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ABSTRACT

N-linked glycosylation is a ubiquitous protein modification involved in a wide range of cellular

functions and diseases (Varki, 1993). The oligosaccharyl transferase (OTase), the principle

enzyme responsible for catalysis of N-linked glycosylation, facilitates the transfer of a pre-

assembled oligosaccharide from a polyprenyl-lipid donor to the side-chain nitrogen of asparagine

acceptors. In a majority of eukaryotes the OTase is a multimeric, membrane-bound complex,

which has precluded detailed structural and mechanistic studies. The discovery of a homologous

bacterial N-linked glycosylation system in 1999 provided new opportunities to study the

fundamental biosynthetic and mechanistic components of the process. Specifically, the bacterial

OTase, PglB, is monomeric and homologous to the catalytic subunit of the eukaryotic OTase.

The following chapters describe studies designed to learn about the OTase transfer reaction using

PglB as a model. Optimization of expression and purification of PglB is first described, as initial

expression of PglB in E. coli showed poor yields and instability upon purification. Bioinformatic

analysis was performed to define sequence regions of functional importance and to ascertain the

extent of homology between PgIB and other OTases, which verified the value of Pg1B studies for

understanding OTases generally. The bioinformatics analysis was based on topology predictions

for PglB and various homologs. The general conservation in OTase membrane configuration was

used to structurally guide and simplify sequence analyses for a large number of diverse OTases.

The method revealed highly conserved motifs within the soluble loops appearing between

transmembrane domains and biochemical analysis was carried out to establish the functional

importance of these domains. These results were published concurrently with an independently

determined X-ray crystal structure of PgIB, which validated and complemented the bioinformatic

and biochemical results. Subsequently, a sensitive luminescent assay was designed and

developed as a way to investigate the dynamics of substrate binding and conformational changes

in the OTase reaction. Initial results demonstrate the informative value of the system.

Measurements using this system will be continued by Imperiali lab members.
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Asparagine-linked glycosylation: significance, applications, and progress

Asparagine-linked glycosylation (Ngl) is a ubiquitous, complex protein modification

found in all domains of life [1,2]. While details vary with regard to function, structure, and

identity of N-glycans between organisms, a general biosynthetic infrastructure is conserved

(Figures 1, 2) [3]. A series of glycosyl transferases sequentially add specific monosaccharides to

a polyprenyl-phosphate or polyprenyl-diphosphate lipid carrier. The result is a specific core

oligosaccharide anchored to the membrane by a phosphate- or diphosphate-polyprenyl carrier,

which serves as the donor substrate in the N-glycosylation of proteins.

The N-glycosylation reaction is catalyzed by the oligosaccharyl transferase (OTase),

which transfers the core oligosaccharide to select asparagines appearing within the consensus

sequence Asn-Xaa-Ser/Thr, in which Xaa represents any amino acid other than proline [4]. In the

vast majority of eukaryotes, the OTase is a multi-subunit, integral-membrane complex that

interacts with the translocon and transfers the core oligosaccharide to asparagines within the

nascent polypeptide chain (Figure 3) [5-7]. In the species of Gram-negative bacteria known to

possess a pathway for protein N-glycosylation, such as Campylobacterjejuni, the transfer

reaction occurs on the periplasmic face of the inner membrane by a single-subunit, integral-

membrane OTase. There is some evidence that the process occurs post-translationally and post-

translocationally in bacteria, although there are still very limited studies addressing this issue

with diverse proteins [8]. Nearly all eukaryotes transfer the conserved tetradecasaccharide

Glc 3Man9GlcNAc 2 (Figure 4). After transfer, the tetradecasaccharide is modified, abridged or

extended in the ER and Golgi, resulting in proteins with a diversity of glycan structures. In

contrast, the structure of the core oligosaccharide varies for different bacterial species, though no

further modification occurs after transfer to a protein [9,10].
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Figure 1: The N-linked glycosylation biosynthetic pathway in S. cerevisiae.
Monosaccharides are sequentially added by a series of glycosyl transferases to form dolichyl-
diphosphate-Glc 3MangGaNAc2. Synthesis begins in the cytoplasm and is completed in the
lumen after action of a flippase. The completed glycan is transferred by the OTase to
asparagines within the consensus Asn-Xaa-Ser/Thr (Xaa Pro).
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4S Glucose

Undecaprenyl-diphosphate

Figure 2: The N-linked glycosylation biosynthetic pathway in C. jejuni.
The core oligosaccharide is GlcGalNAc5Bac, where Bac is Bacillosamine, or 2,4-diacetamido-
2,4,6-trideoxyglucose. The polyprenyl carrier is undecaprenol.

The structural diversity of eukaryotic N-glycans accounts for the involvement of Ngl in

diverse cellular functions [11]. The addition of the core oligosaccharide is a cotranslational

process; thus, the addition of the chemical group affects the energy landscape of sampled

polypeptide configurations and accordingly plays a major role in protein folding [9,12-14]. The

presence of the glycan goes on to affect critical structural aspects of the protein, including

stability, solubility, and myriad forms of interactions [12,15-19]. Not only does the glycan affect

protein-protein interactions, but it is frequently a determining factor in protein trafficking and

localization, signaling, and the functionality of the protein [20-26]. Ngl, which is exclusive to

proteins synthesized on the ER membrane, largely affects cell-surface and secretory proteins.

Consequently, Ngl is extensively associated with broad, multicellular processes, specifically the

immune response, signal transduction, cell migration and cell-cell interactions [23,27-31].

23

[it I



mRNA
transcript

Rbosomne

cytoplasm ranslocon

666 6
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OTase~

Figure 3: The cotranslational process of eukaryotic N-linked glycosylation.
The OTase is a multi-subunit membrane-bound protein complex that interacts with the
translocon machinery, scans the nascent peptide chain, and transfers the glycan to select
asparagines in the consensus Asn-Xaa-Ser/Thr sequence (Xaa # Pro).

Ngl is of major interest to researchers due to the varied and critical role that it plays in

human health and disease. The host Ngl pathway is frequently involved in the maturation and

secretion of proteins made by intracellular pathogens; for example, glycosylation of viral

envelope proteins allows many viruses to evade immune detection and invade new cells, with

key examples including Influenza A and Human Immunodeficiency Virus (HIV) [32-36]. The

ability of influenza to rapidly evolve new strains that continually challenge the immune system is

often due to the alteration of the position or presence of Ngl at specific sites within viral coat

proteins [35,37-41]. Similarly, Ngl of envelope proteins accounts for antibody neutralization by

HIV [13,34,42,43]. The bacterial pathogen Campylobacterjejuni, a major cause of

gastroenteritis, requires its innate Ngl pathway for effective colonization and invasion of host
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cells [44-46]. Proper functioning of the immune response in mammals also depends greatly on

Ngl of key proteins such as IgG antibodies and the major histocompatibility complex (MHC);

hence, autoimmune in addition to numerous congenital disorders have been linked to dysfunction

of the Ngl pathway [47-51]. Regrettably, variability in disease phenotypes complicates diagnoses

and hinders informative genetic screens, leaving many of the disorders ill-defined [52-55].

Conversely, the variable nature of Ngl makes it a useful indicator of cell state: cellular

profiles and serum markers of N-glycosylation represent prospective methods for diagnosing

disease states or stages of cancer progression [56-59]. Many promising methods are being

evaluated for utility in better understanding correlations of Ngl with different diseases [22,60-

63]. Additionally, researchers have positively used Ngl in developing and improving drug

efficacy and in modifying protein properties for research purposes [15,27,64,65].

Correspondingly, considerable research is directed toward development of a system to synthesize

glycosylated proteins robustly and with a high degree of control and specificity [66-69].

SGlycan
- (tetradecasaccharide)

-a / I.3 PIA '*

S 'r113 VIA A P-0-

I0
Diphosphate

linker
ml0..

Lipid
(in ER membrane)
(Dolichol)

Figure 4: Structure of the polyprenyl-diphosphate-glycan substrate common in eukaryotes.
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Despite the importance of Ngl in so many cellular processes, little is known about the

details of the process relative to other common protein modifications such as phosphorylation,

0-linked glycosylation, and ubiquitination. The factors that determine which appearances of the

consensus sequon will be successfully glycosylated are not well understood, preventing the

prediction of site occupancy from protein sequence. It is unknown which factors influence the

nature of modifications for specific glycosylated sites on proteins. The effect of specific glycan

structures on the ultimate function of the modified proteins is also unpredictable.

OH
OH OH OHOH

0 Q
HO LH

HO OH HO OH
OH HOA H HO OH

HOH
OH H OHO

HO HO _OHO

HO OH HO OH ACNH
OH AcNH

HO OH
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Figure 5: Structures of biologically relevant monosaccharides in eukaryotes.

The minimal understanding of N-linked glycosylation can be explained by a number of

factors. Carbohydrates are structurally challenging and diverse, and characterization of a specific

oligosaccharide requires knowledge of the length, sugar composition, order, and the position and

stereochemistry of each glycosidic linkage. In eukaryotes, there is a known group of

monosaccharides that most commonly is associated with biological function (Figure 5).

However, bacteria and particularly archaea are increasingly expanding this paradigm, which

increases the number of possible structures that must be considered when characterizing a novel
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glycan [70,71]. Characterization of glycan presents many challenges due to the role of

stereochemistry in identifying each sugar. Multiple monosaccharides may have the same mass

and molecular formula and differ only in the stereochemistry of a single C-OH bond (such as in

the case of glucose and galactose, Figure 6). Yet this single difference has enormous effects on

determining the function and interactions of the sugar molecule. The multiple sites on a

monosaccharide available for linkage to additional sugars result in an extremely high number of

possible structures. The stereochemistry of each sugar-sugar linkage, along with branching

locations and sugar identities, are similarly critical in determining oligosaccharide structure and

function (Figure 6). Characterization of an unknown glycan can quickly become overwhelming

upon consideration of the diversity of possible structures and the stereochemical details required

to fully describe an oligosaccharide [72]. Further complexity results from the fact that a

particular protein can be heterogeneously glycosylated at one or more sites.

Monosaccharides Glucose vs. Galactose
OH O&H

(Stereochemical determinants) HO"OH H OH
HOO

OH 'OH

Linkages

Location of addition
Branching

Stereochemistry H

00 0 H0H OR H HO H O HO

I OO HO OH oil OH
00

'OHH OH HO RO 0._-4"

o 1l OH

Figure 6: Structural complexity of monosaccharides and oligosaccharides.
Stereochemical and isomeric properties cannot be evaluated using mass spectrometry.
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The stereochemistry of a molecule cannot be ascertained using mass spectrometry, which

reduces the number of methods available for identifying carbohydrates. Methods used to identify

a particular oligosaccharide include NMR and enzymatic and chemical separation steps in

addition to mass spectrometry. Determining the identity of an individual oligosaccharide requires

direct analysis because carbohydrates are not template-driven products (as opposed to proteins

and nucleic acids); therefore, direct purification and examination of material from biological

sources is often required. When chemical and enzymatic steps are used, the material available for

late-stage examination is reduced, which can be particularly problematic provided the quantity of

material necessary for conclusive NMR analysis. Thus, low sample quantities and a shortage of

sufficiently sensitive instruments have significantly stymied characterization of N-linked

glycosylation.
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The oligosaccharyl transferase

Despite challenges, the methods used to analyze oligosaccharides have advanced

remarkably in sensitivity and reliability over the last decades. In addition, progress has been

made in classifying the common Ngl structures and linking structural classes to particular

functions [71,72]. Continued progress would be facilitated and accelerated greatly by successful

development of Ngl inhibitors and other small molecules allowing control of enzyme activation

for in vivo studies. A realm of prospective strategies using protein engineering has been

suggested, such as modifying enzyme specificity for investigation of glycotherapeutics and

enhancement of in vitro activity for rapid, homogenous glycosylation of proteins, which could be

applied toward improving therapeutic effects of current protein therapies and optimizing those of

novel drugs [73-75]. The biophysical impacts of glycosylation on proteins, such as enhancement

of solubility and effects on stability and folding, also present opportunities for pursuing general

strategies to control, study, and optimize proteins for a range of applications [74].

However, these multifold uses require the ability to produce homogenous and efficient

protein glycosylation, which necessitates an understanding of the enzymes that accomplish the

tasks in nature. In addition to the intrinsic complexity of oligosaccharides described above,

additional impediments to Ngl research result from the nature of the involved enzymes. Both

biosynthetic and modifying Ngl enzymes are diverse, numerous, and frequently membrane-

associated, making isolation and characterization challenging. Consequently, structural and

mechanistic characterization of key enzymes remains elusive.

In 1999, the first bacterial system of N-linked glycosylation was discovered in the

enteropathogen Campylobacterjejuni. Prior to this discovery, the process was thought to exist

exclusively in eukaryotes and archaea [76]. The presence of an N-linked glycosylation pathway
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represented a breakthrough in the field of Ngl research; the evolutionary conservation further

validates the importance of the modification throughout all domains of life, and the existence of

a bacterial system has potential to function as a simplified model to study. Since then, the N-

linked glycosylation pathway in C. jejuni has successfully been functionally transferred to E.

coli, characterized and established as a relatively accessible model system of Ngl [77-84]. A

comparison of the pathways depicted in Figures 1 and Figure 2 reveals fundamental similarities,

though also apparent is the increased complexity of the Ngl system in S. cerevisiae relative to

that in C. jejuni.

CYTOPLASM CYTOPLASM

PgIB Ost/Ost6 Ost4 Stt3 Ost2 Wbp1 Swp1 ost5 Osti

NN

PERIPLASM

ER LUMEN N NJ

N

Figure 7: Comparison of the OTases in C. jejuni (bacteria) and S. cerevisiae (eukaryotes).
Images highlight the similarity between the S. cerevisiae catalytic subunit 'STT3' and Pg1B.

Figure 7 compares the eukaryotic and the prokaryotic OTases. In C. jejuni, the OTase,

PglB, is a single-subunit enzyme, while the eukaryotic OTase is composed of at least eight

subunits, all of which are membrane-bound and five of which are required for function.

Importantly, the catalytic subunit of the eukaryotic OTase, Stt3, is homologous to PglB. As

described in the following chapters, homology between all Stt3 subunits and monomeric OTases

is far more extensive than originally imagined [85,86]. Additionally, the fundamental chemical
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nature of the transfer reaction is conserved (Figure 8). However, the substrates differ; the

heptasaccharide in C. jejuni is simpler than the eukaryotic tetradecasaccharide (Figures 4, 8).

Thus, PglB presents an exceptional opportunity for learning about the fundamental biochemistry

involved in asparagine glycosylation, as well as studying the effects of Ngl in bacteria and as a

tool for protein engineering and high-level N-glycoprotein synthesis [67,87].
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Figure 8: N-linked glycosylation transfer reaction in C. jejuni.
Top: In C. jejuni, PglB transfers the heptasaccharide GlcGalNAc5Bac (Bac is di-N-acetyl-
bacillosamine or 2,4-diacetamido-2,4,6-trideoxyglucose) to the polyprenyl lipid. The eukaryotic
transfer reaction is similar except the Bac sugar is GlcNAc and the R-group is -
GlcNAcMan 9Glc 3 (Figure 4). Bottom: Structure of the full heptasaccharide from C. jejuni,
shown linked to the nitrogen on the asparagine side chain.

The recent structural and biochemical data published on PglB show the motifs

responsible for catalysis are conserved throughout all domains of life, solidifying its role as an

important and general mechanistic model for N-linked glycosylation (Figure 9) [85,86]. The

publication of the crystal structure of a close homolog of PglB from Campylobacter lari

represents a reliable model for PglB in C. jejuni, as the protein sequences are highly similar

(Figure 10) [86]. The crystal structure is resolved to 3.5 A and shows the placement of the major

conserved loop motifs in the vicinity of one another, forming a presumed active site (Figure 9)

[86].
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Figure 9: Topology model of PglB agrees with X-ray structure data.
Top. Topology model of PglB showing locations of conserved motifs. Model is based on a
combination of topology prediction and conservation of loop regions and agrees with the C. lari
crystal structure (shown right, PDB:3RCE). The N-terminus is located in the cytoplasm Bottom.
Alignments of conserved residues and motifs that informed the topology model above.
Alignments include a selection of representative sequences. The corresponding residue number
in PglB (C. jejuni) is designated in superscript. Alignments and conservation histograms shown
were made using Jalview multiple alignment editor. (doi: 10.1093/bioinformatics/btpO33).
Histogram shading: light to dark designates most to least conserved.
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However, the structure provides very little conclusive information on the mechanism of

the OTase. Unfortunately, in vitro activity is not shown for the purified enzyme and it is unclear

whether the structure represents an active conformation. Additionally, the 3.5- A resolution

leaves uncertainty in the positioning of the side chains and potential hydrogen bonding networks.

At this resolution, it is impossible to differentiate between the nitrogen and the oxygen on the

side chain of the nucleophilic asparagine. The structural data also lacks one of the major loops

expected to be involved in catalysis (designated EL5, containing the I/V-xx-S/T-I/V-E motif).

The loop is unresolved due to flexibility and mobility of the region; though the conservation of

its length and amino-acid content implies this very mobility may implicate the loop in a

conformational change of the enzyme upon binding or release of the substrate.

The conditions of the crystallization provide further reasons to interpret the structural

data with skepticism; the pH of crystallization is 9.4, which is not representative of the state of

the active enzyme in vivo and increases uncertainty with respect to the charge of key amino acids

and thus the ability of the enzyme to adopt an active conformation or participate in necessary

acid-base-type chemistry. Like many membrane-protein crystal structures, the structure of PglB

was determined in the absence of its native lipid environment. The detergent micelles

surrounding the PglB monomers bear little resemblance to a membrane bilayer, casting further

doubt on whether the structure represents the active enzyme.

The peptide shown bound in the PglB crystal structure has been assumed to represent a

picture of the native binding behavior of PglB to its substrate, and mechanistic arguments were

made based on this assumption [86]. However, there are multiple reasons to call this assumption

into question. First, the structure is solved for only a single conformation in the presence of

substrate peptide, yet it remains unknown in which order the peptide and oligosaccharide
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substrates bind, and thus it is uncertain whether the conformation and interactions are

representative of the active state. As noted above, the activity of the crystallized enzyme fraction

has not been shown, calling into question the biological relevance of the enzyme-substrate

interaction [86].

It is also important to note that N-glycosylation in C. jejuni has not been determined as

occurring co- or post-translocationally. The system in S. cerevisiae is co-translational and co-

translocational; the OTase closely interacts with the translocation machinery, which feeds to the

OTase the nascent peptide chain. N-glycosylation by PglB has shown capability in vitro of

glycosylating exposed, flexible loops on fully folded proteins, which has led to a hypothesis that

PglB glycosylates proteins post-translocationally and after periplasmic folding [8]. Nonetheless,

evidence beyond in vitro capability is lacking; thus, it is unclear whether PglB is associated with

translocational or other cellular machinery when glycosylating proteins and whether that

interaction affects binding of the substrate. Therefore, the nature of the peptide-substrate bound

in the crystal structure of PglB is further drawn into question.
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Figure 10: Alignment of PglB sequences from C jejuni and C lari.
Alignment constructed using ClustalW. Gene identifiers of sequences: C. lari gi:7410986;
C. jejuni gi:218562740
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The peptidyl substrate of the oligosaccharyl transferase

As discussed above, the X-ray crystal structure of the OTase in the presence of bound

substrate peptide (Ac-Gly-Asp-Gln-Asn-Ala-Thr-Gly-pN-Phe, where pN-Phe is para-nitro

phenylalanine, [83]) represents a remarkable achievement, though also leaves significant

uncertainty with regard to speculative mechanistic conclusions [86]. Particularly, an ongoing

question has revolved around the function of the consensus sequence of the peptide substrate,

Asn-Xaa-Ser/Thr, in which Xaa can be any amino acid other than proline.

Substantial biochemical evidence exists to support the formation of a specific

conformation of the consensus sequence. Figure 11 shows the possible local conformations that

a peptide containing the minimal consensus sequence may adopt [88]. The Asx-turn involves

hydrogen bonding between the carbonyl oxygen of the side-chain of asparagine and the proton

donors on the hydroxyl side chain and backbone amide of the amino acid at the +2 site. The p-

turn, conversely, does not include interactions between the asparagine side chain and other

chemical groups within the consensus sequon, and intramolecular interactions consist largely of

backbone hydrogen bonds.

Asx-type P-type

H2N 0

...H H R H R

H2N HO Q<OH

2 NH 2

Figure 11: Comparison of the Asx-type and p-type turn peptide Ac-Asn-Xaa-Thr-NH 2.
Figure adapted from [89].
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Several mechanisms have been proposed that implicate the Asn-Xaa-Ser/Thr consensus

sequon in the activation of the asparagine side-chain nitrogen, which is usually a very poor

nucleophile. A proposal by Marshall suggests that the hydroxyl group of the Ser/Thr residue

engages in a hydrogen bond with the carbonyl oxygen of the asparagine side chain, which

promotes deprotonation of the amide nitrogen and subsequent nucleophilic attack (Figure 12-A)

[90]. Bause proposes that the amide nitrogen of asparagine engages in a hydrogen bond with the

hydroxyl group of the Ser/Thr residue, facilitating deprotonation of the amide nitrogen upon

attack of the hydroxyl proton by a general base (Figure 12-B) [91]. A third mechanism has been

formally proposed by Imperiali, which implicates the formation of the Asx-type conformation in

the activation of the amide nitrogen (Figure 12-C) [92,93]. In this scheme, the carbonyl on the

Asn side chain is engaged in hydrogen bonding with protons on the hydroxyl side chain in the +2

position and a backbone nitrogen amide proton, which shifts the electron density away from the

nitrogen toward the carbonyl group. The pKa of the nitrogen protons is therefore lowered,

facilitating removal of a proton by a basic group and freeing a nitrogen electron pair for

subsequent attack of the electron-poor phosphate-linked carbon on the first sugar of the

oligosaccharide [92,93].
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Figure 12: Proposed OTase mechanisms. A) Marshall. B) Bause. C) Imperiali.

Reasons to favor the mechanism proposed by Imperiali include the substantial evidence

that the peptidyl substrate adopts the Asx-type conformation when binding the OTase.

Importantly, in vitro characterization of tetrapeptides has shown that the P-type turn is favored

and the Asx-type turn conformation is structurally prohibited when a proline is present at the i+2

position [94]. This structural requirement accounts for the fact that the OTase can turn over the

consensus sequence peptide with any amino acid at this position except proline [4]. The

interactions between the side chains of the two consensus residues in the sequon also provide an

explanation of the strict consensus requirement. Notably, the involvement in catalysis explains

absolute requirement for asparagine over glutamine. Given the chemical similarity of the amino
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acids, it is striking that glutamine is not accepted by the OTase even as a weak substrate [83].

The central role of the Asx-turn in catalysis would require the precise alignment of chemical

groups to achieve the activation of the poorly nucleophilic nitrogen, thus explaining this rigid

specificity. The catalytic role is also highly plausible given the fact that the consensus sequence

is conserved in all systems of N-linked glycosylation, as it is far more likely that an enzyme

evolves the specificity of binding interactions over time than the chemical mechanism.

In addition to these observations, rigorous biochemical studies have been performed that

support the suggested mechanism (Figure 12-C) [93]. Particularly, the use of synthetic peptide

chemistry in the creation of constrained peptides provides a convincing method for testing the

Asx-turn mechanistic proposal [88,89,92,94]. Figure 13 shows four peptides synthesized in a

fashion that structurally bias the consensus sequon into formation of a P-type or an Asx-type turn

conformation. Two P-type peptides were synthesized using the prolyl-D-amino acid dipeptide to

circularize and constrain the structure (Figure 13, structures 1 and 2). NMR and CD studies were

performed to support the presence of the predicted conformations [88,89,92,94]. Two additional

peptides were synthesized and constrained via oxidation of thiol groups (Figure 13, structures 3

and 4) [92]. Structural studies confirmed the predicted Asx-type conformation for 4. Peptide 3 is

not highly constrained to form the Asx-turn; however, it is incapable of forming the P-type turn

and due to its flexible nature the peptide is expected to be capable of adopting the Asx-turn [92].
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Figure 13: Structures of peptides constrained to bias formation of Asx-type or P-type turn.
Peptides 1 and 2 are shown in the P-type conformation. Peptides 3 and 4 are shown in the Asx-
conformation, which is stabilized by the constrained structure of the peptide. The predicted
conformations of peptides 1, 2, and 4 were validated using NMR and CD. Peptide 3 is not fixed
as an Asx-type turn; however, the peptide is restricted from formation of the alternate P-type
conformation and the flexibility of the peptide suggests that it is capable of adopting the Asx-
type conformation. Kinetic results show that 1 and 2 are not substrates for the OTase, while 3
and 4 are substrates and show similar kinetic parameters to control substrate peptides containing
the consensus motif [92].

The constrained peptides shown in Figure 13 were subjected to kinetic analysis. Activity

studies showed that 1 and 2 are not accepted as substrates by the OTase, while 3 and 4 have

kinetic parameters similar to standard substrate peptides [92]. The results described above are

supplemented by kinetic studies showing potent inhibition by non-substrate peptides adopting

the Asx-turn type conformation [95]. Additional substrate-specificity studies suggest the

absence of a formal negative charge occurring during the catalytic reaction, which is supported

by the mechanism proposed in Figure 12-C [93].

41



The experiments discussed above provide convincing evidence of the role of the Asx-turn

in the OTase catalytic mechanism. Nonetheless, publication of the C. lari crystal structure shows

the bound peptide in a conformation dissimilar to the Asx-turn, and the authors conclude that the

mechanism does not involve adoption of the Asx-turn. Instead, the consensus Asn-Xaa-Ser/Thr

consensus sequence is explained by the binding interactions of the peptide with the conserved

Trp-Trp-Asp-Xaa-Gly (WWDxG) motif [86].

An argument posed against the Asx-turn requirement for OTase catalysis include the

existence of exceptions to the consensus rule, in which non-canonical consensus sites are

successfully glycosylated [2]. There have been several anecdotal examples of non-canonical

sequons in specific proteins that, when purified from cells, are shown to have been glycosylated

[96-98]. Other than anecdotal evidence, very few large-scale studies have been performed to

show the frequency of non-canonical glycosylation sites. One notable exception involved a

large-scale precision mapping of N-glycosylated sites present in the in vivo glycoproteome in

mouse tissues, which included thorough analysis of the false discovery rate and confidence levels

for identified sites [99]. This study showed that the vast majority (> 96%) of glycosylated

asparagines are followed by a serine or threonine in the +2 position. Strikingly, not one of these

sites contains a proline in the +1 position. The 3.5% of non-canonical sites were dominated by

Asn-Xaa-Cys (Xaa # Pro) , which account for 1.3% of the total glycosylated sites and agrees

with anecdotal studies showing asparagines within Asn-Xaa-Cys can be glycosylated [100]. In

this site, it is easy to see that the cysteine resembles a serine or threonine in the length of the non-

carbon atom from the backbone and harboring an accessible proton. Of the remaining 2.2%

glycosylated asparagines, two motifs could be identified with statistical significance, with Asn-

Gly accounting for 0.5% and Asn-Xaa-Val/Leu accounting for 0.4% of the total glycosylated
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asparagine residues. The Asn-Xaa-Val motif also agrees with an anecdotal study showing the

ability of a valine or leucine to substitute for the serine of threonine in the canonical Asn-Xaa-

Ser/Thr sequon [98].

Yet, the presence of non-canonical glycosylation sites is consistently an exception to the

rule, and organisms from bacteria through archaeal and up through mammals maintain the nearly

exclusive preference for the canonical Asn-Xaa-Ser/Thr. The studies showing glycosylation of

non-canonical sequons lack the crucial evidential component of performing the reaction in vitro

using purified enzymes and substrates. Showing the reaction occurring in vitro will be necessary

to determine which specific sites can be glycosylated by the unaccompanied enzyme. However,

the evidence for some non-canonical sites, such as Asn-Gly and Asn-Xaa-Val/Leu, appears

compelling [99]. It is not clear that the infrequent nature of these occurrences contradicts the role

of the Asx-type turn in OTase catalysis. It can be imagined that atypical sequons can acquire

Asx-type turns with hydrogen bonding supplied by the peptide backbone or neighboring

residues. Most importantly, no examples have been seen of glycosylated canonical sequons when

a proline is present at the +1 site. Evidence of OTase glycosylation of a peptide constrained in a

way that disallows formation of the Asx-type turn would provide the strongest challenge to the

proposed role of the Asx-type conformation in the OTase mechanism.

The recent discovery of an unusual N-linked glycosylation system may provide the most

convincing evidence yet for the fundamental role of the Asn-Xaa-Ser/Thr consensus in catalysis

of N-linked glycosylation [101]. HMW1 C is a soluble N-glycosyl transferase from Haemophilus

influenzae. The enzyme glycosylates two adhesin proteins, which mediate adherence to epithelial

cells and thereby facilitate pathogenesis of H. influenzae [102]. HMW1C functions in the

cytoplasm, adding glucose monosaccharides from nucleotide-activated precursors to asparagine
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residues [101]. The localization in the cytoplasm, the nucleotide-activated monosaccharide

substrate, and the soluble structure defy a whole set of qualities that were thought to be common

to all oligosaccharyl transferases. The sequence motifs and structural features that are conserved

in other OTases are all lacking in HMW1C. Structurally, HMW1C is considered a part of the

GT41 family of glycosyl transferases according to CAZy (Carbohydrate Active Enzymes

database at www.cazy.org). The GT41 family is otherwise composed entirely of O-GlcNAc

transferases (OGTs). Like other OGTs, HMW1C contains an N-terminal all a-domain fold and a

C-terminal GT-B fold with two Rossmann-like domains. However, HMWI C lacks the

tetratricopeptide repeat fold at the N-terminus that is characteristic of the rest of the GT41 family

[103].

The single conserved feature in the HMW1 C N-glycosylation system is the presence of

the Asn-Xaa-Ser/Thr consensus sequence determining the sites of glycosylation [101]. The

evolutionary background shared with GT41 OGTs clearly indicates N-glycosylation function of

HMW1 C is a result of convergent evolution. The fact that the independent evolution of

asparagine glycosylation was accompanied by the specificity for the Asn-Xaa-Ser/Thr sequon is

a striking indication of the fundamental mechanistic role that the sequon is playing in catalysis-

specifically, the precise combination of residues with correct order and spacing and thus

conformation that allows vastly different proteins to activate the poorly nucleophilic asparagine

nitrogen for attack.
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Conclusion

The significance of N-linked glycosylation to human health has been well-established,

with N-glycosylation demonstrating deterministic role in signal transduction, protein-protein and

cell-cell interactions, protein folding and targeting, and microbial immune evasion. The chemical

complexity of the modification and the structural complexity of pathway enzymes have stymied

efforts to understand the process in greater detail. The discovery of a bacterial pathway of N-

glycosylation has provided a convenient model system that is relatively simple to characterize.

