the selection of variables was limited to basic defect attributes and
relationships to program development stages. The following predictors were selected from
readily available continuous and categorical attributes that were associated with each
defect. Data was retrieved from data base reports for each program, with individual
defects being described by a small but relevant set of independent variables. Later
chapters will discuss the methods used to further reduce these variables for model
building.

* Date of Change (Time Series): This variable represents the date that the associated
CN was formally approved, and was necessary to support unstructured learning and
data mining of the defect profile. Because we are not interested in modeling the
specific defect instances, the time variable is not included in the predictive defect
model or engineer classification models. These dates have significant null time
periods between them.

* Defect Code A (Categorical: Nominal Discrete Qualitative): This variable represents
the general engineering function of the Design Document, which is exhibiting the
given defect. Defect Code A can be thought of as a general category for how the
document is being used. This Defect Code A is somewhat correlated to the actual
document type (e.g. assembly drawing, system spec, software spec, printed wiring
board), which was not analyzed in this project.

* Defect Code B (Categorical: Nominal Discrete Qualitative): This variable represents
the specific error that the document is exhibiting. While not specifically tied to a
document type (e.g. Parametric Model, Printed Wiring Board, Specification, etc.),
Defect Code B is strongly correlated to the actual document type. Document Type
was not analyzed in this project.

* Stage (or Stage) that Document was Originated (Categorical: Discrete Ordinal): This
variable defines the stage in which the associated TDP Document is first released.
These stages align with common defense industry stages for integrated product

37



development. These include Advanced Design, Preliminary Design, Detailed Design;
Fabrication, Assembly and Test (FAT), or Operations.

* Stage (or Stage) When Defect is Detected (Categorical: Discrete Ordinal): Using the
same values as Stage that Document was Originated, this variable defines the stage
in which the defect was formally identified and adjudicated by the program CCB.
Consequently, the Stage Detected will always follow the Stage Originated.

* Stage Characteristic of Defect (Categorical: Discrete Ordinal): This variable indicates
if a defect was Contained (C) within the stage that the described TDP Document was
released. If the defect was identified in a later stage, then the defect was considered
Uncontained (U).

* Priority of Defect (Categorical: Discrete Ordinal): This variable rated the defect
priorities #1-6, where #1 Priority Defects have the highest priority. In this analysis,
priority is broadly defined as the significance of resolving the given defect in light of
conformance to product requirements, and program cost and schedule.

* Originator: This variable represented the individual engineer, who authored and
forwarded the design document defect. This engineer may or may not have also
been an engineering appointee to the program CCB.

Data Capture and Anonymization

Technical defect data was mined from the complete compilation of selected program
change notifications, which were derived from two Product Data Management (PDM) and
business intelligence tools. In this particular enterprise, different tools were used to tailor
the product development to the needs of specific engineering disciplines. One database
contributed to the formal configuration control of system requirements and software
items, and a second database contributed to the formal configuration control of hardware
components. Specific technical defects were drawn from all approved project CNs.

Program datasets were then reviewed to remove invariant or sensitive data. Sensitive data
fields that were appropriate for analysis were replaced with categorical symbology; this
preserved the linkage between the individual program, engineer, defect category and the
individual defects records without compromising sensitive data. These included:

" Names of individuals

" Names of specific company Integrated Product Development Systems (IPDS) stages

* Names of companies

" Names of programs and subordinate projects
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0 Names of defect categories

* Dates of defect detection

Data Preparation and Exploration

The selection of appropriate dataset and explanatory variables requires administrative
preparation to promote successful data mining techniques. Once attributable information
was isolated and removed, the following observations and actions were taken:

" There were no outliers or missing values in the data, which could have skewed the
results of specific types of models.

* Transformations were required. Categorical text variables were then transformed
to numbers to facilitate statistical analysis and machine learning. For instance,
spreadsheet columns with Categorical Nominal Discrete Qualitative variables (i.e.
Categories 1, 2, 3 with non-sequential meaning) or Categorical Discrete Ordinal
variables (i.e. Categories X, Y, Z with sequential meaning) were transformed into
separate columns with binary variables values.

" Insights were provided by descriptive statistics, including the absence of linear
relationships.

* Feature selection enabled variable reduction to essential variables.

Data Mining Model Building Process

Following the selection and preparation of data, the data-mining modeling process was
followed. This entailed selection of the appropriate algorithms, model building and
experimentation, model evaluation and selection of the most effective model. Proposed
models were not operationally deployed in this research.

Supervised Learning
Methods

Classification Models
Data Preparation and
Exploration Classification & Regression Trees Model Evaluation and Model DeploymentData Preparation ommmmo Selection e D y t
Data Visualization MARSplines Evaluation est New Data
Dimension Reduction

Neural Nets

Figure 14. Data Mining Process Flow.
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3.4 Logic
The qualitative case study method is universally recognized as a sufficient method based
on Yin's research, which indicates that investigators can use case studies to "define topics
broadly and not narrowly, cover contextual conditions and not just the phenomena of
study, and rely on multiple and not singular sources of evidence" (Yin, 1993). This
research integrates a case study method with both qualitative and quantitative techniques
to appropriately collect and analyze empirical data in the context of the outlined research
theory. Known as logical positivism, this practice methodically integrates these activities to
test the hypothesis and derive findings and conclusions (Yin, 1993).

Logical Positivism is achieved through a variety of techniques. First, this research
partitions different studies by research stages, where corresponding strategic-level and
operational-level questions are independently answered through sequential case-studies.
Second, a multi-disciplinary approach supplements these qualitative techniques with
statistical "analysis of archival (quantitative) records" at a tactical level (Yin, 1993). This
approach is supported by Yin's research, which indicates the case study method is effective
either alone, or sometimes in combination with other analytical methods, to support the
collection of data and logical analysis.

The generalization of research findings to other real-world cases is perhaps the most
critical challenge encountered during case study research. While recommendations are
tailored to a specific enterprise, this research assessed stakeholder responses for
qualitative outliers, and discussed alternative rival theories for observed phenomena (Yin,
1993). Consequently, this design supports analytical generalization of identified qualitative
factors, and statistical generalization for successfully illustrated defect models given similar
standardized ECM and QDM processes. In addition, thesis recommendations relate analysis
to existing systems engineering metrics, systems architecture heuristics, and previous
research findings that relate to Product Data Management (PDM) systems.

3.5 Research Limitations
There are several limitations in this research design, which must be acknowledged for
potential impact to findings. First, the single-case study method assumes replication logic
to explain that relevant phenomena drawn from the investigation is representative of other
similar enterprise cases (Yin, 2003). However, this assumption is reasonable considering
the single case represents a sufficiently large and stable matrix enterprise, which replicates
standardized processes in a stable enterprise landscape across multiple independent
development programs. Understanding similarity in program social networks, strategic
managerial policies, and enterprise culture, this research design can logically isolate
significant factors from stakeholders who can have a common mental model of the
enterprise and that factors that affect programs technical change activity. While statistical
sampling was used on three different NPI programs for testing the hypothesis, that method
was not intended to identify contributing factors to hardware technical change or highlight
opportunities for process improvement. Instead, statistical modeling was used to support
hypothesis testing, by trying to build actionable leading indicators. If this research design
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had required statistical sampling to identify such factors, then a multi-case survey would
have been the preferred method to acquire the necessary data (Yin, 2003).

Second, the complete removal of bias is not possible in this research. My experience in the
field of hardware change management and interests in complex systems was likely to have
some effect on both my perspective on the chosen enterprise and the selection of
stakeholder interviews questions. However, purposeful thought was applied to the
research design and implementation in order to mitigate bias to elements of this case study
and resulting analysis.

Third, many attributes of change notifications and supporting defects were not considered
in this research; these various other attributes were left out due to the focus of this
research, and difficulty in acquiring that data for several recent and similar programs. Like
most modern engineering development enterprises, the selected firm promotes a culture of
continuous improvement of processes and synchronizing of these processes to support
data collection. In the last few years, the enterprise has established several new enterprise
design excellence initiatives and a new enterprise PDM system, which could not contribute
sufficient data due to earlier start dates of the selected enterprise programs. In addition,
due to process limitations during the execution of the selected programs, hardware
engineering change notifications lacked the necessary relationships to support
aforementioned change propagation analysis.

Examples of Data Limitations

There are three specific examples of missing data that could have contributed to this
research. The first is the causal relationship between defect origination and part re-use on
other programs. Consider that a notional program (i.e. Program #2) was using a TDP
design document that was originated (and therefore owned) by a previous notional
program (i.e. Program #1). If Program #2 wanted to change that re-used document, then
the Program #2 CCB would have to coordinate and fund that change through the Program
#1 CCB. While the selected enterprise attempts to leverage commonality between similar
products, this type of data was excluded for several reasons. First, these types of changes
were not considered to be insignificant to overall technical change profiles of selected
programs. And second, the acquisition and processing of data associated with part re-use
conditions was resource prohibitive. Another example of data that was missing was the
cost of correcting defects. This data was not included due to limited resources for data
processing, the proprietary nature of such costs, and differing perspectives on how to
define these costs. Finally, the commodity type (at a subsystem level) that related to the
particular defect was not easily related to defect records.

3.6 Summary
This research design organizes a holistic approach with detailed methods to characterize
and analyze ECM as an identifiable enterprise within a selected firm. Specifically, the
exploratory case study first characterizes the ECM enterprise, which enables the adaptation
of supporting questions and direction of stakeholder interviews within a subsequent
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descriptive case study. Following enterprise analysis and the development of holistic
vision then provides prospective utility for the investigation of more detailed data mining
techniques. Ultimately, this research seeks to identify the complex interactions between
enterprise elements, and sets the stage for understanding if data mining techniques are
both actionable within existing processes and supportive of ECM knowledge management.

4. Exploratory Case Study of a Hardware ECM Enterprise

4.1 Introduction
This exploratory case study characterized the hardware engineering change management
(ECM) enterprise and explores which elements and interdependencies are most relevant to
hardware technical change activity. This led to a more detailed understanding of potential
policy interactions and key stakeholders, which informed the following descriptive
enterprise study.

4.2 Exploratory Case Questions
The following questions represent the uncertainty associated with this preliminary study:

" What is the Hardware ECM enterprise, and which enterprise elements and capabilities
are most important to managing technical change?

" What key interactions is Hardware ECM most heavily dependent upon?

" Which stakeholders have the most leverage over key interdependencies in hardware
technical change?

4.3 External Ecosystem: A Defense Contracting Company
The ECM enterprise operates within a larger defense contracting firm, which is
characterized by a "process-driven engineering enterprise" paradigm, with clusters of
integrated product teams (IPTs) that are the immediate customer-like organization units
that benefit from ECM. These IPTs and Program Managers are conceptually viewed as
Heavyweight Project Matrix Organizations, where Program Managers have greater
comparative control over budget and resource allocation than supporting functional
managers as first presented by Hayes et al (1988). While the Heavy-Weight vs. Lightweight
metaphor for matrix organizations only illustrates two extremes, company matrix
programs are closer to a middle-weight project matrix organization because functional
engineering managers are very influential on program design decisions, management of
engineering budgets and EACs, and allocation of engineering manpower.
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Project financial management and manufacturing processes are the primary external
interfaces between the external ecosystem and the ECM enterprise. To a lesser extent,
customer needs may be influenced by the maintenance of fielded products (i.e. as-
maintained configurations). However, the key process interdependencies include:

* Earned Value Management System (EVMS) Processes, including engineering
Estimates-at-Completion (EACs) and project tracking books.

" Manufacturing Data Package (MDP) document and processes.

" In addition, engineering process initiatives act as infrequent and evolutionary
influences upon the ECM enterprise. Key examples of these influences include
alignments between:

" Alignment between interdependent IT systems, including Material Resource
Planning (MRP) systems and PDM capabilities.

* Incremental updates to the firms Integrated Product Development System (IPDS),
which acts as a product development process architecture.

