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Abstract

This thesis studies the decay of a pseudo-goldstino to a gravitino plus a photon in the
Minimal Supersymmetric Standard Model. The foundational premise of this decay process
is that there are two independent sectors of supersymmetry breaking. We compute this
main decay rate using the goldstino equivalence theorem to replace the final gravitino state
with a goldstino. This replacement allows us to study simpler models which help build
the intuition and methods for the final calculation. Specifically, we first study the decay
of a pseudo-goldstino to a goldstino plus a photon in a toy model of multiple supersymme-
try breaking and then the same process in the Minimal Supersymmetric Standard Model
without supergravity. Incorporating supergravity introduces the interpretation of the gold-
stino as the longitudinal component of the gravitino and introduces the constant mass ratio
between the gravitino and the pseudo-goldstino which is definitive of multiple local super-
symmetry breaking. For the main decay process, we find that the rate is zero for certain
relationships between the parameters which define the two hidden sectors. In the discussion
we suggest other similar calculations which can be done within the same framework.

Thesis Supervisor: Jesse D. Thaler

Title: Assistant Professor of Physics
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Chapter 1

Introduction

The standard model is currently the best tested comprehensive model of particle interac-

tions. It contains theoretical descriptions of how the forces responsible for nuclear energy,

radioactive decay, and electromagnetism are related to one another and how all currently

observed particles interact through these forces. However, there are theoretical and exper-

imental motivations for believing that the standard model is just an effective theory for a

more encompassing theory.

From a theoretical perspective, the hierarchy problem is considered a major inconsis-

tency in the standard model. The hierarchy problem refers to the huge order of magnitude

disparity ("hierarchy") between the weak scale, which is well described by the quantum

field theory of the standard model, and the Planck scale, at which quantum field theory is

expected to break down due to fluctuations in spacetime. This disparity poses a problem

to the standard model because it suggests that certain combinations of parameters must be

finely tuned to 30 decimal places [1], an unlikely possibility.

From an experimental standpoint, there are many suggestions that there is a phenomeno-

logical theory of particle interactions which exists beyond the standard model. Neutrino

masses, for example, are predicted to be zero in the renormalizable Standard model, but

the observations of and models associated with neutrino oscillations suggest otherwise [2].

The standard model also says nothing about the asymmetry in the occurrence/existence of

matter and antimatter in our physical world. Dark energy, the hypothetical and nebulous

energy which permeates all of space, is possibly related to the vacuum energy which arises in

all quantum field theories but the explicit predictions in the standard model which attempt
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to connect the theoretical vacuum energy to an experimental quantity miss the mark by 120

orders of magnitude [3]. Finally, dark matter a substance which is named for its apparent

lack of interaction with electromagnetic radiation is responsible for most of the matter of

the universe but there are no candidate standard model particles which satisfy its currently

known properties [4].

With all of these motivations, we can state rather definitively that the standard model

is incomplete from both an aesthetic and an experimental perspective. From here we can,

and many people have, proceeded in many directions to determine what models of physics,

based on different constraining principles, exist beyond the standard model [5], but for this

thesis will focus on the supersymmetric extension of the standard model.

Supersymmetry (termed 'SUSY' for short) claims that for each currently observed par-

ticle there is an as of yet undiscovered partner particle - called the superpartner. The par-

ticle and its superpartner have spins which differ by a half integer, so that SUSY essentially

claims that all particles exist in boson/fermion pairs. A theory which is supersymmetric

allows the exchange of certain bosons and fermions without changing the physical proper-

ties of the theory akin to the way a rotationally symmetric figure can be rotated without

changing shape. It must be noted that although incorporating SUSY is a popular way to

extend the Standard Model, it does not so much as solve all of the problems of the standard

as much as it provides more room in which to build models to encompass the theoretical

phenomenological inconsistencies [6].

If supersymmetry is a physical symmetry of nature, it must be a broken symmetry be-

cause observable particles do not come in mass degenerate boson/fermion pairs. Physicists

state that a symmetry is broken in a system if the symmetry is mathematically present

in the underlying theoretical structure of the system but is not present in the physical

properties of the system. For, example we say that a ferromagnet has a broken rotational

symmetry because although the physical laws governing the properties of the ferromagnet

(i.e., Maxwell's equations) are rotationally invariant, the directional magnetic field in the

ferromagnet is not. SUSY is a broken symmetry because although physical particles do not

exist in boson/fermion, the mathematical structure of SUSY assumes they do.

Since supersymmetry, if it is physically manifest, must be broken an important task

for the model builder in creating a realistic model of supersymmetric particle interactions

is to determine the mechanism of SUSY breaking. In typical models of SUSY breaking

14



Figure 1-1: Pseudo-Goldstino to Gravitino Decay through MDI: When we have two sectors
of breaking in supergravity, the pseudo-goldstino becomes the next-to-lightest supersym-
metric particle allowing for the decay from a pseudo-goldstino to a gravitino via a magnetic
dipole interaction.

one assumes there is a hidden sector of particles distinct from the observable particles and

their superpartners. This hidden sector then induces supersymmetry breaking which is

communicated to the visible sector through a messenger sector [7]. This thesis departs from

the typical models of SUSY breaking by generalizing the assumption of a single sector of

breaking to two sectors of breaking, a framework first proposed in [8]. A specific consequence

of such a framework is that a small mass fermion, the pseudo-goldstino, is added to the low

energy spectrum of the system. This addition allows for new phenomenological decay and

scattering scenarios, one of which is investigated in this thesis. Specifically we compute the

the decay rate for a pseudo-goldstino to go to a gravitino, the superpartner of the graviton,

plus a photon through a magnetic dipole interaction (MDI) as shown in Fig. 1-1.

The outline of this thesis is as follows. In chapter 2, we provide a review of the su-

persymmetry background which is necessary to understand the later results of the thesis.

In chapter 3, we develop the theoretical structure necessary for the main thesis problem,

by studying the main problem without supergravity (SUGRA). In chapter 4, we include

SUGRA and derive the couplings and masses which are necessary for a computation of

the pseudo-goldstino to gravitino plus photon decay rate. In chapter 5, we discuss ways to

extend the study and consider ways to apply the result to models of dark matter.
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Chapter 2

Supersymmetry

Supersymmetry was "discovered" close to 40 years ago [9] and since then physicists have

progressed a long way in the development of the theoretical and phenomenological structure

of the subject. In this chapter we provide a short review of the developments which exist

as a foundation to the results in this thesis.

In the first section we outline the basics of supersymmetry expressed in terms of the

component fields of the simplest multiplets. In the second section we translate these super-

symmetry basics to the superfield formalism. In the third section we discuss supersymmetry

breaking and lay the foundation for the scenarios of multiple breaking discussed in the next

chapter. In the final section we summarize the Minimal Supersymmetric Standard Model

and derive the 4 x 4 neutralino mass matrix (without soft supersymmetry breaking terms)

which is largely relevant to our later analysis.

2.1 Basics

There are two routes towards the construction of a supersymmetric theory. One can proceed

intuitively by choosing an appropriate collection of boson and fermion fields and incorpo-

rating the supersymmetric criterion by hand, or one can proceed formally by considering

supersymmetric algebras and then constructing superfields which fall into various repre-

sentations of the algebra. Here we will eschew formality and take the intuitive approach

and later substantiate it with the more powerful results of the superfield formalism. The

analysis in the subsequent sections will very much follow the discussion in [7].
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2.1.1 Wess-Zumino Models

In order to construct a supersymmetric theory we need to find a transformation which

transforms bosons into fermions and vice versa. The simplest action containing both boson

and fermion degrees of freedom is

S = Jd4X (aoa * + jtfak), (2.1.1)

where q is a complex scalar field and b is a Weyl field. A set of transformations which

leaves the action invariant while exchanging boson and fermion degrees of freedom is

(2.1.2)

5eIk = -(ovet)k 4, (2.1.3)

where E is a infinitesimal constant spinor with mass dimension -1/2. If these transfor-

mations are to be mathematically consistent, however, we must ensure that they close.

Colloquially, we must ensure that applying a series of transformations does not result in

a net transformation which does not represent a symmetry of the theory. We ensure clo-

sure by calculating a commutator of two transformations and inspecting the result. The

commutator of the bosonic field transformation yields

(Se2c5el - Seie 2 > = -i(ei"4E - E2tE)po. (2.1.4)

We see that instead of obtaining another SUSY transformation we have a partial deriva-

tive. The partial derivative is the generator of spacetime translations so the fact that it

results from the commutation of two SUSY transformations suggests that the SUSY algebra

contains the translational spacetime symmetry too. This fact is important in establishing

supersymmetry as an extension to the already known spacetime symmetries. Computing

the commutator of the transformations for the fermionic field we have

(5e26e1 - 6c16e2)k = -i(E1taE4 - E20' p (2.1.5)

+ i(EiaE L&jaV - E2,E{ffByA). (2.1.6)
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If we allow the fermions to be on shell, the last term vanishes and we have a result analogous

to the boson result above. However, if we take the fermions to be off shell then the additional

term seems to rule out our desired closure property. The solution to this problem is to

recognize that we cannot achieve closure off-shell with our current field content, but must

introduce an additional field. The field to introduce turns out to be an auxiliary field of

mass dimension 2 without field dynamics of its own. Its lagrangian and transformation are

respectively

LF = FIF, (2.1.7)

Je F = -if89,.(2.1.8)

A fortunate bonus is that the transformations of F are already closed. To ensure that

the action stays invariant with the inclusion of the auxiliary field, we must modify the

transformation of the fermion field

=i(a'e)ac v+ EaF. (2.1.9)

We note that the new term in the fermion transformation is proportional to the auxiliary

field. This fact will be important when we discuss supersymmetry breaking. Now, the total

lagrangian

L = a."Oap* + io 't91ap + FtF, (2.1.10)

is invariant under supersymmetry transformations, and the commutators of each transfor-

mation obeys

(626e1 - 661662 )X = i(e146E2 - E2'PE1)OpX, (2.1.11)

where X is any of the fields q, ', F or their Hermitian conjugates.

We now have our simplest supersymmetric theory, but it is not very interesting because

it does not contain any interactions. Building up the interactions to be consistent with

supersymmetry requires some work, but what we ultimately find is that to maintain the

supersymmetric invariance of the lagrangian we must have

Lint = -1W(2)n0 + W(1)F + h.c., (2.1.12)
2
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where

W= 1h+ Imo2 + 1 03, (2.1.13)
2 3!

and

W(2) = W, W ) = W (2.1.14)
(9,2 (go

and h, m, and f are positive constants. We collect these results into a full interacting

lagrangian for our boson # and fermion 0

Lwz = &O/I,* + iVtf"fe9j + FtF (2.1.15)

1 W()- V+ W(')F + h.c.. (2.1.16)
2

To obtain a lagrangian which only contains the physical fields we solve for the equations of

motion of the auxiliary field F. Our current lagrangian only contains a single set of fields,

but can be easily generalized to include an arbitrary number of fields. The fields which

make up the above lagrangian define what is called a chiral multiplet, and the associated

lagrangians are typically termed Wess-Zumino lagrangians.