Importantly, the conservation of certain sequence motifs suggests the monomeric bacterial

OTase, PglB, functions in a catalytically similar manner to the eukaryotic OTase.

The following chapters describe steps taken toward characterization of the bacterial

OTase PglB. Chapter 2 describes extensive efforts devoted to optimizing heterologous

overexpression of PglB in E. coli and the purification procedure. These efforts resulted in

significant increases in PglB expression and attainment of improved levels of pure PglB that

remains stable and active for several months. The availability of stable PglB at mid-micromolar

concentration in solution allows for precise kinetic, biochemical, and biophysical investigations

into the enzyme function. Chapters 4 and 5 demonstrate two examples of successful studies that

make use of the well-expressed, pure, and stable PglB.

Chapter 3 describes bioinformatic analysis of the sequences of PglB and homologs. A

method was developed to parse the sequences based on topological predictions in order to

discover pockets of conservation within otherwise divergent regions of the protein sequences.

Chapter 4 uses the predictions derived from the bioinformatics analysis to guide site-directed

mutagenesis studies of PglB. Results validated the functional relevance of previously

unrecognized, highly conserved motifs.
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The publication of a crystal structure of a homolog of PglB from a closely related

bacterial species provided striking validation of the predictions and biochemical data from

Chapters 3 and 4. The structural data represents an impressive step toward visualizing and

understanding the OTase mechanism. However, the crystal structure provides visualization of

only a single conformation of PglB resolved to 3.5 A with a bound substrate peptide. There is

inevitable uncertainty about the relevance of data obtained for any protein in the non-native

environment of a crystal. However, additional factors indicate the PglB structure should be

interpreted with caution: activity data is not provided for the PglB fraction used to obtain

crystals, the membrane protein is in a detergent micelle and thus is in a highly non-native

environment even prior to crystallization, and the crystallization conditions include an alkaline

pH at which PglB shows dramatically reduced activity in solution. Nonetheless, the peptide is

bound in a conformation that does not resemble the Asx-type turn that was previously proposed

function in OTase catalysis, and bold conclusions were drawn that dismissed the significant

biochemical data previously presented in support of the Asx-turn proposal.

Described in Chapter 5 is the design and development of a method to measure distances

between PglB and the peptide substrate and between locations within the enzyme using resonant

energy transfer. Requisite components were assembled and distances measurements were

conducted between PglB and the peptide substrate, demonstrating the success of the approach.

This system provides the groundwork for precise measurements of conformational changes

within the enzyme and substrate-binding location and order. The measurements will be made on

the pure solutions of active Pg1B, providing a degree of confidence that crystallographic data

cannot provide. Future use of this system for studies of PglB as well as an archaeal monomeric

OTase, AglB, are currently being continued and advanced by Imperiali lab members..
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CHAPTER 2:

AN OPTIMIZED PROTOCOL FOR

EXPRESSION AND PURIFICATION OF PGLB
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Summary

Characterization of the oligosaccharyl transferase (OTase) is critical for developing ways

to inhibit, engineer, and otherwise manipulate the enzyme for research and therapeutic purposes.

The minimal understanding of this enzyme can be attributed to its complex, transmembrane

structure, and the resulting instability and resistance to overexpression and purification. The

following chapter describes an optimized procedure for recombinant expression and purification

of PglB in a stably active form. The conditions screened at each step, the order of screening, and

the method of comparing conditions are described. Ultimately, the following approach increased

expression levels from tens of micrograms to several milligrams of active protein per liter of E.

coli culture, and increased stability from several hours to greater than six months post-

purification. This represents the first detailed procedure for attaining a pure, active, and stable

OTase in milligram quantities. These quantities of pure protein makes detailed kinetic and

biophysical analysis of an active OTase a realistic possibility. In addition to presenting an

optimized protocol for expression and purification of PglB, these results present a general guide

for the systematic optimization of the expression, purification, and stability of a large,

transmembrane protein.
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Introduction

Biological researchers are invariably familiar with the importance of membrane proteins

in therapeutic development and throughout cell biology. Several well-known statistics

demonstrate this import; most notably, membrane proteins account for approximately one-third

of the human proteome and comprise a majority of current drug targets [1-3]. However, standard

overexpression and purification techniques are often unsuitable for this class of proteins, which

presents a major obstacle to research progress. There exist promising developments for acquiring

large quantities of membrane proteins, including cell-free translation systems, directed evolution

of well-expressing bacteria, and the ever-increasing advances in the efficiency of current

approaches [4,5]. However, expressing and purifying membrane proteins currently remains a

largely empirical, time-consuming, and high-risk endeavor, leaving many important membrane-

bound enzymes uncharacterized and presenting significant gaps in the understanding of cellular

pathways.

The proteins in the eukaryotic N-linked glycosylation (NLG) biosynthetic pathway

provide an example of this phenomenon, as virtually all of the enzymes are membrane-bound.

NLG plays a major role in many cell processes, including immune-system response, protein

signaling and trafficking, and pathogenic invasion strategies [6-9]. In addition, NLG introduces

several prospective tools in therapeutics; N-linked sugars are capable of functioning as indicators

of cell state and type [10-12] and represent a novel chemical platform for developing new

therapeutics and enhancing efficacy of current drugs [10,13]. Most current studies involving

NLG, however, focus on determining the specific effects of the glycan modification on a target

of interest, often aimed primarily at establishing the glycosylated sites within a protein and the

effects of the modification on function [14-17]. Far less is known about the enzymes comprising
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the biosynthetic pathway of NLG due to the difficulty of expressing and purifying the involved

membrane proteins in a stable and active state. Closing this knowledge gap would allow for

enhanced ability to efficiently manipulate, study, and thus control and utilize NLG.

In yeast, the OTase is a complex composed of eight subunits, all of which have one or

more transmembrane domains. In comparison, PglB is comprised of a single subunit, which is

homologous to the catalytic subunit of the eukaryotic OTase (Figure 1). Although PglB is

ostensibly a tractable target relative to the eukaryotic OTase, the enzyme represents a challenge

in its own right. PglB has thirteen transmembrane domains and is fairly large (82 kDa), which

accounts for poor recombinant expression and instability in E. coli. Thus, characterization of

PglB has lagged relative to other C jejuni NLG enzymes, despite the potential of this OTase to

reveal fundamental principles about the mechanism of OTases across the evolutionary spectrum.

This chapter describes the systematic approach used to optimize the expression, purification, and

stability of active PglB. The conditions screened at each step, the order of screening, and the

method of comparison for each condition are described.

CYTOPLASM CYTOPLASM

PgIB Ost3/Ost6 Ost4 Stt3 Ost2 Wbpl Swpl Ost5 Osti

N

PEMRPLASM E LNI NN

Figure 1: Comparison of the OTases in C. jejuni (bacteria) and S. cerevisiae (eukaryotes).
Images highlight the similarity between the S. cerevisiae catalytic subunit 'STT3' and PglB. The
relative simplicity of the bacterial OTase when compared to the eukaryotic enzyme complex is
also demonstrated.
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Specific activity values are used to determine the optimal conditions for balancing protein

recovery with activity recovery. The activity-guided approach can be contrasted with expression

screening approaches undertaken with the primary interest in X-ray crystallographic studies,

which generally focus on protein quantity and monodispersity and do not account for the

proportion of active to inactive protein purified. Thus, the following method is intended to aid

researchers interested in C. jejuni N-linked glycosylation, and also to illustrate an activity-guided

approach to optimizing expression, purification, and stability of a specific membrane protein of

interest. This following data represents the first available protocol for expressing and purifying

milligram quantities of a stable and active OTase.
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Results

Expression optimization of PgB in E. coli: general strategy

Optimization of PglB expression in E. coli involved screening many expression

constructs and conditions. To facilitate testing the multitude of expression conditions, 5-mL

cultures are grown for each condition specified (direct comparisons are always grown

simultaneously). Unless specified otherwise, the cultures are grown at 37'C until they reach an

O.D. of 0.6-0.8, at which point the temperature is shifted to 16'C for overnight growth. These

mini-cultures are then centrifuged to concentrate the cells. The cell pellets are weighed and

resuspended in a volume of lysis buffer for 0.1 g/mL and are then lysed using sonication.

Activity rates are compared for series of lysates derived from cultures with varied expression

conditions. The lysates with highest activity are used to determine which expression conditions

yield the most functional enzyme. Expression and activity comparisons are carried out on at least

two separate occasions to ensure conclusions drawn are accurate.

Protein Tags and Gene Truncations

Membrane proteins are often expressed as truncations of the native protein to impart

higher expression or stability to the protein [18]. It has been shown that the C-terminal, soluble

domain of PglB is not functional when expressed on its own (roughly from residue 420 to C-

terminus) [19]. However, an apparent proteolytic degradation product of PglB is consistently

observed via western blot when full-length PglB is over-expressed in E. coli (Figure 2). The

roughly 50 kDa band is expected to contain the C-terminal domain of PglB because it is visible

on western blots when an anti-His (C-terminal) antibody is used but not when an anti-T7 (N-

terminal) antibody is used. However, at 50 kDa, the degradation product is significantly larger

than the soluble domain alone and thus likely contains several transmembrane domains, as well.
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It was considered that this degradation product might, in contrast to the soluble domain alone,

represent an active version of PglB that is more stable or easily expressed than the full-length

protein. To test this hypothesis, several truncated PglB constructs were made (Figure 2).

Constructs were expressed and normalized for expression via western blot. However, it was

found that all of the constructs lacked catalytic activity, including those that lacked only

approximately 50 residues from the C- or N-terminus (Figure 2).

PglB (1-713
Soluble do

lumen

cytopasm 010 -- 200 - 360 400 500 6 700

protein sequence 60

nain (420-713)
F121 (326-713)
F123 (281-713)
F102 (50-713)
R3s (1-568)
R2s (1-616)
Ris (1-670)

NH T71 PgB IHisw -COOH

Anti-T7 Anti-His
190-

85-

50-

25- 25-

Figure 2: Investigating a natural degradation product of PglB.
Top left: topology diagram for PglB based on available structural data (PDB 3RCE). The
horizontal bar represents PglB with the protein sequence numbered along the bottom starting
with the N-terminus. The location of each transmembrane helix is represented by a vertical bar
and the thin black horizontal lines represent the location of the soluble regions (lumen on top,
cytoplasm on bottom). Bottom left: Bars representing the various truncated constructs of PglB,
with length aligned to X-axis of topology diagram. The name assigned to each construct is listed
on the left along with the residues encompassed by that construct. Right: Western blots showing
the degradation product of interest (indicated by the arrow) when stained with the anti-His
antibody (C-terminal tag) but not when stained with the anti-T7 antibody (N-terminal tag).
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The observations that even short N-terminal truncations cause complete activity loss can

now be explained by the recent structural and biochemical data, which reveal that a required

catalytic motif appears in transmembrane-loop regions close to the N-terminus [20,21].

However, the available data - structural, biochemical, and bioinformatic- has not located major

conservation or apparent involvement of the C-terminal portion of the soluble domain in

catalysis, so it remains to be seen why the presence of last 50 or so residues of this enzyme is

required for activity.

Table 1: Fusion constructs used in PglB expression screening.

Vector N-terminal fusion tag Fusion tag MW (kDa, Referencesapprox.)

pET24a(+) T7 1 [22]

pGBH Protein G, B1 domain (GBI) 6 [23]

pET SUMO Small Ubiquitin-Like Protein 11 [24](SUMO)

pET Trx Thloredoxin (Trx) 12 [25]
pGEX Glutathione-S-Transferase (GST) 26 [26]

pMAL-c2x Maltose-Binding Protein (MBP) 42.5 [25,27]

Screening of expression tags represents another common approach used to alter

expression, solubility, localization, and other functional aspects of proteins [28]. The pgB gene

was cloned into several vectors encoding N-terminal fusion tags that have been shown to

positively affect expression (Table 1). These tags include: T7, Glutathione-S-transferase (GST),

Maltose Binding Protein (MBP), SUMO, Thioredoxin, and GB1 [23-27]. Within those tested, it

was estimated that the MBP (pMAL-c2X), the T7 (pET-24a(+)) and the GB1 (pGBH, [23]) tags

are associated with the highest expression under standard expression conditions, which can

easily be discerned from a visual inspection of SDS-PAGE analyses (Figure 3). These three

constructs were thereafter used for systematic optimization.
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1 2 3

Figure 3: Coomassie-stained SDS-PAGE of fractions of multiple PgIB constructs.
Each lane contains a version of Pg1B with the expression tag indicated: 1. GB 1, 2.T7,
3.Thioredoxin, 4. MBP, 5. SUMO, 6. GST. (Figure courtesy of Dr. Mark Chen).

Expression and induction conditions

A variety of E. coli competent cells were screened to determine the highest-yielding

strain for PglB expression. Seven types of E. coli expression strains were transformed with the

MBP-PglB and T7-PglB vector constructs; these included C41(DE3), Rosetta 2, Rosetta 2 gami,

and the following BL21(DE3) strains: RIL, Gold, RP, pLys. It was observed that BL21(DE3)

RIL cells show the highest level of expression of both MBP-PglB and T7-PglB as measured by

activity levels and western blotting. This result suggests that this strain is optimal for PglB

generally and that the outcome is not tag-specific.
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A range of induction parameters were investigated, including IPTG concentration used to

induce expression, optical density of cultures at the time of induction, incubation temperature

post-induction, and length of time cultures were grown following induction. The effects of each

of these variables are interdependent; thus, each combination should ideally be tested. Table II

displays the organization scheme for this screening process. Ultimately it was found that cultures

induced at a very high O.D. (>1.2) rather than the typical O.D. of 0.6-0.8 results in significantly

improved expression levels (Figure 4A).

Table 2: Induction conditions varied to screen for improved expression of PglB.

O.D. of Temperature shift upon [IPTG] (mM) to
induction" induction induce

0.6 37*C 4 16*C 0.2

0.6 370C + 160C 0.7

0.6 370C + 16 0 C I

I 370C + 160C 0.2

1 37*C + 16*C 0.7

1 37 0C 4 16 0C 1

0.6 370C 0.2

0.6 37*C -- 0.7

0.6 37*C 1

1 37*C -- 0.2

I 37*C -- 0.7

1 37*C I

a. For each condition, time points were taken at 3, 6,
b. - indicates no shift.

and 20 hours post induction.
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The improvements in PglB expression due to induction at high O.D. suggested that auto-

induction, or 'high-density cell growth', may be an advantageous way to express PglB. Auto-

induction involves growing the expression culture (expressing a protein under the control of the

inducible T7 system) in complex media containing a small amount of lactose. Amino acids and

other carbon energy sources in the media prevent induction by lactose during log phase of cell

growth. Depletion of these components and approach to a saturating density automatically

prompts the cells to uptake lactose, causing induction of the target protein [29]. The procedure is

similar to IPTG-induced expression, except auto-induction requires a media specifically

developed and optimized to couple induction of protein expression by lactose with the approach

of the culture to saturating density (see Materials and Methods). This method not only eliminates

the need to frequently monitor O.D. of the culture, it also ensures that the expression cultures

have the highest beneficial O.D. when induction occurs, and prevents any significant expression

of the target protein prior to induction.
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Figure 4: Expression improvement with IPTG induction at high O.D and auto-induction.
A. Cell cultures were grown at 37*C to an O.D. of 0.7 and 1.2, at which point the cultures were
induced with 1 mM IPTG and the temperature was shifted from 37 to 161C. Fractions from
equal cell-pellet weights were purified over Ni-NTA resin and elutions were compared via SDS-
PAGE. B. Cell cultures of each construct were grown in LB using IPTG (induced at O.D. = 1) as
well as using auto-induction media. Equal weights of cell pellet were lysed and spun at 10000 x
g to remove debris. The cleared lysates were used to measure initial rates of activity for each
fraction. C. Graph indicates activity levels for PglB-pET24a (+) expression cultures that were
grown under the specified conditions. For the auto-induced cultures, it was of interest to
determine the optimal time to grow the cultures at 37 *C before the temperature shift to 16 C;
hence, the hours post-inoculation at 37 TC were varied and compared. Error bars indicate the
standard error of activity measurements. Activity assays were performed as described above
using cleared lysate fractions from equal weights of cell pellet from each condition.
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Due to the fact that auto-induction involves growing cell cultures to saturation, the cell

weight obtained per liter of culture is dramatically increased relative to other expression and

induction conditions. While one liter of IPTG-induced culture (induced at an O.D. of 0.6-0.8

with 1 mM IPTG) gives roughly 2 grams of cells, one liter of auto-induction culture generally

yields at least 25 grams of cell weight (with expression parameters otherwise held constant).

Therefore, when comparing auto-induction expression to IPTG-induced expression, it

was of interest to determine whether improvements in protein yield are due to the greater number

of cells produced per liter of culture or to improved expression of PglB per cell. Activity per

gram of cell weight was measured for PglB in pMAL, pET24a(+), and pGBH vectors grown

with both auto-induction and IPTG induction (Figure 4B). In order to determine the optimal

time of induction (or temperature shift) to use in the comparison, PglB-pET24a(+) was expressed

using both IPTG-induction at various O.D.s and auto-induction with varying time spent growing

at 37'C before shifting the temperature to 16'C (Figure 4C).

Results show that PglB expressed using auto-induction is optimal with a temperature shift

occurring at 4.5 hours post-inoculation and that PgIB expressed using IPTG induction is optimal

when induced at an O.D. ~ 1.6. Furthermore, auto-induction yields significant increase per gram

of cell weight over expression using IPTG induction in addition to yielding more cell weight per

liter of culture (Figure 4B). It was additionally shown that with auto-induction, PgIB expressed

in the pET24a(+) vector yields higher levels of active protein than PglB expressed in the pMAL

or the pGBH vector (Figure 4B).
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For this reason, the Pg1B-pET24a(+) construct was used for subsequent optimization and

experiments. Use of this construct was also advantageous because the T7- tag is significantly

smaller than both MBP and GB1 (see Table I), and thus most closely resembles the native

(untagged) PglB.
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Optimization of PglB purification

Once expression levels of PglB had been improved using auto-induction, the purification

procedure was optimized so that the higher expression would translate into higher levels of pure,

active protein. A flow chart of the general procedure for PglB purification is shown in Figure

5A. Optimization begins at the top of the flow chart, and the following steps were not optimized

until optimized conditions were established for all previous steps. Optimizing a purification step

involved dividing the 'crude' fraction into equal parts. Each part was subjected to one of several

conditions. The total activity and protein concentration in the fractions before and after the

purification step were measured for each condition.

[Zate
Centrifuge (slow)

cleared lysate
Centrifuge (fast)

crude CEF
Homogenize in high salt buffer
Centrifuge (fast)

salt-washedCEF
Homogenize in detergent
Centrifuge (fast)

detergent-solubilized proteins
I Ni-NTA affinity chromatography

pure PgIB

B

90

60
50

10

30

Figure 5: Procedure for optimizing purification protocol for PgLB.
A. Flow chart of the general procedure for purifying PglB. The boxes contain the fraction
acquired at each step, and adjacent to the arrows is the physical procedure performed to get from
one fraction to the next. B. The values of total protein and total activity in percent of initial
(where 'initial values' refer to those in lysate) obtained using optimized procedure. Values are
shown for each purification step diagrammed in the flow chart in part A and correspond to the
values in Table 3. Note the steep decrease in total protein concentration associated with each step
and the comparatively mild loss of total activity.
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The activity and protein-concentration measurements allowed calculation of specific

activity, fold purification, and percent yield (see Materials and Methods). These values provide a

definitive measure by which to judge the optimal condition for each purification step, where

optimal is defined as maintaining maximal activity and minimal levels of total protein (Figure

5B). Table 3 provides the values obtained using the final optimized purification protocol, while

Figure 6 shows the activity data which was used (along with the quantities of total protein

present in each fraction) to calculate the values in Table 3. A stepwise procedure for the

purification steps can be found at the conclusion of this chapter's results.
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Table 3: Values from final optimized purification protocol of PglB.
A 3.6-gram pellet was used, representing approximately 1/7 the weight from 1 L culture.

Concentration Total protein Rate Total activity Specific activity Percent Fold
(mg/mL) (mg) C (nmol/min) '" (nmol/min) (nmol/min*mg) Yield Purification

lysate 12.85 515 1.OE-05 8.4E-02 1.6E-04 100 1.0

cleared 6.74 270 9.5E-06 7.6E-02 2.83E-04 91 1.7lysate

CEF 2.25 83 1.1E-05 7.9E-02 9.48E-04 93 5.8(unwashed)

(washed) 1.6 68 8.6E-06 7.3E-02 1.08E-03 87 6.6

solubilized 0.59 25 7.OE-06 5.9E-02 2.36E-03 70 15

prifed 0.2 0.6 8.5E-05 5.4E-02 9.06E-02 64 550

a. Concentration of total protein in fraction.
b. Measured value (see Methods).
c. Volume-corrected.
d. Rate of transfer of radioactive sugar substrate to peptide substrate by active PgIB in fraction.

2

1.8
X lysate0: 1.6
A cleared lysate

S 1.4
b +CEF (unwashed)> 1.2

OCEF (washed)

- solubilized
0.8

0.6 'Ni-NTA purified

0.4

0.2

0
0 5 10 15 20

Time (min)

Figure 6: Activity-rate data for fractions used to calculate Table 3 purification values.
Best fit lines were used to estimate the activity rates of PglB contained in 5 LL of each
purification fraction. The rates from 5 pL were volume corrected to find the total activity present
in the entire fraction.

69



Isolation and processing of cell-membrane fraction

Cell lysis was performed with sonication in three sets of two minutes each. Cells were

incubated on ice before, during, and post-sonication to prevent the temperature of the cell

suspension from rising and potentially inducing cellular stress response and increased protein

degradation and denaturation. Sonication is considered a relatively harsh method of lysis, so as a

comparison two PglB cell pellets of equal weight were lysed either by French Press or by

sonication. Purification and activity results were unaffected by the method of lysis, indicating

sonication is not causing significant impairment to protein yields.

After lysis of cells, a 10000 x g centrifugal spin is performed to remove unbroken cells

and other extraneous cell debris, yielding the 'cleared lysate' supernatant. While there are

general recommendations for the speed at which to achieve this desired separation, at times it is

beneficial to vary the exact speed of the spin to improve retention of the protein of interest. In

this case, the first spin was initially performed at the standard speed of 10000 x g. Calculation of

the fold purification and the percent yield showed that the step was increasing the specific

activity by only a small amount, but 40% of the activity was being lost (Table 4). The speed was

lowered to 8000 x g, which improved the yield and fold purification (Table 4). Particularly, as

this is one of the first purification steps, the effects of changes in percent yield on the final yield

of protein are compounded. Thus, a relatively small difference in initial the centrifugal

separation speed had considerable effects on the ultimate yield of pure protein.
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Table 4: Minor change in centrifugal spin significantly affects yield of purification step

Fraction Concentration Rate Total activity Specific activity Percent Fold
(mg/mL) protein (nmol/min) (nmol/min) (nmol/min*mg) Yield Purification(mg)

Prep lysate 9.5 380 1.2E-04 2.3E-01 6.12E-04 100 1.0

1 cleared lysate 80 304 7.5E-05 I4E-01 4.70E-04 61 0.8
(10000 x g)

lysate 12.9 514 351 4.7E+06 9.1E+03 100 1
Prep

2 cleared lysate 6.7 270 318 4.2E+06 1.6E+04 91 2(8000 X g)

a. Numbers are given for two PgIB preparations representative of numbers seen in additional preps.

The supernatant ('cleared lysate') is then subjected to a second centrifugal spin at 150000

x g, which pellets the membrane fraction, and soluble proteins remain in the supernatant. The

membrane fraction, or the 'cell-envelope fraction' (CEF), is then resuspended as a semi-pure

fraction containing only the cell-membrane content (cell-membrane lipids and all membrane-

associated proteins). A good percent yield (90-95%) and high fold purification (3-6 fold) were

observed with standard parameters; thus, it was not necessary to optimize this step further.

A subsequent salt wash of the membrane fraction involves homogenizing the pellet from

the first 150000 x g spin (which pellets the 'unwashed CEF') in a buffer containing a high

concentration of salt. The high salt presumably disrupts electrostatic interactions between

proteins associated with membrane lipids or integral-membrane proteins, such that any non-

integral membrane proteins are released into the aqueous surrounding. The CEF is then

repelleted in a second 150000 x g spin, which is expected to contain only integral-membrane

proteins ('washed CEF'). It was of interest to determine whether the identity of the salt would

play a role in the effectiveness of the wash.
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Table 5: Comparison of several salt solutions in CEF salt wash efficiency.

Fraction Total Protein Rate Total Specific Percent Fold
(mg) (nmol/min) activity activity Yield Purification

NaCi CEF (pre-wash) 143 5.6E-06 7.2E-02 5.OE-04 100 1.0

NaC1 CEF (post-wash)a 75 2.5E-06 3.6E-02 4.7E-04 49 0.9

KCl CEF (pre-wash) 152 5.2E-06 6.8E-02 4.5E-04 100 1.0

KCl CEF (post-wash) 75 1.6E-06 2.5E-02 3.3E-04 36 0.7

NaCl + KCl CEF (pre-wash) 189 6.2E-06 8.OE-02 4.2E-04 100 1.0

NaCl + KCl CEF (post-wash) 75 3.6E-06 5.4E-02 7.2E-04 68 1.7

a. The percent yield and fold-purification values for 'post-wash' fractions were determined relative to
the pre-washed state only.

To test this possibility, a comparison was made between three solutions with the

following salt contents: 500 mM NaCl, 500 mM KCl, 250 mM NaCl + 250 mM KCl (Table 5).

The results show the fold purification and percent yield are highest for the CEF wash performed

using the combination of KCl and NaCl. While the salt wash using the combined salt solution

was advantageous, the use of solutions of only 500 mM KCl or 500 mM NaCl surprisingly

resulted in both unfavorable yields and fold purification. The comparison was repeated to show

reproducibility of this result, and the combination salt wash was used routinely thereafter'. At

this point, the CEF is resuspended in a small volume (less than 10 mL lysis buffer) so that

membrane structure remains intact and will provide stability. An additional 10-20% glycerol can

be added as a cryoprotectant. This concentrated solution can be dispensed into aliquots and

stored at -801C, where it remains stable for a year or more.

1 It is worth noting that the specific activity measurements were indispensable for determining that this customary
purification step is actually obstructive for PglB purification unless it is carried out in specific salt conditions.
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Solubilization of membrane proteins

Solubilization of the CEF involves addition of a high concentration of detergent to the

membrane fraction, such that the native lipid structure surrounding the membrane proteins is

disrupted and the membrane proteins may be released into solution. The lost lipid periphery on

these proteins is presumably replaced with stabilizing detergent micelles, or a mixture of lipids

and detergent. The identity and concentration of the detergent used imparts highly variable yields

of active protein. However, many detergents are very costly and large detergent screens are often

time-consuming. Rather than investigating a large range of detergents, four detergent conditions

were initially screened to resolve the amount of optimization that needed to be performed. The

detergents initially screened were DDM (n-dodecyl-p-D-maltoside), OG (n-octyl-p-D-

glucoside), Triton X- 100, and an equal combination of the former three. A final concentration of

0.5% (w/v) was used for the four detergent conditions (see Materials and Methods). These

detergents were chosen for the following reasons: DDM has traditionally been successful in the

solubilization of membrane proteins [30,31], OG has a high CMC (critical micelle concentration)

which facilitates easy removal of detergent at later points, and Triton X-100 is economical and

oft-used in protein biochemistry. The concentration of detergent (0.5% w/v) was used as an

initial trial concentration based on previous reports of OT solubilization efforts [32]. While it

was not necessary in the presently described case, the critical micelle concentration (CMC) - the

concentration of detergent at which detergent micelles form from the individual detergent

molecules-is an important factor that can guide detergent choice and concentration. Often a

range of detergents are screened concomitantly at 40X CMC of each detergent, which leads to

very different percentages of detergent in each solution tested. However, it also important to note

that reported CMC values are estimates and the true CMC is highly dependent on specific
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environment, including buffer (identity and concentration of buffer used), salt concentration,

temperature, and any other buffer additives.

Table 6: Comparison of several detergent solutions in CEF-solubilization efficiency.

Fraction Total protein Rate Total activity Specific activity Percent Fold
(mg) (nmol/min) (nmol/min) (nmol/min*mg) yield purification

pre-solubilizeda 27.9 1.4E-05 8.3E-03 3.0E-04 100 1.0

post-DDMb 9 1.2E-05 7.1E-03 7.9E-04 86 2.7

post-OG 2.7 1.1E-06 6.6E-04 2.4E-04 8 0.8

post-Triton 6.3 9.8E-07 5.9E-04 9.3E-05 7 0.3

post-combination 7.2 7.OE-06 4.2E-03 5.8E-04 51 2.0

a. Percent yield and fold-purification values for 'post-solubilized' fractions were determined relative to pre-
solubilized fraction.
b. Fraction after solubilization with DDM. All conditions had a final detergent concentration of 0.5%.