Company Vision and Strategy

The company has exhibited a consistent vision to be an industry leader in the development
of innovative defense systems and related technology. The strategy to achieve this vision
focuses on innovative solutions and technology in the areas of communication and
networking, military sensors, and weapons that span both kinetic and non-kinetic domains.
This strategy supports an established engineering-focused culture that values innovation,
with a focus on the quality of design solutions and system performance. Consequently,
technical change is considered a fundamental task in providing innovative solutions, both
on NPI projects and upgrades to previously deployed systems. Although in some regard,
ECM is considered a necessary evil within the engineering specific culture. Some
experienced engineers (even chief engineers) feel that ECM invokes onerous process
requirements and administrative costs at the detriment to resources that could be better
applied to innovation. This reflects the cultural dichotomy of ECM and supporting
configuration control processes, because the same engineers would not argue the value of
consistent traceability of configurations throughout the systems engineering waterfall (i.e.
achieving system verification & validation), which is critical to compliance with modern
quality management standards and customer value exchange.

Contemporary Configuration Challenges in Defense System Development

The company also operates within a larger defense contracting ecosystem. In the context
of influences on the ECM enterprise, the current state of fiscal austerity and regulatory
changes have the most influence. Changes made to the DOD's primary acquisition policy
(DoD Instruction 5000.02) in December 2008 secured a significant strategic shift in
defense acquisition policy that transformed the defense acquisition ecosystem. As a result,
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major U.S. Defense contractors are being increasingly decoupled from government-funded
technology development and managed under closer scrutiny to drive execution of design
and development (i.e. post Milestone B) of new NPI programs. With an emphasis on
schedule and cost predictability, various measures were enacted by DOD Instruction
5000.2 sought to reduce requirements creep, moderate existing requirements, and
improve integrated system testing and evaluation. This policy shift in the defense
acquisition ecosystem has created a more competitive environment as customers increase
execution standards in light of looming budgetary constraints. Other efficiency efforts
included transitioning from legacy sole-source government contracts to competitive
proposal practices, while channeling technology development and advanced design
contracts to smaller Federally Funded Research and Development Centers (FFRDC) and
academic R&D laboratories.

Within the system development process, technical change of hardware design components
and subsystems are a major contributor to the number of overall system changes,
particularly within highly integrated and complex electro-mechanical products.
Recognizing this, external stakeholders including higher-level customer CCBs, government
contract auditors, subcontracted partners, and suppliers of key components have some
influence on the technical or management aspects of hardware change activity.

4.4 Hardware ECM Enterprise Landscape
This research is characterized by an identifiable "process-driven engineering enterprise"
paradigm that operates as a cross-functional entity within a large company. In contrast to
the more Middleweight Project Matrix Organization at the program level, Hardware ECM
emulates the a Lightweight Project Matrix Organizational view because the primary view
elements are engineering focused (Hayes et al, 1988). While the CCB Chairmen (usually the
Program Manager) are the approving authority for released baselines and technical
changes, they are more focused on scheduling final reviews of CNs and facilitating higher-
level coordination of contractual configuration requirements. Consequently, the
knowledge and discretion of key engineering stakeholders provides the greatest leverage
within the enterprise.

The danger of no "Burning Platform"

However, ECM is generally not considered a critical capability by itself, but rather an
amalgamation of minor processes that provide experiential value to their users. For this
reason the engineering culture does not recognize ECM as a "burning platform" that
requires improvement. While the enterprise has completed the replacement of IT-based
PDM systems, the resulting productivity improvements have had little effect on the
underlying effectiveness of ECM sub-processes, which have remained stagnant for more
than a decade. Recognizing this lack of urgency is critical to both interview strategy in the
later descriptive study stage of this research, and identifying avenues for relaying research
findings and recommendations.
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4.5 Hardware ECM Enterprise: Dominant View Elements
In the context of EA view elements, hardware ECM is dominated by configuration and
design sub-processes, information management via PDM systems, and more abstract
knowledge management practices. This section characterizes these dominant view
elements, and a brief review of other relevant interactions.

4.5.1 Processes
The enterprise is characterized by specific sub-processes that are subordinate to one or
more functional engineering disciplines including configuration management, materials &
process engineering, and hardware engineering (mechanical, electrical, and parts
engineering functions) processes. The sub-processes where there is the greatest leverage
to mitigate the risk of change are:

Detail Design Peer Reviews: The process mandates that subsystems and components must
undergo at least one design peer review, which uses various checklists and design tools to
ensure compliance to higher level form, fit, and functional requirements and
manufacturability.

* Key Stakeholders: Cross-functional design teams, process engineering.

" Structure: IPT process (i.e. cross-functional engineering), text-based, micro-focus to
a design sub-system or component.

" Behavior: Standard process, but developmental (i.e. iterative) reviews of designs are
not mandated. High repeatability and degree of adherence, but little control over
quality or level of defect containment attained.

" Periodicity: Prior to Released Baselines.

" Key Artifacts: Checklists, Peer Review Record, Action Items, Previous program defect
analysis.

* Measures: Wrought defect identified, but no measure of defect impact.

Configuration Control: The process mandates that any released design documents can
only be changed via a CCB-approved Change Notification (CN), which outlines the reason
for change, solution for technical change, and impact of that change to the 'Iron Triangle'.

" Key Stakeholders: Configuration Control Board including the program manager and
representatives from CM, engineering, and quality.

" Structure: IPT process (i.e. cross-functional engineering), text-based, generally
micro-focus to a change.
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" Behavior: Standard process. High repeatability and degree of adherence, but little
control on the level or documentation of impact analysis.

* Periodicity: After Released Baselines.

" Key Artifacts: CN, Configuration Reports, Checklists, Workflow Record.

" Measures: Change Factor, Change Impact Cost.

Defect Analysis: The process mandates that defect identified from previous closed projects
are analyzed to inform trends, root cause analysis, and lesson learned for implementation
on future design efforts. The goal is continuous improvement of defect containment
percentages consistent with lean principles.

* Key Stakeholders: Process engineering, with design engineering participation.

" Structure: IPT process (i.e. cross-functional engineering), test-based with some
graphical, generally macro-focus of a project.

" Behavior: Standard process. High repeatability and degree of adherence.

" Periodicity: Generally after Program Closeout, but analysis is then applied to future
design reviews.

" Key Artifacts: Technical defect databases (captured from CNs), statistical analysis,
and defect reports.

" Measures: Project defect containment percentage as measures design maturity.

4.5.2 Information
From a more IT centered view, Weill defined enterprise architecture as "The organizing
logic for key business processes and IT capabilities reflecting the integration and
standardization requirements of the firm's operating model" (Weill, 2007). This
characterization is appropriate for framing the ECM information view element because the
primary informational enabler is an advanced PDM system, which standardizes the process
and attributes by which NPI project configuration information is stored, controlled, and
developed over time.

Fundamentally, the PDM system provides standardized CM functions across all projects
within the business unit. This includes configuration control of all design baselines and
associated Bill of Materials (BOMs), and provides user-defined reporting functions based
on hierarchal "parent-child" or "where-used" relationships within projects. The PDM
system also provides a workflow function, which enables CCBs to manage the development
of CNs and other technical management directives. However, the enterprise cannot easily
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identify systematic relationships between change actions without previous knowledge of
why change action occurred. This means that change propagation identification, analysis
and associated metrics (e.g. CPI, CRI, CAI, etc) are not possible in the current enterprise.
Interestingly, the tool is able to establish these types of relational attributes, but the
process does not mandate or encourage such action. The Information view element
anatomy consists of:

* Key Stakeholders: Enterprise IT, CM Coordinators as tactical-managers, all functions
as consumers.

* Structure: Internally-managed within individual projects. Hierarchal product
structures.

* Behavior: High degree of openness via a standard process. High repeatability and
adherence to process. Alphanumeric "atomic" data, with few visualizations. User
access controlled, but generally open to entire user base.

* Periodicity: High frequency and driven by product data needs.

* Key Artifacts: PDM System Configuration Reports.

* Technical Data Package (TDP) Reports: These are PDM output reports of product
structures under a top-level part number. In the context of Krishnamurthy's "root"
and "branch" analogies (1995), these reports show the complete listing of
documents and associations that comprise a particular "branch" of a product's
configuration.

* Document Status Reports: These are PDM output reports of a particular TDP
document configuration history by a specific configuration item.

* Custom Reports: CM can create custom spreadsheets to answer unique user
requirements. Some requests are implemented as on-demand reports that can be
pulled directly from the PDM system.

4.5.3 Knowledge
The ECM enterprise is culturally associated with CM discipline, which seeks to embed
baseline ECM knowledge into standard processes that govern access and control to product
configuration data (i.e. Information View Element). Consequently, ECM knowledge accrued
over time only resides with individual stakeholder experiences. While engineers populate
a lessons-learned database with unique design, testing, and manufacturing lessons; there
are few if any ECM-specific lessons. The extent to which an engineer can leverage
knowledge of change impact is largely experiential, along with knowing how to massage
PDM data to mine the relationships that enable the identification of technical change
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impact. There are no identifiable incentive measures for documenting or sharing
systematic ECM-Knowledge. The knowledge view element anatomy consists of:

" Key Stakeholders: CM Coordinators, Design Engineering, Process Engineering.

* Structure: Internally-derived and product-based knowledge. Functional engineering
communities are more experiential than technocratic. Formal lessons are
documented in an enterprise database but are product specific design lessons.

" Behavior: Moderate degree of openness to knowledge sharing, generally via a
standard process.

" High repeatability and moderate of adherence. Few direct incentives for capturing
new knowledge.

" Periodicity: Performed at Program Closeout.

" Key Artifacts: The enterprise lessons-learned database is the primary knowledge
asset and repository. ECM-specific knowledge is a function of tacit lessons
imbedded in product specific lessons-learned.

* Measures: No identifiable ECM-specific knowledge measures. Unlike other
product/technology areas, there are no ECM incentive-based measures such as
patents or recognition of white papers.
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Figure 15. Adapted from MIT ESD.38 Lecture 2 (Nightingale, 2012). Ten ECM Enterprise Elements

4.6 Other View Elements

4.6.1 Organization View Element
While not considered a dominant view element, the distributed organization of

stakeholders is an important consideration. At first glance, the CCB seems to be the formal
unifying entity for the discussion and resolution of any ECM issues. However, change
impact analysis is often more dependent on functional engineering analysis that is already
completed prior to the change notification being forwarded to the CCB formal review.
Consequently, the primary organization boundaries that drive ECM are defined by the
functional departments processes including:

" Configuration Management: Primary stakeholders for configuration control.

* Materials & Process Engineering: Primary stakeholders for Defect Analysis and
Design Process.

* Mechanical Engineering and Design: Primary stakeholders for Design Release and
Change Impact.
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4.6.2 Strategy View Element
While there is no one articulated ECM strategy, the company IPDP and supporting enablers
are strategically aligned to achieve mature technical baselines during the design and
development stage. Also, as an operational imperative, Process Engineering and
Engineering Design organizations have prioritized defect containment analysis across all
programs.

4.6.3 Defense System Products
The existing enterprise and the scope of this research is more closely aligned with NPI
projects. The primary ECM interactions are when design defects are found during the
Integration, Verification & Validation (IV&V) of sub-systems and during Low-Rate Initial
Production (LRIP). To a lesser extent, ECM has some impact on the servicing of deployed
systems (i.e. as-maintained configurations). Also, the recursive nature of upgrades and
refurbishments with many of the deployed products cannot be discounted. For instance,
most complex sensor and weapons systems encounter some hardware design upgrades
throughout their lifecycle. While most are minor, some products undergo significant
electro-mechanical upgrades as old configurations are periodically sent back to the
company to undergo nearly complete refurbishments to newer design configurations.

4.7 Enterprise Stakeholders
Figure 16 illustrates the primary internal and external stakeholders within the ECM
enterprise. These stakeholders exhibit the greatest leverage over identification of early
risk of technical change or later during the analysis of specific design change impact.
Internal stakeholder groupings reflect alignment with the three hardware engineering
functions and corresponding departments.