2.1.2 Yang Mills Theories

Above we constructed a supersymmetric lagrangian with a spin-0 boson and spin-1/2

fermion. The next logical step is to construct a lagrangian with a spin 1 boson and its

appropriate superpartner. Theories of this nature are in general termed SUSY Yang Mills

theories since the most general lagrangian which represents the free dynamics of spin-1

particles is the Yang-Mills lagrangian. The construction of the supersymmetric Yang-Mills

lagrangian proceeds analogously to the construction of the Wess-Zumino lagrangian so we

merely state the result. The lagrangian is

LSy 1 = - !F,,,,a +iAtagtD.Aa + DaDa, (2.1.17)

where a is the generator label and D" is an auxiliary field of mass dimension 2, and

Fa. = 9,,Aa a - gabcAbA, (2.1.18)

DAa = Aa gfabcAbAc, (2.1.19)
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with A is a Weyl fermion in general termed the gaugino and A/" is a non-abelian gauge field.

The fields which make up this lagrangian define what is typically called a vector multiplet.

The supersymmetry transformations of these fields are

JA 1 &t'Aa + At adAe], (2.1.20)

1
6Aa = ( )Fa a, (2.1.21)

5Da = - [Et tDAa - D1AtagpE]. (2.1.22)

2.1.3 Gauge Theories

Our principle concern in this thesis will be with supersymmetric gauge theories, that is

theories which contain spin 0 bosons and gauge bosons in addition to their respective su-

persymmetric partners. In such theories the boson and the other fields in the chiral multiplet

must transform under the gauge symmetry as

6gaugeX = igAaTaX. (2.1.23)

We can make our chiral multiplet lagrangian gauge invariant by promoting regular the

spacetime derivatives in (2.1.10) to covariant derivatives

Dp# = o,4 + igA'Tag, (2.1.24)

D, = 01V + igAaiTb. (2.1.25)

These covariant derivatives introduce interactions between the gauge boson and the mem-

bers of the chiral multiplet. The requirements of supersymmetry suggest then that the

gaugino A and the auxiliary field D should in someway couple to these members too. When

we introduce these couplings our gauge theory lagrangiran becomes

EsUSY = £SYM + £wz - ./2g [(d*Tap)Aa +Ata(VbtTaq)] + g(-*Taq)Da, (2.1.26)

where £wz is the Wess-Zumino lagrangian (2.1.16) with space time derivatives made co-

variant and LSYM is the Super Yang Mills lagrangian (2.1.17). Clearly with these new

interactions our previous supersymmetry transformations would most likely be modified.
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Fortunately, the only modifications occur in the chiral multiplet. The new transformations

for fields in the chiral multiplet are

64= eo, (2.1.27)

S+ ecF, (2.1.28)

6F = -iet a"Dy' + d g(Ta),txta, (2.1.29)

and all other transformations remain the same. These transformations leave the action for

(2.1.26) invariant under supersymmetry transformations if we mandate that the W(O) is

gauge invariant. Namely
9W

JgaugeW = igAa WTa = 0. (2.1.30)

2.2 Superspace Formalism

When we have systems involving many different supersymmetry multiplets it is best to

adopt the superspace formalism and collect fields in the same multiplet into what is known

as a superfield. In this section we review this formalism closely following the review in

[7]. In the superspace formalism we add two two-component Grassmann coordinates to

the four spacetime coordinates. These coordinates are termed spinors and they satisfy the

anticommuting relation

{al } = 0. (2.2.1)

We can define integration over these coordinates using the definition of Grassmann integra-

tion

d77 = 0, Jd?7 = 1, (2.2.2)

and we can define the integration differentials as

1
d2 0 = d~ d60, (2.2.3)

4

d2 4= - dOdade0 , (2.2.4)

d40 = d20d2 , (2.2.5)
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where e',6 is the two component levi civita symbol. General spinor identities for the 0

coordinates can be found in Section 3.2 of [10] and the appendix of [7].

We collect the components of the particle multiplets mentioned in the last section into

what is known as superfields. Superfields are most easily constructed as a function of the

superspace coordinate y where

yA = XI - iOMA . (2.2.6)

For example the superfield for the chiral multiplet, known as the chiral superfield, is

(y) = q(y) + V1200b(y) + 02F(y) (2.2.7)

= O(X) - i~o O6g0(x) - 1022 a
2 4(X) (2.2.8)

4

+ V2-00i(x) + i02aj,*X)&'6 ± 02 F(x) (2.2.9)

where the second line is obtained by Taylor expanding the first line and using spinor iden-

tities. In this thesis we will write superfields in bold type to distinguish them from their

component fields. Using the spinor identities we can show that our Wess-Zumino lagrangian

(2.1.16) is reproduced by the lagrangian

£wz J d40 tj + (J d2 0 W(t) + h.c.) 7  (2.2.10)

where
1 13

W(4 ) = h(P + 1P2 + 1 PP. (2.2.11)

The second term term in (2.2.10) is typically called the superpotential. The first term is

called the Kifhler potential and it is often written functionally as K(4t, 4) = 4t4.

We express our vector multiplet in terms of what is known as a vector superfield

1
Va(x) = 0&,uAa + io2#Ata - i0j 2Aa + 102J2 Da. (2.2.12)14 2

In the above expression the vector superfield is written in what is known as Wess-Zumino

gauge where the extra spinors and scalar fields which usually make up the vector superfield

have been removed by a gauge transformation. The gauge transformation of the vector

superfield is defined by

eTaVa eTAat e aVaeTaAa (2.2.13)
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or to a perturbative order by

Va Va + Aa + Aat + O(VaAa), (2.2.14)

where T' are the generators of the gauge group and Aa are a collection of chiral superfields.

In order to build the kinetic terms for this vector superfield which reproduce the super-

symmetric Yang-Mills lagrangian (2.1.17), we must define the vector superfield strength

1-
TaW a =--&,&e -T vDaeGVO, (2.2.15)

4

where

Da = g -2i(0'16)Q , (2.2.16)

D= (2.2.17)a'

are superspace derivatives written in y space. Applying the derivatives and expanding

(2.2.15) and applying spinor identities yields

= -iAa(y) + OaDa(y) - (o'""6)aF12,(y) - 0 Oo94DMAta(y), (2.2.18)

where o" = ' (o4 " - a9d"). The supersymmetric Yang Mills Lagrangian can then be

written as

£SYM d 20 1Wa aWa + h.c. (2.2.19)

To construct supersymmetric gauge theories in superspace, we must couple the chiral

superfield to the vector superfield in a gauge-invariant way. The structure of the vector

superfield gauge transformation in (2.2.13) gives us a clue as to what the coupling should

be. When going from a non-gauged to a gauged theory the Kifhler potential

K(4t, 4) = tt.2gTaV. (2.2.20)

Also in order to ensure this Kihler potential is gauge invariant, we require 4 to transform

as

4 -+ e-gTaAa4. (2.2.21)
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In summary, the general lagrangian for a renormalizable supersymmetric gauge theory can

be written in superfield formalism as

SUSY d4 0 +2 gTaa d26W() + WaaWa + h.c.). (2.2.22)

This lagrangian reproduces (2.1.26) when expanded in component fields and integrated over

superspace.

2.3 Supersymmetry Breaking

If supersymmetry is a physical symmetry of nature, the fact that it is not immediately

manifest in the current spectrum of particles tells us quite definitely that it is a broken

symmetry. Exactly how supersymmetry is broken, however, is much less definite. In this

section we review the standard mechanisms for supersymmetry breaking and conclude with

a comment on how the premise of this these modifies these mechanisms.

2.3.1 Spontaneous Symmetry Breaking

If a symmetry is not manifest in the physical properties of the system, but the symmetry

is present in the mathematical representation of the system, then we say the symmetry

is spontaneously broken. For example, the following lagrangian models the interactions

between a massless field b(x) and a massive field a(x)

1 1
£ = -"aoa + -&9b b (2.3.1)

2 " 2

- A2a2 A -pa(a2 + b2) -6(a 2 + b2) 2 . (2.3.2)
2 16

From a naive inspection of the above lagrangian we would conclude there was no symmetry

which related the two fields to one another. However if we reparameterize our fields as

1
O(x) =- [v + a(x) + ib(x)], (2.3.3)

2

where v = 2m/vf/ we find that we can rewrite (2.3.2) as

' = apotoqpo- 2tk _ A (0t0)2. (2.3.4)
4
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In this form we realize that the original lagrangian had a U(1) (or equivalently an SO(2))

symmetry. If we were to study these two fields through collisions, it would have been dif-

ficult to realize that there was a symmetry relating them even though the symmetry is

present in the lagrangian (2.3.2) which defines their interactions. The main lesson to draw

from this example is that a symmetry can be present in the mathematical structure of a

system, even if it is not present in the physical properties of that system. This can occur

if the symmetry is spontaneously broken. Extrapolating this argument to supersymmetry,

we can claim that supersymmetry - if it is a legitimate symmetry - must be spontaneously

broken.

One feature which hails the existence of a spontaneously broken symmetry is the ex-

istence of a massless particle. For bosonic symmetries this massless particle is called the

goldstone boson. In the example above the goldstone boson was the field b(x). In supersym-

metric theories, in which the defining symmetry group is fermionic, the massless particle is

a fermion called the goldstino.

Since the goldstino factors largely in our later analysis we will take some time to review

one of its important properties. In a general renormalizable supersymmetric theory with

both vector and chiral field multiplets, the mass bilinear fermion terms are

£FM = -V /2g(q*T )AG + h.c., (2.3.5)

where Wik is the second derivative of the superpotential, V5 is a fermion in the chiral

multiple j, g is the gauge coupling for a gauge group with generators Ta, and A' are the

gauginos in the vector multiplet. Taking the coefficients of the bilinear fermion terms to be

evaluated at their VEVs we can state the mass matrix of fermions in a general renormalizable

SUSY theory to be

MFermion = ,2g(*T) (2.3.6)
vr2g((O*)Ta)j (Wij)
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where the matrix is written in the (Aa, 0j) basis. If supersymmetry is broken, this matrix

has a zero eiegenvector corresponding to the godlstino state. The eiegenvector is

r (D) =) , (2.3.7)
Fq ( (F)

where F, = Z;(F)2 + Ea(Da)2/2, and once again we have chosen the (Aa, Vi/) basis. It

can be shown that this eigenvector yields zero when applied to the fermion mass matrix

by using two facts: one, that the superpotential is invariant under gauge transformations

(2.1.30); and two, that the first derivative boson potential has a zero VEV.