A 5% solution of detergent is diluted 10-fold into the resuspended CEF, which has been

diluted to 10 mg/mL total protein. This mixture is homogenized and vortexed vigorously,

followed by dilution to lower the detergent concentration (see Materials and Methods). Results

(Table 6) indicate clearly that DDM is most efficient at solubilizing active PglB relative to the

other detergent solutions tested. The use of 0.5% DDM gives a very favorable percent yield,

eliminating the need to further optimize this step. In the common case that initial detergent

conditions fail to provide satisfactory results, one can expand the comparison to include

additional detergents with a range of properties and vary the concentration of the detergents.
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Affinity chromatography

The specificity of PglB affinity purification using Ni-NTA affinity was inefficient under

batch binding conditions initially used. Initial concentrations for batch-binding were 50 mM

HEPES, pH 7.5, 0.17% DDM, 10 mM imidazole. A high relative concentration of contaminating

proteins co-eluted with PglB and recovery of PglB from the column was incomplete. There are

several additives which are known to decrease non-specific binding to Ni-NTA resin and

between proteins [33]. Figure 7A shows a gel of PglB elutions after batch binding with several

different conditions. Addition of glycerol to all buffers and increasing imidazole from 10 to 20

mM successfully decreased the amount of the low-molecular weight impurities relative to the

full-length PglB. Diluting the solution two-fold during batch binding significantly decreased

impurities as well; however, only when batch binding proceeded for a longer duration did the

dilution result in increased purity without loss of significant protein in flow through. This is not

surprising, because in general, longer batch binding time is required for maximal binding of a

more dilute solution of His-tagged proteins. For PglB, batch binding diluted, solubilized CEF to

fresh Ni-NTA resin overnight, in the presence of glycerol and increased imidazole, resulted in

the highest purity with the least loss of protein in the flow through and washes.
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A ka1 2 3 4 5 6 7
kDa
190-
120- 1. Molecular weight standards
82- 2.20% EtOH

3. 20% glycerol
64- 4. 300 mM NaCI

5. +10 mM imidazole (20 mM total)
6. 2X volume (dilution)
7. 50 mM HE P E S pH 7.5, 10 mM imidazole

kDa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 kDa
190-120- 190'-120-

82-2
64-12

50- 82-

40. 640
1. Flow through 50-
2. Wash 1 (10 mL, 16 mM Wmidazole) 40-
3. Wash 2 (10 mL, 40,mM imidlazole)
4. Wash 3 (3 mL, 100 MM itdlwole)
6. - 8. Elutions 1-2 (se. 200 uL, 300 mM imidezols)
7. - 11. Elutions 3-8 (so.400 uL, 00 mM imidazole)
12. - 14. Elutions 9-11 (ea. I mL, 800 mM irnidaole)

Figure 7: Optimization of Ni-NTA purification.
A. Batch binding conditions screened for effect on PglB purity after Ni-NTA column. Lane 1
contains the Benchmark pre-stained standard (Invitrogen), Lanes 2-6 contain standard buffer of
50 mM HEPES, pH 7.5, 10 mM imidazole, 0.17% DDM, plus the additive noted to the right of
the gel. Buffer 7 contained only standard buffer. B. Improved purification of PglB over Ni-NTA
column. Coomassie-stained SDS-PAGE of flow through, washes, and elutions are shown (left).
Elution fractions in lanes 7-11 were combined and concentrated, shown right. Apparent
improvement in purity in the concentrated solution can be attributed to the concentration method
using a 1 00-kDa MWCO filter, which allows smaller impurities to flow through. In addition,
PglB dispersity becomes more homogenous during concentration, removing the higher order

oligomers and thus decreasing intensities of bands above 82 kDa.
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Another alteration that significantly affected the purification was replacement of the His6

tag (native to the pET24a(+) vector) with a His10 tag. This change was made during expression

optimization, and thus all purification optimization heretofore described was performed with the

His 10 tag. However, it is mentioned because lengthening the His-tag did cause a clear increase in

the affinity of PglB for the Ni-NTA resin. For this reason, much higher imidazole concentrations

are used in column washes than are considered typical, and similarly very high imidazole is

required to elute all the bound PglB from the resin (up to 600 mM from 300 mM used with the

His6 tag). In fact, using the typical concentration of 300 mM imidazole for elution recovers only

a fraction of the bound PglB. Accordingly, very little protein remained in the flow through and

washes based on gel analysis (Figure 7B) and activity assays. The batchbinding changes resulted

in a final value fold-purification of approximately 500 (Table 3), relative to the -50-fold

purification values achieved before batchbinding optimization and increasing imidazole in

elution buffer.

Buffer Exchange

It has been observed that PgIB activity is rapidly lost after elution from the Ni-NTA

column due to prolonged exposure to very high imidazole concentration. Dialysis, which was

previously used to exchange the buffer and remove the imidazole after elution, proceeded too

slowly for PglB to maintain activity. Therefore, an alternative method was used to exchange

buffer: a HiTrap desalting column (G.E. Healthcare) was used immediately after elution to

replace the elution buffer with one that lacked imidazole. However, use of the desalting column

diluted the protein and caused significant loss of activity. Next, an Amicon Ultra I 00-kDa

MWCO cellulose filter was used, which concentrates the fractions containing PglB, and also
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serves as a method to exchange the buffer and remove the imidazole (Figure 7B). While the

molecular weight of PglB (82 kDa) is below the molecular-weight cut-off of 100 kDa, the mass

is high enough that there is virtually no PglB lost in the filtrate. This may in part be due to the

presence of the DDM detergent micelle surrounding PglB. In contrast, the DDM detergent

micelle alone (without PglB bound) flows through the 100 kDa-MWCO filter despite the

reasonably large size of the DDM micelle (- 50 kDa) [34]. This selectivity is very advantageous

because it allows the protein to be concentrated without simultaneously concentrating the

detergent to a degree that is deleterious to the protein stability. In addition, the loss of lower

molecular-weight impurities is consistently observed when using these high molecular-weight

cut-off filters presumably due to the fact that these contaminants can pass through the filter.

In summary, this method of buffer exchange results in negligible loss of activity whereas

dialysis of a PglB solution overnight at 4'C results in complete loss of enzyme activity. In fact, it

was found that PglB solutions lose activity when dialyzed overnight, even in the absence of

imidazole. Thus, it is likely that the dialysis procedure was a cause of activity loss in Pg1B in

addition to the high imidazole. Using the 1 00-kDa MWCO Amicon filter, Ni-NTA-purified PglB

is concentrated and buffer-exchanged to roughly 10 pM in 50 mM HEPES pH 7.5, 100 mM

NaCl, 30% glycerol, 0.01% DDM. This solution is distributed into aliquots and stored at -801C

and, under these conditions, remains stable for at least two months (Figure 8).
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Figure 8: Activity of PglB over multiple days post-purification.
Pure PglB (shown in Figure 7B) was distributed into aliquots and stored at -80 0C. An aliquot
from this batch was used for each activity measurement shown.
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PglB Purification protocol

1 L culture yields ~ 25 grams of cells

All steps performed on ice or at 4'C

Purification of-3.5 gram pellet:

1. Resuspension: Remove pellet from -80'C storage. Add Buffer 1 at a volume for ~ 0.1
grams of pellet weight per mL. Agitate to resuspend. Add protease inhibitor cocktail
solution, DNase and lysozyme at product manual recommended concentrations. Agitate
solution gently for ~1 hour.

2. Lysis: Sonication of lysis solution on ice:
a. Between rounds of sonication lysis solution should be cooled on ice and

periodically inverted to mix.
b. 3 rounds of sonication at the following settings: Time: 1 min, Amplitude: 50%,

Pulse: 1 second on/l second off.

3. Differential centrifugation, Round I: 8000 x g, 40C, 35'

4. Decant supernatant. Save supernatant. Pellet can be discarded (or sample saved for blot
analysis).

5. Differential centrifugation, Round 2: 150000 x g 4*C, 60'

6. Decant supernatant. Save pellet (contains crude cell envelope fraction, or "CEF").
Supernatant may be discarded (or sample saved for blot analysis).

7. CEF salt wash: Quantitatively transfer cell pellet to homogenizer. Use spatula to transfer
as much of the pellet as possible. Then add 2 mL Buffer 2 to centrifuge tube. Scrape
bottom of centrifuge tube to resuspend remaining CEF. Add this solution to homogenizer
containing rest of the CEF. Homogenize cell pellet in a final volume of 35 mL of Buffer
2 (33 mL added, after the 2 mL wash).

8. Differential centrifugation, Round 3: return homogenized CEF to centrifuge tube. Spin, at
150000 x g 40C, 60'

9. Decant supernatant. Save pellet (contains washed cell envelope fraction, or "CEF").
Supernatant may be discarded (or sample saved for blot analysis).

10. Transfer washed CEF quantitatively to homogenizer. Use 2 mL of Buffer 3 to wash CEF
remaining in centrifuge tube. Add this solution to homogenizer containing dry CEF
pellet.
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11. [Sample may be homogenized, aliquotted, and frozen at -80' at this point and purification
continued at a later date. To continue, thaw stored CEF on ice, pour into homogenizer,
wash container with 200 p.L of buffer and combine with neat CEF solution.]

12. Solubilization of washed CEF:
a. Homogenize CEF at for a concentration of 10 mg/mL protein
b. Add 1/10 volume of 5% DDM solution, -> protein: detergent ratio of 2
c. Re-homogenize
d. Vortex 2 minutes
e. Dilute 1:3 in Buffer 3 for a final concentration of 30% glycerol, 0.17% DDM, 20 mM
imidazole, and 3.3 mg/mL protein)

13. Differential centrifugation, Round 4: spin at 100000 x g, 41C, 60'.

14. Decant supernatant. Save supernatant. Pellet may be discarded.

15. Batchbinding to Ni-NTA: 1-2 mL Ni-NTA resin equilibrated in 50 mM HEPES pH 7.5,
30% glycerol, 20 mM imidazole, 0.0 1% DDM. Add supernatant to equilibrated resin and
gently agitate overnight.

16. Ni-NTA purification: let each wash or elution fraction completely flow through before
adding the following fraction.

a. Flow through of solution over gravity flow filter.
b. Wash 1: 1 x ~ 25 mL Buffer 4 + 20 mM imidazole.
c. Wash 2: 3 x I mL Buffer 4 + 80 mM imidazole.
d. Elution A: 6 x 0.5 mL fractions with Buffer 5 + 300 mM imidazole
e. Elution B: 6 x 0.5 mL fractions with Buffer 5 + 600 mM imidazole

17. Measure activity of elution fractions (or use SDS-PAGE) to determine fractions
containing protein.

18. Concentrate and buffer exchange using 100 -kDa concentrator, exchange into Buffer 5

19. Storage of solution in aliquots at -80'C.

Buffer 1: 50 mM HEPES, pH 7.5; 10% glycerol, 100 mM NaCl.
Buffer 2: 50 mM HEPES, pH 7.5; 10% glycerol, 250 mM NaCl, 250 mM KCl.
Buffer 3: 50 mM HEPES pH 7.5, 30% glycerol, 20 mM imidazole.
Buffer 4: 50 mM HEPES pH 7.5, 20% glycerol, 300 mM NaCl, 0.0 1% DDM
Buffer 5: 50 mM HEPES pH 7.5, 30% glycerol, 100 mM NaCl, 0.01% DDM
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Discussion and Conclusion

The purification values shown in Table 3 were recorded for a 3.6 g cell pellet, which

represents roughly one seventh of the cell weight obtained on average from one liter of culture

using auto-induction. The 0.6 mg protein remaining at this point is > 95% purified PglB as

judged by SDS-PAGE (Figure 7B). Thus, we estimate that per liter of culture, using auto-

induction expression and the optimized purification conditions, 1-5 mg pure PglB is obtained.

This represents a 100-fold increase in levels of pure, stable PglB relative to pre-optimized levels,

which were estimated to be -50 pg per liter of culture. Importantly, multiple PglB preparations

have been completed using the current optimized protocol, demonstrating the reproducibility of

yields obtained, and indicating that the values shown in Table 3 are representative of an average

purification.

Nonetheless, the optimized procedure for purifying PglB is far more time-consuming

than purification of most soluble proteins. The obligatory steps of isolating and processing the E.

coli membrane fraction add considerable time and effort to the purification process. Additionally,

a greater emphasis is placed on maintaining the protein at a cold temperature, working rapidly,

and following protocols strictly. Furthermore, optimized quantities of membrane proteins often

seem scant relative to typical yields for soluble proteins. These difficulties, however, are well-

recognized by those intending to express and purify an uncharacterized membrane protein, and

there are many thorough reviews that provide an overview of these challenges and potential

solutions [35-38]. While optimizing PglB expression and purification, several additional

obstacles and solutions were encountered, and it is hoped that these may be beneficial for non-

specialists to consider when commencing such an effort.

82



Ironically, it proved challenging to navigate the abundant options available that have

potential to improve the expression or stability of a membrane protein. Various cell lines, fusion

tags, expression-culture additives, detergent alternatives, protein stabilizers, and countless other

products and methods have reported instances of success in handling of certain membrane

proteins. Yet, there are very few guarantees, and optimizing most steps remains an empirical

process. In the case of PglB, it proved to be more time-efficient and economical to begin

optimization of each step with a limited range of commonly used conditions and expand based

on those results, when necessary. Deciding on a standard for sufficiency is useful, and when a

step is particularly problematic, it may be practical to allot a specific amount of time to the task.

If progress is not made by the end of the time period, perhaps it is wiser to try another route or

target entirely.

It was also found helpful to develop a clear strategy from the onset, and to begin with the

first step of the procedure. Once the first step of the procedure has been optimized, the next step

of the procedure should only then be addressed, because conditions used at each step in

expression and purification can have unpredictable results on those that follow.

Along the same lines, one should carefully choose the specific construct to optimize.

Ideally it should be the same construct that will be used for anticipated future experiments. An

optimal procedure for expression and purification for a protein in one vector can be significantly

different in another vector, or when adding or exchanging the expression tag. The importance of

designing a systematic procedure for optimization and an objective measure of comparison

cannot be underestimated. The inevitably qualitative nature of many aspects of protein

biochemistry-resulting from variability in individual transformation colonies, expression
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cultures, loading of gels and western-blot transfers-multiplies the uncertainty of qualitative

judgments.

The presented optimization of PgLB expression and purification was performed with the

ultimate purpose of kinetic and mechanistic characterization, rather than crystallographic studies.

Implications of this goal include a primary interest in obtaining high quantities of pure, active,

and stable protein. In contrast, crystallography-driven optimizations often prioritize obtaining

monodisperse, concentrated protein, which are absolute requirements for obtaining a crystal

structure.

Because the goal of the presented procedure is biochemical, SDS-PAGE and western

blots alone represent poor methods for comparing the optimal conditions for expression and

purification of the enzyme. While a condition used in a purification step may yield a bright band

on a western blot, it may be unfavorable for activity yields. If constructs with tags of various

sizes are screened, the differences in molecular weight can be a perplexing factor to account for

in gel densitometry measurements. Additionally, expression tags can have effects on structure,

activity and monodispersity of the enzyme, which cannot be accounted for using SDS-PAGE.

Purifying a protein based on specific activity and yields allows a more rigorous and precise

measure of the most efficient purification condition to use for each step.

However, the requirement for a quantitative activity assay can be problematic, as activity

assays are enzyme-specific, and reagents and equipment can make the assays laborious or

expensive to perform frequently. Undeniably, in the developing field of membrane-protein

biology, most information acquired is important and useful even if lacking in certain

methodological precision. Though, while it may be exciting to speculate on results from
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experiments and techniques available, it is equally important to be conscientious of the questions

that these experiments leave unanswered.
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Materials and Methods

Vectors and cloning

The PglB gene was amplified by PCR from the C. jejuni genome NCTC 11168 [39,40]. Primers

used in the PCR encoded a BamHI site at the N-terminus prior to the start codon and His10-

UGA-XhoI on the C-terminus prior to the native stop codon. The PCR product was purified and

digested with BamHI and XhoI (New England Biolabs, NEB) and ligated into the corresponding

sites in the pET24a(+) vector (Invitrogen) using T4 DNA ligase (NEB) and standard molecular

biology procedures. The resulting vector was sequenced and then transformed using

manufacturer-supplied protocols into BL21 (DE3) RIL E. coli competent cells (Agilent) for

expression. Additional vectors screened for expression of PglB with alternate fusion tags include

pGEX with Glutathione-S-transferase (GST) (GE Healthcare), pMAL-c2X with MBP (NEB),

pET SUMO with SUMO (Invitrogen), pET Trx with Thioredoxin (EMD Millipore), and pGBH

with GB1 [23] (Table I).

Protein Expression

Pre-optimized expression was carried out according to the following procedure except when

specifically noted: 5-mL solutions of LB at 25g/L were at 37 0C, until reaching an O.D.= 0.6-0.8.

At this point the temperature was turned to 16'C and cultures were induced by adding IPTG to a

final concentration of 1 mM. Cultures were left to shake overnight. The following day, cells were

harvested and lysed according to the conditions described below. Competent cells screened

included BL21 (DE3) RIL, BL21 (DE3) Gold, BL21 (DE3) RP, BL21 (DE3) pLys (all BL21

strains from Agilent), Rosetta 2 (DE3) (Novagen), Rosetta gami-2 (DE3) (Novagen), and C41

(Lucigen). In contrast, the optimized expression procedure involves using auto-induction media

86



ZYM-5052, a high-density growth media [29]. For auto-induction expression, one liter of auto-

induction media was made up in a 6-liter flask to allow adequate aeration of the cultures. 10 g

tryptone and 5 g yeast extract were combined with 960 mL of deionized water and autoclaved.

Once the media had cooled, Kanamycin and Chloramphenicol were added for final

concentrations of 100 pg/mL and 170 gg/mL, respectively. Just before inoculation, the following

media components were added:

* 25 mL of 40X Salt Solution: 1 M Na2HPO 4, 1 M KH2PO 4 , 2 M NH4Cl, 0.2 M Na 2 SO 4
0 20 mL of 50X 5052: 25% glycerol (v/v), 2.5% glucose (w/v), 10% a-lactose

monohydrate (w/v)
0 0.2 mL of 1 OOOX trace metals
9 2 mL of 1M MgSO 4

This gives the final composition of ZYM-5052: 1% N-Z-amine (tryptone), 0.5% yeast extract, 25

mM Na2HPO 4, 25 mM KH 2PO 4, 50 mM NH 4Cl, 5 mM Na2 SO 4 , 2 mM MgSO 4 , 0.2X trace

metals, 0.5% glycerol, 0.05% glucose, 0.2% lactose. Optimized expression is carried out by

inoculating the 1 L auto-induction media with a 5-mL culture grown from a recent transformation

of the PglB vector into BL21 (DE3) RIL. The inoculated media is grown at 37*C for 4-5 hours

shaking at 200 RPM. The temperature is then turned down to 16'C and cultures are left shaking

at 200 RPM overnight. The following day, cultures are harvested and cell pellets are weighed

and stored at -80*C until purification.
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Activity Assay

The Pg1B activity assay has been described in detail elsewhere [41]. Briefly, to a tube of

radiolabeled substrate, Und-PP-Bac-[ 3H]GalNAc, DMSO (10 pL), 2X PglB Assay Buffer

containing 100 mM HEPES, pH 7.5 / 280 mM sucrose / 2.4% (v/v) Triton X-100 (100 gL), 1 M

MnCl2 (2 pL), H2 0 (73 pL), and 5 pL PglB fraction are combined. The assay is initiated by the

addition of 10 pL of a 2 mM stock of the peptide Acetyl-DQNAT-pNF in DMSO [42]. Time

points of the reaction are taken by quenching aliquots of the reaction in biphasic solutions of

3:2:1 CHCl3: MeOH: 4 mM MgCl 2 (1.2 mL). The aqueous layer is then extracted and the organic

layer washed twice with theoretical upper phase (TUP) with salt (2 x 600 pL). The aqueous layer

and washes are combined and mixed with 5 mL of scintillation fluid (Ecolite, MP Biomedicals).

The organic layer was mixed with 5 mL of scintillation fluid (OptiFluor, Perkin Elmer) and all

fractions are subjected to scintillation counting.

Protein Quantification

Total protein in each of the purification fractions is estimated using the Bio-Rad protein assay

(Bio-Rad, #500-0006) according to the manufacturer-supplied protocol. Bovine Serum Albumin

(BSA) standard (Thermo Scientific Pierce) is used to create a standard curve. Fractions are taken

during each step of the purification from a given cell pellet and stored at -80*C. Upon purifying

to the desired end-point, the protein quantities for all samples are measured at the same time to

minimize error. Pure PglB protein is quantified by measuring the absorbance at 280 nm and

using an extinction coefficient of 117,300 M' cm~1 (for T7-PglB-Hisio).
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Cell lysis

All steps of purification are performed on ice or at 40C. A cell pellet of 3-5 g in weight is thawed

on ice and resuspended in 50 mM HEPES pH 7.5, 10% glycerol, 100 mM NaCl for 0.1 grams of

cell pellet per mL. Protease inhibitor cocktail solution, EDTA-free (Calbiochem) and hen-egg

lysozyme powder (Amresco) is added for I pL/mL and 1 mg/mL, respectively. Mixture is

agitated gently for -1 hour. Cell lysis is performed by sonication (Sonics Vibracell, VC 505

(500 watts) & VC 750 (750 watts)). Sonication is performed on ice for 3 x 1 min at 50%

amplitude, pulsing at 1 s on/I s off, and with breaks between cycles to prevent warming of the

mixture. Lysates are centrifuged at 8000 x g, 4"C for 35 minutes to remove unlysed cells and

insoluble cell debris. The supernatant (cleared lysate) is decanted and pellet is discarded.

Isolation of Cell-Envelope Fraction (CEF)

The cleared lysate is centrifuged at 150000 x g, 4*C for 60 minutes. After the spin, the

supernatant is discarded. The pelleted fraction (the CEF) is transferred as quantitatively as

possible to a Pyrex homogenizer using a small spatula. Two mL of high-salt buffer (50 mM

HEPES pH 7.5, 10% glycerol, 250 mM NaCl, 250 mM KCl) is then added to the centrifuge tube

and the remaining CEF is resuspended by gently scraping the bottom of the tube with the spatula.

This wash solution is added to the homogenizer containing the rest of the CEF. The CEF is

homogenized in a final volume of 35 mL of the high-salt buffer (33 mL added, after the 2 mL

wash). The homogenized CEF is returned to the centrifuge tube and this solution is centrifuged at

150000 x g, 4"C for 60 minutes. Again, the supernatant is discarded. The pellet, containing the

washed CEF, is again transferred and homogenized in 5-10 mL of 50 mM HEPES pH 7.5, 30%

glycerol, 20 mM imidazole. This washed CEF fraction is either stored at -80 0C or purification is

continued.
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Extraction of membrane proteins from cell membrane

The optimization procedure for PglB solubilization from the membrane is modeled after one

used previously for the yeast oligosaccharyl transferase [32]. Washed CEF is solubilized by

homogenizing in 50 mM HEPES pH 7.5, 30% glycerol, 20 mM imidazole in a volume that

roughly yields a final concentration of 10 mg total protein per mL. The 5% DDM detergent

solution (in 50 mM HEPES pH 7.5) is diluted 1:10 in the homogenized CEF volume for a final

concentration of 0.5% detergent for solubilization. This 0.5% (w/v) concentration corresponds to

roughly 200X CMC of DDM (IOOX CMC of Triton X-100, and 9X CMC of OG, also screened

at 0.5%) [34]. This solution is re-homogenized thoroughly, and the solution is vortexed at the

maximum setting for two minutes. The solution is then diluted 1:3 in 50 mM HEPES pH 7.5,

30% glycerol, 20 mM imidazole, giving a final concentration of 50 mM HEPES pH 7.5, 30%

glycerol, 0.17% DDM, 20 mM imidazole, and roughly 3.3 mg/mL protein. The solubilized CEF

is centrifuged at 100000 x g, 4'C for 60 minutes. The supernatant is decanted into a clean, pre-

chilled 50-mL conical tube for further purification, and the pellet is discarded.

Ni-NTA purification

The supernatant, containing the solubilized membrane-proteins, is added to Ni-NTA agarose

resin (Qiagen) that has been pre-equilibrated in 50 mM HEPES pH 7.5, 30% glycerol, 20 mM

imidazole, 0.0 1% DDM. The protein solution is gently agitated overnight with the resin. Ni-NTA

purification is carried out with Buffer M (50 mM HEPES pH 7.5, 20% glycerol, 300 mM NaCl,

0.0 1% DDM) plus the specified amount of imidazole used for washes and Buffer E (50 mM

HEPES pH 7.5, 30% glycerol, 100 mM NaCl, 0.01% DDM) plus specified imidazole used for
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elutions. Batchbinding solution is allowed to flow through a disposable gravity-filtration column

(BioRad). The following fractions are collected: Flow through, Wash A: 1 x 25 mL Buffer M +

40 mM imidazole. Wash B: 3 x 1 mL Buffer M + 100 mM imidazole, Elution A: 6 x 0.5 mL

fractions of Buffer E + 300 mM imidazole, Elution B: 6 x 0.5 mL Buffer E + 600 mM

imidazole. Five microliters of every other elution is removed and used to determine the location

of the active PglB using the activity assay. Fractions containing most activity are combined. The

combined solution is concentrated and buffer is exchanged using an Amicon Ultra- 100K

centrifugal filter (Millipore) into Buffer E (no imidazole). SDS-PAGE is used to verify purity

and then the concentration of the pure PglB solution is quantified using UV-absorbance at A =

280 nm. The solution is then divided into aliquots and stored at -80'C.

91



References

1. Ahram M, Litou ZI, Fang R, Al-Tawallbeh G (2006) Estimation of membrane proteins in the
human proteome. In Silico Biol 6: 379-3 86.

2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev
Drug Discov 5: 993-996.

3. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug-target network. Nat
Biotechnol 25: 1119-1126.

4. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required.
Trends Biotechnol 27: 455-460.

5. Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, et al. (2008) Directed evolution of a G
protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad
Sci U S A 105: 14808-14813.

6. Chen Q, Miller U, Dong M (2010) Role of N-linked glycosylation in biosynthesis, trafficking,
and function of the human glucagon-like peptide 1 receptor. Am J Physiol Endocrinol
Metab 299: E62-68.

7. Luthi F, Leibundgut K, Niggli FK, Nadal D, Aebi C, et al. (2012) Serious medical
complications in children with cancer and fever in chemotherapy-induced neutropenia:
results of the prospective multicenter SPOG 2003 FN study. Pediatr Blood Cancer 59:
90-95.

8. Ubelhart R, Bach MP, Eschbach C, Wossning T, Reth M, et al. (2010) N-linked glycosylation
selectively regulates autonomous precursor BCR function. Nat Immunol 11: 759-765.

9. Londrigan SL, Turville SG, Tate MD, Deng YM, Brooks AG, et al. (2011) N-linked
glycosylation facilitates sialic acid-independent attachment and entry of influenza A
viruses into cells expressing DC-SIGN or L-SIGN. J Virol 85: 2990-3000.

10. van Berkel PH, Gerritsen J, Perdok G, Valbjorn J, Vink T, et al. (2009) N-linked
glycosylation is an important parameter for optimal selection of cell lines producing
biopharmaceutical human IgG. Biotechnol Prog 25: 244-251.

11. Bartusik D, Aebisher D, Lyons AM, Greer A (2012) Bacterial inactivation by a singlet
oxygen bubbler: identifying factors controlling the toxicity of (1)02 bubbles. Environ Sci
Technol 46: 12098-12104.

12. Deniaud A, Bernaudat F, Frelet-Barrand A, Juillan-Binard C, Vernet T, et al. (2011)
Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the
Mistic strategy. Biochim Biophys Acta 1808: 2059-2066.

13. Lizak C, Fan YY, Weber TC, Aebi M (2011) N-Linked glycosylation of antibody fragments
in Escherichia coli. Bioconjug Chem 22: 488-496.

14. Wei Z, Lin T, Sun L, Li Y, Wang X, et al. (2012) N-linked glycosylation of GP5 of porcine
reproductive and respiratory syndrome virus is critically important for virus replication in
vivo. J Virol 86: 9941-9951.

15. Hurt JK, Fitzpatrick BJ, Norris-Drouin J, Zylka MJ (2012) Secretion and N-linked
glycosylation are required for prostatic acid phosphatase catalytic and antinociceptive
activity. PLoS One 7: e32741.

16. Hillaire ML, van Eijk M, Nieuwkoop NJ, Vogelzang-van Trierum SE, Fouchier RA, et al.
(2012) The number and position of N-linked glycosylation sites in the hemagglutinin

92



determine differential recognition of seasonal and 2009 pandemic Hi N1 influenza virus
by porcine surfactant protein D. Virus Res 169: 301-305.

17. Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P (2011) N-linked
glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression,
hexamer stability, and interactions with human complement. Virology 413: 253-264.

18. Graslund S, Sagemark J, Berglund H, Dahlgren LG, Flores A, et al. (2008) The use of
systematic N- and C-terminal deletions to promote production and structural studies of
recombinant proteins. Protein Expr Purif 58: 210-221.

19. Maita N, Nyirenda J, Igura M, Kamishikiryo J, Kohda D (2010) Comparative structural
biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem 285: 4941-
4950.

20. Lizak C, Gerber S, Numao S, Aebi M, Locher KP (2011) X-ray structure of a bacterial
oligosaccharyltransferase. Nature 474: 350-355.

21. Jaffee MB, Imperiali B (2011) Exploiting topological constraints to reveal buried sequence
motifs in the membrane-bound N-linked oligosaccharyl transferases. Biochemistry 50:
7557-7567.

22. Nilsson J, Larsson M, Stahl S, Nygren PA, Uhlen M (1996) Multiple affinity domains for the
detection, purification and immobilization of recombinant proteins. J Mol Recognit 9:
585-594.

23. Bao WJ, Gao YG, Chang YG, Zhang TY, Lin XJ, et al. (2006) Highly efficient expression
and purification system of small-size protein domains in Escherichia coli for biochemical
characterization. Protein Expr Purif 47: 599-606.

24. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein
production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:
303-317.

25. Sachdev D, Chirgwin JM (1998) Solubility of proteins isolated from inclusion bodies is
enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr Purif 12:
122-132.

26. Davies AH, Jowett JB, Jones IM (1993) Recombinant baculovirus vectors expressing
glutathione-S-transferase fusion proteins. Biotechnology (N Y) 11: 933-936.

27. Pryor KD, Leiting B (1997) High-level expression of soluble protein in Escherichia coli
using a His6-tag and maltose-binding-protein double-affinity fusion system. Protein Expr
Purif 10: 309-319.

28. Xie H, Guo XM, Chen H (2009) Making the most of fusion tags technology in structural
characterization of membrane proteins. Mol Biotechnol 42: 135-145.

29. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures.
Protein Expression and Purification 41: 207-234.

30. VanAken T, Foxall-VanAken S, Castleman S, Ferguson-Miller S (1986) Alkyl glycoside
detergents: synthesis and applications to the study of membrane proteins. Methods
Enzymol 125: 27-35.

31. Rosevear P, VanAken T, Baxter J, Ferguson-Miller S (1980) Alkyl glycoside detergents: a
simpler synthesis and their effects on kinetic and physical properties of cytochrome c
oxidase. Biochemistry 19: 4108-4115.

32. Sharma CB, Lehle L, Tanner W (1981) N-Glycosylation of yeast proteins. Characterization
of the solubilized oligosaccharyl transferase. Eur J Biochem 116: 101-108.

33. QIAGEN (2008) N-NTA reagent compatibility table. 1-4.

93



34. Bhairi SM, Mohan, C., EMD Biosciences (2007) Detergents Booklet. San Diego, CA.
35. Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of

appropriate methods for high-resolution structure determinations. J Struct Biol 136: 144-
157.

36. Grisshammer R (2006) Understanding recombinant expression of membrane proteins. Curr
Opin Biotechnol 17: 337-340.

37. Aebi A, Neumann P (2011) Endosymbionts and honey bee colony losses? Trends Ecol Evol
26: 494.

38. Lluis MW, Godfroy JI, 3rd, Yin H (2012) Protein engineering methods applied to membrane
protein targets. Protein Eng Des Sel.

39. Taylor DE, Eaton M, Yan W, Chang N (1992) Genome maps of Campylobacter jejuni and
Campylobacter coli. J Bacteriol 174: 2332-2337.