" Proposal & * Process Planners
Planners - Defect Analysts

" CM Coordinators Process

* Supply hainEngEgineerin

SConas MaprnPaes

Externalprise erCe s
Stalkeholder esg

" Programpsa&
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" IPT Leaders 14Designers
" Supply Chain e Engineering
* Contracts Managers

Figure 16. Basic ECM Enterprise Stakeholder Categories.
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4.8 Enterprise Capabilities
The external landscape (i.e. IPTs and Business Units) is very robust, by aligning functions to
deal with varying development challenges of unique designs. This external landscape is an
industry leader in understanding unique subsystem interdependencies with complex
electro-mechanical sub-systems, identifying problem states, running root cause analysis,
and solving complex "tactical" design challenges across a broad variety of commodity types
(e.g. various RADAR exciter-transceivers, SONAR arrays, electro-mechanical assemblies,
C31 systems).

However, this engineering robustness does not necessarily translate to tactical measures
for understanding of systematic design change action. Consequently, the lower level ECM
enterprise exhibits sustainability of configuration control processes as the primary
enterprise capability. Interestingly, the CM process is considered sufficient because it is
compliant with contract and industry standards, which have no substantive requirement to
understand propagated change. Consequently, "process improvement" initiatives focus on
near-term manpower productivity and standardized IT solutions, rather than establishing
an awareness and controls on propagated change.

4.9 Summary
The exploratory case provided a basic definition of the ECM enterprise and highlighted key
interactions between view elements. Considering the unique enterprise capabilities,
cultural norms, behaviors and attributes of dominant sub-processes; the knowledge of key
stakeholders is the primary leverage point for effective ECM. Consequently, engineering
participants to those sub-processes and CM coordinators can provide the broadest
perspective contributing hard and soft factors for effective ECM.

5. Descriptive Case Study of Enterprise Factors Contributing to
Hardware Technical Change

5.1 Introduction
The descriptive case study leverages stakeholder interviews to gather qualitative empirical
data that can identify factors that contribute to hardware technical change. Specific
interview questions were selected for each stakeholder based on their interaction with
specific view elements, and their ability to comment on relevant social interactions and
design release processes. Stakeholder empirical data was then collated in the context of
the enterprise elements and key processes, and analyzed for common concepts that were
seen as contributing factors to technical change.
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5.2 Descriptive Case Questions
The following research questions outline the purpose of the descriptive case study:

" Do engineering stakeholders observe common qualitative factors which contribute to
uncontained defects within engineering change management process or social
interactions, which contribute to uncontained defects?

* Where could a predictive defect model provide the greatest benefit to line operations
and program management during new product development?

" What aspects of existing process or social interactions detract from the utility of the
concept?

5.3 Profile of Stakeholders Interviews

Interviews were conducted with experienced ECM stakeholders from program technical
staffs, hardware functional engineering and the CM discipline at various levels to provide
insight into significant factors to technical change activity. Table 1 provides stakeholder
profiles to provide context to aforementioned key interactions. Subsequent interview
discussions highlighted soft factors and interactions that would be difficult to identify with
questionnaires or surveys; deeper discussion also enabled iterative questioning to dig
deeper into substantive issues.

# of Stakeholder Function Perspective Experence Level Focus of Interview Questions
Interviews ________

*Social and Change Network Interactions with ECM

1 IPT HW Lead Manager 15+ years *Change Propagation

*Social and Change Network Interactions with ECM
1 HW Engineering Manager 10+ years *Change Propagation

*Social and Change Network Interactions with ECM

1 H r Ecer Technical 10+ years *Defect Containment, Change Propagation
Process *Design Review Process

*Social and Change Network Interactions with ECM

1 HW Engineering Technical 10+ years *Defect Containment, Change Propagation
*Design Review Process

*Social and Change Network Interactions with ECM
1 H1W Engineering Technical 5+ years *Defect Containment, Change Propagation

*Social and Change Network Interactions with ECM
2 HW Confation Technical 15+ years *Change Propagation

HW & SW *Social and Change Network Interactions with ECM
1 Configuration Technical 15+ years *Change Propagation

Management *Difference between SW and HW CM

*Social and Change Network Interactions with ECM
1 MCnguaon Manager 15+ years *Change Propagation

Cross-Functional: Different Perspectives:
9 Stakeholders 4 CM, 4n 3x Managers Distribution of ECM Tailored to Stakeholder Process Interactions

Engineering, lx IPT 6x Technical Experience

Table 1. ECM Enterprise Stakeholder Interview Profile.
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5.4 Intersection of Information and Organization Elements

Exogenous Supplier and Customer Interactions

There can be significant differences in how internal and external stakeholders define,
collect, and record instances of technical defects. Another example is use of modern
computer aided design tools across the social network layer. Simply using CAD tools with
defined technical requirements does not preclude the occurrence of interference between
two components. A subcontracted assembly may be designed and fabricated with different
software, configuration management processes, or quality control standards that can
introduce misunderstanding when reviewed or inspected by the prime contractor.
Previous defense industry research used surveys to report that prime contractors were
more likely than suppliers to integrate product data across the product lifecycle, and use
more capable PDM systems that functioned with interdependent applications and
workflows (Hines, 2005). Consequently, a system integrator who subcontracts major
portions of design, fabrication, assembly, and test with a new subcontractor may risk
additional technical change that otherwise wouldn't have occurred if internally sourced.
One interviewed engineer had worked for several years with iterative design and testing of
a complex electro-mechanical assembly that was being developed by a subcontractor, who
conducted configuration control with less rigorous process controls; the resulting
configuration issues led to significant effort spent on problem resolution and resulting CNs.
In a similar discussion, an another experienced hardware engineering IPT lead also
indicated that customers and partnering firms must have a common understanding of both
contractual design limitations and configuration management requirements. Discussions
indicate that misalignment in design capability, rigidly controlled system interfaces, and
configuration reporting capabilities can contribute to additional design and administrative
technical change.

Separate interviews with a more senior engineer and manager explained that significant
design change activity usually follows the release of major design baselines as previously
referenced. Both interviewees mentioned that customer incentive awards to meet
contractual milestones associated with program events (e.g. CDR, TTR, PDR) may actually
encourage programs to release design baselines with known errors. This may happen
because the resulting technical change costs are thought to be less than the net gain from
incentives and customer satisfaction. This research was unable to locate processes for
assessing ROI in these situations; there appeared to be no discrete measures to assess the
systemic impacts to cost and schedule.

Endogenous Interactions between Integrated Product Teams (IPT)

Interviews indicated that engineer inexperience or lack of alignment with unique program
requirements can also introduce design defects. Unique design requirements often
correspond to a commodity type, or contractual documentation format of a specific
customer configuration management system. One manager indicated that some project
managers feel they are not getting "the right people" for the technical design challenges
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they are facing with complex development tasks. Some experience dilution that had caused
unforeseen technical changes could be traced to the introduction of available engineers,
who had comparatively less experience with a unique commodity type. The discussion is
interesting because the engineering firm has a strategic imperative to leverage the
relatively new enterprise PDM system to drive more agile work share and cross-company
collaboration.

Analysis of Experience Dilution

This phenomena may indicate that experience dilution can be a driving factor for technical
change with unique documentation requirements. Brooks' Law explains that introducing
relatively inexperienced engineers late in a development project can cause experience
dilution, which reduces the effective work accomplished on projects (i.e. introduces rework
and lowers productivity), and is particularly problematic if there is already a backlog of
rework tasks (i.e. unresolved design defects). Appendix A illustrates Brook's Law with a
causal loop diagram for a notional NPI project; the corresponding system dynamics model
illustrates the notional project would achieve a marginal reduction in project schedule
(finishing 2 weeks early), but at a significant cost of required manpower in order to pay for
the new staff and resolve rework tasks (Knight, 2011). While interview findings were not
in the context of adding staff during the later stages of projects, the issue of experience
dilution would introduce a similar effect to productivity and rework (i.e. technical change)
as a result of incomplete change impact analysis.

Project Finished Total Effort Expended

40.000

Total Effort Expended: Add Staff Time (Week)

Total Effort Expended: Do New Staff, Total Effort Expende d: Add Staff
but No Overtime Total Effort Expended: Do New Staff,

but No Overtime

Figure 17. Net Effects of Adding New and Inexperienced Staff (Knight, 2011).

There is some disagreement to the severity and applicability of Brooks' Law with modern
development practices. Steve McConnell explains that "controlled projects are less
susceptible to Brooks' Law than chaotic projects" (1999). He offers that better project
tracking enables managers to better gauge when and how to add staff. Also, modern
documentation and design processes "make tasks more partitionable", which enables new
staff members to more quickly close the relative gap in experience (McConnell, 1999).
McConnell concludes that mature design firms generally know when additional staff would
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be counterproductive. However, enterprise analysis and general discussion across several
interviews indicates that ECM experience is not only based on processes, but also product
specific knowledge and information interactions that may reduce the rate of learning.

5.5 Process, Knowledge, and Information View Elements: Change Propagation
Discussions with CM Coordinators, Design Engineers, and Senior CM Managers indicated
the existing enterprise does not collect identifiable empirical evidence on propagation
relationships. None of the CM personnel were very familiar with the CP phenomena, and
out of three design engineer interviews, only one engineer indicated that he or she had
regular experience with identifying propagated change between subsystems. While
considered less common, technical CP was more problematic to foresee and correct once
identified. CP was related to either some level of misunderstanding between two technical
perspectives, which may involve remote work-share, cross-functional, or cross-IPT
scenarios.

Also, all interviewees acknowledged cases of administrative propagation, where
improperly implemented CNs required a second CN to correct the original design intent.
Conceptually, this rework is similar to technical change propagation, but was not viewed as
a significant problem with design work. There are two causes of this CN rework:

* "Hanging" CNs: When successive CNs are approved for one design document, but
not implemented into the design documents themselves, the CN's are said to be
"Hanging CNs" against their parent design document. While this is a common
industry practice, the interpretability of the current design diminishes as numerous
Hanging CNs aggregate. Hanging CNs are used to save on drafting costs under the
assumption that implementing multiple changes at once is more cost effective than
individual CN implementation into design documentation. The interpretability
problem also varies depending on the complexity and number of aggregated CNs.

* Simple errors that are only later discovered after they have been implemented into
the design.

Process Hurdles for Change Propagation

The key component to identifying systematic propagation between change activities is
informing parent-child relationships between CNs (or related directives). Generally
speaking, the current CCB process does not require board members to discuss or document
the understanding that a change action under review was driven by an error or incomplete
impact analysis on a previous change action. Also, CNs are generally used as bins for
proposed changes that were identified or documented at the same approximate time.
While some IPTs create separate CNs for subsystem specific changes, this is the exception
rather than the rule. Consequently, CNs can include completely unrelated changes from
multiple documents because they were identified at the same development time. While not
critical to implementing change propagation relationships, partitioning of proposed
changes into subsystem specific CNs may benefit propagation analysis.
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There are four primary challenges to adjusting processes for change propagation:

" The Culture: Social factors and the negative cultural view of technical changes may
be the primary challenges to this implementation. Few engineers want to recount a
causal relationship from a previous change for potential fear of culpability or
jeopardizing interpersonal relationships.

" Perceived Challenge of Cross-IPT Coordination of Relationships: Some may argue that
sub-IPTs that provide CNs to a program level CCB, may not be able to identify causal
relationships that cross from one sub-IPT to another sub-IPT technical change.
However, the program-level CCB (and it's engineering representative) probably
already discussed these cross-relationships when synchronizing engineering
functions. Also, sub-IPTs are often keenly aware of higher level requirements and
exogenous interdependencies that affect their design solutions.

" Departure from "CN Binning" would add unnecessary administrative costs: This is
unlikely because the average CN already contains 2-3 design documents, which
leads to a higher frequency of CN generation. Partitioning the few CNs that contain
four or more design documents would not significantly impact cost, and would
likely improve both CCB discussion and the quality of relational data that is
documented on those separate CNs.

" Near Term Priority: Some may argue that retrospective analysis is inconsequential
to solving the present problem, which is an opinion that belies the fact that
understanding systematic relationships informs present decision-making. As shown
by previous research, systematic change relationships not only exist in the
development of complex defense systems, but they have a causal relationship with
expensive technical changes to subsystem interfaces and can provide useful leading
metrics (Giffin, 2007).