2.3.2 Nonlinear Parameterization of Chiral Superfield

Here we will derive a useful parameterization of supersymmetry breaking chiral superfields

which isolates the dynamics of the goldsitno [11]. We begin by considering global symmetry

breaking in a simpler theory. We know that in a broken SU(N) theory, the goldstone fields

7ra are included in the complex scalar field 0' via the parameterization

0 = exp(ir A(X)tA/V)(d), (2.3.8)

where (4) is the VEV of 0, and tA are the broken generators of the gauge group SU(N).

This particular parameterization of 4 is useful for studying the low energy implication of

symmetry breaking because it only contains the massless goldstone fields.

In direct analogy to the above parameterization of goldstone fields, we can study the

low energy dynamics of a theory with supersymmetry breaking by writing the symmetry

breaking chiral superfield as

X = exp (rn(x)Q/vf2Fx + 1(x)QU/vfFx) (X), (2.3.9)
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where (X) = 02 (Fx) is the VEV of X, 77 is the goldstino field, and Q is the generator of

SUSY transformations. Since Fx is a constant and (X) does not contain 6, X reduces to

X exp ( 7 (x) a/VFx) (X)

= 1+ -+ ±21(F)27 9  02(Fx)
Vf{ Fx} 80 2 2 (F)2 aO a80

02(Fx) + 0 + '1.(2.3.10)
2(Fx}'

We term (2.3.10) the nonlinear parameterization. This parameterization is useful because it

allows us to focus on the goldstino degree of freedom whenever we break supersymmetry. We

note that we could have derived this parameterization by enforcing the massless condition

X2 = 0 and solving for the scalar component of X. From now on, whenever we write X

we are referring to the nonlinear parameterization in (2.3.10).

2.3.3 Soft SUSY Breaking

In addition to breaking supersymmetry spontaneously, we should include the possibility for

explicit breaking. In fact for the supersymmetric standard model there are phenomenolog-

ical reasons why explicit breaking is preferred over spontaneous breaking [10]. In explicit

supersymmetry breaking, symmetry violating terms are added to a supersymmetry preserv-

ing lagrangian to produce

L = LSUSY + LSoft. (2-3-11)

where the symmetry violating terms Lsft are denoted "soft" by convention. Although these

terms break supersymmetry, they must not violate the high energy convergence property of

supersymmetric theories and cannot change the non-renormalization of the superpotential.

It turns out these constraints are only satisfied if the terms which make up Loft have a mass

dimension less than 4. We call such terms "soft" mass terms. For example, in a general

renormalizable supersymmetric theory we have the lagrangian

S 4 0 e2 gVTa 20 WaaWa + h.c. (2.3.12)

(d2 hii + 1 i ji 4j + 1ji 4 j + h.c. (2.3.13)
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and the most general soft supersymmetry breaking terms which can be added to this la-

grangian are [12]

£soft =(f2)j MA (rh a +Ci+ Bi-j$+ Aiij k ,) (2.3.14)

These soft breaking terms are useful because they parameterize our ignorance of the

mechanism responsible for supersymmetry breaking. However, in some situations it is useful

to explicitly include the source of supersymmetry breaking through effective interactions.

In the typical soft-supersymmetry breaking scenario, supersymmetry breaking is said to

occur first in a hidden sector. We call the sector responsible for supersymmetry breaking

"hidden" because it is a singlet under all the gauge groups of the visible sector and hence

does not interact directly with (and is "hidden" from) the gauge sector fields. Through the

interactions between the hidden sector and the visible sector, supersymmetry is broken in

the visible sector thus producing the terms in (2.3.14). But it is possible to obtain (2.3.14)

by expicitly writing the interaction lagrangian between the fields in the visible sector and

a single nonlinearly parameterized superfield comprising the hidden sector. The correct

lagrangian to reproduce the above soft supersymmetry breaking terms is [7]

L = - d9' XtX 4,(e2gVaTa)i 0 - 2 2Fx

+ ± XMtj + XMijlk + h.c.), (2.3.15)
2Fx 3! Fx

where Fx is the VEV of the F component of X. We call the above terms effective soft

supersymmetry breaking interactions. In this lagrangian X is non-linearly parameterized

according to (2.3.10) and taking X to be evaluated at its VEV we reproduce (2.3.14). When

X is not at its VEV, the lagrangian produces interactions between the fermion of the hidden

sector r7 and the visible sector component fields. We will consider the implications of a few

of these interactions in a toy model in the next chapter.

2.4 The Standard Model and the MSSM

In this section we review the construction of the Minimal Supersymmetric Standard Model.

Since there are many pedagogical sources [13] [1] [10] [7] which provide a more complete
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SU(3)c SU(2)L U(1)y

Qi (uL, dL)i 3 2 +

3 1
Li (v, eL)i 1 2

Ei1 1 +1
+1

Hi = (HO, H-)i 1 2 -}

Table 2.1: Particle content of the standard model. All matter fields are fermions except for
the higgs field.

overview of the MSSM, our review will focus mostly on the results which are essential for

the subsequent portions of this thesis.

2.4.1 The Standard Model

In constructing the MSSM, we begin first by reviewing the standard model. The standard

model is the gauge theory which defines how the elementary particles interact with one an-

other through the electromagnetic, weak, and strong interactions. Its defining gauge group

is SU(3)CxSU(2)LXU(1)y where SU(3)c is the gauge group for the strong interactions

and SU(2)L XU(1)y is the group for the so called electroweak interactions. The non gauge

field content of the standard model is summarized in the Table 2.1. The first five rows are

left-handed Weyl fields, the first two of which define the leptons and the next three of which

define the quarks. Both leptons and quarks come in three copies, termed generations, in the

standard model. The last row defines the Higgs field which is a complex scalar field. It is

the Higgs field which is responsible for the breaking of the electroweak symmetry down to

electromagnetism. These matter fields couple to the gauge fields according to their charges

and their representations in the gauge group. What is important then in terms of the su-

persymmetry extrapolation of the standard model is the interactions between the matter

fields. In the standard model these interactions are

EYuk = -H -LiYij-H - H Q + h.c., (2.4.1)

V(H, Ht) = - (HtH - IV2)2, (2.4.2)

where i is a generation index and where A - B defines an SU(2) invariant product between

A and B. With these interactions stated we can now extrapolate to the supersymmetric
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case.

2.4.2 The MSSM

In this section we review the basics of the Minimal Supersymmetric Standard Model (MSSM).

The "minimal" nature of this supersymmetric extension exists in the fact that it makes the

least number of assumptions concerning what a supersymmetric standard model may be.

Only fields which are absolutely necessary to the theoretical and phenomenological consis-

tency of a supersymmetric standard model are added into the picture.

In determining a supersymmetric extension of the standard model, we proceed with

the basic assumption that none of the currently observed particles are superpartners of

each other. This fact seems obvious in retrospect but historically was not always clear

[14]. With this assumption we can then naively construct our supersymmetric extension

by placing all of the observed particles in appropriate multiplets. The higgs field since it

contains dynamic scalar degrees of freedom can only be part of a chiral multiplet. Since

the leptons and quarks are in the fundamental or singlet representation (as opposed to the

adjoint representation) of the gauge group also can only be part of chiral multiplets (as op-

posed to vector multiplets). The gauge fields clearly can only be part of vector multiplets.

By placing the original standard model fields in particular multiplets we effectively double

the particle content of our theory. Now, for each standard model particle there is a boson

or fermion superpartner with identical quantum numbers to the original particle. When

writing a supersymmetric standard model we replace the original fields with their chiral or

vector superfields but retain the standard model name.

From here we could proceed with the construction of a supersymmetric standard model

lagrangian, but we would run into a theoretical inconsistency due to the new fermions in

our theory. All of the potential anomalies of the standard model which would violate the

gauge symmetries at a quantum level are conveniently canceled by the very choice of quan-

tum numbers which make sense phenomenologically. When we consider a supersymmetric

standard model, we introduce new fermions (gauginos and higgsino) which can lead to

anomalies. Since gauginos couple vectorially, they do not contribute to the chiral anoma-

lies, but the higgsinos does introduce anomalies. In a triangle diagram with three U(1)y

gauge fields, the higgsino loop would be proportional to Y 3 = (-13 which is nonzero and

hence anomaly inducing. This problem is fixed by introducing a second higgs doublet with

31



bosons fermions SU(3)c SU(2)L U(1)y

Qi (ii, dL)i (uL, dL)i 3 2 1
-- t 2

U~ "Ri 71i =URi 3 1 3
d * di -dt 3 1 1

Ri =Ri 1
Li (, L)j (v, eL)i 1 2 -2

* i = et 1 2 1

HU (H:, H2) (F,:, H) 1 2 1

Hd (Hu, H-) (Hu, Hu-) 1 2 -1

Table 2.2: Matter field particle content of the MSSM.

opposite hypercharge, so that the coefficient of the loop becomes Y3  (-1)3 + (+1)3 0

[14]. There are other reasons why a second higgs doublet is necessary for the MSSM and

the reader is pointed to relevant overviews. To differentiate between the two higgs doublets

and in anticipation of how each higgs couples to the quarks we label the higgs doublet with

positive hypercharge with a u and the higgs doublet with negative hypercharge with a d.

We can now tabulate our particle spectrum as we have done in Table 2.2. In the MSSM,

the structure of the canonical kinetic terms is completely determined by the quantum num-

bers and group representations listed in the above table. Therefore the unique dynamics

of the MSSM and the theories which extend upon it is determined by the superpotential

or interaction lagrangians in general. In writing down the MSSM superpotential we can

simply take the Yukawa interactions of the standard model and label the fields as chiral

superfields. Doing so gives us the superpotential

W = iYuQ -Hu - dYQ -Hd -YeL - Hd (2.4.3)

where we replaced the complex conjugate of the original higgs field with the newly intro-

duced higgs doublet. However, with the above superpotential we have no massive higgs

excitation. This problem is easily fixed by including a gauge invariant product of our two

higgs doublets to the superpotential

WHiggs = MHu- Hd. (2.4.4)

There are additional terms which can be included in this superpotential but many of these

terms violate lepton or baryon number. The standard approach to excluding these terms is
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to postulate a new symmetry called R-parity [14].