40. Karlyshev AV, Henderson J, Ketley JM, Wren BW (1998) An improved physical and genetic
map of Campylobacterjejuni NCTC 11168 (UA580). Microbiology 144 ( Pt 2): 503-508.

41. Glover KJ, Weerapana E, Numao S, Imperiali B (2005) Chemoenzymatic synthesis of
glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter
jejuni. Chem Biol 12: 1311-1315.

42. Chen MM, Glover KJ, Imperiali B (2007) From peptide to protein: comparative analysis of
the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46: 5579-
5585.

94



CHAPTER 3:

SEQUENCE-DRIVEN BIOINFORMATIC ANALYSIS OF THE

EVOLUTIONARY DIVERSITY OF

OLIGOSACCHARYL TRANSFERASES

The majority of the data in this chapter has been published in:

Jaffee, M.B. and Imperiali, B. (2011) Exploiting topological constraints to reveal buried
sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Biochemistry.
50(35):7557-67.
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Summary

In an effort to learn more about the functionally relevant regions of PglB/STT3-specifically, to

investigate the importance of the transmembrane domain for function-the sequences for several

divergent STT3 homologs were analyzed with a range of bioinformatic software programs. It

was noted that the topology predicted for STT3 homologs is conserved. However, the sequences

of the transmembrane helices are highly divergent, preventing recognition of potential conserved

motifs in full-length sequence alignments. To circumvent this issue, a computer program was

developed to parse each STT3 sequence according to predicted topology and group the

sequences of topologically related regions from each homolog. Alignments were then made from

each group of sequence segments individually. For example, the sequence of the first predicted

cytoplasmic loop from each STT3 homolog would comprise one group. This analysis was

performed using 28 homologs from evolutionarily distant organisms ranging from humans to

yeast to bacteria and archaea. The results show that several soluble loops between

transmembrane helices contain strictly conserved motifs, suggesting a critical role of the

transmembrane region in PglB/STT3 function. Sequence and topological analysis was

supplemented by comparison of the secondary structure of the loops containing the conserved

motifs. Secondary-structure predictions indicate the motifs share a conserved local structure,

further demonstrating the importance of these loops. On a general methodological level, these

studies establish the utility of combining topology prediction and sequence analysis for exposing

buried pockets of homology in large membrane proteins.
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Introduction

The C. jejuni OTase PglB comprises a single 82-kDa protein that shows homology to the

catalytic subunit of the eukaryotic OTase, called Stt3 [2,3]. Both have a similar predicted

architecture, with 11-13 transmembrane domains in the N-terminal region followed by a C-

terminal soluble domain (Figure 1). The soluble domain projects into the periplasmic space (or

ER lumen in eukaryotes) and contains the distinctive Stt3 signature motif: WWDxG. However,

sequence identity between PglB and Stt3 is low (17.9%), and apart from the aforementioned

motif, little conservation had been clearly demonstrated between PglB and other Stt3s at the time

of these studies.

TMHMM topology probabilities for PgB
1.2!

S0.6

042 IIEI04

02 10 0 300 400 500 600700N-terminus PgB protein sequence ---- ------ C-terminus

transmembrane - Inside - outside -

N-term - residue - 400 Residue - 400 - C-term

-11-13 TM helices Soluble, globular domain

-C-terminus

N-termInus

Figure 1: Translation of topological probabilities to a picture of protein architecture.
Top: Graphical representation of the topology prediction for PglB. TMHMM algorithm uses
sequence data to predict location of each residue as transmembrane, inside (cytoplasmic), or
outside (luminal or extracellular). Cartoon (bottom) depicts the architecture predicted by the
graph above, with multiple transmembrane domains followed by a C-terminal globular domain.
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At the time this research was performed, little was understood of the structure-activity

relationship of STT3/OTase. Crystal structures existed only for the C-terminal soluble domains

of PglB (C. jejuni) and Pyrococcusfuriosus Stt3. It was expected that the soluble domain

contained the catalytic site, since the only known conserved and essential motif at the time

(WWDxG) appears in this region. Also, the soluble domain alone is relatively simple to express

and crystallize, accounting for the available structural data for this region alone [4-6]. In contrast,

the many N-terminal transmembrane domains make the full-length enzyme very intractable for

in vitro and structural studies (Figure 1). Yet the soluble domain by itself is neither functional

nor capable of binding substrate, limiting the interpretability of the structural data [5,6].

Nonetheless, defining the residues required for OTase function presented a potential

starting point for investigation of the structural prerequisites for catalysis. Therefore, although

lacking activity, additional residues were suggested to function in OTase catalysis based on the

structural data from the soluble domains of P. furiosus STT3 and C. jejuni PglB. The structure of

the P. furiosus soluble domain shows an aspartic acid and a lysine (separated by two residues,

DxxK) that appear to interact with the WWDxG motif (Figure 2). Researchers showed that

mutating these residues led to decreased OTase activity, indicating their potential importance for

enzyme function [5]. However, the general frequency of the DxxK pattern makes it difficult to

define homologous residues in other Stt3 congeners using sequence analysis alone; thus, the

level of conservation throughout evolutionarily diverse Stt3s could not be clearly established.

Some additional loosely conserved residues were shown to display decreased glycosylation when

mutated [4-6]. These studies generated interesting hypotheses about the importance of additional

regions of the OTase, though the lack of strict conservation and quantitative biochemical studies

complicated efforts to define the role of these regions in the catalysis of glycan transfer.
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Figure 2: Pymol representation of crystal structure of P. furiosus Stt3 soluble domain.
(PDB: 2zai, 2.7 A resolution, [5]). The left image shows the full soluble domain and the right
image shows a region of interest enlarged for clarity. Shown as sticks are the residues comprising
the WWDxG motif and the aspartate and lysine from the proposed DxxK motif. Orange dashed
lines show approximate distances for the following: N-terminus and the second tryptophan in the
WWDxG motif (13.3 A), aspartate from DxxK and the first tryptophan in WWDxG (3.1 A), and
lysine from DxxK and the tyrosine situated in the 'x' position of WWDxG (5.6 A).

In contrast, there existed no direct investigation of the significance of the transmembrane

region of PglB and other Stt3 proteins. This region is predicted to be significant in catalysis due

to the highly hydrophobic, and membrane-associated, undecaprenyldiphosphate-linked substrates

that the OTases act upon. In addition, the crystal structure of the P. furiosus Stt3 soluble domain

shows the WWDxG residues in close proximity to the N-terminus (the N-terminus being the

native site connecting the soluble domain to the transmembrane region) (Figure 2). The location

of the WWDxG in the structure suggests these residues are interacting with atoms located on or
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near the surface of the membrane bilayer, implying that residues within the transmembrane

domain interact with the expected site of catalysis [5].

In order to investigate the transmembrane domain of the enzyme directly, sequence

alignments of diverse Stt3 homologs were created. However, as mentioned above, alignment of

full-length Stt3 sequences failed to expose any homology in the transmembrane region. It was

hypothesized that some regions of local conservation may exist within the predicted

transmembrane domain, but in general, these regions are not well defined due to the large size of

the protein and the low overall sequence conservation. In other words, divergence of surrounding

transmembrane helices may create a background noise that prevents detection of intervening

conserved motifs. To test this hypothesis, computational topology predictions, which predict

whether a residue in a protein sequence appears inside or outside of the membrane, were

assembled for several Stt3 proteins (Figure 1). The Stt3 topology predictions were used to

narrow regions of focus, for example, to the amino-acid sequence of a specific loop between two

transmembrane domains. Sequence analysis was then performed on these localized segments

(Figure 3).

In order to expand this analysis to a set of 28 non-redundant Stt3 sequences, which

included 13 eukaryotes, 7 archaea, and 8 bacteria, a program was developed which accepts a list

of homologous protein sequences and the related topology predictions. The program returns the

sequence from each homolog that corresponds to a specific topological feature (e.g. the first TM

sequence, or the third loop of each sequence). This method allowed topology-driven sequence

analysis of a large number of Stt3 sequences, which would have been prohibitively onerous to

evaluate manually. Using this program, substantial homology was identified between PglB and

other Stt3s in the N-terminal transmembrane region of the protein, with several motifs that
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appear between the transmembrane helices in predicted periplasmic soluble loops. Remarkably,

these motifs exhibit strict conservation from bacteria to humans. The secondary structure of the

sequence regions surrounding the motifs was analyzed as well; predictions showed that local

secondary-structure surrounding the motifs are conserved, further supporting the expected

importance of these motifs. In addition to identifying conserved motifs in the OTase enzyme

prior to the availability of supporting structural data [7], the following analysis clearly

demonstrates the utility of combining topology prediction and sequence analysis to identify

conserved, functional motifs in large membrane proteins.

R145SfTxxGxxD'5 2

A.thaliana - I SR SVAGSY(D
C.elegans YTSRSVAGSYD

C.jejuni YYNRTMSGYYD
D.melanogaster - - SRSVAGSYD

H.sapiens - I SR SVAGSYD
Mmusculus - I SR SVAGSYD

M.voltae - FVKTVAGFSD
P.furosus - K I I S I FGYNE

S.cerevisiase - - SR SVAGSYD
W.succinogenes YYNRTMAGYYD

Z.ievis - - SRSVAGSYD

INxxS/T-INxE316

A.thalana SKY I P I I ASVSEHOPPTWP
C.elegans K I H IPI I ASVSEHOPTTWV

C.Jejuni FMYFNVNQT I OEVENVDLS
D.melanogasterK I H I P I I ASVSEHOPTTWF

H.sapiens KNN I P I I ASVSEIHQPTTWS
M.musculusKNN I P I I ASVSEHOPTTWS

M.vottaeTGWPNVLTTVSE LDTASL -
P.furiosus YQSTOVYET VOE LAKTDWMG

S.cerevisaeK I H I P I I ASVSEHQPVSWP
W.succinogenes LHFYSVVQT I REASTLSLE

Z.aevisKNNI Pl I ASVSEHOPTTWS

Allows construction of single topology
model for all OTases

Motif:
L/xxxDxY/F

Motif,
R-S/TxxGxxD

Motlf-x
lNxxS/T-I1x

Soluble
- domain:

425-713
Signature
sequence:
W457WDxG 461

Conservation Conseration
22346 5)4 5 3444710

Figure 3: Representation summarizing the topology-based sequence analysis performed on
Stt3 homologs.
The sequence segments corresponding to individual predicted loops (1 t, 2 d, etc.) were isolated

from several Stt3-homologs. These segments were then aligned, at times revealing conserved
residues. Pockets of conservation were then used to construct a revised topology map common to
all OTases.
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Conserved loop motifs discovered by alignment of
individual predicted loops for many OTase homoloas

L/lxxxD54xY/F

A~thaiana I KYESV HEFDPY FNYRVTQFLSKN
C.Oeas VRFES I GHEFLPWFNYRATHHMVH

Cjejni F NNQLM 1 SNOGY AF AEGAROM I AG
D.melanogaster IRFESI HEFDPVFNYRATAYMVQN

Hsapiens LRFESV HEFDPYFNYRTTRFLAEE
M.mucuiusLRFESV HEFDPT FNYRTTRFLAEE

M.voltae DNGRMYt TALOP YYLRMSENYLEN
P.furiosus ---. KYFSDPDTF YHFEIYKLVLKE

S~cerevisiae IKFES i HEFDPVFNYRATKYLVNN
W.succinogenos HKGILMiNTNDGYVYAEGARDL IAG

Zisevis LRFESV HEFbP FNYRTTRFL TEE

Conservation



Results

Predicted topologies are similar for PgB and Stt3 homologs

Much of the following analysis was motivated by observed similarities between topology

predictions for STT3 homologs. Topology predictions for Stt3 homologs, including PglB,

indicate a conserved overall structural arrangement. Stt3 homologs share a large N-terminal

multi-transmembrane domain, followed by a C-terminal soluble domain (Figure 1). Graphical

depictions of predicted topologies are displayed in Figure 4 for select Stt3 homologs, chosen to

represent the evolutionary diversity of the protein.

It should be noted that the predicted number of transmembrane helices varies from 11-13

amongst sequences from various organisms. However, topology predictions vary subtly

according the specific algorithm used in analysis, which leaves uncertainty about whether the

number of transmembrane domains in STT3 homologs varies or whether some predictions are

incorrect. Some sequences are also predicted to contain a transmembrane domain near the middle

of the C-terminal soluble domain, although the majority of these are predicted to simply contain

a hydrophobic region at this position. The latter scenario is almost certainly the correct one, as

indicated by many studies of the soluble domain [5,8-10]. However, this discrepancy

demonstrates the tentative nature of topology predictions, which often differ depending on the

specific algorithm used, and thus are used only as a guide for investigating protein topology. The

topology prediction server TMHMM was used throughout the present analysis [11].

Closer inspection of the topology diagrams reveals the consistent presence of two

sizeable loops (> 40 residues) located in similar regions of each of the Stt3 topology predictions.

One loop of roughly 50 residues appears consistently after the first transmembrane domain; a

second loop of roughly 40 residues appears 2-3 transmembrane domains before the start of the
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soluble domain (Figure 4). Investigation of the sequences corresponding to the first loop reveals

a prominently conserved aspartic acid (residue D54 in PglB). While other groups have suggested

the existence of conserved residues, a systematic investigation of potential regions of

conservation or their functional significance has not been previously carried out [4,9]. Indeed,

such investigations are hindered by the difficulty of detecting small motifs within the context of

the large and variable full-length sequence. Utilizing the conserved topology of Stt3 homologs,

sequences corresponding to a specific topological feature of each Stt3 protein were extracted,

and then sequence analysis was confined to these sections. To systematize the approach, a

computer program was developed to automatically extract the sequence corresponding to a given

topological feature for a series of 28 divergent Stt3 homologs (Table 1).
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Figure 4. Sequence-based topology predictions for several Stt3 homologs.
The predictions shown are for archaea (M. voltae), bacteria (C. jejuni, Pg1B), fungi (S.
cerevisiae) and a mammal (H. sapiens). The protein sequence from N- to C-terminus is
represented along the x-axis, and the y-axis shows the probability that a given residue appears
within a transmembrane domain or outside the membrane. The tall blocks represent predicted
transmembrane domains. Predictions and illustrations were generated by the Transmembrane
Hidden Markov Model (TMHMM) topology prediction program [11]. Note: The trace running
horizontally along the top of the graph is included in the program output to designate upon which
side of the membrane a soluble section is predicted to appear (i.e. cytoplasmic is blue or luminal,
pink). For the figure shown, this trace can be disregarded, as these predictions tend to be highly
inaccurate when processing sequences with many consecutive predicted transmembrane helices.
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Table 1: Identities of sequences used in all bioinformatic analysis.
Domain Gone entfIer Organilm

eukaryota gil1 322489lemblCAA96722.1 Saccharomyces cerevisiae
archaea gill 1497941 IreflNP_069165.11 Archaeoglobus fulgidus DSM 4304
archaea gi|l5669720refINP_248533.11 Methanocaldococcus jannaschii DSM 2661
archaea gii87045854igblABD1 7750.11 Methanococcus voltae
archaea gi|l340452001reflYP_001096686.1I Methanococcus maripaludis C5
archaea gill 500121891gbIABR54641.11 Methanococcus vannielii SB
archaea gi|2614023681reflYP_003246592.11 Methanocaldococcus vulcanius M7

eukaryota gi|2814856061refINP001 164010.11 Rattus norvegicus homolog B
eukaryota gill48226196IrefINP001083986.11 Xenopus laevis homolog A
eukaryota gil2119656981gbEEB00894.11 Toxoplasma gondii ME49
eukaryota gill 21904152lgblEAY09105.11 Trichomonas vaginalis G3
bacteria gil86153042lreflZP_01071247.11 Campylobacter jejuni HB93-13

eukaryota gil3081591141gblEFO61662.11 Giardia lamblia P15
eukaryota gil127799903|gblAAH48348.21 Homo sapiens homolog A
eukaryota gil55154464gblAAH85313.11 Mus musculus homolog A
eukaryota gil30851502|gblAAH52433.11 Mus musculus homolog B
eukaryota gil238881972|gblEEQ4561 0.11 Candida albicans WO-1
archaea gil189765281reflNP_577885.1| Pyrococcus furiosus DSM 3638

eukaryota gil1 8419993|reflNP_568380.11 Arabidopsis thaliana
eukaryota gil529357gblAAC24442.1 Caenorhabditis elegans
bacteria gil253510784lgblEES89443.1| Helicobacter canadensis MIT 98-5491

eukaryota gil17738187|refINP_524494.1I Drosophila melanogaster
bacteria gil345564991refNP_906314.11 Wolinella succinogenes DSM 1740
bacteria gil3077214321reflYP_-003892572.1| Sulfurimonas autotrophica DSM 16294
bacteria gil2243736601reflYP_002608032.1 Nautilia profundicola AmH
bacteria gil2l98683191gblACL48654.1I Desulfovibrio desulfuricans ATCC 27774
bacteria gil325066002IgbADY74009.1I Desulfurobacterium thermolithotrophum DSM 11699
bacteria gil3l71148261gbIADU97316.11 Thermovibrio ammonificans HB-1
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Identfi cation of conserved motifs

The sequence analysis revealed strong conservation in several Stt3 inter-TM loops, which

is not easily detected when the full-length Stt3 sequences are aligned. Alignments of these motifs

are shown for PglB (C. jejuni) and other key Stt3 homologs in Figure 5. The first

transmembrane helix contains a conserved arginine residue (residue R29 in PglB). The first loop

(which appears in the lumen in eukaryotic Stt3s and the periplasm of the C. jejuni PglB) contains

the [L/I]xx[D 54]x[Y/F] motif. The third loop in the ER lumen or the periplasm contains the

[R/K][S/T]xx[G 14]xx[D 12] motif, and the seventh loop contains the [I/V]xxx[S/T][I/V]x[E 316]

motif. A topology model, shown in Figure 6, was constructed based on a combination of

topology predictions for Stt3 homologs and the conserved motifs, and is used to indicate the

locations of the identified motifs.

R
Afulgidus - - - - - - LMLAV I LFALAVRFQNFGE IFDSGI YY
A.thalianaNVLSVL I LVL I GVLAFS I RLFSV I KYESV I HEF
C.albicansVLLKVI IFISIAGAAISSRLFSVIRFESI IHEF
C.elegansTLLTIVVLALAWFVGFASRLFAIVRFESI IHEF

C.jejuni - -- LFAMI I LAYVFSVFCRFYWVWNASEFNE-Y
C.lari ----- I LI LAFAFSVLCRLYWVAWASEFYE -F

D.desulfuicans A LF L V VAL IVP LGLGLF VR LNDVPVWE KH KALF
D.melanogasterSLITFAILLIAWLAGFSSRLFAVIRFESI IHEF

D.thermolithotrophumLI L LL VS I II PIT IGLYVRFDDLRVWEKYKNQF
G.lamblIaRPLAL IGMI F I GALAFFCRLMSV I RYETV I HEF

H.canadensisGLDF I SFSFRNLKNQLF IRLTSHSFFWHFVLLF
H.sapiensTLLKLL I LSMAAVLSFSTRLFAVLRFESVIHEF

M.jannaschi--KVFLI ILMLMFVSFQLRAQTADMKFAQDNEF
M.maripaludis- -KLI LI I LF IGMMSFQIRAQTADMPFAEDSQY
M.musculus.ATLLKLL I LSMAAVLSFSTRLFAVLRFESV IHEF
M.musculus.BSLLSFTI LFLAWLAGFSSRLFAVIRFESI IHEF

M.vannielii- -KLFLI ILFIGLMSFQIRAQTADMEFTE-SSY
M.voltae- -KT ILI I IFLAFLSFQMRAQTADMGFTTNEQY

M.vulcanius - - K I AL I VLLLMFMSFQLRAQTADMKFAQGNEF
N.profundicola - -AFVLISFAYVFATAVRYYYFSWASGIKE-F

P.furosusTVLAFLVVLAFAAYGFYIRHLTAGKY ------ F
R.norvegicusSLLSFTI LFLAWLAGFSSRLFAVIRFESI IHEF

S.autotrophicaALFLVVAL I VPLGLGLFVRLNDVPVWEKHKALF
S.cerevisiaeTILKLVIFVAIFGAAISSRLFAVIKFESI IHEF

T.ammonificansALFLVVAL IVPLGLGLFVRLNDVPVWEKHKALF
T.gondiPVVEVAALLVIFVLCFCIRQFAVIRYESVIHEF

T.vaginalisKTIQLLIVILSCILSVLIRLFSNVINEPIIHEF
W.succinogenes - - -DI GLAL L LF LFALGARLAWVVDFGAYEE - F

Z.aevisTLLKLLI LSMAAI LSFSTRLFSVLRFESVIHEF

Conservation - -

L/IxxxD x

Afulgidus - - -- I YYTGYDSYYHMRLVEVMVKE

A.thaliana I KYESV I HEFDPYFNYRVTQF LSKN
C.albicans I RFES I I HEFDPWFNFRATKYLVTH
C.elegansVRFES II HEFDPWFNYRATHHMVQH

C.jejuniFNNQLMI I SNDGYAFAEGARDMI AG
D.desulfurcans LGSQWL LATHDAYHWVAGAEG I GLA
D.melanogaster I R F E S I I H E F D PWFN YRAT AYMVQN

D.thermolithotrophumY EDR P L F T SYD AF F F AR YGK EY LNG
Glamblia I RYETV I HEFDPYFQYKSTLYLNEK

H.canadensis FENTL I LTSYDSYFYAKGAKEFL - -
H.sapiens LRFESV I HEFDPYFNYRTTRFLAEE

M.jannaschiiEHGRMYL LALDPYYYLRLSEN LYNN
M.maripaludisDNGRMYLTALDPYYYLRLTENYQNS
M.musculus.ALRFESV I HEFDPYFNYRTTRFLAEE
M.musculus.B IRF ES I I HEFDPWFNYRSTHH LASH

M.vannieliiENGRMYLTGLDPYYYLRQSENY LNS
M.voltaeDNGRMY LTALDPYYYLRMSENY LEN

M.vulcaniusEHGRMYL I A I DPYYYLRLAENLYDH
N.profundicolaWHGTLM I NNVDGYYYAAGAKELLNN

P.furiosus - - -- KYFSDPDTFYHFE I YKLVLKE
R.norvegicus I RFES I I HEFDPWFNYRSTHH LASH

S.autotrophica FNGQFM I NTNDGY IWAEGARDLLSG
S.cerevisiae I KFES I I HEFDPWFNYRATKYLVNN

T.gondli IRYESVIHEFDPYFNYRTTTYLAKE
T.vaginalisVINEPI IHEFDPHFNWRCSQYIDQH

W.succinogenesHKG I LMI NTNDGYYYAEGARDL I AG
Z.aevis LRFESV I HEFDPYFNYRTTRF LTEE

Conservation A L
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149 1b
R/K-S/T-xxG xxD

Afulgidus -VWKTVLGQADHHA - -

A.thaliana - I SRSVAGSYDNEAVA
C.albicans - - SRSVAGSYDNEA I A
C.elegansYTSRSVAGSYDNEGI -

Cjejuni YYNRTMSGYYDTDMLV
D.desufuricans F LART L LGYYDTD LVT
D.melanogaster - - SRSVAGSYDNEG I A

D.thermolithotrophum - LVRTS I ARFDTDS LN
GlambliaF I QRSVAGSYDNESSS

H.canadensis FYQRNGVGYFDTDML I
H.sapiens - I SRSVAGSYDNEG I -

M.jannaschil - LYKTCAGFADTP I FIE
M.maripaludisL I YKTSAGFSDTP I F -
M.musculus.A - I SRSVAGSYDNEG I A
M.musculus.B - - SRSVAGSFDNEG I A

M.vannieliiL LLYKTSGGFADTN ---
M.votae -FVKTVAGF SDTP - - -

M.vulcanius - LYKTCAGFADTP I - -
N.profundicola -YNRTMVGYYDTDM- -

P.furiosus - K I I SIFGYNELEAF L
R.norvegicus - - SRSVAGSFDNEG I A

S.autotrophicaYYNRTMAGYYDTD - --

S.cerevisiae - - SRSVAGSYDNEA I A
T.gondiiYMSRSVAGSYDNEAV -

T.vaginalisF I SRSVAGSYDYEC I -
W.succinogenes YYNRTMAGYYDTDM - -

Z.laevis - - SRSVAGSYDNEG I A

Conservation .

2 316
INxxS/T-INxE

A.fulgidusFGAN I YLPT I SEARSLQ IF
A.thaliana SKY I P I I ASVSEHQPPTWP
C.albicansK I H I P i I ASVSEHQPTAWP
C.elegans K I HIP I ASVSEHQPTTWV

C.JjuniFMYFNVNOT I QEVENVD LS
D.desufurdcans LMYPSVAQS I I EVQDL SFA
D.melanogasterK I H I P I I ASVSEHQPTTWF

D.thermolithotrophumGGFPNVFMS I SEAKHFD I -
G.amblaKRIFNIP I VASVAEHOPTVWS

H.canadensis F I YASVVES I LETSKANFT
H.sapiens KNN I P I I ASVSEHQPTTWS

M.jannaschiiTGWPNVYTTVAE L AKPSSW
M.marpaudisTGWPNVYTTVSELA I PTF -
M.musculus.AKNN I P I I ASVSEHQPTTWS
M.musculus.BK I H I P I I ASVSEHQPTTWV

M.vannieliiVGWPNVFTTVSELAVPTV -
M.vottasTGWPNVLTTVSELDTASL -

M.vulcaniusSGWPNVYTTVSELAKPSSW
N.profundIcola LHFYNVSKT I REASO I PFD

P.furosusYQSTQVYETVQE LAKTDWG
R.norvegicus K IH I P I I ASVSEHOPTTWV

S.autotrophica LHFFTVMQTVREAGH I PFE
S.cerevisiaeK I HI P11 ASVSEHQPVSWP

T.gondiiTKYLP I [ASVSEHQPATWA
T.vaginalisTKN I P I I ASVAEHQPSSWS

W.succinogenes LHFYSVVQT I REASTLSLE
Z.IaevisKNN I P I ASVSEHOPTTWS

Conservation o , -

4/b
D

A.fulgidusEYSVMSWDYGNWI LY- VSKKAVVCNN--
A.thallanaDDKVASWDYGYQTTA - -MANRTV I VDNNT
C.albicanSDAKVMAVWWDYGYQ I GG - -MADRTTLVDNNT
C.elegansDARVMSWWDYGYQO AG- -MANRTTLVDNNT
C.jejuniEDYVVTWDYGYPVRY -YSDVKT LVDGGK

D.desuluricansDSMLWLWWDWGYAAHY - -FAHRAT I ADGAQ
D.melanogasterDARVMSWWD YGYQ I AG - -MANRTTLVDNNT

D.thermolithotrophumNSWI WTVWDYGTA I EY - -LAGRAVFHDGQS
G.lambliaTAKVASWDYGYQ I NQ - - I GNKTT LADGLT

H.canadensisQDVAFVWDYGYALEY - -FTQAQTLLHGGR
Heapiens DAKVMSWWDYGYQ I TA - -MANRT I LVDNNT

M.jannaschliNSV I TCWVDNGH I YTY - -EARRMVTFDGGS
MImarIpaIudisNSVVTCWWDNGH I YTW- - ATRKMVTFDGGS
M.muscuus.ADAKVMSWWDYGYQ I TA - - MANRT I LVDNNT
M.musculus.BHARVMSWWDYGYQ I AG- -MANRTTLVDNNT

M.vannielIlNAVVTCAWWDNGH I YTW- - ATRKMVTFDGGS
M.voltaeNSVVTCWWVDNGH I YTW- -KTDRMVTFDGSS

M.vulcaniusNSV I TCWWDNGH I YTY - - EARRMVTFDGGS
N.profundicola EDYVVTWWDYGYP I RY - -YAGTKT LVDGGK

P.furosus YSTAT SWWDYGYWI ESS L LGQRRASADGGH
R.norvegicusHARVMSWDYGYQI AG --MANRT T LVONNT

S.autotrophicaDDYV I SWVDYGYP I RY - - YADVKT L ADGGK
S.cerevisiaeDSKVAAWDYGYQIGG- -MADRTTLVDNNT

T.gondilRAR I MSWVDYGYQATA - -MGNRTVLVDNNT
T.vaginalis DO K VMSWD YGYQ I T S - - MGGRGCMADGN T

W.succinogenes EDYVMAWWDYGYGLRY --YSDVKT L I DGAK
Z.aevisDAKVMSWDYGYQ I TA --MANRT I LVDNNT

Conservation UuJ I a.. i~um -

Figure 5: Alignments for highly conserved regions of OTase sequences.
All 28 homologs listed are listed in Table 1. Top left alignment shows a conserved arginine
within the first transmembrane domain. The corresponding residue number in PglB (C. jejuni) is
designated in superscript. Alignments and conservation histograms shown were made using
Jalview multiple alignment editor. (doi: 10.1093/bioinformatics/btpO33). Histogram shading:
light to dark designates most to least conserved. Alignment conservation calculation uses the
MAAFT method of multiple sequence alignment (Livingstone, C. D., Barton, G. J. (1993)
CAMBIOS 9: 745-756).
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Motif:.
L/lxxxD"xY!F

Motif:
RIK-5/TxxG' 4xxD'6

R

Motif
NxxS/T-INxE3"1

Soluble domain
425-713

Signature sequence:
W45IWDxGx4

N

Figure 6: Topology model of PglB showing locations of conserved motifs.
Model is based on a combination of topology prediction programs (see Methods) and
conservation of loop regions, and agrees with topology of the C. lari crystal structure. Thirteen
transmembrane helices are followed by a globular domain located in the periplasm. Predicted
locations of identified motifs are indicated by arrows. The N-terminus is located in the
cytoplasm.
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Assessing structural conservation in loops

Sequence analysis of the various Stt3 proteins provided strong predictive data that these

regions are fundamentally involved in PglB function. However, the motifs consisted of one to

three highly conserved residues interspersed with stretches of residues with little or no

conservation. Additionally, these motifs are short and potentially difficult to identify within a

loop. For example, the first major loop contains a D-x-Y/F/W motif, in which the aspartate is

invariably conserved. But it is not improbable that several Stt3 homologs will show several

appearances of this motif pattern appearing in the first luminal loop.

Therefore, to supplement the sequence alignments, the series of Stt3 homolog sequences

for the two largest loops were submitted to the free online software program NetSurfP, which

predicts a protein's secondary structure and level of accessibility from the sequence [12]. While

NetSurfP is less well-known than several alternative programs available for this purpose, the

program both allows input of a list of sequences at a single time and the output data can easily be

parsed to provide visually informative graphs, which makes for simpler comparison and

detection of patterns.