Relation to Previous Change Propagation Research

The use of Hardware CNs to "bin" only contemporaneous but technically unrelated change
action means that sibling relationships reported by Giffin (2007) may not always reflect a
CP relationship. Consequently, the reduction of "CN Binning" is likely to contribute to
quality and applicability of subsequent CP network analysis and metrics.

5.6 Information and Process View Element
While stakeholders felt that all necessary data was in the PDM system, they acknowledged
that processing that data for required relationships was often a slow and arduous process.
After indicating that the current PDM system lacked any efficient visualization capabilities
(e.g. dashboards, histograms, etc), one experienced stakeholder used the terms
"frustrating" and "unwieldy" to explain the system's inability to easily identify
multidimensional relationships. This is not surprising because the complexity of ongoing
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PDM system integration and development has focused on meeting many unique
requirements that legacy PDM systems had evolved to provide to their business areas and
customers.

While not related specifically to ECM knowledge or configuration information, the review
of related business processes identified a similar lack of multidimensional data
visualization. For instance, management uses a simple range bar to quickly review and
make decisions about ECM productivity metrics. As a process requirement for most project
proposals, the simple plot illustrates a linear range of program metrics, the average metric,
and a selected historical program metric for comparison. The linear scale does not enable
decision-makers to decipher stochastic relationships in the productivity data, which could
lead to the 'flaw of averages'. While the distribution of metrics may be narrowed from the
global distribution, they cannot indicate the mean value is the most probable value.
Without a comparative probability distribution (e.g. data spark line or cumulative
distribution function) of program data, it is more difficult to understand the probabilistic
values and outliers. These particular references can shed light on the risk involved in
proposal metrics or productivity improvement goals.

Relation to Previous Research

This issue of understanding complexity appears to align with reporting from Jarrett et al
(2005), who found that both individual engineers and design teams were often lacking the
tools or common experience to understand "the complex network of linkages". Research
reported by Giffin (2007) provided network diagrams of propagated change between
multiple subsystems, which may be useful to understand how a specific configuration
evolved from specific design change actions. By relating color or distance between
network nodes to specific change attributes, a PDM user may have a understanding of
multi-dimensional dynamics within the system. Such attributes may include:

* Time or Project Event

" Subsystem Commodity Type

* Design Document Type

" Exogenous or Endogenous Change

* Defect Codes

" Defect Containment Attributes

57



5.7 Knowledge View Element: Application of Lessons Learned
Both enterprise processes and the engineering culture employ the lean principle of
continuous improvement and Six Sigma practices. These activities include a mature and
standard process to document lessons learned in an enterprise database. Lessons are
captured from almost every project, and include detailed comments from various
organizational functions across stages of development. This is not to say that every
function provided lessons for every stage; while all functions are aware and encouraged to
contribute to the database, there is not necessarily a hard wired trigger for documenting
these lessons (i.e. they generally voluntary). However, hardware engineering functions
have been the most consistent at providing regular and detailed inputs since the
introduction of the database several years ago. While the larger firm employs high-level
skill gap measures when hiring and internally sourcing manpower, there are no apparent
skill gap measures employed for ECM knowledge.

Interestingly, it was found that lessons were less likely to apply to NPI projects.
Considering Krishnamurthy's analogy of a hierarchal configuration tree that represented
evolving and divergent configurations, discussions indicated that lessons usually only
applied to specific configuration "branches" (Krishnamurthy, 1995). Generally, specific
lessons were useful to redesigns (e.g. engineering obsolescence) of the same product
configuration that spawned the lesson, but not applicable to later unique configuration
"branches" that are more likely on NPI projects. Consequently, hardware engineering
lessons learned are less likely to apply to NPI projects, which may impact effective diffusion
of organization knowledge within similar product families.

Relation to Previous Research

It is worth noting the relationship between this finding and previous research in product
families and ECM. First, this finding is related to research into complex product families,
which indicates that product family configurations tend to diverge over time due to unique
product requirements that drive part re-identification over time (Boas, 2008). Second, this
observation relates to previous research reported Jarret et al. (2005), which indicated that
"capturing experience and rationales...[is] so much of understanding possible change
propagation". During the study of a engine design firm, it was noted that engineers felt that
accessing previous related experiences enabled inexperienced engineers to "ask the
appropriate questions" (Jarrett et al., 2005). This research appears to corroborate the
general value of experiential knowledge, but indicates there is likely less value in the
specific application to contemporary configuration challenges.

5.8 Process View Element: Software versus Hardware Technical Change
Interviews with CM coordinators and managers from across different NPI projects and
business units indicated that hardware CN rejections occur on less than 5% of all change.
Program defect profiles confirmed that less than 5 of more 2000 defects (from mostly
hardware items) were rejected. Given the more rigorous hardware CN development
process, higher rejection rates are very rare due to engineering review and oversight of
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proposed formal changes. Conversely, an interview with an experienced CM Coordinator,
who works on both software and hardware changes across various programs, indicated
that it is not uncommon for software CN rejections to occur on 20-25% of all related
change.

Relation to Previous Research

The stark contrast between these general figures highlights that engineer specific analysis
reported by Pasqual (2010) may not provide sufficient utility to hardware ECM practices.
The Engineer Change Propagation Index (Engineer-CPI) measures the change that is
propagated by individual engineers, and the Proposal Acceptance Rate (PAR) measures the
approval rate for engineer proposed changes. While Pasqual found that the social network
layer can directly contribute to programmatic change propagation, this research indicates
those relationships may not generalize to normal hardware ECM activities. First, sparse
instances of rejected CCB changes would not be significant enough to garner the interest of
IPT Leads or accurately measure engineer performance. Second, individual engineer
metrics wouldn't consider the natural fluctuations presented by engineer turnover
between different programs, or the fact that many engineers may contribute to CN
development, but only one will formally submit as the CN originator. Still other
management decisions may complicate the value of individual engineer CP metrics to
performance assessment. For instance, many projects will defer instead of reject those
changes for later consideration or customer funding streams due to schedule pressure,
earned value constraints, or customer direction.

5.9 Enterprise Stakeholder: Who is more relevant and why?
Access to ECM knowledge and collaborative discussion are the salient requirements for
effective management of technical change. Figure 18 illustrates stakeholder saliency and
highlights the intersection of legitimacy, power and criticality within the ECM social
network (Nightingale, 2012). Here, design engineering, IPT leads, CM coordinators, and
process engineering emerge as the most influential stakeholders.

Three attributes of saliency:

" Power: Program managers, customers and suppliers are powerful external
stakeholders, but are either dormant or less suited to provide positive support due
to demanding contractual relationships. However, more dominant Engineering
Managers are in the best position to influence enterprise transformation because
they represent culture, coercive authority, and understand the basic needs (i.e.
Utilitarian) of stakeholders at the execution level.

" Legitimacy: CM managers have an evolutionary role in the improvement of
supporting processes. However, their influence is derived from processes and
systems that are not very dynamic.
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* Criticality: Engineering and CM own the primary sub-processes that drive the ECM
enterprise. When key configuration control and engineering action is required, the
process people ensure that required stakeholders are present and sub-processes are
properly sequenced.

Legitimacy

Criticality Power

Figure 18. ECM Stakeholder Salience Venn Diagram.

5.10 Key Interactions
Analysis of intersections between key sub-processes with stakeholder saliency indentifies
subtle yet important opportunities for enterprise alignment. While design engineers and
IPT leads have the greatest ability to leverage such knowledge, informational barriers and
the lack of systematic ECM analysis are primary limiting factors for these stakeholders.
Ideally, CM coordinators and process engineers would clearly illustrate these relationships,
which are necessary for the aggregation and diffusion of knowledge across design teams.
However, several interactions act as friction to the effective transfer of organizational
knowledge. These friction points include a less efficient PDM system, an administrative
(versus analytical) CM focus, and the lack of change propagation (i.e. relational) enablers
within the CM process. Finally, and perhaps most important, there is no vision or
management concept that addresses these interactions in a holistic way. Considering the
nature of these cross-element interactions and the need for a holistic vision, engineering
management has the most leverage to sponsor policies than can synchronize the following
enterprise misalignment:
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" No holistic ECM vision: Focus on legacy standards and experiential learning without
proper enablers reduces effective and efficient knowledge management.

" Informational barriers: Inefficient information exchange and lack of CP capability,
which reinforces experiential dynamic.

* Organizational Misalignment: Administrative workflow focus of configuration SMEs
(CM) does not adequately support engineering end-users, which reinforces
experiential dynamic.

5.11 Soft Properties
The identification of soft properties is important to understanding the human dimension of
an enterprise system because they often function as "leading indicators" of emergent
enterprise properties (Nightingale, 2012). This enterprise exhibits conviction to
established ECM sub-process interactions and experiential versus technocratic ECM
knowledge.

5.12 Driven by Interactional Perspective or a Zeitgeist of the IPDP Paradigm?
The impact of hardware ECM to earned value management is clearly an important aspect of
capturing new business and executing competitive contracts. Design and process
engineering functions are aware of the need to identify and assess the impact of technical
change, as well as efficiently accessing and processing product configuration data. But how
much do external pressures upon design engineering to quickly innovate within an IPDP
model actually drive the ECM interactions? Is there a more balanced view of external and
internal actors that primarily influence the enterprise behavior? While admittedly
influenced by the more interactive EA method, noteworthy findings indicate that internal
interactions (i.e. across view elements) between various underlying legacy processes are
the primary influences on the enterprise.

5.13 Summary
This descriptive study identifies opportunity for greater alignment between key ECM sub-
processes and the technical information that stakeholders use to understand and mitigate
systematic technical change. By integrating empirical knowledge of view element inter-
relationships from stakeholder interviews, this research has identified key systematic
factors that lead to a more complete characterization of the enterprise's internal and
external landscapes.
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6. ECM Enterprise Holistic Vision

6.1 Introduction
The descriptive case study identified several key sub-process interactions, soft properties,
and cultural biases that illustrate opportunity for alignment across this Hardware ECM
enterprise. The current enterprise is more focused on IPT or individual experiential
knowledge, which is neither consistent nor scalable for expected future vision of greater
cross-company collaboration and work-share. To address these needs, a holistic vision
should articulate a more sustainable and technology-based strategy for organizational
understanding and employment of systematic ECM relationships.

6.2 Holistic Vision Statement
Consistent with our goals to provide world-class innovative products and technology
solutions, we must treat engineering change management (ECM) as a competitive
engineering capability for capturing new business and achieving the highest standards of
innovation. With an enterprise systems approach that synchronizes people, processes, and
technology solutions, ECM should compliment integrated decision-making to mitigate
technical change while preserving the innovative process.

Expected Delay in Value Delivery

Value delivery proposed by this holistic vision will require synchronizing policies with an
expected mid-to-long term return on investment. While some short gains will come by
introducing some tactical enablers, a greater capability can only be realized by aligning
existing processes to collect data relationships on various projects from Advanced Design
through the Low-Rate initial Production (LRIP) stages of development.

6.3 Proposed Stakeholder Value Exchange
Stakeholder value exchange is an EA method for comparing individual stakeholder
importance within the enterprise to the perceived value those stakeholders receive from
the enterprise. While value exchange focuses on the stakeholder view element, it takes into
account value exchange as an emergent property of all dominant view element interactions
that were identified in the exploratory and descriptive case studies. Figure 19 illustrates
the current stakeholder value comparison and the changes that would be required to align
stakeholders with key view element interactions. This vision would improve value delivery
to design engineering and IPT leads by shifting CM resources to build systematic change
processes and enablers.

Specifically, CM would align more closely with defect analysis and support to engineering
decision-making by introducing changes to CCB process and PDM systems that enable
systematic change surveillance. Design engineering and IPT Leads would introduce data-
driven systematic change surveillance, metrics, and visualizations into their decision-
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making processes. And, process engineering would act as a moderator to ensure CM
initiatives are synchronized with design needs. This assessment is driven by the following
analysis of interactions:

Process-Information-Stakeholder

" CM Alignment Opportunity: The current CM focus should could shift from
administration of the CCB process to more valuable statistical change analysis, and
improvements to the current PDM system that would enable systematic change
metrics and visualizations for the IPT and engineering users. As a growth
opportunity, CM could leverage short term increases in productivity to provide
resources, and the existing enterprise PDM "Burning Platform" to execute
transformations.