2.4.3 Neutralino Mass Matrix

Later we will want to compute the mass matrix for neutral fermions in the MSSM coupled

to two hidden sectors. As a precursor to this calculation we should calculate barer mass

matrix for the neutral fermions in the MSSM alone. We begin with the general mass matrix

for fermions in a renormalizable supersymmetric theory (3.1.7). From (3.1.7) it is clear the

calculation of the MSSM neutral fermion mass matrix will require an accounting of gauge

group generators and the superpotential terms. In the MSSM we only take the up and

down chiral superfields to have VEVs. Moreover only the hypercharge gauge group and the

third "direction" of the SU(2) group will yield neutral gauginos. Also, only one component

of each higgs doublet will yield a neutral fermion so we focus on that component. With Y

and T 3 generators of the hypercharge and SU(2) group respectively we have the following

relations

YH2= -1 HO T 3HO = -- HO (2.4.5)
2 U5 U 2 U(

Y1 H -=-H0, T 3 HO -1HO, (2.4.6)
2 2

where

H+ HO
HU Hd d(2.4.7)

Huo H-

With the definition (Hg) = vu/v/ and (H13) = vd/V'2, the gauge part of the neutralino

mass matrix is complete. For the superpotential part we need only focus on the term with

only higgs fields namely

WHiggs = Hu -Hd = p(H+H - HOH ). (2.4.8)
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From the above results we can easily write down the neutralino mass matrix in the non-

broken MSSM:

0 0 gyv/\/2 -gYvJ'd/V

M 4 x 4  0 0 -vu/v/2 gVd/V2 , (2.4.9)
N gyv// -gv./V'2 0 -Y

-gYvd/v" gvd/V/- -A 0

where we have chosen the (B, W 3 , , Hu ) basis for the matrix. Now that we have complete

a computation of the neutralino mass matrix in the MSSM without breaking we can now

consider how our result is modified by the introduction of one or multiple symmetry breaking

fields. We will do so in the next chapter.

2.4.4 Soft SUSY Breaking in the MSSM

We have discussed the supersymmetric extension of the standard model but we have yet to

discuss how supersymmetry is broken. It is possible to break supersymmetry spontaneously,

but there are reasons [13] for preferring a soft breaking framework. In such a framework

the terms analogous to (2.3.14) which are added to the MSSM lagrangian are [10]

sftM = (M 3 aGaG + M 2W"W a + M 1BB + h.c.)
2

- (iiAuQ - Hu - dAdQ -Hd - AeL -Hd)

Q -LmL - U* mt - e m- (2.4.10)

- M2 H*Hu - m2 HdHd - (bHu -Hd + h.c.) (2.4.11)

where da, W", and b are the gauginos of the SU(3)C, SU(2)L and U(1)y groups respec-

tively. In the next chapter we will isolate the neutral fields in this term to generate the

effective interactions between the symmetry breaking hidden sector and the visible sector

of the MSSM.
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Chapter 3

The Decay in a Toy Model and the

MSSM

Before we calculate the decay rate from a pseudo-goldstino to a gravitino in the MSSM with

supergravity, it will be useful to establish some intuition and methodology through studying

simpler cases. In this chapter we study a model of two sector supersmmetry breaking in

a toy model with only a vector superfield in the visible sector. We then study the case of

multiple breaking in the MSSM without SUSY. Through these studies we derive expressions

for the magnetic dipole coupling between the pseudo-goldstino and the gravitino which will

be used to study the principal decay scenario in the next chapter.

3.1 Simple Model of Pseudo-Goldstino to Gravitino Decay

In this section, we present the main problem of thesis in the context of a toy model. Unlike

the real problem, the toy model has global instead of local supersymmetry breaking and

only has an abelian vector field in the visible sector as opposed to the full MSSM. To

simplify the particle spectrum, we assume that the visible sector breaks supersymmetry

independently of the hidden sector, and hence the vector superfield breaks supersymmetry

directly through a Fayet-Iliopolous (FI) term, instead of indirectly through scalar VEVs.

We note that this independent breaking in the visible sector is a feature of the toy model

which is not present in the MSSM.

We will calculate the magnetic dipole transition rate from a pseudo-goldstino to a gold-

stino. We study this particular decay because when we consider the real case with super-

35



gravity, the goldstino could be interpreted as the longitudinal component of the gravitino

and hence this decay models the pseudo-goldstino to gravitino decay of the actual problem.

The decay rate in this toy model is defined by an operator of the form

where 'roy is the inverse mass dimension coupling, C is the massive pseudo-goldstino, 7

is the massless goldstino, and F,, is the abelian field strength which is the stand in for

electromagnetism in this toy model. From standard computations we find the associated

decay rate is
m 3 o

I' 77 + 7) = . (3.1.2)167r

Hence, in computing this decay rate we only require two pieces of information: Qo the

coefficient of the MDI and mC the mass of the pseudo-goldstino.

We note that when we incorporate supergravity, the goldstino becomes the longitudinal

component of the gravitino and assumes a mass of M3/ 2 , and the mass of the pseudo-

goldstino becomes approximately 2m 3/2[8], and therefore, since the masses of all the parti-

cles are fixed in the SUGRA case, the problem of computing the decay rate simply reduces

to the problem of finding 00.

3.1.1 The Model

Our goal is to compute the decay rate for a pseudo-goldstino to go to a goldstino via a

magnetic dipole interaction in a simple system of two sector supersymmetry breaking. The

simplest such system consists of two chiral superfields X 1 and X 2 which represent the two

hidden sectors and a vector superfield V which represents the visible sector. These fields

The breaking scenario for this model is represented in Fig. 3-1. The lagrangian for this

system is

L = 4si + [J d2o(_Y 1X 1 + 7Y2X2) + h.c.] + rf d40 V + Lint, (3.1.3)

where Lkid is the collection of standard kinetic terms for our chiral and vector field multi-

plets, and the second and third terms ensure the independent breaking of supersymmetry in

each of sectors. The final term is defines the interaction between the sectors. We find this

interaction by recognizing that X 1 and X 2 are hidden sector fields and hence must inter-
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SUSY X1 SUSY X2

SUSY V

Figure 3-1: Breaking Scenario of Toy Model: We assume that the two hidden sector chiral
superfields X 1 and X 2 break SUSY independently of the visible sector vector superfield V.
An FI term breaks SUSY in the visible sector. Each sector has a single fermion all of which
mix to yield the mass eigenstate neutralino, pseudo-goldstino, and goldstino.

act with the visible sector vector field V through an effective soft-supersymmetry breaking

interaction. Namely, they must have an interaction of the form

Lint = J d20 (2a X 1 + X2 W W, + h.c, (3.1.4)
2F1 2F2

where a and 3 are constants of mass dimension 1, and F1 and F2 are the F-component

VEVs of X 1 and X 2 respectively. W' is the superfield strength of the vector superfield

V. Since X 1 and X 2 are hidden sector fields we will expand them in their nonlinear

parameterizations. Namely we have

Xk= -- ±Vfk± + 2 Fk, (3.1.5)
2Fk

where k = 1, 2.

The first step towards computing the desired decay rate, is to find the interaction la-

grangian for the decay process and the mass eigenstate goldstino and pseudo-goldstino

written in terms of the fermions of each sector. We can make progress towards both of

these goals by expanding the interaction lagrangian (3.1.4) in terms of the component

fields. Doing so, employing spinor identities [7] and integrating over spinor space, we find

a aD a aD2

Lint= AA + 771A - -(A\c-4"y)F, - (11(l 2, a -#) +h.c. +-,
2 /4F1 2F1  4 1F

(3.1.6)
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where A is the gaugino of the vector superfield, and ql and q2 are the fermions for sector

1 and 2 respectively. Also, we applied a Weyl rotation A -* iA in order to remove the

imaginary factors from the interaction coefficients. From the above result we see that the

gaugino has a zeroth order mass m( = a+ #. The third term above and the corresponding

(1 -+ 2, a - 1) contribution define the magnetic dipole operator which makes our decay

possible. Our goal will be to replace the gaugino and sector 1/2 fermion fields in this

operator with the pseudo-goldstino and goldstino fields. To do this we must first find the

expressions for the former in terms of the latter, which requires us to diagonalize the mass

matrix for our system. This mass matrix is in turn defined by the remaining fermion bilinear

terms in the (3.1.6). Specifically we have

/ aD O3D

v-/3 VF 1  V"F 2
aD aD2  0

MF = VF 2F 2  0 (317)

3D 0 #D2

\ 2 RF2 2F22

where the matrix is written in the A, 71, M2 basis.

3.1.2 Change of Basis Matrix

Our goal is to find the mass eiegnstates of MF so that we may rewrite the MDI terms in

(3.1.6) in terms of the goldstino and pseudo goldstino states. To this end we need to find

the change of basis matrix from the (A, 7 1 , 'q2) basis to (X, (, ,) where X is a mass eigenstate

neutralino, C is the pseudo-goldstino, and 77 is the actual goldstino. From the theory of

supersymmetry breaking we already know the vector representation of the goldstino (2.3.7)

in this system

17Iy)= *(F1J. (3.1.8)

F2

Applying the neutralino mass matrix to this vector confirms that the vector defines a mass-

less state. However, an attempt to compute the other mass eiegnstates reveals that they

do not have such simple forms. Indeed this toy system is exactly soluble, but the linear

combinations representing the mass eigenstates are conceptually opaque. Consequently, in-

stead of solving for these eiegnstates immediately, we treat the coefficients which define the
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change of basis formula as "black boxes" which will be filled in later. With this perspective

we can easily write down the change of basis equation. We have

771 = 91X Oc Ex1 C , (3.1.9)

R2 82 X 02 C 02  '

where the 3 x 3 matrix is orthogonal.

3.1.3 MDI and Decay Rate

With the above change of basis matrix we can write down an open form expression for the

magnetic dipole interaction between the goldstino and pseudo-goldstino. Using the third

term in (3.1.6) we have

-E = i (Ac9Ivy1)F,w ± - (A&-"'7 2 )Fiw] + - - (3.1.10)

- ((3.1.11)

where

o = (E),\,Ec - E)9Eic) + (E1E2q - E)AE2C). (3.1.12)

We note that the orthogonality of the A, 771, and 2 states forbids the possible "self-MDI"

arising from the above change of basis. We now have the magnetic dipole coupling io

written in terms of the mixing angles between the individual particle states, and according

to (3.1.2) to find the decay rate for C -- + -y we need only compute this quantity and

compute the mass of the pseudo-goldstino mC. Using the mass matrix (3.1.7), it is possible

to compute mc and no exactly, but in preparation for the real case of the MSSM, we will

compute each quantity as an expansion. When we consider the MSSM, we will take the

SUSY breaking scale in the visible sector to be much less than the scale in the hidden sector.