The conserved Stt3 motifs invariably appear in the same loops relative to the remainder

of the protein. Therefore, it is expected that the motif-containing loops exhibit secondary-

structure conservation in this region in order to structurally situate the motif into a functional

position. In other words, is likely that the location of the motif within the loop will fall in the

same location with respect to the secondary structure of the loop (e.g. the motif may appear

continually in a coil between two alpha helices, etc.). As a result, the secondary structure pattern

presumably provides an alternate way to quickly identify the motif of interest with high

confidence. Additionally, the conservation of secondary structure can also be informative of the
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flexibility, and thus potential mobility of the loop, in the OTase reaction. Finally, a conserved

secondary structural pattern can function as an additional way to refine the predicted border

residues of the loops and help identify additional regions in the loops that are critical for

function.

The sequences for two of the predicted loop regions were analyzed for all of the Stt3

homologs used to make the alignments. The two loops analyzed included the first soluble loop

containing the highly conserved aspartate (in the motif D-x-F/Y/W, D54 in C. jejuni) and the

large soluble loop toward the C-terminus of the transmembrane region (containing the motif S/T-

I/V-x-E, E3 16 in C. jejuni). These two loops, both ranging from 30 to 100 residues, are both long

enough to get a meaningful prediction of structure (in contrast to the roughlyl 0-residue R-S/T-

xx-G-xx-D -containing loop) and yet these two soluble loops are short enough to identify subtle

patterns and variations. Graphs of the secondary structure predictions for the first loop are shown

in Figure 7 for several representative organisms across the evolutionary spectrum. The graphs

for all Stt3 homologs involved in the sequence analysis are shown at the end of this section

(Figures 9 and 10).
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-p(a-Hefix) -p(f-Sheet) p(coI) C. jejun; 33-77

V W Wy A S F N E Y F P N N L M I I N 0 YA F A E G A R D M IA 0 F 1 1 P 11 0 L

D. thermolithotrophum 27-117

M vo/tae:57-129

NADMGFTTNESYLOVFSDONGRMYLTALCPYYYLRMSENYLENGHTOC LKN I GOOVPWDSYKYGPTGARAT

S. cerevisiae: 28-81

A S S R LF A V K F E S I H E F W F N Y R A T K Y L V N N S F Y K F L N W F 0 D R T A Y P L 0 R

Figure 7: Secondary structure predictions for first major conserved loop in several Stt3
homologs.
The x-axis shows the protein sequence for the first conserved loop of the homologs lsited. The y-
axis gives the calculated probability (p) for each residue that it is located within an alpha helix
(blue line), beta strand (red line), or coil (green line). The conserved aspartate in the D-x-W/F/Y
motif is underlined for reference.

The known motifs are useful in comparing the secondary structure predictions, because

they create anchor points around which to align the graphs. The graphs are based both on the

topology prediction of the length of the loop as well as the prediction of secondary structure. The

combination of predictions from several programs increases the associated error. This ambiguity

makes it difficult to determine whether a given graph may be representing, for example, the first
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or latter half of the loop sequence. It is important to recognize that the presence of a given

section of secondary structure in some graphs and not others does not necessarily imply a lack of

structural conservation. As noted above, the accuracy of these graphs is not only dependent on

the accuracy of the secondary-structure predictions but also on the topology predictions of the

length of the loop region. Since nature rarely adheres to convenient categories such as

membrane, inside, or outside in location, the situation is often complicated when the borders of

the protein loop are not well defined. A comparison of two highly similar bacterial OTase

sequences from C. jejuni and W. succinogenes highlights how similar sequences can produce

highly variable results. Figure 8 demonstrates this principle making use of the C. lari structural

model (PDB 3RCE, [7]).

The structure in Figure 8 shows the region encompassed by the first conserved loop for

C. jejuni and for W. succinogenes. The W succinogenes predicted 'loop region' (Figure 8D)

includes an additional section of an alpha helix that appears to lie atop the membrane and then

merge with the following TM helix. Thus, although these sequences are virtually identical, it is

clear that the topology prediction may differ for each in defining the precise borders of 'loop'

versus 'TM helix', as the structural border between these two defined categories is inherently

unclear.

The conserved residues, however, can be used to clarify this potential complication. For

example, in the graphs shown in Figure 7, there is considerable variation at first glance.

However, the appearance of the D-x-W/Y/F motif is underlined in each sequence. Using this

anchor point, a clear pattern becomes visible. The motif consistently appears at the start of a

clearly defined alpha helical segment, which is invariably bordered on both sides by a short
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region of coil structure, which is then interspersed with short occurrences of backbone structure

in the form of beta strand or alpha helix.

A. C. jejun 33.77 -p(a-Hefix) p(P-Sheet) p(coUl)

VWW A SEFN EYF F NNQL M IiS NDG Y A FAE GA RDM IAG F HQPN OL S

W succinogenes. 42-103

A Y E E F L H K G I L M I N T N G Y Y Y E 0 A R 0 L I A G F H Q E N D L S P L H T P L 5 L L T A W L Y H L T P F S L E

B. ~Soluble
Sdoma C.D.

Residues 33-77 Residues 33-106

Membrane
helices

Figure 8: Example of one source of ambiguity in topology predictions: when a helix is both
'soluble' and integral-membrane'.
(A) Secondary-structure predictions for first transmembrane loop in C. jejuni and W.

succinogenes, are highly similar, showing the formation of 1-2 strong helical regions. Though
the sequences are highly similar, the prediction for where the soluble loop transitions into a
transmembrane helix differs for each protein (ranges of graphs, part A). The large, well-defined
helices in this loop account for the inconsistency. Both predicted ranges are mapped onto the C.
lari X-ray crystal structure shown in (B). The range predicted to be 'soluble' for C. jejuni is
shown in (C); the region predicted to be 'soluble' for W succinogenes is shown in (D). The
fusing of the second helix in the loop with the following TM helix is shown and accounts for
variability in predictions.
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The graphs can also be interpreted generally as a prediction of structural rigidity versus

flexibility (alpha helix or beta strand represent formation of rigidity through peptide backbone

bonds, while coils are generally more disordered, or flexible, and less confined by energetic

nadirs formed by secondary-structure bonding). Consequently, the invariable presence of some

secondary-structure order indicates that the region of the loop containing the motif is

constrained, and any movement involving this unit is expected to be tightly controlled.

The first loop, as noted above, is predicted to contain a high content of alpha-helix and

beta-sheet structural order, which implies a general ordered nature. In contrast, the second large

loop in the transmembrane region, which contains the motif S/T-I/V-x-E, consistently is

predicted to contain a high degree of disorder. The predictions for the sequences comprising this

loop consistently have high coil content interrupted by 1-2 precipitous drops in coil toward the

center of the loop. The conserved motif unfailingly appears in one of these sudden, brief

appearances of secondary-structural order, and at times is predicted to be an alpha-helix and

other times predicted to be a beta-sheet. This prediction is in agreement with the available

structural data, in which a large portion of this loop is unresolved in the crystal structure [7]. The

conservation of the general size and secondary structure composition of this loop, in addition to

the presence of the conserved motif, implicates this region in a critical motion for catalysis,

perhaps in substrate binding or release. The secondary-structure predictions for these two large

loops are shown for all 28 Stt3 homologs in the following pages. Figure 9 shows predictions for

Loop 1 containing the conserved motif L/I-xxx-D-x-Y/F/W and Figure 10 shows predictions

luminal/periplasmic loop 5 containing the conserved motif S/T-V/I-x-E.
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For Figure 9, sections 9A, 9B, and 9C respectively appear on the three pages immediately
following the current one.

Figure 9: Secondary-structure predictions for regions of Stt3 sequences predicted to
correspond to the first soluble loop containing the conserved L/I-xxx-D-x-Y/F/W motif.
Along the x-axis runs the protein sequence predicted for this region (residue numbers indicated
next to species name) and the y-axis gives the probability that each residue is part of a coil
(green), helix (blue), or P-sheet (red). Loop 1 contains the highly conserved motif L/I-xxx-D-x-
Y/F/W in Stt3 homologs (see Figure 6). The location of the aspartate in the motif is highlighted
with a purple star. The graphs are group according to kingdom: (A) eukaryote, (B) bacteria, (C)
archaeal.
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Figure 9A: Eukaryotic Stt3 homologs
Eukaryota (Loop 1, I/L-xxx-D*-x-F/Y/W)

H sapiens: 38-85

I. norvegicus: 82-134

M. musculus -
HomologA: 38-83

.1. musculus-
HomologB: 81-133

X laevis: 38-83

D. metanogasrer:- 31-89

A. thaliana: 42-88

C. albicans: 42-90

S. cerevisiae: 28-81

G. lamblia: 31-104

r. vaginalis: 31-104

.gondli: 82-149

p(a-Helix) -p(f-Sheet) p(coil)
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Figure 9B: Bacterial Stt3 homologs

T. ammonificans: 28-107

D. thermelithotrophum: 27-117

N. profundicola: 35-107

W. succinogenes: 42:103

C. jejwni: 33-77

S. autotrophica: 33-112

D. desulfuricans: 91-155

H canadensis: 100-137

Bacteria (Loop 1, I/L-xxx-D*-x-F/W)

&VL A.~I

LV..W..i..±.

k 'A

p(o-Heix) -p(f-Sheet) p(coHI)
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Figure 9C: Archaeal Stt3 homologs

A.fulgidus: 21-94

P.furiosus: 46-87

M. vannieii: 38-140

.. vuicanius: 38-144

M.annaschi: 45-119

M. voltae: 57-129

M. maripaUdus: 38-112

Archaea (Loop 1, I/L-xxx-D*-x-F/YIW)

(A N,

-p(a-Helix) -p(f3-Sheet) "-P(coiI)
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For Figure 10, sections 10A, 10B, and 10C respectively appear on the three pages immediately
following the current one.

Figure 10: Secondary-structure predictions for regions of Stt3 sequences predicted to
correspond to the soluble loop containing the conserved S/T-I/V-x-E motif.
Along the x-axis runs the protein sequence predicted for this region (residue numbers indicated
next to species name) and the y-axis gives the probability that each residue is part of a coil
(green), helix (blue), or P-sheet (red). Loop 5 contains the highly conserved motif S/T-I/V-x-E in
Stt3 homologs (see Figure 6). The location of the glutamate in the motif is highlighted with a
purple star. The graphs are group according to kingdom: (A) eukaryote, (B) bacteria, (C)
archaeal.
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Figure 1OA: Eukaryotic Stt3 homologs
Eukaryota (Loop 5, S/T-V/I-x-E*)

I. norvegicus: 371-411
S. cerevisiae: 321-359

X laevis: 319-363

/

AA4&AZ2\ 6~LL T. gondii: 365-404

T. vaginalls: 313-350

H sapiens: 319-363

M. musculus -
HomologA: 319-363

C. albicans: 327-367

C elegams: 321-361

<A

(N

G. lamblia: 327-366

M. musculus -
HomologB: 370-410

A. thallana: 325-370

D. melanogaster: 320-360

~~Lv

-p(a-Hefix) -p(P-Sheet) p(coil)
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Figure 1OB: Bacterial Stt3 homologs

Bacteria (Loop 5, S/T-V/I-x-E*)

S. autotrophica: 291:335

C. jejuni: 280-331

H canadensis: 354-399

I~4LA

N. profundicola: 288:332

D. desulfuricans: 391:437

W succinogenes: 290:338

T. ammonificans: 260-292 D. thermollthotrophum: 267-305

p(a-Heix) -p(f-Sheet) p(coil)

121



Figure 10C: Archaeal Stt3 homologs

Archaea (Loop 5, S/T-V/I-x-E )

M. annieUl: 292-346

M. voae: 328-375

v v I m A a P L L c 5 0 G P v T v c 0 A t c t

A.fulgidus:275-306

P. furiosus: 325 -370O

V~~~~~~ t* Y Y k 0 0 v v y v x 6

V1V~
At0 Q V 5 t A A T w t I 1 5 1 1 1

i IT 10 Pv Iv P1". 1 TA

M. vulcanius:: 369-417

M. maripaUdus: 293-339

.jannaschi: 381430

-p(a-Helix) -p(P-Sheet) p(coil)
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Conclusions

In recent years, it has become abundantly clear that the conserved loop segments between

transmembrane domains often play a fundamental role in substrate recognition and/or catalysis in

integral membrane proteins [13-16]. However, it is particularly difficult to observe sequence

conservation in these regions because motifs may be embedded within transmembrane regions

that have diverged considerably through evolution, thereby complicating sequence alignments.

Demonstrated here is a straightforward method for defining these buried regions of conservation

applied to the complex integral-membrane OTase PglB. Topology predictions are generated for a

list of homologous sequences using freely available software; a designed algorithm then parses

each sequence by topological feature. These sequence segments are then more fruitful for

detecting regions of conservation through sequence alignment. The systematic nature of the

method allows for position-specific sequence analysis of a large number of divergent sequences

of a given protein, which is crucial for determining the extent and significance of proposed

motifs. These results expose the extraordinary level of conservation that exists in Stt3 homologs

from bacteria through humans. Conservation over this evolutionary span implies that these

regions play an essential role in the OTase activity.

With the breadth of computational prediction programs currently available, information

on a protein can be gleamed without entering a laboratory. While the predictions generated will

generally require experimental validation in order to be accepted, the predictions can also make

evident the experiments that will likely be successful in providing results.
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Materials and Methods

Bioinformatic analysis

Sequences of Stt3 homologs were chosen by searching NCBI Entrez Protein Database for 'Stt3'

and selecting Stt3 homologs from evolutionarily diverse organisms. The collated set of 28 non-

redundant sequences (Table 1) were subjected to topology prediction analysis via the TMHMM

2.0 server (http://www.cbs.dtu.dk/services/TMHMM/) [11]. Batch topology output was run

through our 'TMH.py' program, which was written in Python code (all codes provided in Figure

5). The 'TMH' program parsed the topology prediction data and returned output files with each

Stt3 GenBank Identifier (gi) number and the predicted sequence ranges for the appropriate

topological location (i.e. inside (cytoplasmic), outside, or transmembrane). Each output file and

the Stt3-sequence file were directed to our 'Extract.py' program, which extracted the region of

the sequence corresponding to the specified range indicated for a topological characteristic. The

final output file for a specific topological feature showed, for each Stt3 sequence, the gi number

followed by the sequence range and its corresponding sequence (e.g. >1322489 [1:9]

MGSDRSCV \n >1322489 [100:116] ALRNWLGLPIDIRNVC, etc.). Sequence analysis was

carried out by selecting a feature of each Stt3 (e.g. the first 'inside loop' prediction) and aligning

the corresponding sequences using MAFFT [17]. The alignments were used to identify

conserved motifs within the given feature. The alignments were then manually adjusted for those

Stt3 sequences in which the conserved motif did not appear exactly within the residue range

predicted by TMHMM, but in a proximal region.

For secondary structure predictions, the same extracted fragments for the two major TM

loops were input as a list in Fasta format to NetSurfP (http://www.cbs.dtu.dk/services/NetSurfP/)
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[E12]. The output contained a probability for each residue assessing that whether it is contained in

an alpha-helix, beta-sheet, or coil. These probabilities were graphed in Excel.

Summary of topology sequence-extraction programs

1. Download list of desired FASTA sequences from Entrez, call this file 'fastas.txt'

2. Input fastas.txt to TMHMM topology prediction and select 'extensive output without graphics',
name output file predicts.txt

3. Run TMHMM.py with command as follows:
python TMHMMinside.py predicts.txt insideranges.txt
the output file 'inputranges.txt' will have a list that looks like the following:

1322489 1 8
1322489 100 115
1322489 162 171
etc... where the first number is the gi,
the second number is the beginning residue of the inside range,
and the third is the last residue of the range

When the ranges for all of the inside-predicted regions for gi 1322489 are listed,
the inside regions for the next gi (sequence) are listed, etc

4. Run extract2.py with command as follows:
python extract2.py fastas.txt inside-ranges.txt inside seqs.txt
The output file 'insideseqs.txt will have a list that looks like the following:

>1322489 [1:9]
MGSDRSCV
>1322489 [100:116]
ALRNWLGLPIDIRNVC
etc... giving sequences for all the ranges listed in 'inside ranges.txt'

5. Repeat from step 3 replacing 'inside' at all points with 'outside' or 'TMhelix'
e.g. TMHMMoutside.py, outside ranges.txt, etc.
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#Program 1: TMH.py
#extracts topology prediction data from TMHMM output
#takes in topology results and extracts the gi number and ranges in the sequences predicted to be TMhelix (or inside, or #outside,
by changing 'TMhelix' to appropriate
S
import sys

if len(sys.argv) == 1:
print "Error: Must input a file name"; sys.exito

else:
fn = sys.argv[1]

fh = open(ft)
lines = th.readlines()
output = sys.argv[2]
sys.stdout = open(output, 'a')
seqs=[]
r = "
for line in lines:

string = line
if len(string) > 1:

if string[2]='':
m= I
splat = string.split()
j = splat[O]
j = j.split('')
gi =j[l]
if splat[2] =='outside':

a = splat[3]
a = int(a)
a=a-2
if a< 1:

a= 1
b = splat[4]
b = int(b)
b=b+2
print gi, a, b
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#Program 2: Extract.py
#first input- takes in list of fasta sequences and removes newline
#second input- file output from TMHMM program with gi and its range for a specific topological section
#output- prints the gi, the range, and the sequence corresponding to that range

import sys

if len(sys.argv) = 1:
print "Error: Must input a file name"; sys.exito

else:
fh = sys.argv[I]

seq = sys.argv[2]
fh = open(fh)
lines = fh.readlines()

output = sys.argv[3]
sys.stdout = open(output, 'a')
seqs=[]
gi =
for line in lines:

if line[O] =='>':
seqs.append(gi)
r= "
line = line.split('I')
gi = line[I]
gi = gi+'

else:
line = line.rstrip("\n")
line = str(line)
gi+=line

seqs = seqs[1:]
fh = open(seq)
linez = fh.readlines()
for i in linez:

line = i.split( )
gi = line[O]
rangel = line[l]
if rangel < 0:

rangel = 1
range2 = line[2]
rangel, range2= int(rangel), int(range2)
rangel = rangel - 1
for j in seqs:

k = j.split('_')
if gi == k[0]:

sec = k[ 1]
#range2 = len(sec)
secl = sec[rangel:range2]
rangel, range2 = rangel +1, range2 +1
rangel, range2 = str(rangel), str(range2)
print'>' + gi, '[' + rangeI + ':' + range2 +
print secI

Figure 11: Python code for programs developed to parse and group sequence data
according to predicted topological constraints.
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CHAPTER 4:

BIOCHEMICAL VALIDATION AND CHARACTERIZATION

OF SEQUENCE MOTIFS CONSERVED IN
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Summary

The topology-driven sequence analysis discussed in Chapter 3 identified three highly conserved

motifs present in the inter-transmembrane loops of oligosaccharyl transferases. This chapter

discusses the mutagenesis, expression, activity, and limited proteolysis studies performed on

PglB to determine whether key residues in the loop regions of PglB/Stt3s are required for

function. The level of specificity required at these sites was further investigated by mutating the

key residues to amino acids with similar properties to the native residue. Finally, partially active

mutants were analyzed using a substrate rescue assay to determine potential involvement in

substrate binding. Recent suggestions of a conserved DxxK motif based on the P.furiosus

soluble-domain crystal structure were investigated in a similar manner by mutating and assaying

appearances of this DxxK pattern in the PglB soluble domain. Coincident to the publication of

this date, a structure of the full-length PglB was published [Lizak, C. et al (2011) Nature 474,

350-355]. Both the following biochemical studies and structural data have strongly verified the

functional importance of the predicted motifs in catalysis.
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Introduction

The previous chapter discusses a strategy used to simplify detection of conserved motifs

in transmembrane proteins. When applied to the sequences for PglB and a range of Stt3

homologs, several strongly conserved motifs are revealed. Prior to detection of these motifs, very

little conservation had been definitively demonstrated in Stt3 homologs, excepting the WWDxG

motif present in the soluble domain of the enzyme. The publication of the structure of the soluble

domain from the P. furiosus Stt3 had led to speculation that an aspartic acid and lysine

(separated by two non-conserved residues, called DxxK) are conserved and may be involved in

catalysis. However, the general frequency of the DxxK pattern makes it difficult to define

homologous residues in other Stt3 congeners using sequence analysis alone.

To investigate the hypothesis of an essential DxxK motif in PglB, the three appearances

of this sequence pattern in the soluble domain of PglB were mutated and each mutant was

assessed in a similar way to the loop mutants. A small number of additional conserved regions

had also been suggested that showed decreased glycosylation when mutated; however, the

conservation demonstrated was relatively low [1-3]. All of these studies generated interesting

hypotheses about the importance of additional regions of the OTase; although the lack of

quantitative biochemical studies complicated efforts to define the role of these regions in the

catalysis of glycan transfer.
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Figure 1: Topology model of PgIB showing locations of mutants.
Model is based on a combination of topology prediction programs and conservation of loop
regions (Chapter 3) and agrees with topology of the C. lari crystal structure [4]. The N-terminus
is located in the cytoplasm, along with the two loops containing non-conserved residues that
were mutated to serve as positive controls.

Figure 1 shows a topology model of PglB with the approximate locations of the mutants

described in this chapter. To experimentally examine the functional relevance of the loop motifs

and the presence of an essential DxxK motif, key residues in the PglB gene were mutated and the

resulting mutant constructs were transformed into and expressed in E. coli. In addition, several

residues were mutated which were predicted to be in cytoplasmic loops and which showed no

detectable conservation (Figure 1). These mutants (K124A and K351A) served as controls for

loop-residue essentiality. The recombinant mutant proteins were purified as CEFs. Western blots

were run on all CEF mutant fractions to show that each mutant was expressed at a level

qualitatively similar to wild-type PglB. Fractions of the CEFs were then subjected to kinetic
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analysis using a highly specific assay for PglB activity. Most mutants were assayed with time

points ranging from one minute to three hours; those which failed to show turnover after three

hours were subjected to a time-course that extended overnight. Several of the mutants showed a

complete loss of activity, while others showed only a partial loss. Loop mutant controls and

several of the DxxK-candidate mutants showed wild-type activity levels. The structural integrity

of the mutants relative to the wild type was probed using limited proteolysis in order to establish

that the observed loss of activity for a given mutant was not the result of misfolding or large

structural changes.

H 0 HO
N N f

N |H 0 H 0

H O N NH2N O OTase _1Y
H HO

AcHN AcHRN O N H
RO0 0RO N H

Ac' O-P-0-P-0-Polyprenol AcI _ N-linked glycoprotein
R = -(GaINAc) 5Glc LL U-

Figure 2: Pg1B-catalyzed N-glycosylation reaction in C. jejuni.
PglB transfers the heptasaccharide GlcGalNac 5Bac (where Bac is Bacillosamine, or 2, 4-diacetamido-
2,4,6-trideoxylglucose) from undecaprenyl pyrophosphate to asparagine side chains that appear in the
sequon D/E-X1 -N-X2-S/T, in which X, and X2 can be any residue other than proline.

To characterize the role of some of these mutations in PglB catalysis (Figure 2), an assay

was designed to investigate differential effects of substrate concentration on the reaction rates. It

was reasoned that the mutational effects would be most sensitive to the concentration of the

undecaprenyldiphosphate-linked glycan substrate in cases where the altered residues directly

impacted interactions with this substrate. Therefore, in order to establish whether the mutations

influenced the binding of the glycan substrate, the effect of increasing glycosyl donor substrate

135



concentration on catalysis was assessed. Results show that effects of certain mutations are

directly correlated with substrate concentration; the effect of the mutation becomes distinctly less

severe as the concentration of sugar substrate is increased. This substrate correlation provides

further biochemical insight into the potential importance of these residues in the binding of the

polyprenyldiphosphate-linked glycan.

Coincident with completion of these studies, a 3.4-A resolution crystal structure was

published for the PglB homolog from Campylobacter lari [4]. This structure represents a

remarkable leap forward in our understanding of the structure and topology of the OTases. The

crystal structure provides strong evidence that the aforementioned loop motifs are critical for

catalysis and enzyme activity in vivo. The complementary biochemical evidence described in

this chapter demonstrates the importance of the transmembrane region of PglB and indeed all

Stt3 proteins for OTase function.
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Results

Mutational and kinetic characterization of residues in conserved motifs

In order to investigate the importance of the three motifs in catalysis, site-directed

mutagenesis was performed on several conserved residues in PglB. As negative controls, residues

(K124 and K351) that would be predicted to appear in non-conserved loop regions were also

mutated (Figure 1). All candidate residues were mutated to alanine, and each acidic residue was

additionally mutated to its amide-containing complement (Asn for Asp, Gln for Glu), and/or its

acidic complement residue (Asp for Glu, or vice versa).

In addition, the proposal that a DxxK motif is required for OT catalysis was investigated [2].

The crystal structure of the soluble domain of P. furiosus Stt3 suggests a role for an aspartic acid

and a lysine, separated by two residues, fifty residues C-terminal to the signature WWDxG motif;

when mutated, a decrease in OTase activity was previously observed [2]. The natural frequency of

the aspartic acid and lysine residues and thus the DxxK pattern within the PglB sequence makes it

difficult to surmise functionally equivalent residues in other Stt3 sequences. PglB has three

appearances of DxxK in the C-terminal soluble domain: D475xxK 478, D5 19xxK5 2 2, and D5 5 3 xxK55 6

To establish whether a functionally conserved DxxK motif exists in PglB, each aspartic acid and

lysine within these DxxKs were mutated to alanine and analyzed along with the loop mutations.

All mutants were overexpressed in E. coli, as described in Materials and Methods. A wild

type (WT) PglB strain and a strain containing the empty expression vector (referred to as the

'blank') served as the positive and negative controls, respectively. All mutants and WT were

expressed with an N-terminal T7-tag and a C-terminal Hisio-tag. Mutant cultures were purified to

the point of 'washed CEF' (see Chapter 2), so each mutant solution was expected to contain the
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integral-membrane proteins and associated lipids only. Ideally, each mutant enzyme would be

purified to homogeneity for quantification; however, the unstable nature of membrane proteins

upon solubilization and purification can result in a source of error with unpredictable effects on

activity measurements. Thus, it was considered preferable to use the mutant and wild-type enzymes

in the more stable cell envelope fractions and to establish similar enzyme concentrations by using

western blot analysis. A fraction of each semi-pure mutant CEF was run on a western blot alongside

the WT and blank. Immunostaining with the anti-His and anti-T7 antibodies confirmed comparable

expression levels of PglB in the fractions assayed and that the full-length gene was being expressed.

(Figure 3).
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Figure 3: Western blots of PglB wild-type and mutant CEFs show similar expression levels.
All blots include a negative control ('Blank CEF') and a positive wild-type Pg1B control. Western
blots were visualized using the anti-tetra-His antibody (which also recognizes the C-terminal Hisio
tag) as well as the T7-tag antibody (which recognizes the N-terminal T7 tag of each protein).
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The activities of PglB and each of the mutants were measured using a radioactivity-based

assay, which measures transfer of a radiolabeled glycan from the undecaprenyldiphosphate carrier

to a peptide bearing the Pg1B consensus sequence (see Materials and Methods). Results from

activity assays for Pg1B enzymes with mutations in conserved loop motifs and the first DxxK motif

are shown in Figure 4. Activity assays for mutants showing wild-type levels of activity along with

extended time points for loop mutants are shown in Figure 5. Mutant activity results are

summarized in Table 1. Mutants were divided into broad categories based on relative activity level,

as follows: WT-level activity (+++), decreased activity (++), activity detectable only with overnight

incubation (+), or no detected activity (-).
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Figure 4: PglB activity assays performed on CEFs of loop mutants.
Each assay set included a negative control ('Blank CEF') and a positive Pg1B control (WT). Each
plot indicates the mutants assayed in the legend. Shown here are those with mutations in the
conserved loop motifs and the D475xxK motif.
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Figure 5: Activity data for soluble-domain mutants and extended time points for loop
mutants.
Assays for negative-control mutants K124A and K351A are also shown along with those for the
D"19xxK and D" 3xxK mutants.
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Table 1: Relative activity and locations of PgIB mutants.
Activity was considered null (-) if no activity is seen over the blank CEF background, +++ if levels
are comparable to wild type (WT), ++ if levels are distinctly lower than WT, and + if levels are
detected only with overnight incubation.

Mutant Location Activity

Blank CEF ---

WT --- +++

R29A between TM domains 1 & 2 -
D54A between TM domains 1 & 2 -
D54E between TM domains 1 & 2 -
D54N between TM domains 1 & 2 -

K124A between TM domains 2 & 3 +++

R145A between TM domains 3 & 4 +
D152A between TM domains 3 & 4 -

D152E between TM domains 3 & 4 ++
E316A between TM domains 7 & 8 +
E316D between TM domains 7 & 8 ++
E316Q between TM domains 7 & 8 -

K351A between TM domains 10 & 11 +++

D475A soluble domain ++
D475E soluble domain ++
K478A soluble domain ++
D519A soluble domain +++

K522A soluble domain +++

D553A soluble domain +++

K556A soluble domain +++
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Mutants maintain tertiary structure

Mutants that showed a decrease or loss in activity were analyzed by limited proteolysis,

which examines the possibility that the mutation causes a loss in activity by disrupting folding of

the mutant. Figure 6 shows western-blot degradation profiles for wild-type PglB and all mutants.

Before protease is added (time 0) the bands of the major digestion products are already visible at

very low levels, perhaps due to endogenous E. coli protease activity. Over time, individual bands

appear or change in intensity to give a characteristic profile, which was used to establish structural

integrity in mutants with loss of activity. As can be seen in Figure 6, all mutants display similar

degradation profiles to the wild-type protein. Limited proteolysis cannot provide conclusive

evidence that the mutants are as stable as the WT enzyme or that the mutants are capable of

adopting an active conformation. However, the presence of a clear time-dependent degradation

profile is a strong indicator that on a global, tertiary level the mutant enzymes adopt a WT-like fold.
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Figure 6: Probing effects of mutations on PgIB tertiary structure using limited proteolysis.
Mutants were assayed in sets, each accompanied by wild-type PglB for comparison. Anti-His
western blot analysis was performed on fractions of the reaction quenched at 0, 5, 10, 30, 60, and
180 minutes. Arrows indicate the location of the full-length PglB band at the start of the reaction.
Numbers to the left of wild-type blots indicate molecular weights (kDa) of standards.
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Correlation of mutation effects with concentration of Und-PP-disaccharide substrate

It was determined that the effect of mutants D I52E, E3 16D, and D475A and D475E are

inversely correlated with concentration of Und-PP-glycan substrate: at increasing substrate

concentrations, the mutant rates approached the wild-type rate (Figure 7). Initial mutant enzyme

assays (Figures 4, 5) were performed in the presence of saturating peptide substrate (50 x apparent

Km) and a relatively low concentration of radiolabeled disaccharide substrate (0.0 1x apparent Km),

which causes the measured rates to be highly sensitive to changes in binding efficiency of

undecaprenyldiphosphate-disaccharide and insensitive to changes in peptide binding. The initial

assay was constructed in this manner to test the hypothesis that the conserved loop motifs, given the

acidic nature of many key residues, might be involved in metal-ion mediated binding of the

diphosphate in the glycosyl donor substrate since PglB is known to require divalent cations

(generally Mn(II) or Mg(II)) for activity. Then, in order to establish whether the mutations

influenced the binding of the undecaprenyldiphosphate-linked glycan, we assessed the effect of

increasing glycosyl donor substrate concentration on catalysis. The initial rates for these mutants

were measured at three separate concentrations of this substrate: 0.01, 0.1, and 1.0 pM (Figure 7).