* Design Alignment Opportunity: The design process and culture is for good reason
experiential versus technocratic. However, management should consider the value
of implementing systematic change models, visualizations and leading metrics into
existing processes.

Knowledge-Stakeholder
A design and CM shift to more user-enabled surveillance of systematic relationships may
require improved knowledge management practices. To enable this, enterprise leaders
should consider aligning stakeholder incentives and IT solutions to encourage participation
in knowledge documentation and collaboration across organizational boundaries.

Stakeholder Value Comparison XCM Cor
10

X CM Manager

id 0Process Engineering &
Defect Analysis

0 (ODesign Engineer
0

OEngineerng Manager

XAGD x
A Suppliers

A Customers

0 Program Managers

0 -IPTLeads

0 Stakeholder Relative Importance to ECM Enterprise 10

Figure 19. Stakeholder Value Comparison within ECM Enterprise.

63



6.4 Proposed Process and Stakeholder View
Analysis of stakeholder value delivery highlighted the intersection of process, information,
and stakeholder view elements. Figure 20 illustrates the relative change in key process
interactions that would support the holistic enterprise vision. The following shifts would
increase the effective management of hardware change risk prior to design baseline:

* Information Exchange Process: The goal is to execute the shorter-term introduction
of data mining models and PDM multidimensional visualizations that will enable
design and process users to more quickly evaluate "Big Data" within the product
development environment. Longer-term introduction of CP metrics and network
graphical relationships can only happen with adjustment to the CCB process and
PDM data collection.

* CCB Configuration Control: The goal is to improve future design and change impact
analysis by first altering the CCB process to collect CP relationships, which are
fundamental to the introduction of CP analysis and metrics.

* Detail Design Peer Reviews: The goal is establishing systematic change analysis
capability, with greater process emphasis on CP metrics, defect modeling, and
multidimensional data visualization that help reduce uncertainty.
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Figure 20. Network Diagram of ECM Stakeholders vs. Relative Effort Applied to ECM Sub-Processes.
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6.5 Discussion of Conceptual Causal Relationships
The current enterprise system is characterized by causal relationships that reinforce
positive effects or balance interactions with negative effects. Figure 21 illustrates these
dynamic interactions with a conceptual causal loop diagram. There are four primary
feedback loops:

* Loop #1. Controlling Technical Change (Reinforcing Loop): The previous
standardization of legacy processes into the current PDM system was intended to
increase productivity by:

o Enabling all engineers (and other functions) to more directly and frequently
access all configuration data within one PDM system and,

o Integrating administrative workflows into the PDM system.

* Loop #2. Information Barriers (Balancing Loop): However, the knowledge transfer is
not immediate, and the addition of numerous new users and process interactions
increases complexity with more socio-technical interfaces. As more people use the
system, more bugs and training is necessary for coordinated understanding. The
resulting effort required to attain user needs (i.e. communication overhead) makes
it more difficult to realize improved value. This limits significant improvements in
collaborative productivity, which then limit the transfer of ECM knowledge. The net
effect is to limit (i.e. balance) the effectiveness of Loop #1.

* Loop #3. User-Centered Information (Reinforcing Loop): Investment in various
engineering user-centered functions reduces the effect of the communication
overhead, which then results in increased knowledge transfer for controlling
technical change. These functions may include multidimensional data models,
dashboards and visualizations that would promote a common understanding of
desired configuration relationships. The net effect is to reinforce the effectiveness
of Loop #1.

" Loop #4. Understanding Systematic Change (Reinforcing Loop): Investment in
processes that capture change propagation relationships and leverage associated
metrics would increase the knowledge of systematic change risk. The net effect is to
reinforce the effectiveness of Loop #1.
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Figure 21. Conceptual Illustration using Causal Loop Diagram.

6.6 Summary
This enterprise vision requires a holistic approach to transforming the enterprise. While
some data models and visualization enablers can offer near term value, the most significant
operational capability and tactical metrics can only be attained from incremental collection
of project data relationships over the course of several years. However, the timing of this
transformation aligns with the greater company strategic vision to gain a competitive
advantage by leveraging greater cross-business collaboration and one PDM system. Figure
22 summarizes the key view element interrelationships proposed by this holistic vision.
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Figure 22. Adapted from ESD38 Lecture 6 (Nightingale, 2012). Holistic Vision with ECM Enterprise
View Element Interrelationships.

7. Exploration of Data Mining Models in the ECM Enterprise

7.1 Introduction
The enterprise utility of data mining techniques is a second thesis question within this
research. The intent of this section is to test our hypothesis, which states that classification
data mining models can provide value by quickly deciphering relationships between defect
codes, stages of development, and those defects that are uncontained. Furthermore, using
these models for prediction may introduce a leading technique for mitigating change risk.
The net effect would be to bolster design engineer awareness of probable defects, cue the
allocation of resources, and provide a quantitative measure for assessing the impact of
design changes.

7.2 Building a Program Defect Classification Model
This section will test the research hypothesis by attempting to create an accurate (<20%
testing and validation error) and useful classification data mining model. Three separate
iterations of testing will attempt to create increasingly complex models for different
applications, and analyze them for discussion. All models will use Program #1 data for
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training, Program #2 data for testing and refining the model, and Program #3 data for
independent validation of the final model, which will illustrate some generalization to new
data (i.e. no over-fitting).

Hypothesis Testing vs Exploratory Data Analysis (EDA) of Selected Program Data

In order to identify if there were significant differences in defect attributes, Unsupervised
Learning methods using frequency and bivariate histograms were used to test whether
there was a difference in technical change activity between the three similar program
defect profiles. Alternatively, if there were no assumptions or questions, this investigation
would function as general exploratory data analysis for general learning. In this study,
hypothesis testing was employed to determine:

* If there are interesting multivariate relationships, and if they confirm or deny with
our understanding of defect activity. For instance, based on stakeholder interview
data, the first bloom in change activity should occur in Stage 4, following the
baseline of most detail design documentation in Design Stage 3.

* Which programs should be used to train, test, or independently validate the model.

Distinct similarities and differences emerged across categorical predictor variables of the
three different development programs. By looking at variable plots, we see that all three
programs have similar features across most of the categorical predictors. All programs
exhibited similar distributions across the predictor variables, with Program #1 and
Program #3 showing the most similarity (See Appendix A). There were notable variations
in Program #2, which exhibited a higher defect containment percentage, lower relative
defect percentage in the Stage 4, and slightly higher defect origination on specific types of
change documents as shown in Figure 23. Though there were notable distributions, most
uncontained defects for all programs were identified in the Stages 3 and 4 as illustrated in
Figure 24.
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Figure 23. Bivariate Histogram of "Defect Code A" by Program.
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Document Origination.

Finally, there were notable differences in the distribution of uncontained defects and their

delay across the programs. For instance, Figure 25 shows how Program #2 exhibited much

higher defect containment (Containment Delay = 0) than Programs #1 or #3, which both

detected defects after three stages from their baseline origination.
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Figure 25. Bivariate Histogram of Stage Delay from Document Origination to Defect Detection by
Program.
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Therefore, this exploration found:

" Programs #1 and #3 are generally more similar, which indicates that Program #2

should be included in model testing to capture relationships.

" Distributions of defect codes and stage dynamics are generally comparable with

some fluctuations.

* Programs #1 and #3 exhibited uncontained defects that were delayed by as many as

three stages, and occurred as often as contained defects.

Feature Selection

Moving onto statistical techniques, Pearson Chi-Square testing was employed to identify

the most significant relationships due to the discrete categorical nature of the data. The

measure is based on calculations of expected frequencies in a two-way table. If there is no

relationship, then we expect there to be an equal number of two-way table choices.

However, if there is a relationship, then Chi-Square values will become increasingly

significant with greater deviation from an equal two-way pattern (Statsoft, 2012). Figure

26 shows the results of the Chi-Square testing, which clearly shows the relationships that

we already identified from hypothesis testing with unstructured learning methods.
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Figure 26. Importance Plot for Program #1 and #2.
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Methods for Increasing Accuracy and Generalization

Stratified Random Sampling was used to enable the algorithm to systematically over-

sample rare observations (i.e. Uncontained Defect variable) from Program 1 training data

and Program 2 testing data. To further reduce the risk of over-fitting, the option for

pruning on the minimum error tree was a standard selection for the CART algorithm.

Within this selection, CART first creates the full tree model, and then leverages samples

that were not used as "prune" back branches to find the simplest final tree that retains the

same accuracy (Statsoft, 2012). However, the most successful models employed V-fold

cross-validation, which ran in concert with stratified random sampling to use successive

samples of testing data to improve the accuracy and reduce the complexity of the tree

structure.

Multiple Models and Lift Charts

Statistica Data Miner Recipes enabled the parallel development of multiple models for

accuracy comparison and evaluation of lift charts. Model lift charts provide a visual

summary of the usefulness of one or more models in comparison to a baseline condition.

This baseline (i.e. no relation to configuration baseline) is the condition where there is no

model, which simply indicates the probability that if a classifier value occurs (i.e. classifier

is true) it would be the same as the probability of that value naturally occurring in

historical data. Higher "Lift Values" indicate the relative performance given the percentage

of known data, though all lift values eventually diminish to the baseline (1.0 lift value)

when 100% of the data is known. Lift charts are therefore important to comparing the

performance of alternative models.

7.3 Model Building - Iteration #1: Classifying Defects related to Stage 3

The intent of this first iteration was to crawl before we walk with a simpler model of

uncontained defects with (1) higher importance defect codes as defined by Pearson Chi-

Square testing, (2) defects detected in Stage 3, or (3) defects whose parent documents were

originated in Stage 3. Table 2 identifies these selected variables.

Variable name Type Role
1 Defect Code A_2 Categorical Input
2 Defect Code A_3 Categorical Input
3 Defect Code A_8 Categorical Input
4 Defect Code A_9 Categorical Input
5 Defect Code B_1 Categorical Input
6 Defect Code B_2 Categorical Input
7 Defect Code B_3 Categorical Input
8 Defect Code B_5 Categorical Input
9 Stage Detected_3 Categorical Input

10 Stage Originated 3 Categorical Input
11 Uncontained Defect Categorical Target

Table 2. Iteration #1 - Input and Target Variables for Program #1 & 2 Model.
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The first iteration independently developed a CART model, Boosted Trees model, and a
Neural Network model for comparison. The Boosted Trees and CART models provided the
best overall performance with 3.63% training error on Program #1 and 5.11% error with
testing on Program #2. Table 3 shows the classification confusion matrix for the CART
model, which was selected as the best candidate model for independent validation against
Program #3 due to its simplicity and easily interpreted Tree Graph.

Table 3. Iteration #1 - Classification Confusion Matrix for Tested CART Model on Program #1 & 2 Data.

Figure 27 shows model lift charts for classification of contained defects (value = 0) and
uncontained defects (value = 1). Generally, these charts have very similar 2.0 lift values
when between 10-40% of data is sampled and tested. While the CART model looses lift for
both selected defect containment values, it was still selected for its relatively high accuracy,
simplicity, and interpretability of the tree graph as shown in Table 3 and Figure 27.
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Summary Frequency Table (Prediction)
Table: Uncontained Defect(2) x Model-1-Prediction(2)
Uncontained Model-1-Prediction Model-1-Prediction I Row

Defect 0 1 Totals
Count 0 416 9 425
Column Percent 91 83% 2.01%
Row Percent 97.88% 2.12%
Total Percent 46-22% 1.00%1 47.22%
Count 1 37 438 475
Column Percent 8 17% 97.99%
Row Percent 7-79% 92.21%
Total Percent 4-11% 48.67% 52.78%
Count All Grps 453 447 90
Total Percent 50.33% 49.67%
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Figure 27. Iteration #1 - Lift Chart for Several Models trained on Program #1 & #2 Data.
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Tree graph for Uncontained Defect

- 1Num. of non-terminal nodes: 5, Num. of terminal nodes: 6
Model: C&RT
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Figure 28. Iteration #1 - CART Model Graph using Programs #1 & #2 Data with 5% error.