In this toy model, this scaling corresponds to the limit where D < F1, F2. Taking this limit

we can use Mathematica to compute the mass of the pseudo goldstino and the coefficient

of Do as an expansion in D. In this calculation we define the pseudo-goldstino as the state

which reduces to the eiegenvector (0, F2 , -F 1)//NF + F in the limit as D - 0. Then for
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the pseudo-goldstino mass we have

a43 FifD2

mC =( + + O(D 4 ), (3.1.13)
2(a +#) F1~ '2

where FEff = F2 + F2, and for the MDI coefficient we find

a_ 8 F 2  F1  D 3

QO = a- F - F + O(D 5). (3.1.14)
2 v2-(a+#8)2 (F1 F2 )F12F2

Now, using (3.1.2) we can compute the decay rate for C -+7q+ - as a function of the mass

scales a and 3 and the supersymmetry breaking constants F and F2 .

With our final results computed, we can now compare them to our expectations of

limiting cases. If we take D - 0, we find that the mass of the pseudo-goldstino goes to

zero. This result is to be expected because D provides the mass couplings between the

individual fermions from each sector. Hence, if D -* 0 the fermions in the hidden sector

become sequestered from the gaugino in the visible sector, and we simply a massive gaugino

and two massless goldstinos.

In the limit in which one hidden sector decouples from the visible sector (e.g. a -* 0),

we find that the mass of the pseudo-goldstino goes to zero. This is to be expected because if

one hidden sector decouples from the visible sector, we simply have two independent sectors

of SUSY breaking and hence two goldstinos plus a massive neutralino. One goldstino is

associated with the independent hidden sector, and the other goldstino is associated with

the remaining hidden sector-visible sector system. This situation is depicted in Fig. 3-2

We will later find that the coefficient Qo is proportional to the pseudo-goldstino mass

mC, so that many of the arguments justifying the limiting cases of Qo simply echo the

arguments for the limiting cases of mC. However, we must note that when we incorporate

supergravity, the mass of the pseudo-goldstino will then be independent of the couplings

between the sectors and hence the coefficient 0o will remain zero for limiting cases similar

to those cited above. One interesting distinction between Do and m( in this case is that

(3.1.14) shows that fo, unlike mC, goes to zero as we take a -+ 3 and F1 -+ F2 .
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SUSY X1

SUSY V

SUSY X 2

0o
Figure 3-2: Decoupling of One Sector: When we decouple one sector from the visible sector,
we simply have two distinct and unmixed sectors of supersymmetry breaking. The result
is that sector 2, obtains a massless goldstino, and sector 1 together with the visible sector
obtains a massless goldstino and a massive neutralino. Hence there is no state corresponding
to the pseudo-goldstino.

3.1.4 Degenerate Perturbation Theory

Although Mathematica is able to easily solve for the eigenspectrum of this toy model based

on a 3 x 3 matrix, when we move to the MSSM and have to consider a 6 x 6 matrix the

algebraic reduction of the eigenspectrum is more difficult. So it would prove useful to obtain

(3.1.13) and (3.1.14) through an analytic method. In this section we fulfill the first of these

goals by computing the mass of the pseudo-goldstino using degenerate perturbation theory.

We begin with the mass matrix for this system

MF
aD

#D

v/F2

aD

JF1
aD2
2F12

0

For perturbation theory, we must select out the zeroth

F1 , F2 the choice is obvious. We have

M() =
a+03

0

0
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0

0

0

0

0

0

3D

,V F2

0

#8D
2

2 F22

1\ (3-1-15)

order matrix and in the limit D <

,) (3.1.16)



and the first and second order matrices are, respectively,

0

aD

V/F 13D

v/F 2

aD OD

v'2F1 VfF 2

0 01

0 0)

0

0

0

0
aD2

2F?

0

0

0

OD 2

2 F22

. (3.1.17)

From (3.1.16) the zeroth order spectrum and eigenvectors are easily found to be

M(0)mf = a+3,

m( -) 0,

M = 0,

(3.1.18)

(3.1.19)

(3.1.20)

where the eiegenstates JA) 17ri) and 1rM) are just the standard basis vectors for a 3 x 3

matrix. From the zeroth order spectrum, it is clear that degenerate perturbation theory

will be necessary to compute the higher order terms. From [15] the general formula for a

Hamiltonian matrix element computed using second order perturbation theory is

= k( ) + + -(2) --

(kIV1l) ± E (kjVim)(mIVI)
mDED -Em

where V is the perturbation, jk) are 1l) are eiegenstates in the degenerate state space D,

and ED is the common energy of that state space. The notation k # D means that the

sum runs over all the states outside the degenerate state space. A quick application of this

formula to (3.1.17) shows that there is no first order correction to the spectrum, but using

the first order matrix M() in the second term of (3.1.21) and the second order matrix M(2)

in the first term, we obtain the new perturbation matrix for the degenerate spectrum

aD 2  a2 D 2  aD 2

(2) 2F2 2F?(a +#) 2F 1F2(a +B)
EFF c/D 2  3D 2  '32D 2

2F 1F2 (a+/3) 2F22 2F2(a +#)

ce/3D 2  F2 -F 1 F2

2F2F2(cr+3) -FF 2 F12

) (3.1.22)

(3.1.23)
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Solving for the "good" states and the corresponding eiegenvalues we find

19) =1 , m = 0, (3.1.24)
FEff F2)

1 F2 ap ,+F 2
)Fff ( F = D .v,3 F1

2 F (3.1.25)
Fgts _F1 ' 2 (f + ) F F)

As expected the goldstino state Iq) is massless. The state |) is our pseudo-goldstino state

and it has the mass cited in (3.1.13).

Next, we would like to calculate the coefficient Qo, but the Mathematica result (3.1.14)

reveals that it would require third order perturbation theory to compute to lowest order.

This is a calculation we could complete in this toy model but would not want to extrapolate

to the case of the MSSM, so in the next section we derive a formula which reduces the order

of perturbation theory necessary to obtain Qo.

3.1.5 Magnetic Dipole Interaction: Supercurrent Derivation

We previously obtained the magnetic dipole interaction between the pseudo-goldstino and

the goldstino in a toy model of multiple SUSY breaking. To compute the decay rate for this

interaction one must know the mass of the pseudo-goldstino and the value of the magnetic

dipole coupling. It is possible to compute both quantities using degenerate perturbation

theory, but Mathematica reveals that the magnetic dipole coupling is of third order in D and

hence would require third order degenerate perturbation theory to compute analytically.

In this section we derive a formula which simplifies the calculation of the magnetic dipole

coupling. To derive (3.1.12) we began with the effective lagrangian for soft supersymmetry

breaking (3.1.4). However, the goldstino is a special field in the context of supersymmetry

breaking and its interaction with the other component fields is constrained by the conser-

vation of the supercurrent. Therefore the more natural method for finding the coupling

between the goldstino and the pseudo-goldstino is to simply use the goldstino equation of

motion. We proceed accordingly.

We begin with the most general conserved supercurrent for a supersymmetric gauge

43



theory [7]

-~,' D'a(Opta)' ±Fi(Op?/tk),Q

1
± (" CD 2 .(7 "e9At)a (3.1.26)

where Aa is a gaugino from a vector multiplet and ik is a fermion from a chiral multiplet

k. From the definition of the goldstino, we can rewrite this result as

Ja = iF (O"P7)a + (ov j.D.*- 2 ( 'At a)a F2V5
= iF,7 (o ) jA, (3.1.27)

where F,2 = E] jFkI2 + L DaDa/2. The conservation of J then yields

aJJ" = iF 7 (o9AV) + ayj" = 0. (3.1.28)

In addition to a conservation equation, we can interpret this result as an equation of motion

for the goldstino. We can then reverse construct the lagrangian from which this equation

could have been derived. We find

L7 = i7 "O,,j + +-(7 a,4j" + h.c.). (3.1.29)
77

The first term is the standard kinetic term and the second term is the goldstino inter-

action term. This interaction term defines all interactions between the goldstino and the

partner-superpartner fields in a supersymmetric theory, regardless of how the goldstino

field was originally introduced. For the toy model considered in the previous section, we

the only partner-superpartner fields occur in the visible sector vector multiplet. Hence for

the goldstino interaction lagrangian we have

1
Lint = 77 +j" h.c. (3.1.30)F17

=7 a-ffPo (OA) Fp LMDI, (3.1.31)
YV4F77
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where we used the identity

aoFpan = -7 "lP +op " 7PLoav +7 Iro" + i E"&PP7,', (3.1.32)

the source free equations of motion of A", and the Bianchi identity to eliminate the second

term resulting from the product rule. Now using a"'P = (a"P - UPo") and the antisym-

metrization property of Fy,, we have

1
LMDI 77 a9 a1 OallAFvp, (3.1.33)

7F,

where we we Weyl rotated A - -iA to eliminate the imaginary factor. Due to the interaction

between the two hidden sectors and the visible sector, A is not a mass eigenstate and

therefore does not satisfy an independent equation of motion. We can, however, decompose

A into a linear combination of mass eigenstates one of which is the pseudo-goldstino. Doing

so we have

A = E)\ x + eA\?±e+ E),\, (3.1.34)

where X, r7, ( are the neutralino, goldstino, and pseudo-goldstino respectively. Substituting

(3.1.34) into (3.1.33) and focusing on the pseudo-goldstino contribution to A we have

L7 MI) -12- 'I- -amFvp. (3.1.35)

Using the equation of motion of C we obtain, finally,

SEMDI= i7/ F,, (3.1.36)

the magnetic dipole interaction between the pseudo-goldstino and the goldstino. Conserva-

tion of the supercurrent requires the goldstino interactions to be the same no matter how

they are derived. Therefore we can equate (3.1.36) to (3.1.1). This gives us the identity

mC E)C = -- (EACE)1 7 - EA7 17 1C) + -(E)AC2q - E\qE2C). (3.1.37)
V F F1 F2
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or the simply the magnetic coupling definition

O = MC)AC (3.1.38)
F

7

The left side of (3.1.37) is much easier to calculate analytically than the right side because

after we obtain m( (which is of order D 2
) we need only calculate e C to first order in D in

order to reproduce Mathematica's result that Q0 is of order D3 . The calculation is straight

forward so we provide it here. Using IA) = (1, 0, 0) and I(()) = (0, F2 , -F1)/FEff we have

(0)) (AIM(1)1( 0)
=(0) (0)±-

1 F2  F1  D
= - -/- +I--±. -. (3.1.39)

v/(a +B) F1  F2  F2ff

Using the pseudo-goldstino mass result (3.1.13) and the expansion - = - + O(D 2) we
E FEff

then find for 0

a,3 F 2  F 1  D 3

QO = a- -3f_ + O(D 5 ), (3.1.40)
2y/-(ci+/)2 F1  F 2 ) F12F22

in direct agreement with (3.1.14). This agreement shows the correctness of this analysis.