Initial western blot analyses ensured that a similar level of each PglB construct was

expressed, providing confidence such that mutants could be reliably grouped into broad categories

based on activity levels (Table 1). However, to further characterize the partially active mutants by

directly comparing initial turnover rates, a more precise western blotting method was used to

quantify relative levels of protein (see Materials and Methods). It was determined that levels of all

mutants were very similar, with a maximum concentration difference of +1.7-fold relative to WT

(Figure 8, Table 2). The relative level of each mutant in CEF measured by western blot analyses

was reproducible, allowing determination and correction of any effects on rate comparisons.
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Figure 7: Partial rescue of mutant activity with increasing sugar-substrate concentrations.
Average initial rates for low-activity PglB mutants assayed at three concentrations of
polyprenyldiphosphate disaccharide substrate (0.01, 0.1, and 1.0 gM). Percent of WT rate for
each mutant is determined at each concentration, with the average rate of WT set to 100%. Inset:
magnification of R145A, D152E, and E316A values for clarity. Rate values shown are corrected
for small variations in concentration, as determined by quantitative western blot analysis. Raw
rate data can be found in the Table 2.
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CEFs, diluted 1:100 Pure PgIB Standard Curve
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Figure 8: Quantitative western blotting of mutants with partial activity loss.
Quantitative blotting was performed to ensure observed activity losses are not significantly
influenced by differences in enzyme concentration. Average fold differences in activity were
used to correct for variations when measuring relative rate data at varying substrate
concentrations. As indicated in the legend below the blot, lanes 1-8 show mutant CEFs and lanes
9-14 show various levels of pure, quantified Pg1B. The intensities of the varied amounts of pure
protein are used to derive a standard curve (upper right). This curve was used to estimate the
quantities of protein in the CEFs shown in the blot. Fold differences in enzyme levels are shown
in the bar graph on the bottom right. Error bars indicate the standard error from averages of
multiple western blots.
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Table 2: Activity of mutants relative to wild-type at various sugar-substrate concentrations.
Percent of wild-type rate at varied concentrations of polyprenyldiphosphate-disaccharide
substrate are shown for mutants tested. Left table contains numbers derived directly from
measured rates. Right table contains numbers that have been corrected for concentration
variation as measured by quantitative western blot.

% of WT rate,
directly from measured rates

0.01 pM 0.1 pM I pM

WT 100 100 100

R145A 0.15 0.24 0.37

D152E 4.2 7.4 9.7

E316A 0.3 0.8 1.0

E316D

D475A

D475E

K478A

4.6

18.1

33.5

45.4

18.2

28.3

34.4

40.5

27.0

44.5

48.4

36.4

% of WT rate,
corrected for concentration differences

0.01 pM 0.1 pM 1.0 pM

WT 100 100 100

R145A 0.13 0.15 0.23

D152E 3.2 5.8 j 7.6

E316A c.2 0.4 0.6

E316D 3 11 17

D475A 10 21 33

D475E 17 25 36

K478A 25 31 28
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Discussion

Interpretation of Pg/B mutants in context of kinetic and structural data.

The bioinformatic and biochemical data that we report can now be framed in the context of

the recent structure analysis of the Stt3 homolog from C. lari, also designated as PglB [4]. In this

structure, the conserved acidic residues in each loop motif (D56, D154, and E319 of the C. lari

PglB) are proposed to form a pocket that accommodates a divalent magnesium cation and the

nucleophilic asparagine. In these structural studies, the essentiality of these residues is supported by

use of an in vivo glycosylation assay, which exploits the gel shift observed upon glycosylation.

The biochemical results that we present provide a more detailed characterization of the

residues implicated by the structure, and additionally expose critical residues that are not made

evident by the structural data. The aspartic acid in the [L/I]xx[D54]x[Y/F] motif (D54) can be set

apart from the other two implicated acidic residues (D152 and E316) by the in vitro activity

measurements. In particular, D152 and E3 16 can both be mutated to their acidic counterparts

(D1 52E and E3 16D) and still retain activity, albeit at a notably decreased level. This indicates the

primary role that the negative charge plays at these sites, as the alanine mutations at these sites

show minimal activity, and E316Q showed no activity. In contrast, with D54, we observe that when

mutated to alanine, asparagine, or glutamic acid, activity is completely eliminated. This establishes

D54 as highly specific for its role in function with respect to both charge and size and suggests a

pivotal role in catalysis.

It is also observed that the effects of certain mutations can be directly correlated with

substrate concentration; the effect of the mutation becomes less pronounced as the concentration of

the glycosyl donor substrate is increased. For example, this is observed with D152E and E316D
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(Figure 7). For other mutations, including D54 and K478A the increased Und-PP-Bac-GalNAc

substrate concentration had little effect. This substrate correlation analysis suggests that these

residues are implicated in the binding of the polyprenyldiphosphate-linked glycan. This trend is

consistent with the reported structural analysis, which suggests that these residues coordinate to the

divalent cation, and the hypothesis that the divalent cation is further involved in coordinating the

disphosphate of the glycan substrate. Further biochemical analyses using more complex glycosyl

donor substrates may help determine the relative effect of the mutations on substrate binding and

catalysis.

With respect to the [R/K][S/T]xx[G 49 ]xx[D 5 2] motif, we find that R145 and D152, when

individually mutated to alanine, lead to an almost complete loss of PglB activity. Mutation of D152

to a glutamate restores partial activity. In this context, a fundamental role for the aspartic acid at

the +2 position to the D152 (D154 in C. jejuni PglB, D156 in C. lari PglB) has been proposed [4].

Specifically, this pair of aspartic acids is proposed to represent a 'DxD' motif that is characteristic

in the glycosyltransferase superfamily GT-C [4-6]. However, the alignments derived from our

topology-guided motif analysis suggest that the sequence characteristics in this region of the OTase

are not definitively conserved across evolution. Indeed, it is evident from our alignment of the motif

(Figure 9A) that the residue +2 to the defined motif is a glutamic acid in almost fifty percent of

homologs examined, and this residue is a proline in the seven archaeal homologs that were analyzed

in this study. Site-directed mutagenesis data are not yet available to evaluate the kinetic significance

of the second aspartic acid in the DxD motif in PglB and the natural frequency of the generic and

variable motif leaves significant room for further exploration. Therefore the association with the

characteristic GT-C superfamily motif may not be clear.
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R-S/T-xx-G-xx-D--x-D
A.

A.fulgidus - VWK T V LGQADHH A - -

A.thaliana - I SR SVAGSYDN E AVA
C.albicans - - SR S V AGSYDN E A I A
C.elegans YTSRSVAGSYDNE 31 -
C.jejuniYYNRTMSGYYDTD MLV

D.desufuricansF LART LLGYYDTDLVT
D.melanogaster - - SRSVAGSYDN E3 I A

).thermolithotrophum - L VR T $ I AR FD T D S L N
G.lambliaF I QR SVAGS YDN E S S S

H.canadensis F Y QRNGVGY F D T D ML I
H.sapiens - I SRSVAGSYDNE 3 I -

M.jannaschii - LYKTCAGFADTP I FE
M.maripaludisL I YKTSAGFSDTP I F -
M.musculus.A - I SRSVAGSYDNE3 I A
M.musculus.B - - SRSVAGSFDNE3 I A

M.vannieliiL LYKTSGGFADTN ---
M.voltae - F VKT VAGF SDT P - - -

M.vulcanius - LYKTCAGFADTP I - -
N.profundicola - YNRTMVGYYDTD M - -

P.furiosus - KI I S I FGYN E L E AF L
R.norvegicus - - SR SVAGS F DN E 3 I A

S.autotrophica YYNRT MAGYYD T D ---
S.cerevisiae - - SR SVAGSYDN E A I A

T.gondi YMSR SVAGSYDN E AV -
T.vaginafisF I SRSVAGSYDYE I I -

W.succinogenes YYNR T MAGYYDT D - - -

Z.aevis - -SRSVAGSYDNE3I A

D475-xx-K
B. A.fulgidus AVVCNN - -

A.thaianaTV I VDNNIT
Calbicans T T L VDNN T
Celegans T T L VONNIT

C.jejuni KT LVDGGK
D.desulfuricans AT I ADGAO
D.melanogaster TT LVDNNIT

).thermolithotrophum AV F HOGC1S
G.ambliaTTLADGL T

H.canadensis QT L LHGCR
H.sapiens T I LVDNNT

M.jannaschiiMV T F DGGS
M.maripaludisMV T F DGGS
M.musculus.AT I LVDNNIT
M.musculus.BTT LVDNNIT

M.vannieliiMV T F DGCS
M.votaeMVT FDGSS

M.vulcaniusMVT FDGGS
N.profundicola KT LVDGG;K

P.furosus RASADGGH
R.norvegicus T T L VONNT

S-autotrophica KT LADGGK
S.cerevisiae T T L VDNNT

T.gondii T V L VDNN T
T.vaginalis GCMADGN T

W.succinogenes KT L I DGAK
Z.laevisT I LVDNNIT

Figure 9: Relative conservation of residues within and surrounding conserved motifs.
A. Alignment of sequences containing OTase motif in second transmembrane loop R-S/T-xx-G-xx-
D152 (orange outline). The proposed overlapping motif D152X-D is included in alignment (aspartate
at position +2 is highlighted yellow). B. Alignment of first appearance of D-xx-K pattern (D47 ,
K478) in soluble domain of Pg1B and analogous positions in other OTases. Aspartate 475 is
highlighted in orange and lysine 478 is highlighted yellow.

Interestingly, the arginine (R29) in C. jejuni PglB that appears at the C-terminus of the first

transmembrane helix is also conserved and essential: when mutated to alanine, activity is

eliminated. In view of this data alone, the role that this arginine may play in Pg1B function is not

obvious. However, when the equivalent residue (R31) is examined in the C. lari structure one

observes that this arginine side chain appears to be in direct contact with threonine 148 (or T146 in

C. jejuni PglB). In this context, we note that this position is highly conserved as a hydroxyamino

acid (either a serine or threonine) throughout our 28 examined Stt3 homologs and appears in the
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[R/K][S/T]xx[G14 9]xx[D1 5 2] motif in the third transmembrane loop (Figure 1). This apparent

interaction again highlights the unique ability of this topology-guided sequence analysis to reveal

residues key to enzyme function. The high conservation of this hydroxyamino acid and its apparent

interaction with the essential arginine in the first transmembrane helix allows us to propose that

these residues may be involved in mediating in a conformational shift of the enzyme, as the

interaction represents a clear link between the catalytic site and an integral membrane helix. In the

future, it will be very interesting to gain a structural analysis of other substrate-bound forms of the

enzyme to determine the likelihood of this scenario.

Interpretation ofDxxK mutants in context of kinetic and structural data

Of the three appearances of DxxK sequon in the PglB soluble domain, mutations in D475

and K478 negatively impacted PglB activity, while [D 5 ' 9xxK 522]and [D5 5 xxK 556] alanine mutants

showed levels comparable to wild type (Figure 4). The effect on D475A was more significant than

that on K478A (Figure 4), which calls the proposed DxxK motif into question. Considering the

enhanced impact of D475A relative to K478A, and the additional fact that this aspartic acid is

highly conserved throughout all OTases while the lysine is not (Figure 9B), it appears that a 'DxxK

motif is not playing an essential role in OTase activity. However, the high level of conservation of

D475 and the clear impact of the mutation on activity indicates that this residue is likely involved

the OTase function. Interestingly, an increase in the concentration of the polyprenyldisphosphate-

linked glycan in the assay steadily attenuated the effect of D475A and D475E on activity, while no

such trend is seen for K478A (Figure 7). As in the case of D152 and E3 16, this trend suggests that

mutation at these sites affects the ability of PglB to bind the polyprenyldiphosphate glycan

substrate.
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Mutants maintain tertiary structure

Limited proteolysis represents powerful tool for identifying flexible, exposed regions of

proteins and for studying how tertiary structure (and thus susceptibility to proteolysis) is affected by

mutations, substrate presence and many other factors [7-11]. Mutants that showed a decrease or loss

in activity were analyzed by limited proteolysis to establish that activity loss is not due to

misfolding (see Materials and Methods), and all mutants assayed display similar degradation

profiles to the wild-type protein (Figure 6). In addition to reinforcing that the mutants that are

analyzed are properly folded, it was of interest to determine the precise location of proteolysis. The

three major C-terminal degradation products appear at roughly 50, 30, and 23 kDa, which provides

a rough approximation of the cut site. To further narrow the location of the proteolysis sites, N-

terminal Edman degradation sequencing of the digestion bands was performed.

Using the N-terminal sequencing data and the estimated molecular weights of the fragments,

it was determined that the enzyme was being proteolyzed at G33 l/S332 (''I" cut site') and

Y467/S468 ( 2nd cut site'), yielding C-terminal fragments of 45.5 and 29.3 kDa, respectively.

Figure 10 shows the location of the analogous residues in a model of the C.lari PglB X-ray

structure [4]. The first cut site appears at the C-terminal end of a large loop between two

transmembrane domains (Figure 10B, C). In the C. lari structure, this loop appears as a highly

disordered coil, with the N-terminal half of the loop unresolved [4]. In comparison, the second cut

site appears in the soluble domain 4-5 residues C-terminal to the WWDxG motif. In the C.lari PglB

structure, this site does not stand out as obviously accessible to solvent as it appears to be shielded

by a nearby helix (Figure 10D). Interestingly, however, the analogous site in the structure of the P.

furiosus Stt3 soluble domain shows this site immediately preceding a coiled region of high disorder

which was not solved with the rest of the structure (Figure 10D, [2]).
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A.PgIB from C. lari (PDB: 3RCE)

Disordered
loop

1st cut

2nd
1st cut cut site
site C.

D.

2nd

cut site

1st cu
site

S/T-I/V-x-E

N

Soluble domain from P. furlosus Stt3 (PDB: 2ZAI)

I' Highly disordered
coil (residues not
resolved) /

2 nd cut
site

Figure 10: N-terminal sequencing of degradation products reveals sites of protease
susceptibility.
Predicted cut sites are colored red and the WWDxG motif residues are shown as sticks for
reference. A. Model of crystal structure of PglB from C. lari (PDB: 3RCE, [4]) highlighting
predicted locations of digestion. B. The region containing the first cut site is expanded for clarity.
The loop residues N-terminal to the 1 cut site are colored light orange. The dotted line denotes
the unresolved residues in the loop. C. Cartoon topology model of PglB, highlighting the general
location of the first cut site. D. (left) Region containing the second cut site in PglB. The loop C-
terminal to the cut site is colored light orange. Shown to the right is the analogous position in a
model of the crystal structure of the soluble domain of Stt3 from P. furiosus (PDB: 2ZAI, [2]).
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The structure of the C. lari PglB posits this observation in a structural context and correlates

susceptibility to proteolysis with the proposed flexibility and exposure of these regions. The first

proteolysis site appears just after the exposed loop 5, designated as EL5, which is noted as highly

disordered in the C. lari structure [4]. Interestingly, while both of these sites appear in coils

adjacent to catalytically important sites, neither site appears prominently exposed in the crystal

structure. Nonetheless, the dramatic preference for these proteolysis sites is shown clearly by the

discrete banding pattern indicated by western blot. It is possible that these sites become exposed in

an alternate conformation of PglB, which may provide insight into structural changes implicated in

substrate binding and release. Indeed, it was proposed that this conformational change would

involve movement of EL5 [4]. Also, the striking conservation of the WWDxG motif, combined

with its proximity to a preferential proteolytic cut site, may indicate that this helix is involved in

this conformational change, in addition to the proposed role in peptide/protein substrate binding [4].

The second cut site occurs just after the WWDxG motif, N-terminal to a coil connecting two

helices. As noted above and in Figure 10D, this site appears relatively shielded from solvent in the

C. lari crystal structure, while in the P. furiosus soluble-domain structure the predicted cut site

borders a highly disordered, unresolved coil. Though highly speculative, this distinction of this

region in the C. lari and P. furiosus structures, combined with apparent proteolytic activity at this

site, may suggest involvement of this region in a conformational change. Undoubtedly, since the P.

furiosus structure is solved as a soluble domain alone, the observed conformations are expected to

be less representative of reality than the C. lari full-length structure because many of the native

intramolecular interactions are unable to form. Nevertheless, the two clearly distinct physical states

of this region in two structures, combined with the apparent proteolysis (and thus exposure to

solvent) at this site, increases the conceivability that the disordered state represents a native
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conformation of the enzyme. Conversely, an alternative explanation is that this region only

becomes accessible when specific interactions between the soluble and the transmembrane domains

are disrupted. Once the first cut in the inter-transmembrane loop is made, a majority of the

transmembrane helices are separated from the soluble domain, potentially disrupting these

interactions and exposing the second site for proteases to act upon.
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Conclusion

In recent years, it has become abundantly clear that the conserved loop segments between

transmembrane domains often play a fundamental role in substrate recognition and/or catalysis

[12-15]. However, it is particularly difficult to observe sequence conservation in these regions

because motifs may be embedded within transmembrane regions that have diverged

considerably, thereby complicating sequence alignments. Demonstrated here is a straightforward

method for defining these buried regions of conservation applied to the complex integral-

membrane OTase PglB. Topology predictions are generated for a list of homologous sequences

using freely available software; a designed algorithm then parses each sequence by topological

feature. These sequence segments are then more fruitful for detecting regions of conservation

through sequence alignment. The systematic nature of the method allows for position-specific

sequence analysis of a large number of divergent sequences of a given protein, which is crucial

for determining the extent and significance of proposed motifs. These results expose the

extraordinary level of conservation that exists in Stt3 homologs from bacteria through humans.

Conservation over this evolutionary span implies that these regions play an essential role in the

OTase activity. The biochemical data verifies that in PglB, many of these residues are essential

for enzyme activity, and through limited proteolysis experiments it is shown that activity loss in

mutated PglB is not caused by major structural changes. These combined data indicate a direct

involvement of these motifs in protein function.

The publication of a medium-resolution structure of the C. lari PglB in 2011 indicates

that these motifs are centrally involved in catalysis [4]. Thus, the structural data, combined with

the independently acquired alignments and biochemical data, provide compelling evidence for

the roles of these motifs in OTase catalysis. Much biochemical work remains to investigate the
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details of the catalysis. In this context, the limited proteolysis approach will be useful for

ascertaining whether the E5 loop is flexible in the presence, as well as the absence, of each

substrate, and thus may provide insight into the dynamics of these regions accompanying

substrate binding, catalysis, and substrate release. Ultimately, similar studies on eukaryotic

OTases will be essential for relating the prokaryotic OTase studies to OTase catalysis

universally.

The structural studies now provide an excellent framework for developing new

experiments to investigate N-linked glycosylation. Yet, the importance of quantitative, in vitro

biochemical assays with defined quantities of pure substrates and precise measurements of

enzymatic rates cannot be overstated. Based on the C. lari PglB structure a mechanism for

nucleophilic activation of the asparagine nitrogen has been proposed [4]. A challenge in the

future will be to acquire structural and biochemical data that are complementary and consistent

with specific mechanistic proposals. Currently, the structural data provides valuable information

on the residues that are likely to be involved in catalysis, however at the present structural

resolution of 3.4 A, it is not feasible to identify specific hydrogen bonding networks or, in fact

even distinguish between the nitrogen and carbonyl oxygen of the nucleophilic asparagine

amide. Furthermore, due to the crystallization conditions, the C. lari PglB structure was acquired

at a pH of 9.4, where activity is very low [16]. Lastly, as the structure was solved in the presence

of only the peptide substrate, the site of polyprenyldiphosphate-glycan binding, the order of

binding and release of substrates and products, and nature of potential conformational changes,

remain to be assessed. These data are required for the development of hypotheses concerning the

mechanistic details of the reaction. The structural and biochemical data, when in agreement, will

provide an important foundation for unraveling the details of this intricate cellular process.
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Materials and Methods

Mutant production, expression, and purification

The QuikChange (Agilent) protocol was used to generate mutations in the PglB gene, and

all mutant genes were sequenced to verify specificity and accuracy of mutagenesis. All mutants

and wild type PglB were expressed in a pET24a(+) vector from Novagen. All constructs were

transformed into BL2 1 -CodonPlus-RIL cells (Stratagene) and grown in 1 L of culture overnight.

Cell cultures were harvested by centrifugation, washed in lysis buffer (50 mM HEPES, pH 7.5,

100 mM NaCl, 10% glycerol), re-pelleted, and frozen at -80 'C until needed. For the preparation

of Cell Envelope Fractions (CEFs), cell pellets of equal weight were resuspended in 40 mL lysis

buffer with the addition of 40 pg hen egg-white lysozyme (EMD Chemicals) and 40 pL EDTA-

free Protease Inhibitor Cocktail III (CalBiochem). Cell suspensions were incubated at 4C with

gentle rocking for one hour and then lysed using sonication with cooling on ice. Specifically,

three one-minute sets of one-second pulses at 50% amplitude, with five-minute intervals between

each set were employed. Lysates were centrifuged at 6,000 x g for 30 minutes to remove

insoluble debris, and the supernatant was then centrifuged at 100,000 x g for 1 hour to pellet the

CEF. The resulting supernatant was discarded and the CEF was homogenized in 35 mL of high

salt buffer (50 mM HEPES, pH 7.5, 250 mM NaCl, 250 mM KCl, 20% glycerol), incubated at 4

4C with gentle rocking for 1 hour, then pelleted again. Washed CEFs were homogenized in 10

mL of lysis buffer and stored at -80 0C until further use.

For western blot analysis, 8 pL samples of CEF (diluted 1:40 in 50 mM HEPES, pH

7.5) were mixed with 2 pL of 5X SDS reducing buffer and boiled for 5 minutes. Five pL of this

solution was added to each lane of a 4-15% Tris-HCl pre-stacked gradient gel (BioRad) . Gels

were run at 150 volts for one hour. Protein was then transferred at 120 volts for 2 hours to a
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nitrocellulose membrane. Membranes were blocked for at least one hour in a solution of 5%

BSA in TBS-T, then incubated for 1 hour in a solution of either: 1) T7 antibody conjugated to

alkaline phosphatase diluted 1:10,000 in TBS-T (EMD4Biosciences), washed with three one-

minute washes in TBS-T and a single one-minute wash in TBS and then developed using the 1-

STEP BCIP/NBT (5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium) developing

solution (Thermo Scientific) for roughly 10 seconds or until staining became visible, at which

point the nitrocellulose membrane was washed thoroughly with deionized water, or 2) Tetra His

antibody, BSA-free (Qiagen) at 0.1 gg/ml in TBS-T, followed by a three one-minute washes in

TBS-T, one-hour incubation in Anti-mouse alkaline phosphatase-conjugated secondary antibody

produced in goat (Sigma Aldrich), three one-minute washes in TBS-T and a single one-minute

wash in TBS, and development with the alkaline-phosphatase substrate 1-STEP NBT/BCIP. For

quantitative western blot analysis, the process was carried out similarly except with optimization

of CEF dilution factor to achieve intensities in the range of those of the purified PglB.

Ultimately, CEFs were diluted 1:100 and compared against a set of pure PglB internal

standards, which had been quantified by measuring ultraviolet absorption at 280 nm. After

staining, the nitrocellulose blots were allowed to dry for 10 minutes and then were immediately

scanned at 1200 dpi and analyzed using Adobe Photoshop densitometry software. To maximize

reliability, sample preparation and western blot analysis were repeated in triplicate, the data were

combined and the average relative quantities used. A representative western blot and standard

graph are shown in Figure 8.
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PglB Activity Assays

A survey of activity measurements for PglB and all PglB mutants was carried out as

described previously [17]. Briefly, 10 ptL of DMSO was added to a tube containing 6 pmol of

dried radiolabeled undecaprenyl-PP-Bac-[3H]GalNAc of specific activity 15 pCi/nmol. The tube

was then vortexed and sonicated (water bath) to resuspend the substrate. Then, 100 pL of 2X

assay buffer (280 mM sucrose, 2.4% Triton X-100 (v/v), and 100 mM HEPES at pH 7.5), 2 pL

of 1 M MnCl2, and 5 pL of PglB CEF were added and the volume brought to a total of 190 pL

with water. Reactions were initiated by the addition of 10 pL of 1 mM peptide substrate (Ac-

DQNAT-p-NF-NH2; where p-NF is para-nitro-phenylalanine) dissolved in DMSO [18]. Aliquots

of the reaction mixture were removed at specified time intervals and quenched in 1 mL of 3:2

chloroform/methanol + 200 pL of 4 mM MgCl 2 . The aqueous layer was extracted, and the

organic layer was washed twice with 300 pL of pure solvent upper phase (3% chloroform, 49%

methanol, and 48% water with 100 mM KCl). The aqueous extracts were combined and mixed

with 5 mL of EcoLite scintillation fluid (MP Biomedicals), the organic phase was mixed with 5

mL of OPTI-FLUOR scintillation fluid (Perkin Elmer), and all fractions were subjected to

scintillation counting. All assays were carried out in duplicate or triplicate.

Synthesis of lipid-linked sugar substrate at three specific activities

For rate comparison assays at varying concentrations of sugar substrate, radiolabeled

undecaprenyldiphosphate-disaccharide (Und-PP-Bac-GalNAc) was synthesized at specific

activities of 0.15, 1.5, and 15 pCi/nmol, according to procedures described previously [17]. Each

PglB assay performed (using one aliquot of Und-PP-Bac-GalNAc) contained the same level of

tritium, but depending on the specific activity a single assay would contain 0.01, 0.1, or 1.0 pM
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sugar substrate, which represents roughly 0.01x, 0.1x, and 1x Km (app) of the Und-PP-Bac-

GalNAc substrate in the PglB reaction [19]. The three different specific activities of the sugar

substrates were desirable because the reactions would contain varied concentrations of total

substrate, but the handling of very high or very low levels of radioactivity would be avoided.

The starting substrates for synthesis include the UDP-GalNAc (tritium-labeled), UDP-

Bac, Und-OH, and ATP. The enzymes used include the SM kinase [20], PglC (purified to CEF),

and PglA. It was determined that roughly 20 assays of lipid-linked disaccharide would be carried

out at each of the three log units of varied substrate concentration: 20 reactions at Km(app) (1

pM), 20 reactions at 0.1x KM(app) (0.1 pM), and 20 reactions at 0.01x KM(app) (0.01 pM). The

manufacturer-supplied specific activity of the pure radiolabeled stock of UDP-GalNAc was 15

Ci/mmol, or 15 pCi/nmol, with 1 ptCi (Curie) = 2.22 x 106 DPM. Since each reaction contains

200 pL total volume, and 20 reactions of each concentration of 1, 0.1, and 0.01 pM substrate was

required, it can be calculated that for the 1 pM batch of reactions 40 nmol radiolabeled product is

required (200 pmol/reaction vial), for the 0.1 pM batch, 4 nmol substrate is required, and for

0.01 pM batch a total of 0.4 nmol would be required.

For the lowest concentration substrate (0.01 x KM(app) product/tube), the radiolabeled

UDP-GalNAc was not diluted with any unlabeled UDP-GalNAc. Thus, 0.4 nmol of UDP-

GalNAc (specific activity of 15 pCi/nmol, containing 6 pCi) was collected for each of the three

reactions. For the 0.1 x KM(app) reactions, a volume containing 3.6 nmol of a known

concentration of unlabeled UDP-GalNAc was added to the hot solution, rendering its specific

activity 1.5 jCi/nmol. The same was done with the lx KM(app) UDP-GalNAc solution, except

this time a volume containing 39.6 nmol unlabeled UDP-GalNAc was added in order to give a

specific activity of 0.15 jCi/nmol. Thus, each reaction contained the same level of radiolabeled
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UDP-GalNAc, the total UDP-GalNAc concentration was varied. The stoichiometric levels of

other reaction components were adjusted accordingly in order to maximize turnover of the UDP-

GalNAc solution.

The final product was purified over HPLC. The reaction aliquots for each specific activity

batch contained roughly 66,600 DPM, which represented 2 pmol, 20 pmol, or 200 pmol labeled

substrate for the reactions performed with 15, 1.5, and 0.15 pCi/nmol specific activities,

respectively. When resuspended to the reaction concentration of 200 ptL, this provided a

concentration of 0.01 piM, 0.1 pM, and 1 pM Und-PP-Bac-GalNac, respectively.

A summary of the specific reaction plan is as follows:

Km for disaccharide - 1 IM
Specific activity of undiluted hot GalNAc: 15 pCi/nmol

1. 1X hot UDP-GalNAc (for 10 nM concentration in assay with 100K DPM)
-50 nmol Und-P
-20 pL 5 mM UDP-Bac
-20 pL .025 pM UDP-GalNAc (specific activity 15 pCi/nmol)

2. 1 OX dilution of hot UDP-GalNAc (for 1 OX increase in concentration in assay (0.1 pM) with
lOOK DPM)
-50 nmol Und-P
-20 pL 5 mM UDP-Bac
-20 pL .25 pM UDP-GalNAc (specific activity 1.5 pCi/nmol)

3. 1 OOX dilution of hot UDP-GalNAc (for 1 OX increase in concentration in assay(1 pM) with
lOOK DPM)
-50 nmol Und-P
-20 gL 5 mM UDP-Bac
-20 pL 2.5 pM UDP-GalNAc (specific activity 150 nCi/nmol)

162



Limited Proteolysis

Digestion profiles of wild-type Pg1B using trypsin, a-chymotrypsin, and proteinase K

were compared, with proteinase K showing the clearest production of discrete proteolytic

fragments. The incubation time, temperature, and the ratio of PglB to protease were optimized,

such that the time-dependent production of discrete proteolytic fragments could be clearly

viewed by applying His-tagged western blot analysis. The His-tag antibody was used because the

location of the His-tag at the C-terminus of the soluble domain resulted in a more readily

identifiable degradation profile. Proteolytic assays were performed at room temperature on CEF

fractions that were diluted 1:40 in 50 mM HEPES, pH 7.5. Two pL of 0.1 mg/mL of Proteinase

K (in 4 mM MgCl2) were added to 160 pL of diluted CEF. Aliquots of 20 pL were quenched

into 3 pL of 100 mM PMSF (phenylmethylsulfonyl chloride) in ethanol, at time points of 0, 5,

10, 30, 60, and 180 minutes.
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CHAPTER 5:

DESIGN AND DEVELOPMENT OF LRET-BASED SYSTEM TO

INVESTIGATE DYNAMICS OF PGLB CATALYSIS
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Summary

The following chapter describes the design and assembly of components required for obtaining a

system to investigate key features of the OTase enzymatic reaction; these key features include

order of substrate binding, the sites on the enzyme involved in substrate-binding and release, and

the nature of potential conformational changes occurring upon substrate binding and catalysis.