Figure 28 shows the CART Tree Graph, which enables the user to evaluate the behavior of

the model and determine relationships within the data. We know the model used data

from both Programs #1 & 2 with 5174 total defects, including 1807 uncontained defects

and 3367 contained defects. However, by removing the outliers, the model is only using

2674 observations. The tree interpretation is fairly straight forward by following the

binary rules through decision nodes (blue) to the terminal leafs (red), each of which

contain data that explain the decision or terminal results. For instance the top decision

node has the following characteristics:

0 The unique ID number (e.g. ID=1) for reference purposes.

* The number of total Uncontained Defects considered between training and testing

data (e.g. N=2674).

* The histogram of observations within that node with the dominating target

variables value.
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* Decision nodes have attributes at their branches that start or continue an "If X, Then
Y" statement that eventually leads to a terminal value (e.g. Stage Detected_3).

Right Branch and Terminal Leaves:

* If Stage Detected_3 (value=1) and not Stage Originated_3 (value=0), then there are
268 uncontained defects (Terminal Node ID=10).

* If Stage Detected_3 (value=1) and Stage Originated_3 (value=1), then there are 1082
contained defects (Terminal Node ID=11).

Left Branch and Terminal Leaves:

" If not Stage Detected_3 (value=0), and Stage Originated_3 (value=1), then there are
958 uncontained defects (Terminal Node ID=4).

" If not Stage Detected_3 (value = 0) and not Stage Originated_3 (value = 0), and then
there are 9588 uncontained defects (Terminal Node ID = 4); et cetera.

The deployed CART model was then independently validated against Program #3 to
simulate a real world deployment and to verify there was no over-fitting to the training and
testing data. Figure 29 shows the results of independent validation that retained an
average 2.0 lift value with only 9% error.
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Lift Chart - Lift value
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Figure 29. Iteration #1 - Lift Chart for CART Model deployed against Program #3 Data with 9% error.

Alternatively, the Boosted Tree Model was then independently validated against Program
#3 to verify there was no over-fitting. Table 4 and Figure 30 show the results of

independent validation that confirm it performs no better than the CART model with an
average 2.0 lift value and an average 9% error. Therefore, this iteration validates the
hypothesis that a classification model of defects is not only possible, but also accurate and
useful in illustrating simple data relationships.

Table 4. Iteration #1 - Classification Confusion Matrix for Tested Boosted Tree on Program #1 & 2
Data.
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Summary Frequency Table (Prediction)
Table: Uncontained Defect(2) x Model-2-Prediction(2)
Uncontained Model-2-Prediction Model-2-Prediction Row

Defect 0 1 Totals
Count 0 416 9 425
Column Percent 91.83% 201%
Row Percent 97-88% 2 12%
Total Percent 46.22% 1.00% 47.22%
Count 1 37 438 475
Column Percent 8.17% 97 99%
Row Percent 7-79% 92.21%
Total Percent 411% 48.67% 52.78%
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Total Percent 50.33% 49.67%1
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Figure 30. Iteration #1 - Lift Chart for Boosted Tree Model
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7.4 Model Building - Iteration #2: Classifying Defects Across Multiple Stages
The intent of this second iteration was to build a model of uncontained defects with
broader applicability using (1) higher importance defect codes as defined by Pearson Chi-
Square testing and (2) defects whose parent documents were originated in Stages 2, 3, or 4.
While several defect codes were not included due to insignificance or invariance, in this
iteration the defect codes were binned to match the two-tier structure (i.e. Defect Code A-
B). Even with this binning, more n-dimensions increased the feature complexity. This
effort will provide further fidelity that more complex relationships can be accurately
modeled. Table 5 identifies these selected variables.

Variable Impodtance
Ran kI

Cause Code 702 100 1-000000
Cause Code 502 95 0.948805
Stage Originated STAGE 4 81 0.811976
Cause Code 206 77 0.770631
Cause Code 701 77 0.768881
Cause Code 301 63 0.628647
Cause Code 207 61 0.610509
Cause Code 307 60 0.603467
Stage Originated STAGE 3 59 0.588746
Cause Code 202 43 0.432127
Stage Originated STAGE 2 42 0.422673
Cause Code 704 34 0.335875
Cause Code 302 26 0.256227
Cause Code 203 23 0.229389
Cause Code 401 21 0.208931
Cause Code 504 21 0.214842
Cause Code A9 21 0.211006
Cause Code 201 20 0.199912
Cause Code A8 13 0.132836
Cause Code 703 8 0.076376
Cause Code 406 1 0.006829

Table 5. Iteration #2 - Variable Ranking (Pearson Chi-Square) Chart for Input and Target Variables.

A CART model, Boosted Trees model, and Neural Network model were again independently
developed on Program #1 & 2 data. In this iteration, the CART model was the clear winner
with 18.7% testing error, which is better than the general 80% accuracy threshold. The
Neural Net and Boosted Trees performed relatively poorly with 81% and 58% training
error rates respectively. Table 6 and Figure 31 show the classification confusion matrix for
the CART model, where we see the prediction of uncontained defects is more accurate
(97%) than that of contained defects (i.e. false positives for uncontained defects). This is the
accuracy that matters to decision-makers, since there are unequal misclassification costs
when attempting to identify an uncontained defect. The enterprise would rather error on
the side of a false positive with little relative cost, rather than miss an opportunity to
analyze a more detrimental uncontained defect relationship.
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Table 6. Iteration #2 - Classification Confusion Matrix for Tested CART Model on Program #1 & 2 Data.

Classification matrix 1
Dependent variable: Uncontained Defect 1

Options: Categorical response, Tree number 1, Analysis sample

1600

1
0

0

200

Figure 31. Iteration #2 - Graph of Classification Confusion Matrix for Tested CART Model for
uncontained defects (Value = 1).

Figure 32 shows model lift charts for classification of contained defects (value = 0) and
uncontained defects (value = 1). The uncontained defect classification shows significant 3.2
lift value with 10-30% of known data. Conversely, the contained defect classification shows
a rather insignificant 1.22 lift value. However, the model performs very well in comparison
to the other two models when we consider the simplicity of the algorithm.

79

Summary Frequency Table (Prediction)
Table: Uncontained Defect(2) x 1-C&RT
Prediction(2)
Uncontained 1-C&RT 1-C&RT Row

Defect Prediction Prediction Totals
0 1

nt 0 926 267 1193
olumn Percent 9936% 50-38%
Row Percent 77-62% 22.38%
otal Percent 63.34% 18.26% 81.60%
Cnt 1____ 6 263 269
un Percent 0-64% 49.62%

Row Percent 2.23% 97.77%
Total Percent 0 41% 17-99% 18.40%
Count Aj Grps 932 530 1
Total Percent 63.75% 36-25%
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Tree graph for Uncontained Defect
Num. of non-terminal nodes: 6, Num- of terminal nodes: 7
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Figure 33. Iteration #2 - CART Model Graph using Programs #1 & #2 Data with 18.7% error.

Figure 33 shows the CART Tree Graph from the second iteration, which again illustrates
significant data relationships. Specifically, it provides a breakdown of several groups of
uncontained defects including approximately 19% code-0207, 33% not originated in Stage
3, 32% Stage 3 originated with code-301, and 16% Stage 3 originated with code-307.

In comparison to the first iteration, the deployed CART model was less effective when
independently validated against Program #3 with a 34% error rate. While this test failed
to meet our 20% error threshold and indicated some over-fitting to Program #1 and 2 data,
the tree graph still presents some relational value. This is bulk of the error is associated
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with We also see in Figure 34 the corresponding reduction in lift performance to 1.4 and
1.8 lift respective values.
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Figure 34. Iteration #2 - Lift Chart for CART Model deployed against Program #3 Data with 34% error.
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7.5 Model Building - Iteration #3: Predicting an Uncontained Defect
A predictive model would be valuable to detail design teams, who review subsystems prior
to their initial baseline release and ensure the design documentation meets requirements.
For instance, a predictive model could indicate if a design document was likely to exhibit an
uncontained defect during the product development lifecycle. For this iteration, only defect
attributes that were known in early design stages were used to simulate a predictive
model. Consequently, only stage originated and likely defect codes were used for
experimentation.

However, testing failed to produce an accurate predictive model with between 35-65%
misclassification error on testing. Various algorithms were employed including Neural
Networks, CART, CHAID, Boosted Trees, MARS, Support Vector Machines and Random
Forests. Several ensembles using up to five MLP-based Neural Networks were also
employed, but failed to perform better than 40% error testing or independent validation.
Additionally, feature complexity (i.e. input variables) was varied between one to four
stages of development; this included configurations of between three and fifteen input
variables against an uncontained defect target variable. Table 7 shows the custom
prediction function of the best performing (although unsatisfactory) MARS model.

Independent and Custom predictions
dependent variables Value
Stage Oiginated 4 0
Stage Orginated 3 1
Stage Originated 2 0
Stage Originated 1 0
Defect Code A_2 1
Defect Code A 3 0'
Defect Code A 7 0
Defect Code A 8 0
Defect CodeA 9 0
Defect Code 10
Defect Code B_3 0
DefectCodeD2 1
Defect Code B_5 0
Defect Code A 10 0
Defect CodeA 11 0
Defect Code B_7 0
DefectCodeB6 0
Defect Code B_4 0
Defect Code A 6 0
Defect Code A 5 0
Defect CodeA 4 0 

Table 7. MARSpline Prediction Result for Uncontained Defect attribute with 35% Testing Error.

7.6 Near Term Likelihood of Employment
Based on knowledge of the enterprise PDM system capabilities and CM practices, a
predictive model may soon be possible once existing defect profiles are associated with
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configuration items (CI) and their specific attributes including Commodity Type and
Document Type attributes. This data is tracked by projects, but not necessarily collected in
an integrated process that enables the analysis of one complete profile for a given CI. While
these relationships were unavailable at the time of this research, the firm is aggregating
these relationships across historical project defect profile to enable greater depth of
analysis.

7.7 Concepts for Data Mining Models and Change Propagation Metrics

The importance of understanding day-to-day aspects of operational processes and
dependent product data management cannot be understated. Even within the same
company, specialized functions that operate within the same business area or program may
not fully understand all of the technical processes and product data interactions with co-
lateral functions. Previous research indicates that internal change is often difficult in light
of cultural assumptions that may promote mismatching between problem root causes and
their corresponding solutions (Klein, 2004). Furthermore, even if proper alignment is
identified with small but important aspects of process, the inertia required to institute
lasting change may be underestimated.

In the selected enterprise, the argument for improving systems that identify technical
change risk is somewhat complicated by the enterprise culture. This is particularly
important in the context of an enterprise that leans more towards experience-based versus
technocratic decision-making (Klein, 2004). Like many modern but specialized
organizations, this enterprise relies both on experience within a functional area and
demonstrated technical competence as the basis for legitimacy. With fewer proactive and
synchronous measures for managing risk of technical change, this hardware engineering
change management enterprise leans more towards experience-based decision-making.
With the recent implementation of a powerful and new PDM systems, which are also
closely integrated with MRP systems, there exists an opportunity for integrating data
collection measures that can support proactive change analysis.

Adjusting the CM Process and Data Collection to support identification of Change
Propagation

Configuration Management directives establish the propagation phenomena as a strategic
imperative, the vision for employment, and the value proposition for ECM stakeholders.
Supporting standard procedures would outline sub-process requirements for the
following:

" Definition of key metrics.

" CCB process requirements for documenting CP relationships.

" Application guidelines within ECM sub-processes.
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Implementation of Data Mining Models into ECM Information Systems

The existing ECM enterprise can implement data mining classification models to improve
user understanding of project defect data with automated analysis and visualizations.
Furthermore, if complete CI-specific defect profiles can be established, then those
additional data features may enable the creation of a predictive defect model or collection
of smaller models.