When we consider the MSSM our neutralino mass matrix will be too complex to analyze us-

ing the series expansion in Mathematica, so we will use this method to obtain the interaction

coefficients.

3.2 Pseudo-Goldstino to Gravitino Decay in the MSSM

In this section we construct the neutralino mass matrix with two hidden sectors in the

MSSM and we will use the result to compute the coupling of the magnetic dipole interaction

between the pseudo-goldstino and the goldstino. We first begin by constructing the 5 x 5

matrix which results from the inclusion of a single hidden sector and we use the result

to extrapolate to the two sector case. The breaking scenario is depicted in Fig. 3-3. In

parallel to our study of the toy model we will compute the coupling of the magnetic dipole
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SUSY X1 SUSY X 2

'0
MSSM

Figure 3-3: Breaking Scenario of MSSM: Unlike in the toy model, the visible sector of the
MSSM does not break supersymmetry independent of the couplings to the hidden sectors.

interaction as a function of the mixing angles and parameters of the MSSM.

3.2.1 Neutralino Mass Matrix for One Hidden Sector

We begin with the terms in 4 set which contain the neutral particles. Isolating these neutral

particle terms from (2.4.11) we have

-mH HH - (M2W W + M1BB + h.c)Lsoft = mHtH mldHd 2 k''~~

+ (bHuoHdo + h.c.) + -- - . (3.2.1)

Next, we include the effects of a hidden sector by taking the above soft terms to arise from

interactions with a hidden sector. The general way to write down such interactions was

outlined in Section 2.3.3 and by direct analogy we can write the corresponding interaction

for (3.2.1) as

Lsoft i = - d4o m2 HHOMtH1 +& m .0H

(J d2 0 2Wa3W3 + B2 Ba - bHd + h.c. (3.2.2)
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where the boldface type once again denotes superfields. Now, we integrate the above la-

grangian and focus on the fermion bilinears to obtain

Lsoft 1 = 50 - /d FH d Fi

+"2 Fxa 2 - M 2p - /2- Fx2 f-

+M2 D3 ~FV 1 ~~V M2 D 32 77

+ Fx yB-M1BB - -M1 7

-7 (b 775I - U (ib) 7  +i, 2 F Vd Fp) + Vd F . (3.2.3)

And from this result we can write down the 5 x 5 neutralino mass matrix which includes the

mass interactions with the hidden sector fermion 7:

MNO
5 =

M1

0

gyvu/V'/

-gyVd/v

(M&o)1

0

M2

-gvu/Vf

(MgO)/2

where

(MRO) 51

(MRO) 52

(MRo)53
1=

gyvu/v/ 2

-gv/

0

-A

(MR0)*53

-YVd/X/

gvd/N\2-

-AL

0

(RO) *4

M1 DY

V- Fx
M 2 D 3

vf2- Fx

V/-Fx (2

v'2Fx (d

(MgO)51

(MRO) 52

(M&0)53

(MRO)54

(MRO)55

(3.2.4)

(3.2.5)
- Vdb)

- vub)

and

M 1 (D ) 2 + M 2 D3) Fb (vu m2
( MRO )5 = +2 F 2 (Vd (mHd - vub) + 2 F H(uH - vdb)-

(3.2.6)

3.2.2 Neutralino Mass Matrix for Two Hidden Sectors

It is easy to extrapolate the above results to the case of two sectors. We begin by modifying

the soft lagrangian in (3.2.2) to include two hidden sector fields. To prevent confusion with
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the soft mass terms of the wino and bino, we label these two sectors by A and B. Our

effective lagrangian is then

Lsoft 2 a- 9 X [2HotHo + (a HHd]
A I_ MA 0

S 20 - MA2Wa3W3 + BOB, - bA HOH' + h.c.
+ ( FA 2 a - U. d

(3.2.7)

We can then write the mass coefficients in (3.2.1), in terms of the parameters of this la-

grangian. Taking the hidden sector fields to be at their VEVs we have

MI = MA1 + MB1,

M2 = MA2 + MB2,

M2 = a2H +,3 2

Hd Hd + .

b bA +bB.

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

With (3.2.7) it is then a simple matter to write down the matrix elements for the 6 x 6

neutralino mass matrix. In direct analogy to (3.2.4) we have

M 6x ( M
4

NA

(r4x1)t

(B4x1)t

A

(MRO)AA

0

p4 xl
B

0

(MRO)BB
,V(3.2.13)

where MIX 4 is the 4 x 4 submatrix of (3.2.4),NO

(p4xi Jx
1 ) =

MA1 D

,VFA
MA2 D 3

v/2 FA

- FA - VdbA)
1F

1/F (VdQ 2 - 'V~bA)

MB1 DY

V2 FB
MB2 D 3

1 ( FB J

-- FB(v6H - vdbB)

-v2FB
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and

MA1 (D \2 MA2 (D3\2 F a 2 F 2 _(MRO)AA = 2 ) + M )2  + 2F (vdcHd - vubA) ± 2 (vUaH- VdbA),

(3.2.15)

MB1 D \2 MB2 D 3  
__2 F___(V _ VdbF

(M&O)BB -2 (N)+ 2 FB F2 (VdHd vubB) + vf2F(VapH - B)-

(3.2.16)

With this mass matrix completely written out we can now turn to a calculation of the

magnetic dipole coupling between the pseudo-goldstino and goldstino.

3.2.3 Perturbation Theory

Following our analysis of the toy model, we can use (3.2.7) to compute the rate for a pseudo-

goldstino to decay to a goldstino via a magnetic dipole transition in the MSSM. To this

end we must determine the coefficient of the magnetic dipole operator and the mass of the

pseudo-goldstino.

First, we consider the coefficient of the magnetic dipole interaction. To compute this

coefficient we must first write the change of basis equations from the (W 3 , B, Hf, Hj, H 7A, 7/B)

basis to the (Np, N2, NA, N, (, q) basis. Because the magnetic dipole coupling only contains

interactions between the neutral gauginos and the fermions of the hidden sector, we don't

need to consider the change of basis equations for H0 or FI. Moreover, the decay is from

a pseudo-goldstino to a goldstino so we only need to focus on the goldstino and pseudo-

goldstino contributions. Therefore the relevant change of basis equations are

W3 = EW3 77 + (3 CC + -- -,(3.2.17)

B = E)§7777+ 3(+--- (3.2.18)

77A =EAir + AC(+ , (3.2.19)

77B =EB7r + EBC + , (3.2.20)

where ... are the mass eigenstate neutralino terms which are irrelevant for this analysis.

Now, taking the last two sets of terms in (3.2.7), the change of basis equations (3.2.20), and
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the definition of the photon gauge field in terms of the SU(2)L XU(1)y gauge fields we have

so=A d20 A2W3W3 + :'BABa]

± B - [ wa3w3 ± B±
+ XBMB22W, M +h.c. +--

FB L 2 2

= -FA (MA2 W23J3 + MA1ByvB) UYtJA

- VB (MB2~W3JW3 + MB1Bib) £7'rB --
-7FB

- (( o0"-r)F, +-- (3.2.21)

where

Q1= sMA2sin 0w I(e V,(A -- ew e 7 BC + MA1 cosOW (ei A7 - EOe 7B(C

+ 1 M2 sin w (eWs3(EB7 - E) 3, BC + MB1 CoS Ow (ObCeB - ~ )1

(3.2.22)

with Ow the Weinberg angle. Similar to our statement concerning the computation of

magnetic dipole coupling Qo in the toy model, from (3.2.22) we see that the computation

of the magnetic dipole coupling Q1 in the MSSM would require analytically cumbersome

orders of perturbation theory. But we can bypass such a calculation by deriving a relation

between Q1 and the pseudo-goldstino mass mC. This calculation for the MSSM proceeds

analogously to the calculation for the toy model so we only provide the result here. From

the supercurrent coupling to the goldstino we find that coefficient of the magnetic dipole

interaction between the goldstino, pseudo-goldstino, and the photon is

-=lC (E) cos Ow + OE3 sinOw), (3.2.23)

where F,2 = FA2 + FB + F + FJ + (D 3) 2 /2 + (D ) 2 /2. From the above result we see that

as in the case of the toy model, in the MSSM it is easiest to calculate the magnetic dipole

coupling after we first obtain the mass of the pseudo-goldstino. To compute the mass of

the pseudo-goldstino in this case, we must first diagonalize the 4 x 4 neutralino mass matrix

of the pure MSSM and then obtain the eigenstates and eiegenvalues of the non-degenerate

spectrum. Such a diagonalization has been done in [16]. After we obtain these eigenstates,
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we can straightforwardly apply the methods of degenerate perturbation theory to obtain the

mass of the pseudo-goldstino. However, the result is not illuminating and is not necessary in

the larger scope of the thesis so we will not state it. The result is not specifically necessary

because for the case we want to study - the supergravity case - the mass of the pseudo

goldstino is already determined to be 2m 3/ 2 and therefore the calculation of Q1 reduces

to a calculation of the mixing angles E) 3 and g ,. In the next chapter we will derive

relations which simplify the evaluation of these mixing angles.
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Chapter 4

The Decay in the MSSM with

Supergravity

When supersymmetry is promoted from a global to a local symmetry, supergravity results.

The essential idea behind supergravity could be explained as follows. Supersymmetry is a

symmetry defined by spacetime transformations, and if we make such transformations local

we make contact with diffeomorphism invariance due to the algebra of the SUSY generators.

This diffeomorphism invariance is definitive of general theories of gravity, and hence, upon

perturbative expansion, a spin 2 field, termed the graviton, results. However, because the

theory is supersymmetric this spin 2 field must exist in a multiplet ("the gravity multiplet")

with other fields of differing spin. Working out the exact theory for supergravity [17], we

find there is a spin-3/2 field, termed the gravitino, in this gravity multiplet. The gravitino

is important in theories of supergravity because it is, in a sense, the messenger particle of

local supersymmetry; in the same way that a photon couples together fields of opposite

electric charge, a gravitino couples together fields and their superpartners.

Now, of course, for local supersymmetry to be manifest in nature it must, just like global

supersymmetry, be broken. When a global continuous symmetry is broken we know from

Goldstone's theorem that a massless particle which parameterizes the low energy dynamics

of the vacuum state must result. When this breaking occurs in a locally symmetric theory,

this goldstone particle becomes the longitudinal component of the messenger particle and

makes the messenger particle massive. Therefore, the breaking of local supersymmetry,

results in a massive gravitino
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Although we will be studying the effects of supergravity, we will not be using the full

machinery of supergravity, simply because for our purposes it is not necessary to do so.