Toward these goals, the improved levels of stable PglB are used as a foundation for developing a

system to measure informative distances using LRET. The strategy devised includes expression

of PglB with a genetically encoded lanthanide-binding tag (LBT). Cysteine-containing peptide

substrates were synthesized, purified, and labeled, which will allow intermolecular LRET

measurements between the LBT-Tb3+ complex and the peptide substrate. In addition, the site-

specific insertion of cysteine allows the expressed enzyme to be labeled with a thiol-specific dye

that may act as an LRET acceptor, and the complex of LBT-Tb3+ functions as a partner donor.

As a result of the following efforts, proof of concept has now shown with the measurement of

LRET between LBT-PglB and a acceptor-labeled substrate peptide. The system is now being

applied to an archaeal OTase, AglB, and additional comparative studies are expected to continue

under the direction of a fellow graduate student, Michelle Chang. In summary, a system has been

successfully designed and developed to measure dynamic changes and interactions involved in

the OTase reaction, which are unattainable using X-ray crystallography.
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Introduction

In the past several years, remarkable advances have been made toward better

understanding the reaction catalyzed by OTases. Importantly, significant sequence homology has

been revealed in OTases throughout all evolutionary domains of life; as a result, the single-

subunit OTase PglB from C. jejuni has been firmly established as a prototypical model of the

conserved enzymatic reaction. Structural models of the enzyme have provided a wealth of

knowledge on the manner in which the conserved regions of the protein join to form a predicted

active site.

However, fundamental aspects of the OTase reaction remain to be determined. The

structural data available for PglB shows a single conformation of the enzyme at a resolution of

3.5A, an alkaline pH, and in a detergent micelle, which differs from the native state in the

membrane and at neutral or acidic pH. As with any crystal structure, it is difficult to discern from

the structural data alone whether the enzyme has adopted a native, active conformation when

crystallizing. The substrate-binding requirements are unknown, and accordingly it is unclear

whether the substrates bind in a specific order, whether binding order is random, and which

chemical groups on the substrates function in binding and catalysis. Also unknown is the

location on the enzyme that the glycan substrate binds or whether the peptide bound in the

crystal structure is representative of the native state of binding. In the case that the saccharide

substrate binds before the peptide substrate, saturation of the enzyme with the peptide substrate

alone may facilitate a non-native conformation. While key regions of the enzyme have been

defined, the function of each of these regions remains to be determined; it is not known whether

the critical residues in these regions are involved in substrate-binding, catalysis, structural
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organization, or a combination. Other major unresolved factors include the role of the required

divalent cation and the nature or existence of conformational changes.

The recent availability of a stable and purified PglB enzyme in reasonable quantities and

determination of structural regions composing the OTase active site provide new tools to guide

experimental design in studying these factors [1-3]. A series of steps were carried out to develop

a system to examine substrate binding and the nature of potential conformational changes

involved in PglB catalysis. A luminescent spectroscopic approach was preferred because it

allows for sensitive measurements and low perturbation of the active enzyme in vitro, which are

important conditions for studying dynamic enzymatic processes.

S 2 -

V4

E V

Vs

V42VI
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Figure 1: Jablonski diagram representing fluorescent and phosphorescent emission.
On the y-axis energy (E) is representative. So through S2 represent electronic states, T1 is a triplet
state. The purple arrow represents absorbance, the red arrow represents fluorescent decay and the
orange arrow represents phosphorescent decay. The squiggly arrows represent non-radiative
processes: the green arrow is internal conversion, the brown arrow is intersystem crossing, and
the blue arrow is vibrational relaxation.

Specifically, luminescence resonance energy transfer (LRET) will be used to investigate

the aforementioned characteristics of the PglB enzymatic reaction. As opposed to fluorescence

transfer (FRET), LRET includes emission via phosphorescence as well as fluorescence (hence

the all-encompassing term 'luminescence'). The term LRET is often used in the context of
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lanthanide emission [4]. Lanthanides ions, when excited at the appropriate wavelength, will emit

energy via phosphorescent emission. As represented by a Jablonski diagram in Figure 1,

absorbance of energy results in excitation of an electron form a ground state to an excited state.

In addition to non-radiative decay mechanisms (internal conversion and vibrational relaxation),

emission of light via luminescence accounts for the loss of energy of the electron as it returns to

the ground state. When the decay occurs from the a singlet state to the singlet ground state, the

emission of light is defined as fluorescence; when the energy first undergoes intersystem

crossing to a triplet state and decays from a triplet state to the singlet ground state, the emission

of light is defined as phosphorescence.

There are several differences between LRET and FRET. Lanthanides do not inherently

result in improved brightness of the emission relative to that of fluorophores, as quantum yields

and extinction are unrelated to the form of emission. However, phosphorescent molecules or

atoms (such as lanthanides) have longer Stokes' shifts and lifetimes relative to fluorophores.

These qualities result in a dramatically reduced background signal, because the phosphorescent

emission can be measured after a time delay during which the shorter-lived auto-fluorescence

has already decayed [5]. Furthermore, unlike the polarized mission from fluorogenic molecules,

emission from lanthanide ions is radial. The dipole orientation factor K depends on the relative

orientation of the two fluorophore; emission from fluorescent molecules is polarized, which

affects the level of energy transfer and thus the FOrster radius Ro (Equation 1). Generally, the

dipole orientation factor K is estimated as 2/3 based on an assumption that both molecules are

freely rotating in solution causing isotropic emission. Often one or both fluorophores is fixed and

is not free to rotate, which makes the assumption of isotropic emission invalid and thus

introduces error into calculation of Ro. Thus, the radial (unpolarized) emission from lanthanide
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ions results in a reduced error in the determination of RO. In calculation of Ro, Qo is the quantum

yield of the donor in the absence of acceptor, I is the spectral overlap integral, n is the refractive

index of the medium, and NA is Avogadro's number.

6_ 9 0 (InlO) K2 j
0  128 1 5 n 4N N(

The reduction in background and the improved accuracy of RO effectively improves the

accuracy of LRET measurements relative to those of FRET. Reduced background gives an

improved normalized signal and, because the Ro-value is included in calculation of distance

measurements (r-values) from transfer efficiency (E), LRET effectively improves the accuracy of

the distances calculated (Equation 2). This improved accuracy lends the calculated values to

more plausible biological interpretation and results in better agreement with crystallographic

measurements.

1
E 

(2)

RO

Resonant energy transfer measurements are made using the enzyme in solution. Enzyme

activity can be monitored which eliminates any uncertainty as to whether the obtained data is

representative of the active enzyme. This gives the resonant energy transfer technique an

advantage over X-ray crystallography. LRET is capable of measuring intra- and inter-protein

interactions and distances, thus providing structural information that can support, clarify, and

supplement crystallographic data. Significantly, LRET is capable of providing time-resolved

information about the dynamics of the enzymatic reaction (e.g. conformational changes upon
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substrate binding) in a single experiment [6,7], which cannot be obtained from crystallographic

data.

C

LBT-PgIB
construct

280 nm

280nm 3. Luminescence

1. Absorbance ,

2. Energy transfer

Figure 2: Sensitization of Tb3 + by the LBT.
The topology cartoon of PglB shows the LBT bound to the lanthanide ion, Tb 3 . The complex is
irradiated with UV light, and after a millisecond-lifetime phosphorescent light is emitted.
Expansion of the LBT shows the amino acids chelating and sensitizing Tb3+. The tryptophan,
when excited by incoming UV light, transfers energy of its excited electronic state to the nearby
Tb3+, which then emits light at specific discrete wavelengths. Importantly, the LBT residues
protect Tb3+ from exposure to water molecules, which quench the luminescence. LBT figure
taken from [8].

In order for lanthanide ions in aqueous solution to absorb energy from light, a sensitizer

is required; the sensitizer is a molecule that chelates the ion and first absorbs the applied light,

ultimately transferring the energy to the ion. The lanthanide-binding tag (LBT) consists of 20

amino acids and binds and sensitizes lanthanide ions (such as Terbium ion (Tb 3+)), forming a

luminescent composite (Figure 2) [9,10]. The LBT was chosen to act as the donor in the

following LRET experiments for several reasons, in addition to the favorable properties of

lanthanide emission discussed above. First, a major challenge for LRET-type experiments is the
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site-specific labeling of two locations on the protein with different fluorophores. The LBT is

genetically encoded, which eliminates half of that challenge. Second, LBT-lanthanide complexes

have very narrow and discrete emission bands, enhancing specificity of LRET. Third, LRET

between LBT-lanthanide emission and known acceptor fluorophores exhibits a large transfer

distance, which ensures detection of an intermembrane region even if it is located at a relatively

large distance from the LBT.

In order to measure intermolecular distances between PgIB and the peptide substrate,

which can provide information on the location and order of substrate binding, a peptide

containing the glycosylation consensus sequence was synthesized with a cysteine residue

included. The cysteine was then site-specifically labeled using a thiol-reactive LRET acceptor

dye. Similarly, cysteine mutations or insertions can be made in locations throughout the enzyme

that are predicted to be informative. If the mutants express and show WT-level activity, then

thiol-specific labeling can again be used to create a functional donor-acceptor pair. In this way,

both inter- and intra-molecular LRET measurements can be made (Figure 3).
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enzyme and substrate
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Figure 3: Simple illustration of the planned LRET experiments.
The LBT, genetically encoded on the N-terminus of the Pg1B gene, acts as a donor when
lanthanide ion (Tb 3 ) is added to the solution. The unpolarized lanthanide emission can engage in
LRET with a dye that is specifically labeled via the thiol group on a unique cysteine. For
intermolecular LRET measurements, the cysteine is included in the substrate peptide sequence.
For intramolecular LRET measurements, cysteine residues are individually mutated into specific
locations in the PglB sequence.
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Results

Expression of LBT-PglB construct

The first step in developing the LRET system described above involved constructing and

expressing a well-behaved LBT-PgIB fusion construct. This task was expected to be relatively

simple and rapid for several reasons. As seen in Chapter 2 of this thesis, much time had been

spent optimizing the expression levels of PglB and the resulting yields were comfortably within a

workable range. The LBT was developed and characterized extensively by previous Imperiali lab

members who had successfully expressed LBT fusions [8-13]. Additionally, the LBT is only 20

amino acids in length (shown below), making it seem unlikely that fusion to PglB would alter

previously established properties of PgIB.

LBT amino-acid sequence: GPGYIDTNNDGWYEGDELLA

Therefore, it was surprising when LBT-PglB initially showed very poor expression.

Despite the small size of the LBT, encoding the LBT sequence at the N-terminus of PgIB led to

dramatically reduced yields relative to T7-PgIB (Figure 4A). The construct that was initially

tested encoded LBT-PglB-HislO in pET24a(+) and is denoted LBT-PglB-l (Table 1).

Troubleshooting started with changing parameters that are known to cause general problems in

protein expression. The vectors were re-sequenced to ensure no mutations were at fault. Vectors

were re-transformed into a fresh batch of competent cells. Media components involved in

making autoinduction media (see Chapter 2) were replaced along with antibiotic solutions. Even

a new pET24a(+) carrier vector was obtained and the LBT-PglB sequence was moved to the new

vector, but to no avail. All efforts resulted in the same deficient expression of LBT-PglB.
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Construct name Components & restriction sites' Notes

LBT-PglB-1 Ndel-ATG-LBT-BamHI-PglB-His I O-STOP-XhoI Poor expression

LBT-Ubiq Ndel-ATG-His6-LBT-BamHI-ubiquitin-STOP-XhoI

TEV-LBT-PglB Ndel-ATG-TEV-LBT-BamHI-PglB-His I O-STOP-XhoI

LBT-PgIB NdeI-ATG-LBT(optimized)-BamHI-PgB-His 10- STOP-XhoI Best expression

1. Unless otherwise noted, all constructs are made within a pET24a(+) vector.

Table 1: Summary of major vectors discussed in this chapter.

Upon reviewing earlier studies, it was found that a test expression carried out a year

previous had shown reasonable expression of the LBT-PglB; however, this construct had

contained a TEV sequence after the start codon but before the LBT sequence due to the cloning

strategy. This TEV sequence had since been removed, as it contained no ostensible purpose.

Despite a lack of comprehension of any positive impact the resulting from a preceding TEV

sequence, few other obvious options remained. (Discussed below, measurements had been made

that indicated that the N-terminus was preferable to the C-terminus for LRET measurements,

ruling out this option.) Therefore, the TEV-LBT-PglB construct was re-made (Figure 4C, Table

1). Surprisingly, the insertion of the TEV sequence before the LBT sequence led to improved

expression levels (Figure 4B).
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Figure 4: Poor initial expression of LBT-PglB and improvements with N-terminal insertion
of TEV sequence.
Activity results of cleared lysates for LBT-PglB (A) or TEV-LBT-PglB (B) and T7-PglB after
growing, lysing, and preparing both samples in parallel. Discrepancy in activity levels in A and
B result from preparation and weight of initial cell pellets used. In each case, T7-PglB was grown
and prepared alongside the LBT-PglB or TEV-LBT-PglB construct such that each comparison
internally represents a comparison of the same fraction of cell pellet. (C) Diagram showing the
location of the start codon relative to the LBT-PglB construct and the location of the inserted
TEV sequence.

Literature searches led to the development of several hypotheses to explain the observed

improvement in expression at the mere insertion of a 6-amino acid TEV sequence (ASENLY).

Several studies by the Isaksson group in the Netherlands provided anecdotal and general

evidence that several codons immediately following the start codon in a gene significantly

affected expression levels in E. coli. An early study showed that a simple change of the +3 codon
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from GAG to GAA (both coding for glutamic acid) in the ginS gene results in a four-fold

expression improvement [14]. The observation was further investigated, showing that high-

expressing genes show a statistically significant overrepresentation of certain codons at early

sites after the start codon and mutational analysis implicated ribosome binding and translation

initiation as mediators of this effect [14-18]. In E. coli, several codons immediately 3' to the start

codon (+2, +3, +5, +7) are significantly more likely to be enriched in adenines than guanines

[15]. Synthetic constructs with varied codon composition further showed that increasing the

adenine content led to improvements in expression of up to 20-fold [18].

Construct First five codons
+1 +2 +3 +4 +5

TEV - LBT - PgIB ATG - GCT - TCT - GAA - AAC

LBT - PgIB-1 ATG - GGT - CCG - GGC -TTC

T7 - PgIB ATG - GCT - AGC -ATG - ACT

Table 2: Comparison of nucleotide content of the four codons following the start codon for
several constructs discussed.

Table 2 shows the first five codons (in which the start codon is +1) for T7-PglB, LBT-

PgIB-1, and TEV-LBT-PglB. Comparison of the codon composition of this segment highlights

the over-abundance of guanines and lack of adenines following the N-terminal start codon in

LBT-PglB- 1. In contrast, T7-PglB and TEV-LBT-PglB can be seen to have adenines present and

significantly fewer guanines, and no sequential guanines. This observation was encouraging

because it indicated that the reason for the low levels of LBT-PglB expression may be due to

codon composition in the early codons 3' to the start codon.
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Several other lines of reasoning can be used to support this hypothesis. The relatively low

publicity received from the papers published by the Isaksson lab can be understood in light of the

fact that determinants of expression level are accepted as being diverse, unpredictable, and

poorly understood. Heterologous expression of proteins in E. coli is accepted as an empirical

endeavor. Certain factors may generally influence the expression level of a protein one way or

another, such as localization, complex folding, poor solubility, and others; however, these

principles are guidelines and there exist many unknown reasons why some proteins are toxic or

inefficiently expressed in E. coli [19-21]. Therefore, empirical screens of conditions or fusion

tags is often the immediate course of action when a protein shows poor heterologous expression.

Fusion tags are frequently used in expressing and purifying proteins in E. coli and are

often themselves foreign to E. coli [22]. Importantly, these tags are commonly developed

empirically; therefore, those that are frequently used have been observed to express well in E.

coli and likely have unrecognized qualities that lead to efficient expression such as high adenine-

content in the early codons. One example to consider is the His-tag, which is very frequently

used in protein expression and purification and often is placed at the N-terminus of the gene. The

two histidine codons, CAC and CAT, are both notably lacking in guanines and each contain an

adenosine. Therefore, initiating synthesis with a His-tag would likely shield codon effects to

some degree if gene has guanine-rich early codons. In contrast to the empirical success of certain

fusion tags (which likely are unknowingly selected for properties such as a beneficial early

codon composition), the LBT sequence is based on an amino acid sequence synthesized using

SPPS and evolved to optimally bind lanthanides [8]. Therefore, expression of the sequence did

not contribute to selection. Expression of the LBT-protein fusions in the past included a His6-tag

at the N-terminus and the proteins have been small and soluble and otherwise well-expressed, so
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early codons, if unfavorable for translation initiation, would not be likely to greatly influence

expression [9,11,12].

A final compelling piece of evidence was discovered in a very recent Nature publication

from the Weissman lab at the University of California in San Francisco (UCSF) [23]. The study

sought to investigate the reasons behind the non-uniform speed at which ribosomes translate a

linear RNA substrate. It has been frequently reasoned that relative abundance of tRNAs for each

codons causes ribosomes to stall at certain regions of the transcript that have a high

concentration of the 'rare codons'. The authors did a bacterial genome-wide analysis using

ribosome profiling, or deep sequencing of ribosome-protected mRNA fragments and showed

that, surprisingly, codon bias was not associated with ribosome occupation of certain sites. The

pauses in translation resulted, rather, when the ribosome encountered Shine-Dalgamo-(SD)-like

features within coding sequences [23].

The Shine-Dalgarno (SD)-sequence plays a primary role in translation initiation in

bacteria. The sequence is a purine-rich region located roughly 9 nucleotides upstream of the start

codon on the mRNA transcript. A sequence at the 3'-end of the 16S rRNA base pairs with part or

all of the complementary the SD-sequence. (In E. coli, the complementary rRNA sequence is

ACCUCCUUA.) The SD-sequence adheres loosely to the motif UAAGGAGGU, but anywhere

from 3 to 9 nucleotides base pair with the 16S rRNA 3'terminal sequence. The degree of

complementarity affects initiation efficiency, and this factor is used as one way to regulate levels

of expression of individual proteins in bacteria. Importantly, if the length of complementarity is

very long and precise, ribosomes will bind to mRNA too tightly, disturbing the migration of the

ribosome.
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Pre-optimized 10 20 30 40 50 60 70
1 I I I I

1 ATGGGGCCTGGGTTCATCGATACCAATAACGATGGTTGGATCGAAGGGGATGAACTGCTGGCGGGATCCATG 72
M G P G F I D T N N D G W I E G D E L L A G S M

Optimized 10 20 30 40 50 60 70
I 1 I 1 I I I

1 ATGAAACTGATTTTCATCGATACCAATAACGATGGCTGGATCGAAGGCGATGAACTGCTGGCCATTGGATCCATG 75
M K L I F I D T N N D G W I E G D E L L A I G S M

Figure 5: LBT before and after optimization of nucleotide content.
The corresponding amino-acid sequence is shown below each of the nucleotide sequences.

Thus, the association of ribosome stalling with appearances of SD-like sequences is not

difficult to understand [23]. Generally, the ribosome translates the RNA transcript at steady-

state, but upon encountering and binding to a site of significant complementarity, a counter-force

is introduced, and the binding energy of the base pairs must be overcome for the ribosome to

continue moving along the transcript. The phenomenon is not frame-specific, as the ribosome

base-pairing occurs upstream of the start codon (thus upstream of the ribosomal 'A-site'.

Additional evidence that SD-like sequences caused ribosome stalling was provided by the ability

to change the translation speed of a gene by introducing or eliminating SD-like clusters without

changing the encoded amino-acid sequence. Importantly, it was observed and explained that SD-

like sequences that appeared closest to the N-terminus resulted in the most suppression of

translation [23].

With the above study in mind, the LBT nucleotide sequence was scanned for potentially

troublesome regions. In fact, it appeared that there were multiple regions containing clusters of

purines (Figure 5). It was determined that the nucleotide sequence of the LBT had not been

codon optimized when the gene was initially synthesized. The LBT has been fused to multiple

protein constructs (generally preceded by a His-tag) and is frequently used in the Imperiali lab.

Therefore, it seemed beneficial to optimize the nucleotide composition of the LBT. Optimizing
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the sequence and re-expressing LBT-PgB tests the hypothesis that the early codon composition

of the LBT is the cause of the poor LBT-PglB expression observed. In addition, the optimized

vector construct will be helpful to future users of the LBT in the case that optimization

successfully improves expression. Indeed, as shown in Figure 6, the optimized LBT-PglB

showed restored expression levels with comparable activity to the T7-PgIB enzyme.
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Figure 6: Purification of stocks of T7-PgIB and LBT-PgB.
SDS-PAGE (10%, Tris-Glycine) showing A. T7-PglB purification fractions, B. LBT-PglB
purification fractions, and C. the final stock solutions after combining protein-containing elutions
from each construct, concentration and buffer exchange. The first lane of each gel contains the
Precision Plus Protein Unstained Standard ladder (Bio-rad) with labeled molecular weights in
kDa. After normalizing the concentration for the fractions in part C., activity assays were carried
out (D). As previously observed, the LBT-PglB construct shows robust activity, which is only
slightly less than that of T7-PglB.
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Optimization of LBT-PglB luminescence

With a well-expressed, active, and stable LBT-PglB in hand, the luminescent studies

were initiated. However, unexpected obstacles once again presented themselves, delaying the

ultimate measurements, though providing important and relevant lessons that will be critical to

keep in mind in future experiments involving the LBT.

The first task involved validating that the LBT-PglB protein expressed was functioning as

expected with regard to luminescence intensity and lifetimes. It was thought that it may be useful

to have a well-behaved, soluble LBT-fusion protein for use as an internal comparison when

measuring basic binding and luminescent parameters for PglIB. Former members of the lab used

a LBT-ubiquitin fusion for characterization and development of LBT properties and the protein

construct is conveniently well-expressed, soluble, and previously charaterized [11,24]. A large

stock of His6-LBT-Ubiquitin was expressed, purified, aliquotted, and stored at -80 0C for use as a

standard comparison when measuring LBT-PglB photophysical properties. Figure 7 shows the

SDS-PAGE results of the purification. Bands above the 11 .6-kDa molecular weight of LBT-

ubiquitin stained on the anti-His western blot, appear in multiples of 11.6 kDa, and are apparent

on pictures of SDS-PAGE results from earlier purifications by former lab members (see Landon

Martin, dissertation); thus these bands are expected to represent higher-order oligomers rather

than impurities. The lifetime was determined for this stock of pure LBT-ubiquitin, which agreed

with previous measurements of the LBT-Tb'+ lifetime (Figure 8D) [10].
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Figure 7: Expression and purification of an LBT-ubiquitin standard.
First purification on Ni-NTA resin showed impurities in the elutions (top left, Coomassie-
stained). The anti-His western blot (top right) verified that the major band was His6-LBT-
ubiquitin. Repeating Ni-NTA batchbind of elutions resulted in improved purity (bottom left).
Arrows indicate His6-LBT-ubiquitin monomer band.

It was expected that the LBT on two different proteins should give highly similar

luminescence intensities upon titration with Tb3+. This property would make it possible to

precisely measure the concentration of the enzyme in solution without doing a full titration, as

the addition of a given amount of Tb3+ should correspond to a specific intensity. A standard

internal comparison would be required to control for potential instrument or lamp fluctuations

however. The available LBT-ubiquitin was expected to provide this internal comparison in the

measurements of concentrations of PglB in pure and semi-pure solutions. Thus, LBT-ubiquitin

was titrated with Tb3+ at three concentrations and the luminescent data were recorded (Figure 8).
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Figure 8: Measurements of LBT-Ubiquitin intensities and lifetime.
Terbium ion titrations of LBT-Ubiquitin at 3 pM (A), 1.5 pM (B), and 0.5 gM (C). D: Lifetime
measurement of LBT-ubiquitin bound to Tb3+ at 544 nm agrees with previous measurements
made independently of the LBT-Tb 3 lifetime [10]. The data was fit to a monoexponential
equation in which I(t) is the intensity of emission at time t, 1(0) is the initial emission intensity, t
= time, and T is the lifetime, determined from the equation fit.

Additionally, LBT-ubiquitin was expected to serve as a standard for determining effects

of buffer components on LBT-Tb3+ intensities. As PglB is a membrane protein, detergent and

potentially additional stabilizing agents and salts may enhance monodispersion of LBT-PglB in

solution. As a result, the effects of increasing concentrations of several cations, glycerol, and

DDM on LBT-Ubiquitin luminescence were determined (Figure 9).
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Figure 9: Effects of buffer components on LBT-Ubiquitin luminescence intensities.
Addition of increasing Mg 2+ (A) and Ca2+ (B) into a solution of LBT-Ubiquitin saturated with
Tb3+ results in steadily decreasing signal intensity. (C) Presence of both 0.01% DDM and 25%
glycerol in minimal buffer (10 mM HEPES, pH 7.4, 100 mM NaCl) results in an improved LBT-
Ubiquitin luminescent signal relative to minimal buffer with levels of either or both DDM and
glycerol decreased.
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It can be seen in Figure 9 that addition of higher levels of cations leads to a decrease in

luminescence intensities measured for LBT-Ubiquitin. This is expected to be due to competition

with Tb3+ binding to the LBT when a high level of competing cation relative to Tb3+ is added.

The addition of non-Tb3+ cations was measured because PglB requires a (generally divalent)

cation for activity which can be substituted by Tb3+ (Figure 10). Therefore, it is hoped that

providing a low level of divalent cation to solutions of LBT-PgB would out-compete Tb3+ for

binding to PgIB cation-binding site and allow added Tb3+ to bind primarily to the LBT site.

0.5 Activity vs. [Tb 3+] Luminescence Intensity vs. [Tb3+]
1 e+5

0.4 - > 8e+4

c 0.3 c 6e+4

E 0.2 y __.51 4 4 9.44
x + 0.364 W x + 0.353

R 0.1 =0.98 R2 =0.93

0.0 ' 0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.5 1.0 1.5 2.0

[Tb3*] (mM) [Tb3 *] (mM)

Figure 10: Tb3+ can satisfy cation requirement for T7-Pg1B activity.
Michaelis-Menten binding curves were determined using the activity (left) and luminescence
intensity (right) for a range of Tb3+ concentrations. The constant in the denominator represents
the estimated binding constant in pM. The above measurements were made using PglB without
LBT; thus, an amino acid capable of sensitizing Tb3+ is most likely present near the cation-
binding site.

Upon purifying the optimized LBT-PgIB, it was surprising to note that a concentration

measured using UV spectroscopy did not give expected luminescence intensities.

Confoundingly, the titrations showed that the enzyme was saturated at expected concentrations,

ensuring that the concentration measurements from UV absorbance are correct (Figure 11). (As

Tb3+ has low nM binding affinity for LBT, when the LBT is present at micromolar
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concentrations Tb3+ can be titrated into the protein solution, such that each Tb3+ atom added

binds LBT until all LBT is bound, at which point the luminescence will no longer increase with

further addition of Tb3 +.) Not only did the intensities fail to correspond to those expected based

on the LBT-ubiquitin standards, but the intensities were extremely low. With the low level of

intensity observed, luminescent measurements would carry a high degree of error. Therefore,

experiments were carried out in order to optimize the luminescent signal measured for LBT-

PglB. In addition, investigations were begun to determine the reason for the discrepancy in

signals for LBT-PglB and LBT-ubiquitin at the same concentrations of protein and Tb3+
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Figure 11: LBT-PglB shows relatively low luminescence intensities.

In order to determine the role of the phosphorimeter program settings on intensities, Dr.

Andrew Krueger of the Imperiali lab systematically varied several major parameters and

compared the emission intensities (Figure 12). A protein construct of EGF (Epidermal Growth

Factor) fused to an LBT labeled with a Europium sensitizer was used in these experiments; thus,

concentrations of Europium are noted rather than Terbium [25]. Based on the measurements, Dr.
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Krueger concluded that changing the delay time does not affect emission intensities, which he

reasoned may be due to having flash lamp rather than a pulse laser. Increasing the sample

window (amount of time for data collection after flash) increases the intensity of the signal as

well as background without any beneficial effect on signal to noise (S/N). Lastly, Dr. Krueger

observed that increasing the number of flashes (the number of times pulse is repeated and

emission data collected at each point, then combined) improved intensities of signal much more

than intensities of noise, thus improving the S/N ratio.

EGF-LBT(cs124) (5 uM) + 5 uM Eu3+ EGF-LBT(cs124) (5 uM) + 5 uM Eu3+
Luminescence vs. gating delay Luminescence vs. sample window
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WeW"Oh (MR) Wa~gi(am)

EGF-LT(cs24) (5 uM) + 5 uM Eu3+
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Figure 12: Effects of varying phosphorimeter parameters on luminescence intensity
(courtesy of Dr. Andrew Krueger).
LBT-EGF was used to demonstrate effects on intensity when varying gating delay, sample
window, and number flashes (clockwise from top left). The (cs 124) refers to the LBT labeled
with a Europium. sensitizer.
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Based on measurements made by Dr. Krueger, the number of flashes in a program was

considered the most beneficial parameter to increase in order to improve intensities of

luminescent intensities measured. Indeed, when this parameter was varied for LBT-Ubiquitin in

the presence of saturating Tb3+, the signal-to-noise was improved greatly. The same was

observed for LBT-PglB at non-saturating and then saturating Tb3+ (Figure 13).
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Figure 13: Improvement in luminescent intensities measured for LBT-Ubiquitin and LBT-
PgIB when the number of flashes is increased.