Implementing Project Defect Classification Models into Defect Containment Systems

C&RT Models can produce fast and accurate models for classifying both linear and non-
linear project defect relationships. This would include visualization outputs of trees that
any practitioner could easily interpret. In addition, more robust models such as Boosted
Tree, Neural Network, MARS or ensemble models can be integrated to provide
classification models for existing project data. These models and related analysis can
provide:

" Classification response for understanding non-linear defect relationships.

" Prediction response for non-linear defect relationships of a subsystem being
analyzed.

Integration of metrics into a Design Review Dashboard

The existing enterprise uses networked peer review tool to schedule design reviews for
specific subsystems and components, and documents meeting results to track compliance
with engineering processes. The integration of predictive defect and change propagation
metrics into this tool would increase awareness of risks and cue corresponding design
discussions. Figure 35 illustrates a conceptual view of a dashboard that integrates these
metrics.

Predicted Defect Class
Probable Probable & Number of Defects

Peer Configuration Document Change CAI / CRI / Uncontained Defect Code Defect Code
Review Item Commodity Type Type Characteristic CPI Defect A D

Antenna Assembly x X
1 Subsystem 1 Equipment DWg Acceptor CAl Metric w

Assembly
2 Subsystem 2 Radome DLg Multiplier CPI Metric

3 Subsystem 3 Power Detail D[g Reflector CRI Metric X X

4 Subsystem 4 RF Antenna - CCA Detail Dwg Acceptor CAI Metric X X
Purchased

5 Subsystem 5 Structure jtegDwg Acceptor CAI Metric

Figure 35. Conceptual Design Peer Review Dashboard using Predicted Defect and CP Metrics.
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7.8 Summary
Data mining models are both executable and likely to provide value to stakeholders who
are looking for automated and accurate models of technical change relationships.
Specifically, this analysis evaluated CART models for classifying defects from similar
projects, and concluded they can accurately generalize relationships to similar projects.
Predictive models would provide higher comparative value if paired with existing
hardware detail design review processes, which seek to increase defect containment to
early design stages. Within these hardware detail design processes, defect containment
models would also complement change propagation methods and metrics proposed by
previous research (Giffen et al, 2009).

8. Conclusions and Implications for Management

This research investigates cross-functional hardware ECM capabilities within a
contemporary firm to identify qualitative factors that contribute to the effective
management technical design change, and explore the utility of data mining techniques in
the context of specific ECM processes. At a macro-level, this thesis used a case study
framework to identify common factors that can complicate the effective and efficient
management of technical change. Qualitative empirical data from engineering stakeholder
interviews provides rich contextual discussion of key interdependencies, and enables
analysis of these common factors in the context of enterprise architecting principles. At a
micro-level, this thesis "zooms" in to investigate the state of systematic change analysis
through the lens of specific technical management processes. Quantitative empirical defect
data is then mined from actual NPI projects to explore the creation of data-mining models
and their utility to selected sub-processes. Furthermore, a holistic vision is generated,
which has near-term implications for the specific enterprise, and highlights important
interactions that generalize to contemporary industry.

While ECM is often regarded as collection of engineering support processes, insight derived
from qualitative and quantitative study also highlights the interactive importance of
configuration management with softer knowledge management policies. Findings highlight
the need for socio-technical alignment between processes, PDM systems, and roles to
enable more robust and data-driven techniques for systematic analysis of technical change.
Other findings indicate that data-mining models and other multi-dimensional visualizations
are viable techniques for reducing the knowledge overhead required to fully assess the
impact of technical design changes. While this thesis is specific to the selected firm, these
findings logically generalize to the contemporary defense industry. This thesis provides
contextual understanding of technical management challenges and recommendations for
managers, who are interested in synchronizing people and systems to promote ECM
capabilities. Conclusions are summarized in the context of primary thesis questions, and
general findings are summarized in Table 8.
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Detailed Questions Findings Executable Knowledge? Questions
Answered?

Endogenous Factors: Significant qualitative discussion corroborated
some previous research findings and highlighted specific ECM YES: Identified areas of policy

t I ~ enterprise needs: resistance, provided holistict Is + Improved efficiency of PDM system use. Process & Stakeholder vision and supporting strategic&Z Are there instances of
- management or process alignment to increase knowledge sharing component. recommendations.

+ Systematic change identification capability and corresponding
view element interdependencies. However, transformation plan
Exogenous Factors: Customer and supplier interdependencies with is required to implement
regard to CM and PDM interoperability, and opportunity for policy actions.
alignment of incentive policies.

Which data mining Classification and Regression Trees (CART) provide simple, accurate, YES: Classification Models.
algorithms that provide and easily interpretable models. Enhanced tree algorithms like

rA accurate results and CHAID provide visualizations. Alternatively, Boosted Trees, Random NO: Prediction Models are0 
conceptual only. However, Ye= generalize to similar defect Forests, and NNs provide more robust computations and flexibility nep ta nitiatives,

2 profiles? with modeling more complex dimensional space. lely-urt prope inlikely support proper function.
C Where could defect models Predictive Data Mining models would provide the greatest value to

provide the greatest design teams. Classification models would also provide the following YES: Automated classification
benefit to line operations value: of project -specific defect Yesand program management + Supporting CM and design teams with fast data mining of project relationships would be useful.
during new product defect attributes with easily interpretable visualizations.

YES: Synchronization of dataWhat aspects of existing New PDM System and management of Project CM data was only n across PD QDMenterprise element recently aligned to provide CN and Defect Data by individual Cis. clstms wo be uel tYe
interactions detract from Consequently, there is no completed project data, from which sec uld be use to Yes
the utility of the concept? additional attributes can be drawn.

Table 8. Supporting Research Questions and Findings.

8.1 What common qualitative factors contribute to unintended hardware
technical change activity in new product development enterprises?
This thesis identifies several common qualitative factors that contribute to technical
change. The chapters provide a detailed discussion in regard to the following factors:

" Inability to systematically survey technical change. The enterprise is more reliant on
tactical measures for resolving need for change and assessing their impact. Without
clear process directives to collect causal relationships between change action,
project leads have no ability to identify change propagation or derive Cl-specific
metrics for assessing future design change impact.

" Application of Lessons Learned. Technical change lessons are more likely to inform
redesign or upgrade activity of the same product configuration that spawned the
lesson. These lessons are generally not applicable to later unique configuration
"branches" that are more likely on NPI projects.

" Relative engineer defect inexperience may be a factor. Though discussion was
limited, there was some indication that experienced engineers, who are not aligned
with product specific documentation requirements, often contribute to
administrative design changes.
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* Efficient Access to Configuration Data. The inability to efficiently access needed
information can directly contribute to communication overhead, which reduces
situational awareness to the impact of proposed changes. This discussion has
implications for PDM process and system initiatives.

* Software vs. Hardware Technical Change. Less restrictive SW change control
processes enables higher rejection rates of formally proposed changes; this offers
analytical opportunity that is not often found in HW processes that are less tolerant
of rejected formal changes and often fail to record informal HW CM activity.

* Supplier and Customer Uncertainty. Lack of alignment between internal and external
stakeholders may introduce misunderstanding of both administrative
documentation requirements and technical change impact analysis.

8.2 Can these qualitative insights be integrated with data mining models to

develop leading tactical measures for helping to mitigate hardware technical

change?
Yes. While this thesis is only a first effort for modeling project-defect relationships,
classification models offer potential for generalizing configuration-specific relationships
from often-unwieldy PDM systems. In particular, if models are tailored to user needs and
integrated within QDM analysis, then engineering and IPT users will use them as decision
aids.

While experimentation did not produce an accurate predictive model, this research
assessed that proper relational data could be aggregated to support a future model
implementation. However, more historical associations between configuration items must
be aggregated within QDM systems to provide Cl-specific defect profiles by Commodity
Type and Document Type attributes. For example, such predictive models (either single or
ensemble models) would provide design engineers a quick and automated method of
predicting whether a design document is likely to present a costly three-stage-delay
uncontained defect. If integrated with existing design review processes, data-driven
models would provide an unbiased aid for IPT Leaders seeking to allocate scant resources
to the most detrimental design defects.

8.3 Concepts for Leveraging Product Data Management (PDM) Processes and

Systems
PDM concepts proposed by this research could bolster the hardware process and tool
architecture within the selected firm. The first concept illustrates the use-case for
aggregating Cl-specific defect attributes in order to build automate predictive models. The
second concept establishes associative attributes between change action documents to
enable change propagation analysis and metrics.
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While specific to one enterprise, sense-making from interviews and analysis of quantitative
data provided insight that is likely to apply to other firms that use integrated product
development processes.

8.4 Transforming the ECM Enterprise
Even within the same business unit, specific engineering functions and NPI projects may
have unique configuration management processes that are tailored to their needs. In order
to institute more effective surveillance of technical change as proposed by this research,
engineering firms should carefully assess dominant view element interactions, stakeholder
value exchange, cultural factors, and initiatives that reinforce positive feedback loops.

8.5 Potential branches to research theory

Evaluation of project defect containment in the context of coordination-type
communication within design peer review teams
This research discussed but did not evaluate the wealth of knowledge from design peer
review databases, which document the reviews of detail design components and
assemblies prior to their released baseline. Further research may consider a single or
cross-case study of detail design peer reviews to evaluate the significance of coordination-
type communication to a projects final defect containment rate. For instance, a predictive
model may be formulated using historical directional communication data inputs to a DSM
(Morelli et al, 1995) or an ES-MDM (Bartolomei, 2012), and then compared to those
projects defect containment rates. The accurate modeling of coordination-type
communication and actual defect containment rates would provide a powerful tool for
strengthening communication linkages within the organization. Alternatively, a similar
analytical approach could be applied to coordination-type communication within CCB
Teams. Another research branch could draw engineer survey data of PDM system queries.

Evaluation of ECM discipline across industries
While research findings may generalize to other hardware ECM enterprises, further
research may investigate substantive differences across different commodity types or
industries. Further research may employ s multiple case study method with cross-case
analysis to evaluate impact of key factors to different disciplinary fields, in order to
demonstrate broad applicability of findings.

Estimation of technical change cost impact
Defect cost was unavailable or non-existent for the majority of the defect records. This was
due partly to the intricacies of data collection, and how change impact cost is tracked from
different perspectives. Fundamentally, technical change impact analysis addresses the
need to meet requirements, and the cost of taking such action within the context of the
program budget; this perspective defines the lens through which change cost analysis is
conducted. In general terms, change cost is defined as the resource cost associated with
implementing an approved change into a TDP (and MDP, Testing, Manuals, etc.) and
associated products as defined by the change action effectivity (i.e. which serial number
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will be affected by the change). Consequently, a bottoms-up approach to accounting for
numerous cross-functional impacts from one individual change is sometimes impractical,
especially when considering hundreds to thousands of successive changes. Detailed
research into the process architecture that enables data-driven cost estimation would
benefit the technical change impact analysis.
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Appendix A: Dynamics of Introducing Inexperienced Staff
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Figure 36.
Experience

Casual Loop Diagram Part 1: New Staff is inexperienced and require Time to Gain
(Knight, 2011).
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work) Correct and reduces Productivity (Knight, 2011).
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Appendix B: Exploration of NPI Program Data
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Appendix C: Iteration #1 - CART Model Code
Note: Derived from Statistica PMML using Program #1 & #2 Data.