Instead we will employ the conformal compensator formalism [18] which isolates the effects

pf supergravity on matter and gauge fields outside the gravity multiplet. We will use this

formalism to derive an important result of multiple local supersymmetry breaking and then

extend the result to the MSSM to study its effects on neutralino phenomenology.

The outline of this chapter is as follows. We will study multiple local symmetry breaking

in a gauge theory to develop intuition for the supersymmetric case. Our focus will be on the

effects multiple local symmetries have on the matter particles in the theory. We will then

study multiple local SUSY breaking using the conformal compensator formalism to derive

the mass relation between gravitinos and goldstinos in such theories. Finally, we will apply

this formalism to derive a supergravity corrected neutralino mass matrix and then compute

the coupling (3.2.23) of the magnetic dipole interaction for our defining decay process.

4.1 Intuition: Multiple Gauge Symmetry Breaking

The bosons which parameterize the symmetry transformations in a gauge theory are natu-

rally massless at tree level. However, when the symmetry is broken, these bosons can obtain

a mass generated by interactions with the quantum degrees of freedom of the gauge field.

We can see this fact most easily through example. We consider a system with two separate

sectors of SU(N) gauge symmetry breaking. The lagrangian is

= (Dthi)tD,hi + (Duh2)tDh 2 - V(hthi) - V(hth 2), (4.1.1)

where h, and h2 are complex scalar fields in the fundamental representation of SU(N),

V(hthi) - hIh ) , (4.1.2)

and V(hth 2) is defined similarly. A standard computation reveals that both h, and h2

acquire VEVs and hence all of the gauge generators are broken. To better elucidate the

low energy properties of these fields, we first can rotate the VEVs so that the only exist

in the last components of h, and h2 and second, parameterize the dynamical field as an
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exponential. Doing so we have for hl

0

hi = vi exp (jirrtA/vi) , (4.1.3)

where 7r, are the goldstone bosons of sector 1, vi is the VEV of the gauge field, and tA and

the generators of the gauge group. h 2 is similarly parameterized. The above parameteriza-

tion naively reveals we have two sets of massless goldstone bosons. However, if we include

quantum corrections to the classical potential by integrating out the massive gauge field,

we find that some of these goldstone bosons acquire a mass. Specifically the 1-loop effective

potential for a background field (P coupled to a gauge field is [19]

3 M42(p)lo
V1p 642 Tr [M4 () log (A ), (4.1.4)

where y2 is a mass-squared regulator, and M 2 (4) is the field dependent mass matrix of the

gauge field. For this example (M2)AB is

(M2)AB g2 (ht{tA, tB}hi + ht{tA, tB}h 2), (4.1.5)

and upon inserting this mass matrix into (4.1.4) and expanding we find

V1-100p :- g4v2Ihth 21
2 log 2+ ... (4.1.6)

Substituting the exponential parameterization of h, and h 2 and expanding in inverse pow-

ers of vi and v2, we find that the above term generates a mass for the axial combina-

tion (v2rl - v17r)/ + 2 of goldstone particles while the vector combination (virl+

v2 irf)/f + i oj remains massless. In this framework we term the axial combinations the

pseudo-goldstone bosons and the vector combinations the actual goldstone bosons. The ex-

planation behind this perturbative mass generation depicted in Fig. 4-1 was first provided

by Weinberg [20]: these pseudo-goldstone bosons are not associated with any particular

symmetry and hence are not protected against perturbative mass corrections.

The main difference between the gauge symmetry and local supersymmetry cases of
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hi ' 4bo ',0h h b4*4 b 0 0' h2

ht 0 ht ht ht1 2 1 h2

Figure 4-1: Perturbative Mass Generation in a Broken SU(N) Theory: Figure represents
a term in the Coleman Weinberg expansion. When the intermediate gauge bosons are
integrated out, we generate a mass term for the higgs fields.

multiple breaking, is that in multiple local supersymmetry breaking the pseudo-goldstone

particles obtain a mass at tree (and not loop) level. We derive how this occurs in the next

section.

4.2 Pseudo-Goldstino - Gravitino Mass Relation

In this section we derive the mass relation between the "pseudo-goldstini" and the gravitino

in a theory with multiple local supersymmetry breaking. The derivation closely follows that

found in [8]. We will be using the conformal compensator formalism of supergravity in this

derivation. In the conformal compensator formalism, the effects of supergravity are encoded

in a chiral superfield E, the so called conformal compensator. We incorporate these effects

into our matter theory via the lagrangian

L = -3J d4 0 ELE e-K(d3)/3M 2 9 W(4) + h.c.), (4.2.1)

where K is the Kiihler potential, W is the superpotential, and Mpj is Planck's constant.

The component decomposition of E is gauge dependent [18], and we will use a form which

will allow us to most easily derive our mass result. Our conformal compensator is

E = Mp1 + 02 FE, (4.2.2)

where FE is the auxiliary field of the conformal compensator.

The derivation of our final mass relation will proceed as follows. We will integrate out

Fr and then use the result to determine new mass terms for the fields included in the Kahler

and superpotential. When we study these new terms in a theory with two independently

56



broken spontaneous symmetries, we find our desired mass relation. First, expanding the

exponential in (4.2.1) and using (4.2.2), we have

C = d40 EtE -3+ 14 2K+ - - Jd20 E3(m 3/2Mpi +-) (4.2.3)
P1 p1

= -3FlF + 3FMpim3/ 2 +.--, (4.2.4)

where M3/ 2 is the mass of the gravitino. We obtained the second term in the first line for

the superpotential by using the gravitino mass relation m2 =Wo2/M4 where IWol is

the VEV of the superpotential, and we took the VEV of the Kahler potential to be zero.

Integrating out the auxiliary field in (4.2.4) we find Fr = m3/ 2 Mpj and therefore

E = MPI(1 + 02m3 / 2). (4.2.5)

Now, to understand the implications of this formalism on systems with multiple su-

persymmetry breaking we study our simplest model of multiple breaking where we have

two chiral fields which independently break supersymmetry. This model is defined by the

following Kahler potential and superpotential:

K({Xt, X}) = XtX 1 + XtX 2 , W({X}) = 71X 1 + 72 X 2 , (4.2.6)

where X 1 has the nonlinear parameterization

2

X = ± ±1 V2 1 + 2 F 1 , (4.2.7)
2F 1

and X 2 is defined similarly. We note that F1 and F2 have implicitly already been integrated

out in this formalism and have the values --y and -72 respectively. The above nonlinear

parameterization is important because in a theory with global supersymmetry this param-

eterization makes the masslessness of the goldstinos q and T2 manifest. Substituting these

results into (4.2.1), expanding the first term, and ignoring the Planck supressed terms in

that first term we have

L = ~d4 4E (XlX1 + X2X 2 ) + d2 E (7 1X 1 + 7 2 X 2) + h.c. . (4.2.8)M2 jyi
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Next, using the nonlinear parameterization of X 1 and X 2 , (4.2.5), and focusing on the

fermion bilinears we have

L= (m 3/2F + 3m3/271 + ±(1 - 2) + h.c.--- (4.2.9)

1
2(2M3/2)(2 +72) +h.c. + --- (4.2.10)

where in the second line we used the definition Fj= -1. The last line above is our main

result. In it we see that the goldstinos which were massless in global supersymmetry obtain,

when we incorporate the effects of supergravity, a mass which is twice that of the gravitino.

We can derive our main result more easily if we explicitly remove the Kahler potential

contribution. From (4.2.8) we make the transformation Xk -* MpIE-Xk. Consequently

there is no Kahler potential contribution to the fermion mass and we have simply

mass = dM20 (-yX1 + -Y2X2) (4.2.11)
Pl

2

= 2m 3/271-L + (1 -+ 2) + h.c. -- - (4.2.12)

= 2(2m 3/ 2 )(,q2+ 72) + h.c. +-, (4.2.13)

which is our main result. This trick of rescaling the fields to eliminate the Kahler potential

contribution to the mass will be useful when we consider systems with many fields such as

the MSSM.

Our final result is somewhat disconcerting because it suggests something seemingly

nonsensical: the longitudinal component of the gravitino, the actual goldstino, appears

to have a mass which is larger than the gravitino itself. We see this by noting that the

bilinear fermion term in (4.2.10) has a rotational symmetry which allows us to transform

771 and 2 into the goldstino and pseudo-goldstino fermions. Defining the pseudo goldstino

as = (F2 q1 - F1?2)/FT +F7 and the actual goldstino/longitudinal component of the

gravitino as 7 = GL = (F1771 + F22)/VFY + F2 we have

L = -- 1(2m 3/ 2 )((2 + G2) + h.c. +--, (4.2.14)

which suggests that (. is heavier than d itself. The resolution of this paradox exists in the

fact that in a theory of broken local supersymnetry, as in the case of a broken local gauge

58



symmetry, the mass of the goldstone particle is gauge dependent. Therefore although the

result above implies that the longitudinal component of the goldstino has a mass of 2M3/2,

the actual mass of the goldstino in such a framework is M3/ 2 . However, we can still take

the mass of the pseudo-goldstino to be 2M3/ 2 because it is uneaten by the gravitino and

hence is an independent physical particle.

In the next section we will see what implications this result has on the phenomenology

of neutralinos in the MSSM. Namely, we will extend the model we studied in section 3.2.2

to the realm of local supersymmetry and consider how the decay rate is modified.

4.3 Neutralino Mass Matrix with Two Hidden Sectors and

SUGRA

In this section we modify the 6 x 6 neutralino mass matrix derived in the last chapter to

include the effects of supergravity. For this modification we make the assumption that the

mass scale which defines supersymmetry breaking in the hidden sector is much larger than

the soft mass scales of the original neutralino mass matrix.

We begin with the conformal compensator lagrangian provided in the previous section.

L - d4 K( , ) -4-- + d2 0 W( )+ h.c. (4.3.1)

The terms with the gauge superfield strength are not modified by the conformal compen-

sator, so we may ignore them in the calculation of the mass corrections. Moreover, we can

simplify the calculation by rescaling all fields according to

<P -+ M(4.3.2)

so that we need not consider the canonical kinetic term contributions. With these consid-

erations we find that the only neutralino mass terms which are changed by the conformal

59



compensator are

'soI = d4OM2\Et---X XA [, H +H,+2HaHJsoft1-14X [HOtHO± a{H~tHO]

± d2o 7AXA+h.c.) +(A-+B, a + ( 2 HOH+h.c.