<?xml version="1.0" encoding="Windows- 1252" ?>
<PMML version="2.0">
<Header copyright="STATISTICA Data Miner, Copyright (c) StatSoft, Inc.,
www.statsoft.com."/>
<DataDictionary numberOfFields="11">

<DataField name="Uncontained Defect" optype="categorical">
<Value value="O" NumericValue="0"/>
<Value value="1" NumericValue="1"/>

</DataField>
<DataField name="Defect Code A_2" optype="categorical">

<Value value="0"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code A_3" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code A_8" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code A_9" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code B_1" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code B_2" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code B_3" optype="categorical">

<Value value="0"/>
<Value value="1"/>

</DataField>
<DataField name="Defect Code B_5" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Stage Detected_3" optype="categorical">
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<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Stage Originated_" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
</DataDictionary>
<TreeModel

functionName="classification"
modelName="ITrees"
splitCharacteristic="multiSplit">

<MiningSchema>
<MiningField
<MiningField
<MiningField
<MiningField
<MiningField
<MiningField
<MiningField
<MiningField
<MiningField

name="Uncontained Defect"
name="Defect Code A_2"/>
name="Defect Code A_3"/>
name="Defect Code A_8"/>
name="Defect Code A_9"/>
name="Defect Code B_1"/>
name="Defect Code B_2"/>
name="Defect Code B_3"/>
name="Defect Code B_5"/>

usageType="predicted"/>

<MiningField name="Stage Detected_3"/>
<MiningField name="Stage Originated_3"/>

</MiningSchema>
<Node score="O">
<targetPrediction name="O" value="5.0112 1914734480e-001"/>
<targetPrediction name="1" value="4.98878085265520e-001"/>

<TRUE/>
<Node score="1">

<targetPrediction name="O" value=" 1.94864048338369e-00 1"/>
<targetPrediction name="1" value="8.0513595166163le-001"/>

<SimplePredicate field="Stage Detected_3"
value="O"/>

operator="equal"

<Node score="1">
<targetPrediction name="O" value="0.00000000000000e+000"/>
<targetPrediction name="1" value="1.00000000000000e+000"/>

<SimplePredicate field="Stage Originated_3" operator="equal"
value="1"/>

</Node>
<Node score="O">

<targetPrediction name="O" value="7.0491803 2786885e-00 1"/>
<targetPrediction name="1" value="2.95081967213115e-001"/>

<SimplePredicate field="Stage Originated_3" operator="equal"
value="O"/>

<Node score="1">
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<targetPrediction name="0" value=" 3.77777777777778e-001"/>
<targetPrediction name="1" value="6.22222222222222e-001"/>

<SimplePredicate field="Defect
operator="equal" value="1"/>

</Node>
<Node score="O">

<targetPrediction name="O" value="7.50778816199377e-001"/>
<targetPrediction name="1" value="2.492 2118380062 3e-00 1/>

<SimplePredicate field="Defect
operator="equal" value="O"/>

Code

Code

B_5"

B_5"

<Node score="O">
<targetPrediction name="O" value="6.40883977900553e-001"/>
<targetPrediction name="1" value="3.59 116022099448e-001"/>

<SimplePredicate field="Defect Code A_9"
operator="equal" value="1"/>

</Node>
<Node score="O">

<targetPrediction name="O" value="8.92857142857143e-001"/>
<targetPrediction name="1" value="1.07142857142857e-001"/>

<SimplePredicate field="Defect
operator="equal" value="0"/>

</Node>
</Node>

</Node>
</Node>
<Node score="O">

<targetPrediction name="0" value="8.0 148148148148 le-00 1"/>
<targetPrediction name="1" value="1.98518518518519e-001"/>

<SimplePredicate field="Stage Detected_3"
value="1"/>

Code A_9"

operator= "equal"

<Node score="1">
<targetPrediction name="0" value="0.00000000000000e+000"/>
<targetPrediction name="1" value="1.00000000000000e+000"/>

<SimplePredicate field="Stage Originated_3" operator="equal"
value="O"/>

</Node>
<Node score="O">

<targetPrediction name="O" value="1.00000000000000e+000"/>
<targetPrediction name="1" value="0.00000000000000e+000"/>

<SimplePredicate field="Stage Originated_3" operator="equal"
value="1"/>

</Node>
</Node>

</Node>
</TreeModel>
</PMML>
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Appendix D: Iteration #1 - Evaluation Data of Boosted Tree Model
Note: PMML Code was too large to include for this model.

Summary Frequency Table (Prediction)
Table: Uncontained Defect(2) x 2-Boosted trees
Prediction(2)
Uncontained 2-Boosted trees 2-Boosted trees Row

Defect Prediction Prediction Totals
0 1

Count 0 451 6 457
Column Percent 95-55% 1.40%
Row Percent 98.69% 1-31%
Total Percent 50.11% 0.67% 50.78%
Count 1 21 422 443
Column Percent 4 45% 98-60%
Row Percent 4 74% 95 26%
Total Percent 2-33% 46.89% 49.22%
Count All Grps 472 428 900
Total Percent 52-44% 47.56%1

Table 9. Iteration #1 - Classification Confusion Matrix for Boosted Tree Model.

Summary of Boosted Trees
Response: Uncontained Defect

Optimal number of trees: 153, Maximum tree size: 13
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Figure 41. Iteration #1 - Optimal Number of Boosted Trees Graph.
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Appendix E: Iteration #2 - CART Model Code
Note: Derived from Statistica PMML using Program #1 & #2 Data.

<?xml version="1.0" encoding="Windows- 1252" ?>
<PMML version="2.0">
<Header copyright="STATISTICA Data Miner, Copyright (c) StatSoft, Inc.,
www.statsoft.com. "/>
<DataDictionary numberOfFields="22">

<DataField name="Uncontained Defect" optype="categorical">
<Value value="0" NumericValue="0"/>
<Value value="1" NumericValue="1"/>

</DataField>
<DataField name="Cause Code_201"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_202"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_203"

<Value value="0"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_206"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_207"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_301"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_302"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_307"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_401"

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

optype= "categorical">

optype="categorical">

optype="categorical">

optype= "categorical">
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<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_406"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_502"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_504"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_701"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_702"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_703"

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause Code_704"

<Value value="0"/>
<Value value="1"/>

</DataField>

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

optype="categorical">

<DataField name="Cause Code_A8" optype="categorical">
<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Cause CodeA9" optype="categorical">

<Value value="O"/>
<Value value="1"/>

</DataField>
<DataField name="Stage OriginatedSTAGE 2" optype="categorical">

<Value value="0"/>
<Value value="1"/>

</DataField>
<DataField name="Stage OriginatedSTAGE 3" optype="categorical">

<Value value="0"/>
<Value value="1"/>
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</DataField>
<DataField name="Stage OriginatedSTAGE 4" optype="categorical">

<Value value="0"/>
<Value value="1"/>

</DataField>
</DataDictionary>
<TreeModel

functionName="classification"
modelName="ITrees"
splitCharacteristic="multiSplit">

<MiningSchema>
<MiningField name="Uncontained Defect" usageType="predicted"/>
<MiningField name="Cause Code_201"/>
<MiningField name="Cause Code_202"/>
<MiningField name="Cause Code_203"/>
<MiningField name="Cause Code_206"/>
<MiningField name="Cause Code_207"/>
<MiningField name="Cause Code_301"/>
<MiningField name="Cause Code_302"/>
<MiningField name="Cause Code_307"/>
<MiningField name="Cause Code_401"/>
<MiningField name="Cause Code_406"/>
<MiningField name="Cause Code_502"/>
<MiningField name="Cause Code_504"/>
<MiningField name="Cause Code_701"/>
<MiningField name="Cause Code_702"/>
<MiningField name="Cause Code_703"/>
<MiningField name="Cause Code_704"/>
<MiningField name="Cause CodeA8"/>
<MiningField name="Cause Code_A9"/>
<MiningField name="Stage OriginatedSTAGE 2"/>
<MiningField name="Stage OriginatedSTAGE 3"/>
<MiningField name="Stage OriginatedSTAGE 4"/>

</MiningSchema>
<Node score="O">
<targetPrediction name="0" value="2.96109839816934e-001"/>
<targetPrediction name="1" value="7.03890 160183066e-00 1"/>

<TRUE/>
<Node score="1">

<targetPrediction name="0" value="2.43482538121003e-001"/>
<targetPrediction name="1" value="7.565 1746 1878997e-00 1"/>

<SimplePredicate field="Stage OriginatedSTAGE 4" operator="equal"
value="0"/>

<Node score="1">
<targetPrediction name="0" value="2.03 1872 50996016e-00 1"/>
<targetPrediction name="1" value="7.96812 749003984e-00 1"/>
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<SimplePredicate field="Cause Code_207" operator="equal"
value="O"/>

<Node score="1">
<targetPrediction name="0" value="1.81818181818182e-002"/>
<targetPrediction name="1" value="9.81818181818182e-001"/>

<SimplePredicate field="Cause
operator="equal" value="1"/>

</Node>
<Node score="1">

<targetPrediction name="O" value="2.22361809045226e-001"/>
<targetPrediction name="1" value="7.77638190954774e-00 1"/>

<SimplePredicate field="Cause
operator="equal" value="O"/>

Code_701"

Code_701"

<Node score="1">
<targetPrediction name="0" value="9.574468085 10638e-002"/>
<targetPrediction name="1" value="9.04255319148936e-001"/>

<SimplePredicate field="Stage OriginatedSTAGE
3" operator="equal" value="O"/>

</Node>
<Node score="1">

<targetPrediction name="O" value="2.49618320610687e-00 1"/>
<targetPrediction name="1" value="7.50381679389313e-00"/>

<SimplePredicate field="Stage OriginatedSTAGE
3" operator= "equal" value="1"/>

<Node score="1">
<targetPrediction name="O" value="1.26353790613718e-00 1"/>
<targetPrediction name="1" value="8.73646209386282e-001"/>

<SimplePredicate field="Cause Code_301"
operator="equal" value="1"/>

</Node>
<Node score="1">

<targetPrediction name="O" value="2.82671829622459e-001"/>
<targetPrediction name="1" value="7.17328170377541e-001"/>

<SimplePredicate field="Cause Code_301"
operator="equal" value="O"/>

<Node score="1">
<targetPrediction name="O" value="1.05263157894737e-001"/>
<targetPrediction name="1" value="8.94736842105263e-001"/>

<SimplePredicate
Code_307" operator= "equal" value="1"/>

</Node>
<Node score="O">

<targetPrediction name="O" value=" 3.08888888888889e-00 1"/>
<targetPrediction name="1" value="6.9111111111111le-001"/>

<SimplePredicate
Code_307" operator="equal" value="0"/>

field="Cause

field="Cause
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</Node>
</Node>

</Node>
</Node>

</Node>
<Node score="O">

<targetPrediction name="O" value="5.0000000000000e-001"/>
<targetPrediction name="1" value="5.0000000000000e-001"/>

<SimplePredicate field="Cause Code_207" operator="equal"
value="1"/>

</Node>
</Node>
<Node score="O">

<targetPrediction name="O" value=" 1.00000000000000e+000"/>
<targetPrediction name="1" value="0.0000000000000e+00"/>

<SimplePredicate field="Stage OriginatedSTAGE 4" operator="equal"
value="1"/>

</Node>
</Node>
</TreeModel>
</PMML>
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Appendix F: Supporting Computer Applications
XLMiner was selected among several available software applications for this thesis
research due to the tool ease of use and sufficient range of analytical methods. XLMiner is a
Microsoft Excel add-in application that allows users to import spreadsheet data, which was
output from an enterprise PDM system for this research. The tool provides basic
manipulation functions including sampling, data partitioning and scoring with the
flexibility to modify those methods to suit the analysis of large or small datasets. XLMiner
also allows basic visualization techniques through a Chart Wizard function that supports
basic charting, scatter plots (and matrices), histograms, box plots, etc. The tool provides a
comprehensive range of data mining algorithms to support statistical analysis and machine
learning methods for data exploration, classification of categorical variables and prediction
of numerical variables.

Statistica is a software application that provides a comprehensive suite of data analysis
tools, which provide for statistical analysis, data visualization and data mining procedures
(StatSoft, 2011). After identifying NPI projects and canvassing databases for defect data,
this research used Statistica to conduct data exploration and preparation, as well as model
building, evaluation and selection. Statistica provides an independent graphical user
interface, which enables the import of data from various formats and export of models to
enterprise business systems. In comparison to the simpler XLMiner add-in to MS Excel,
Statistica provides several additional advantages including more advanced algorithms,
guided data mining workflows, ensemble-building functions, robust evaluation tools, and
graphics that enable expedited and thorough modeling architectures.

Vensim is a software application used to model system or policy interactions with system
dynamics method. After identifying reference modes of key policy and process
interactions, this research used Vensim to illustrate observed policy friction and proposed
concepts with a simple Causal Loop Diagram. However, a fully developed system dynamics
analysis is out of scope for this research.
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