(4.3.3)

Substituting the definition of E and expanding the above lagrangian the only terms pro-

portional to M3/ 2 are

2 2
J' = 2m 3 / 2 YA -2B:-+ 2m 3/ 27 + ym3/ 2 HHso +2 - - -. (4.3.4)

We consider the last term first. This last term is similar to the b term of the soft mass

terms added to the MSSM lagrangian. In the case of two sectors, it simply results in a

modification of the sum of the b terms. That is we have

bA + bB -+ bA + bB + ym 3 / 2 - (4.3.5)

Since this is just a rescaling of bA and bB, and since M3/ 2 < msof - as required for the

gravitino to be the LSP - we can simply absorb this shift into a redefinition of bA and bB.

For the first two terms in (4.3.4), we must be careful about our choices of FA and

FB. Since there are now additional fields which couple to the hidden super fields we cannot

simply replace FA = --yA and FB = -71B. Specifically superpotential which contains hidden

sector fields in the MSSM is

W AA' _bA_ bB
W = XA -+-7BXB+ A-XAHOH + XBH H , (4.3.6)

mFB FB

and the F equations are then

Ft = -7 A -- (4.3.7)A ~2FA'

Ft = -7B --VuVd . (4.3.8)2FB
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If we were to substitute these values of FA and FB into (4.3.4), our simple 2m 3/ 2 gravitino

pseudo-goldstino mass relation would be modified. However, we recall our limit that the

supersymmetry breaking scales of the hidden sectors are much larger than the mass scales

of the visible sector. Hence we have FA, FB > bA, bB and we can make the approximation

FA -- YA and FB --- YB. So we find that the modifications to the neutralino mass terms

due to supergravity effects are

~-(2m 3 /2 ) (24 + q2 ) + h.c. . (4.3.9)

This result is incorporated into the neutralino mass matrix by the simple replacement

(Mgo)AA - (Mgo) 5 5 + 2m 3/ 2 , (4.3.10)

(Mgo)BB -+ (M&o)66 + 2m 3/ 2 . (4.3.11)

4.4 Calculation of Magnetic Dipole Coupling

Our goal is to compute the decay rate for a pseudo-goldstino to go to a goldstino (longitu-

dinal gravitino) plus a photon. The rate occurs through the interaction

L= Q1 (Co-"7) Fp,, (4.4.1)

and has the value

m 3 f m 2 3

r~c er y)~ (C +n~y= 1-- -(4.4.2)dL+ ) 7 -) -167r M2

From the conformal compensator formalism we know that the mass of a pseudo-goldstino is

mC = 2m 3/ 2 in a supergravity theory with a hidden sector driven supersymmetry breaking

scale. We also know that the goldstino, as the longitudinal component of the gravitino, has

a mass of m, = M3/2. Therefore the only quantity which remains to be determined for this

decay rate is the magnetic dipole coupling Q1.

In the previous chapter, using the coupling of the supercurrent to the gravitino, we
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found a theoretical expression Q1

( = cos Ow + E)wc sin Ow. (4.4.3)

Proceeding as we did in the toy model, we can compute each of the mixing angles using

perturbation theory and obtain a closed forms expression for %1. However, due to the

necessity of having a diagonalized the zeroth order matrix in perturbation theory, the cal-

culation does not immediately yield a clean result For example, if we computed E)3, using

perturbation theory we would obtain

-h (hBC) (4.4.4)

1(B(0)) + 7(Blk) (kjA ()) - , (4.4.5)
k=1 MC mk

where

A, = Mx6- lim M6X6  (4.4.6)go FA,FB-400 No'

and 1k) are the non-degenerate eigenstates of AO = limFA,FB wo Mix6 . These states 1k) are

simply the mass eigenstate neutralinos of the original MSSM neutralino mass matrix and

m1 are their corresponding masses. It is possible to obtain this part of the eigenspectrum

[16] but the result will be opaque to intuition. Instead it will prove useful to derive a formula

which simplifies the calculation.

First, we make take the approximation M3/ 2 < mO for all k. This is not an unfounded

assumption because for the gravitino to be the LSP we must have M3/ 2 < moft where moft

is a typical soft-SUSY breaking or visible sector scale. We can then incorporate corrections

to this limit via a power series. Next, we note that the eigenkets Ib) = (1, 0, 0, 0, 0, 0)

and I( 0)) = (0, 0, 0, 0, FB, -FA)/FEff are orthogonal. With these considerations the mixing

angle reduces to

4 ~ (kIAj 1 (0 ))
3C E(Blk (0) + (4.4.7)

k=1 Mnk

Next, we use the fact that (kMj~' = (kI(m 03)--1 to write

4

OiC= -Z (jk)(kA-lAi( 0)±.)+ .. (4.4.8)
k=1
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The sum above does not run over a complete set of states for the 6 x 6 matrix, but we can

insert two terms which complete the set. Using the fact that the bino state is orthogonal

to the zeroth order pseudo-goldstino state and to the zeroth order goldstino state 17(0))

(0, 0, 0, 0, FA, FB)/FEff, we may write

4

65C = - (bk)(kjA- 1A1f((0)) - (BI(( 0))((( 0)IA -'AK( 0))
k=1

- (B )) (0 'q(0)A0- 1A1 17(0)) +--- (4.4.9)

= -(bIA- 1A1I(( 0))+ - - -. (4.4.10)

where in the last line we used the completeness of states to eliminate the internal ket-bra

terms. Now, performing a similar reduction on 8 ~p , and setting m( ~ 2m 3/2 from (4.4.3)

we find

- 2m3/ 2 ((I,1. (0)) cos w + (i3I1A1C((0)) sin Ow) + O(m2)- (4.4.11)

It is now a simple matter to compute this quantity. For simplicity we define the dimen-

sionless quantity in the parentheses eeff. Using Mathematica we find to first order in the

D terms

Eeff ((lAo 0A1((0)) cosOw + (W3A 01A,((0)) sin Ow) + O(m 3/ 2) (4.4.12)

=--(M1 - M2) bBF U -(5 duff4.4.13)

+ (b d - vu) +vdvU(2H -VHd)]

/2e (D 3  FB FA
- MA2--MB2 (g2 ± 29Yivuvd-.uM1]

Ai ~g /FA FB /

A'.be (D -F F
- -e (D3) (.MBM1 FMA1'B) [(2 + gy)vuvd -/IM2]

1 gy FJ FA

+ O(m 3/2 ; (D )2 ; (D 3 )2 ) (4.4.14)

where

A5 = F [(g2M1 + g9yM2)vuvd - pMiM2 ], (4.4.15)
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e = g sin Ow is the electromagnetic coupling. With this result the decay rate is completely

determined. We note that this mixing angle mirrors the behavior of the coefficient Qo in

the toy model in that it vanishes when each hidden sector couples identically to the visible

sector and has the same supersymmetry breaking scale.

We can use this result and the expected order of magnitude energy scales for the param-

eters in the hidden and visible sectors to estimate the lifetime for this process. The decay

rate is approximately

12m 3 / 2 eff 2 m3/2 e
(C L +-Y)~c(2m3/2 3 F F/2 . (4.4.16)

Taking in3/ 2 ~ 100 GeV, F,7 - (1010 GeV) 2 [7], and the mass parameters of each hidden

sector to be roughly of the same order of magnitude, i.e., MA2/MAl - 0(1), etc. We find

that Eff 0 0(10-17) and the lifetime of the goldstino is

1,_17)2 )0 GV5 F 2
s 1039 Sec 100GeV (1 e 2 (4.4.17)

( eff (M3/2 1020 GeV2 I

which is much longer than the age of the universe (~ 1017 sec). We note this lifetime

corresponds only to a specific region of the hidden sector parameter space in which the

sectors have similar couplings and breaking scales; other regions of the parameter space will

yield different lifetimes.
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Chapter 5

Discussion

In this thesis we began by assuming there are two independent hidden sectors - as opposed

to the customary, one hidden sector - responsible for supersymmetry breaking. The main

consequence of this assumption is that a low mass pseudo-goldstino is added to the spec-

trum of neutralinos and becomes the next-to-lightest supersymmetric particle. Moreover,

when this assumption is studied in the context of supergravity, one finds that - assuming

a relatively large mass scale for the hidden sectors - the pseudo-goldstino acquires a mass

which is twice that of the gravitino [8] . This mass ratio has interesting implications on

collider signatures [21], but also has cosmological significance and the purpose of this thesis

was to investigate a decay scenario which would clarify the implications this mass ratio

result has on cosmology. In particular we derived an analytic formula of the rate for a

pseudo-goldstino to decay to a gravitino plus a photon through a magnetic dipole interac-

tion. Depending on the lifetime implied by this decay scenario, and hence dependent on the

parameters which define the coupling between the two hidden sectors and the visible sector,

the pseudo-goldstino could be could be inconsistent with standard cosmology [22]. A future

investigation would consider which areas of parameter space are allowed given cosmological

constraints.

Also according to (4.4.14), if the two hidden sectors are identically coupled to the visible

sector and have the same supersymmetry breaking scales then the magnetic dipole coupling

vanishes. We have yet to determine the physical meaning of this behavior and hope to

better understand it a subsequent project.

There are various ways one can extend the results in this thesis. One straightforward
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way is to take the assumption of multiple breaking a step further and assume there are three

(or more) sectors of supersymmetry breaking. This would result in a collection of roughly

degenerate "pseudo-goldstini" [8] all of which have a mass twice the gravitino mass. The

cosmological implications of such a scenario have yet to be rigorously investigated and the

decay processes resulting from it can be the topic of a future investigation.

Finally, the main decay may also have relevance to dark matter phenomenology. A

recent experimental analysis of data from the Fermi Large Area Telescope found a gamma

ray peak centered at around 130 GeV coming from the center of our galaxy [23]. If we

interpret this peak as arising from the decay of dark matter particles we can find a concrete

application for the model studied in this thesis. Taking dark matter to be composed of both

pseudo-goldstino and gravitino particles, we can then take the source of this peak to be the

result of a pseudo-goldstino emitting a photon in a decay to a gravitino. When we consider

this interpretation within the framework of supergravity, we find - from a simple kinematics

calculation - that Ey = 2m 3 / 2 and hence in order to produce a 130 GeV peak the mass of the

gravitino must be M3/2 ~ 173.3 GeV. This result for M3/2 is within the limits expected for

the consistency with the standard properties of gravity mediated supersymmetry breaking,

and hence makes the model studied in the thesis deserving of further study. In the last

chapter, we computed the lifetime of this process for a certain region of the hidden sector-

visible sector coupling parameter space, finding that the result was much larger than the

age of the universe. This places a constraint on the values of the parameters in this model

and it would be worthwhile to obtain more stringent constraints by ensuring the resulting

decay rate is consistent with the production rate of photons from the galactic center.
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