Increasing the number of flashes used when making luminescent measurements thus

appeared to universally improve intensities measured for LBT-fusion proteins in the presence of

Tb3+. However, it was still apparent that when instrumental parameters were held constant,

luminescent intensities measured for LBT-PglB differed from those of LBT-ubiquitin. At this

time, an additional LBT-fusion protein had been introduced: LBT-AglB. AglB, an archaeal

OTase, would be expected to work within the LRET framework similarly to PglB, and

measurements made using both OTases are expected to provide more information and legitimacy

to analysis of data. Another graduate student in the Imperiali lab, Michelle Chang, had expressed
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and stored solutions of LBT-AgIB. Thus, a comparison of luminescent intensities for three LBT

fusions was made. Equal concentrations of LBT-AglB, LBT-PglB, and LBT-ubiquitin were

made up in identical buffer solutions, and titrations were carried out for each protein identically

(Figure 14). It can be seen that each LBT-fusion protein approaches saturation of luminescence

at roughly 5 ptM, verifying that the concentration of each protein is also roughly 5 pM. But the

intensities for each fusion protein upon addition of increasing Tb3+ vary tremendously, with

LBT-AglB showing the highest, followed by LBT-ubiquitin, and LBT-PglB showing the lowest

(Figure 14).
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Figure 14: Comparison of luminescent intensities of three proteins fused to LBT.
Equimolar concentrations (5 pM) of LBT-PglB (A), LBT-AglB (B), and LBT-Ubiquitin (C) in
the presence of 10 mM HEPES, pH 7.4, 100 mM NaCl, 5% glycerol, 0.5 mM MgCl 2 were
titrated with Tb3+. Titrations were performed on the same day using the same stock solutions of
Tb3+ to minimize error. Intensity versus [Tb3+] is shown for all three constructs in (D) for
comparison. Michelle Chang of the Imperiali lab provided data for LBT-AglB.

The data shown in Figure 14 are extremely important because they overturn the

previously held assumption that the LBT luminescence intensity is not affected by the identity of

its fusion partner. In fact, the fusion identity matters greatly, though the reasons are not entirely

understood. Some effects can be explained by the presence or absence of a cation-binding site

within the fusion protein. Indeed, Figure 15 shows that the addition of Mg 2+ suppresses LBT-
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ubiquitin luminescence intensity (also seen in Figure 9). In contrast, final addition of 50 gM

MnCl2 deeply enhanced the LBT-PglB signal.

B.

PgIB + 0.5 mM Mg2+
-5.1 IM+ 50 pM Cl2

--5.1
3.8

-2.5

-1.11

0.47

-0.13

-- 0

I

3000

- LBT-Ubiquitin + 0.13 vM
Th3+

2500

LBT-Ubiquitin + 0.13 pM
Th3+ + 0.5 mM MgC2

2000
-- LBT-Ubiquitin

1500

1000

A.
12000

10000

8000

,6000

4000

2000

0
580 600

Figure 15: Additional data from luminescent titration experiments shown in Figure 14.
(Left) LBT-PglB titration is identical to that in Figure 14 except includes data from a final
measurement made upon addition of 50 pM Mn2 +. (Right) Before performing the titration shown
in Figure 14, LBT-Ubiquitin luminescence was measured first in minimal buffer (10 mM
HEPES pH 7.4, 100 mM NaCl, 5% glycerol), second after addition of 0.13 pM Tb3+, and third
after the addition of 0.5 mM MgC 2. (The spectrum measured with both 0.13 ptM Tb 3 and 0.5
mM MgCl2 is the same as the 0.13 pM Tb3+ spectrum shown in Figure 14 for LBT-ubiquitin).

In view of the above results, it became clear that LBT-Ubiquitin does not provide a

reliable standard for determining the effect of buffer components on LBT-PglB luminescence

intensities. Therefore, solutions of LBT-PglB were directly used to determine the optimal

conditions for LBT-PglB luminescence (Figures 16, 17, 18). Ultimately, it was determined that

LBT-PglB gives optimal luminescent intenties in the presence of 10 mM HEPES pH 7.4, 100

mM NaCl, 5% glycerol, 0.1% DDM, and 100 RM MgCl 2. In these conditions, and using a

program with the number of flashes set to at least 300, luminescence intensities were roughly

ten-fold higher than before optimization.
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Figure 16: Comparison of LBT-PgIB luminescence intensities and lifetime-curve fits in the
presence of three buffers.
Buffer A = 10 mM HEPES, pH 7.4, 100 mM NaCl, 5% glycerol; Buffer B = 10 mM HEPES, pH
7.4, 100 mM NaCl, 25% glycerol; Buffer C = 10 mM HEPES, pH 7.4, 100 mM NaCl, 5%
glycerol, 0.01% DDM. Buffer C gives the most accurate curve fit for lifetime (A) and greatest
luminscence intensity (B). It is the presence of DDM in Buffer C that accounts for the
enhancement, which is verified by the improvement of the signals for Buffer A and Buffer B
when 0.01% (final) DDM is directly added to the solutions (C, D).
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Figure 17: Effect of detergent identity and concentration on luminescence intensity of LBT-
PglB in presence of Tb3 *.
(A) One solution of LBT-PglB with saturating Tb3+ was divided into three aliquots and equal
volumes were added to each aliquot to give a final detergent concentration of 0.01 % DDM, 0.1
% DDM, or 0.1 % OG. The luminscent intensities and lifetimes (541 nm) were then measured
for each solution.
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Figure 18: Effect of cation identity and concentration on LBT-PglB luminescence.
(A) To a solution of LBT-PglB and saturating Tb3+, aliquots of MgCl2 were added to give a final

concentration of 100 ptM, followed by 200 pM, and finally an aliquot of MnCl2 was added to
give a final cation concentration of 200 pLM MgCl2 and 30 gM MnCl2. (B) Order of cation
addition is reversed to ensure presence of one cation is not influencing effect of second. 50 pM
MnCl2 added, followed by 100 IM MgC12
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Insertion of cysteine mutations to allow labeling of PglB with thiol-reactive acceptor dye

The two native, non-conserved cysteines in PglB were mutated to serine so that single

cysteines could be inserted at choice locations for site-specific labeling of the enzyme (this

construct was designated LBT-PglB-CxxC, representing the LBT-PglB with C28S and C408S

mutations). The double-cysteine mutant was shown to be active and expressed at wild-type levels

(Figure 19).
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Figure 19: Mutating native cysteines in Pg1B to serine.
Construction of PglB construct with both native cysteines mutated to serines shows WT-level
expression and activity. Left: Coomassie-stained SDS-PAGE and western blots with antibodies
to N-terminal tag (T7) and C-terminal tag (Hisio) indicate that the mutations do not significantly
alter the recombinant expression levels of PglB produced. Right: Activity assay results for equal
concentrations of WT-PglB and PglB-CxxC show that the cysteine mutations do not significantly
affect PglB activity.
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Locations for six cysteine insertions were chosen based on multiple criteria: first, the sites

should be accessible to labeling (solvent exposure) and unconstrained (to accommodate Bodipy-

dye); second, the predicted measurements at the mutations sites should be informative (in terms

of donor-acceptor distance as well as containing regions of conserved loops); third, the precise

residues that are mutated or neighboring a cysteine insertion should show low conservation of to

avoid significant disruption of activity or structure. Assessment of these criteria was made based

on existing structural and biochemical data.
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Figure 20: Efficiency (E) of LRET as a function of Tb 3 (donor) and Bodipy-TMR
(acceptor) distance (r).
The Ro value between this donor-acceptor pair has been determined to be 50.9 A. For a narrow
range above and below Ro the curve is approximately linear and the signal can be measured with
reasonable precision, as a small change in distance results in a significant change in signal, or
efficiency. As the distance from RO increases, the precision of the measurement drops off rapidly,
as the efficiency becomes less sensitive to small changes in distance.
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Additionally, the acceptor dye will ideally be placed within a given range of distances.

Accurate measurements can only be made when the acceptor and donor are within a short

difference from the Ro-value, or the value at which the LRET efficiency is 50 percent of the

maximum, and which is specific to a given donor-acceptor pair. As the difference between Ro

and the acceptor-donor distance increases, the LRET efficiency decreases or increases at a rate of

1/r 6 , where r is the distance between donor and acceptor (Figure 20). Importantly, the labeled

peptide is useful even if its binding site does not fall within the specified range; while specific

distances could not be ascertained, the change in LRET for the case in which the peptide is

unbound versus bound is almost certainly great enough to detect the presence of absence of

binding. Thus, the requirements for peptide binding or lack thereof may be investigated.

However, the thiol-reactive dye chosen to function as an acceptor, Bodipy-TMR maleimide, has

been used in combination with the LBT in LRET experiments in the past and the Ro has been

determined as 50.9A (Figure 21, [10]). Prior use of the dyes in an LRET experiment and

determination of RO simplifies the following analysis and provides confidence that measurements

made will be informative. Based on the structural data available, it is possible to estimate an

expected range of distances, and the Ro falls conveniently toward the center of this range.
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Figure 21: Structure and photophysical properties of LRET pair.
A. Depiction of the LBT bound to Tb3+. B. Structure of Bodipy-TMR. C. The excitation
(absorption) spectrum for Bodipy-TMR (circles), the emission spectrum of LBT-Tb3+ (smooth
line) and the extent of overlap.

The structure of the C. lari PglB was used to ascertain that the Bodipy-TMR label is an

appropriate LRET acceptor for the range of distances expected. In addition, the structure was

informative in choosing suitable locations for placement of cysteine mutations, which should be

close enough to Ro to make informative measurements (Figure 22). However, these

measurements are enormously approximate for several reasons. First, the PglB structure is only

resolved to 3.4 A, immediately adding a high degree of error. Additionally, while the sequences

of PglB from C. jejuni and C. lari are highly similar, they are not identical and residues at some

of the mutation sites differ between the two proteins; thus, the location of residues in the C. lari
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structure may not accurately represent the exact situation in the C. jejuni PglB. Finally, the

measurements are made between the site of mutation and the N-terminal LBT extension modeled

onto the PglB structure. In fact, the mutation sites provide the unique handles for conjugation to

Bodipy-TMR. The error increases as the size of the Bodipy-TMR is the component whose

distance from the LBT matters, and it is unknown the degree to which the LBT model represents

its actual position when expressed on the N-terminus of PglB.

Mutation Location r (A) E

1 F58C externaIop) 45 0.68

2 W88C ELI 44 0.71

3 M147C EL2 37 0.87

4 F308C EL5 61 0.25

5 N319C ELS 47 0.62

6 Y467C WWDYG' helix 57 0.37

C.

WWDxGI *h.

ppt ide

EL5 ELI

E- 'I 5. 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E = 6

r =RO= 50.9 A

0 20 40 60 80 100
r (A)

Figure 22: Sites of cysteines mutated into PglB to act as handles for LRET acceptor.
(A): Table listing the residues that were mutated to cysteines (in separate constructs) and the
general location of the protein in which they appear. The measurements were made in Pymol
between an LBT model at the N-terminus of PglB and each residue. (B) Efficiency (E) of LRET
as a function of Tb 3 (donor) and Bodipy-TMR (acceptor) distance (r), also shown in Figure 20.
(C): Snapshot of a model of the C. lari crystal structure shown in Pymol. The sections of the
protein in which the cysteines mutations appear are colored to coordinate with the identifiers
listed in the last column of the table on the right.
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Nonetheless, the chosen locations span a range of estimated distances within 10-15 A of

the RO value, increasing the likelihood that one or several will fall within an informative

measurement range. Even when precise distances cannot be accurately obtained, conformational

changes can be detected if the helix or loop containing the labeled cysteine undergoes a motion

from a distance of relatively low LRET efficiency to one of high efficiency. The cysteine-

mutants chosen were constructed by site-specifically mutating the LBT-PglB-CxxC construct,

providing unique handles to conjugate Bodipy-TMR.

Synthesis and labeling of cysteine-containing peptide substrates of PglB

In order to measure intermolecular LRET to gain information on location and order of

substrate binding, a substrate peptide (SP) containing a cysteine was synthesized to allow thiol-

specific labeling. A negative control (NC) peptide was also synthesized, which also contains a

cysteine and similar amino acid content, but lacks the consensus sequence. These peptides are

shown in Figure 23. The cysteine was added C-terminal to the consensus sequence in SP (and

close to the C-terminus in NC) because rough distance measurements of the N-terminus (location

of LBT) to the peptide bound in the C. lari structure indicates that this distance is closer to the

Ro-value than the distance between the N-terminus of the bound peptide and the N-terminus of

the PglIB structure (Figure 24).

202



HO HN

II
= 0 =C 0

H H HHH
N N N

0 0 CH 2  0 CH3  0 YH2  0

CH 2

NH2

Cys-containing substrate peptide (SP)

CH2CO-G D Q N AT Y C G -CONH 2

Exact Mass: 968.5 Da

OH 
NH 2

CH, CH2 SH

S0 CH 3  0 =C 2  0 0
H H H H HN N N)I -f N N N N

YH H H HH
O 0 CH2  0 CH2  0 H2C

HH' OH

NH 2

I HN

Cys-containing negative-control peptide (NC)

CH 3Co-G E Q A W Q S C G -CONH2

Exact Mass: 1005.5 Da

Figure 23: Two peptides synthesized for intermolecular LRET studies.
Top panel shows the substrate peptide, which contains the PglB consensus sequence as well as a
cysteine to provide a unique thiol group for labeling. Bottom panel shows the negative control
peptide, which also contains a cysteine for labeling. This peptide resembles the substrate peptide
in size, charge, and amino acid content, but lacks the consensus sequence required for
glycosylation by PglB.

203



Intermolecular LRET Intramolecular LRET

Ro = 50.9A
(between LBT-Tb(3+) & Bodipy =TMR)

labeled substrate
peptide Am

eled
ysteine

LBT

Figure 24: Distance measurements determine the preferred location of cysteines in
substrate peptide and site-specific mutagenesis.
Left: Depiction of the C.lari PglB crystal structure showing the bound peptide (N-terminus

closest to the bottom in this figure) in green sticks. The structure of the LBT is modeled at the N-
terminus of the protein (green) representing where it is genetically encoded. The measurement
indicates a distance of 49 A between the Tb 3 and the C-terminus of the peptide. The orange star
represents the location the Bodipy-TMR is expected to label a cysteine. Though the measurement
is a rough approximation, it falls in the nearby range to the Ro value for the LBT-Tb 3 complex
and Bodipy-TMR LRET pair, 50.9 A [10]. Right: Analogous figure to left, but in contrast the
location of an inserted cysteine for labeling and intramolecular LRET studies is being assessed.
Measurement and picture made in Pymol, PglB structure, PDB:3RCE [3], LBT structure, PDB:
1TJB, [8].

These peptides were synthesized by SPPS, purified by HPLC, and verified by MALDI-

MS analysis. Pure peptides were subsequently labeled with Bodipy-TMR, re-purified using

HPLC, and re-verified with MALDI-MS (Figures 25, 26). Luminescent measurements were
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performed to ensure that these peptides showed predictable behavior with virtually no non-

specific emission resulting from 280 nm excitation after a 50-gs delay and high overlap between

the LBT-PglB absorbance and the Bodipy-TMR peptide (Figure 27). Stocks of each were stored

in aliquots at -80'C for upcoming LRET experiments. Control assays showed that the negative

control peptide was indeed inactive and that the labeled substrate peptide shows similar activity

levels to the unlabeled substrate (Figure 28).

Substrate peptide
Ac-GDQNATYCG-NH2

991.8 Da
= 968.4 (neutral mass)
+ 23 (Na')

Mass (m/z)

a
S

Negative Control peptide
Ac-GEQAWQSCG-NH2

1028.8 Da
=1005.4 (neutral mass)
+ 23 (Na+)

[ - TM1 'T M 
Mass (m/z)

Figure 25: MALDI-MS validation of masses of peptides for LRET studies.
Left: Mass spectrum of substrate peptide solution with a major peak at 991.8 Da. Right: Mass

spectrum of the negative-control peptide with a major peak at 1028.8 Da.
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1.8

1.6 HPLC-purification of Bodipy-labeling reaction

1.4 Labeled-peptide - 544 nm

1.2 544nm = MaY
TCEP- adduct absorbanceo

Bodipy-TMR
0.8

0.6

0.4

0.2

0
0 5 10 15 20 25 30 35 40 45

Minutes

Figure 26: HPLC purification of Bodipy-TMR labeled peptides.
Bodipy-TMR absorbs at 544 nm (red), indicating the peaks containing the Bodipy-TMR. Peptide
absorbs at 280 nm (grey). The left-most peak represents unlabeled peptide, the center peak
represents labeled peptide, and the right-most peak corresponds to TCEP-adduct with the dye (all
determined using MALDI-MS).

Emission of Bodipy-TMR-substrate Overlap of donor (sLBT-PgIB) emission and

1.E+06 peptide following excitation at 280nm acceptor (Bodipy-TMR-peptide) absorbance

9.E+05 1 -- Bodipy-TMR-labeled

8.E+05 -'-No delay 1 substrate peptide

I - -- sLBT-PglB
T E+05 50 ps delay 8
6E+05

-E 51+05 0.6
4.E+050

3.E+05 0.4

2.E+05

1.E+05 02
0.E+00 0

500 520 540 560 580 600 450 500 550 600
Wavelength (nm) Wavelength (nm)

Figure 27: Bodipy-TMR is a favorable LRET acceptor to LBT-Tb 3 donor luminescence.
Left: Bodipy-TMR conjugated to a cysteine-containing peptide substrate shows high background
luminescence due to non-specific excitation by 280 nm light, which decreases the signal: noise
ratio in typical FRET experiments. After a 50 pis time delay, the background signal is virtually
eliminated, which demonstrates the benefit of LRET over FRET due to the longer lifetime of
several milliseconds. Right: Overlap of LBT-Tb3+ emission with Bodipy-TMR-thiol conjugate
absorbance. The maximum emission of LBT-Tb 3 at 544 nm due to excitement at 280 nm
overlaps well with the absorbance maximum Bodipy-TMR-thiol conjugate.
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Testing (crude) negative control and substrate Comparison of turnover of Bodipy-labeled

50 peptide for activity 10 substrate peptide and DONAT-Nph

45 9
40 2NC A 2SP 8 06 uM DQNATC-Bodipy

35 7 0 6 uM DONAT
30 6

S2505

20 4
15 A 3

A
10A X X X 2
51

0 00 5 10 15 20 25 30 0 1 2 3 4 5 6
Time (minutes) Time (minutes)

Figure 28: PglB activity assays in presence of substrate and negative-control peptides.
Left: PglB activity assay shows that the negative-control peptide lacks activity, as expected.
Right: Bodipy-labeled substrate peptide (SP) shows similar rates to the peptide typically used in
PglB assays, indicating that the Bodipy conjugate does not significantly impede binding or
catalysis.

Initial LRET measurements

With the above components assembled, initial LRET measurements were made between

LBT-PglB and the labeled substrate peptide. The labeled substrate peptide (designated 'SP') was

titrated into a solution of LBT-PglB saturated with Tb 3 . Emission spectra were recorded and the

relative emission at the emission maximum for BODIPY-TMR (572 nm) shows corresponding

increases, indicating energy transfer is occurring (Figure 29). The increase in emission intensity

at 572 nm saturates when all LBT-PglB is bound by labeled peptide, and the intensity at 572 nm

can be plotted against the concentration of BODIPY-TMR SP to give a binding constant (Figure

29). The binding constant calculated below was in good agreement with activity-based

determinations of binding constants for the Ac-DQNAT substrate peptide to PglB, which
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average 1 pM. The agreement between these values is a good indication that the LRET measured

is representing native binding behavior of the substrate peptide to the enzyme.

2 OE+04 80-8 5 pM LBT-PglB

-5 5 pM Tb3+ 5000

1 2E+04 -- 22 pM SP
232pM SP 3080i 0 1i2000--- 3.3 IN SP 305613x

pM2000 x + 0.77
4 OE+03 1000 R2 0.82

0 OE+00 0 2 3
500 520 540 560 580 600 [ s 2 3 4 e

Wavelength (nm) [Bodipy-TMR substrate peptldeJ

Figure 29: Increase and saturation acceptor emission.
(Left) Labeled substrate peptide was added in increasing amounts, resulting in signal saturation at
572 nm (emission maximum for Bodipy-TMR). The increasing intensities can be graphed versus
substrate concentration to approximate the binding constant of the peptide to LBT-PglB (right).
The curve gives a rough fit that estimates the binding constant at 0.77 pM, which agrees with
other estimates averaging 1 pM.

In order to translate the LRET measurements into distance measurements, lifetime

measurements were made in addition to measuring emission spectra upon addition of increasing

concentrations of labeled-SP (Figure 30). The corresponding decrease in lifetime is visible and

the saturation of the lifetime change can also be observed. By comparing the lifetime

measurements for LBT-PglB with saturating Tb 3 to LBT-PglB with saturating Tb3+ in the

presence of labeled SP (with labeled SP contributing roughly half of the signal to the measured

lifetime, determined by coefficients for each parameter in the biexponential curve), distance

measurements can be obtained (Figure 30). The lifetime values are used to calculate a transfer

efficiency, which is then used along with the known R0 value of 50.9 A to calculate the distance r

208



(see Methods). The measurements shown in Figure 30 result in calculated distance values that

agree with expectations based on measurements made using the PDB file for the C. lari PgIB.

1.0 ---

09

+5.5 uM Tb3+

0.7 a1.1 uM SP

0e 2.2uM SP

0-5j
A3.3 uM SP

04

03

0+2

01

0 2 - - 8 10
Time (ms)

Donor only TD

\** y1.01*-x)2-30

Donor in presence of acceptor

y = 0.66*e-a + 0.39'e-x61It

TDA D

Figure 30: LRET measurements with labeled peptide substrate.
Left graph shows the curves obtained with increasing concentrations of SP (substrate peptide,
labeled). The right graph shows only the curves obtained for LBT-PglB with saturating Tb3+

(monoexponential) and with the addition of 2.2 pM labeled acceptor peptide (biexponential).
Curve fits were made using Sigmaplot.
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Conclusion

In order to investigate aspects of the OTase mechanism outlined above, dynamic

distances of pure, active PgIB in its apo state and upon substrate binding will be measured using

intramolecular and intermolecular LRET. This approach utilizes the pure, stable form of PglB,

optimized by protocols described in previous progress reports. In contrast to structural data, this

strategy is uniquely valuable because it ensures the data derived from the studies is

representative of the active states of enzyme. Specifically, a lanthanide-binding tag (LBT) was

genetically fused to create the construct LBT-PgB-His1o. The terbium ion (Tb 3 )-bound LBT

will function as a donor chromophore. Cysteines have been introduced into specific locations of

PglB as well as substrate peptide, allowing specific labeling using a thiol-reactive acceptor dye.

Several fundamental tasks have been completed toward development of an LRET system

for measurement of dynamic properties of the OTase reaction. These tasks include synthesis,

labeling and purification of the substrate and negative-control peptides, the double-cysteine

mutant of PglB was constructed, expressed, and measured for activity; the double-cysteine

mutant was used as a template for site-directed mutagenesis reactions yielding constructs with

cysteines in desirable locations for labeling, the LBT-PglB construct was made in the pET24a(+)

vector and the cysteine mutants placed in this construct, and the LBT-Ubiquitin construct was

obtained and expressed and purified, and aliquotted for future use. The sequence of the codon

sequence of the LBT has been optimized, yielding much-improved expression of LBT-PglB. The

important discovery has been made that LBT luminescence intensity is dependent upon the

fusion protein and buffer conditions. Finally, LRET was observed between the labeled substrate

peptide and LBT-PglB with Tb 3 , and the measurement agrees with expectations based on the
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available structural data. This observation provides strong evidence that the system described is

capable of successfully measuring distances between substrate and OTase and potentially

between labeled cysteines within the enzyme and the N-terminal LBT. Remaining tasks in the

measurement of intermolecular LRET distances include the synthesis of an additional negative-

control peptide which is less similar in sequence to the substrate. Unfortunately, the negative-

control peptide that was synthesized and labeled (described above) shows LRET in addition to

the substrate peptide, indicating some non-specific binding is occurring.

For intramolecular LRET measurements, the cysteine mutants in the LBT-PglB construct

must be expressed and measured for activity to determine which are suitable to carry forward

into testing, the labeling of the cysteine constructs of LBT-PglB with Bodipy-TMR must be

optimized and each active mutant will need to be labeled. These experiments are currently being

applied to an archaeal OTase AglB in addition to PglB.

In addition to the goals set forth above and the progress made toward achieving them,

there exist additional possibilities for using the LBT-PgIB system to investigate further aspects

of the reaction. A growing possibility is the attainment of a non-disruptive label that can be

specifically conjugated to the Und-PP-glycan substrate. Probe design alone could be highly

informative as to which characteristics of the polyprenyl moiety accounts for key interactions

and binding specificity. Determining the location of the binding pocket for this substrate and the

role the first linked sugar plays in determining specificity would introduce opportunities for

glycoengineering to advance. Along these lines, understanding these mechanistic components

will have implications for strategies such as directed evolution and rational design of the active

site for a desired cause; for example, altering specificity may allow incorporation of new probes

in vivo that would enable valuable exploration into the role of specific glycans in bacterial
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pathogenesis. Therefore, establishing in a stepwise manner the principles by which the OTase

accomplishes its unique chemical transformation is of vital importance for opening up various

avenues for studying N-linked glycosylation in a realm of contexts.
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Materials and Methods

Synthesis of substrate and negative-control peptides

Standard Fmoc SPPS was used in production of the cysteine-containing peptides. 200 mg of

Novapeg Pink Resin was agitated (with N2 (g)) in dichloromethane (CH 2CI 2) for ten minutes. The

Fmoc protecting group was removed from the resin and subsequent amino acids by agitating in

20% piperidine in dimethylformamide (DMF) for five minutes (3X). Washes were done in DMF

for 1 minute (5X) and CH 2C 2 for 1 minute (3X). The success of each coupling was tested using

the TNBS test. Initially, coupling conditions were 4 (resin) equivalents of PyBOP, 4 equivalents

of amino acid and 8 equivalents of diisopropyl ethyl amine (DIPEA) were agitated in DMF with

the resin for 1 hour. After difficulty coupling 5Y, all subsequent couplings were done with 6

equivalents of PyBOP, 6 equivalents of amino acid and 8 equivalents of diisopropyl ethyl amine

(DIPEA), agitated in DMP with the resin for 2 hours. When leaving the incomplete peptide

overnight, the reaction was washed, dried in N2 (g) and stored at 44C.

Purification and labeling of substrate-peptide and negative-control peptide

Peptides were purified by reverse phase HPLC with a Waters 600 automated control module on a

YMC C18 preparative column eluting with acetonitrile/water containing 0.1% TFA. For

detection, a Waters 2487 dual wavelength absorbance detector was used to record at 228 nm and

280 nm. Standard HPLC conditions were 5% acetonitrile for 5 minutes followed by a linear

gradient from 5% to 95% acetonitrile for 30 minutes. Purity was confirmed by analytical HPLC

and correct mass validated by ESI-MS on a Mariner electrospray mass spectrometer. Bodipy

labeling was performed on HPLC purified peptides with N-terminal amines. The lyophilized,
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pure peptide was dissolved in 0.1 M NaHC03 and the concentration was determined on a

Shimazu Spectrophotometer by recording the absorbance at 280 nm in 6 M Guanidine, using the

Extinction Coefficient of tyrosine (PC = 1280 M-l cm-1). 0.52 pmoles of peptide was added to

1.3 pmoles of BODIPY@ TMR (Invitrogen), dissolved in 50 pL of DMSO. The reactions were

shaken for 4 hours and then purified by preparative HPLC as described above except with

monitoring wavelengths at 280 nm and 544 nm (excitation max for BODIPY-TMR). Standard

HPLC conditions were a linear gradient from 7% to 100% acetonitrile for 30 minutes. Purity

wasconfirmed by analytical HPLC and correct mass validated by ES-MS on a Mariner

electrospray mass spectrometer.

Emission spectra

Luminescence titrations were conducted on a Horiba Jobin Yvon Fluoromax-3 equipped with a

Spex 1934D3 phosphorimeter in 1 cm path length quartz cells. Sensitization of Tb(III)

luminescence was carried out by exciting tryptophan at 280 nm and recording the luminescence

at 544 nm. A 315 nm long-pass filter was used to eliminate interference from harmonic doubling.

In addition to components explicitly mentioned, all solutions contained 10 mM HEPES, pH 7.4,

and 100 mM NaCl. Instrument settings were made using the experiment type "Phosphorimeter

Emission Acquisition" with the following settings: Increments = 3 nm, integration time of Is,

scan start of 450 or 500 nm, scan end of 600 nm, excitation wavelength = 280 nm, number of

scans = 1, sample window = 10 ms, delay after flash of 0.05 ins, time per flash = 40 ms, number

of flashes = 300, signal collected = S, slit widths of 5 nm (excitation) and 5 nm (emission).

Aliquots of Tb(III) ions were added, and the luminescence was recorded to obtain a titration

curve. These data were fit using the EXCEL or SIGMAPLOT as appropriate.
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Lifetime measurements

Lifetime measurements were recorded on a Horiba Jobin Yvon Fluoromax-3 equipped with a

Spex 1934D3 phosphorimeter. The intensity at 541 nm was monitored following a lamp pulse at

280 nm from a xenon flash lamp. Lifetime measurements were made using the experiment type

"Phosphorimeter Decay Acquisition by Delay" on the Fluoromax-P with the following settings:

Initial delay and delay Increments 0.05 ms, max delay of 10 ms, number of scans = 2 (averaged),

sample window = 20 ms, time per flash = 70 ms, number of flashes = 20, signal collected = S,

slit widths of 5 nm (excitation) and 10 nm (emission).

Calculation of distances using lifetimes

The lifetime decay data was fit to a monoexponential or biexponential curve:

monoexponential: I(t) = I(0)exp(-t/T)

biexponential: I(t) = I(0) 1exp(-t/ti) + I(0)2exp(-t/t 2)

where 1(t) luminescence intensity, t = time, 1(0) = luminescence at t = 0, t = lifetime.

SIGMAPLOT was used to determine the best curve fit.The LBT construct without acceptor

present is fit to a monoexponential curve (i.e. one lifetime) and the LBT in the presence of an

acceptor is fit to a biexpontential (i.e. two lifetimes: LBT influenced and not influenced by the

acceptor). These lifetime values can then be used to calculate the distance between the donor and

acceptor using the Frster equation:

r = Ro[(I/E)-1]1/6
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where r = distance, Ro = Frster radius (50.9 A for LBT-Tb+ and Bodipy TMR), E = energy

transfer. Energy transfer (E) is calculated directly from the lifetimes derived from the curve fits:

E = (- TDA) TD

where TDA = lifetime of the donor in the presence of the acceptor, TD = lifetime of the donor

alone.
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cell development and regulation: included passing large collections of fly cultures and separating
flies based on phenotypic features.

* Observed and recorded phenotypic changes in mutants isolated in screen.

Research Intern- Dr. Daniel Reich Summer 2005
Johns Hopkins University

Department of Physics and Astronomy
* Research into biophysical applications of magnetic nanoparticles in human cells.
* Fusion of ferromagnetic nanowires into human cell lines to direct localization and culture.
e Designed and initiated assembly of a 3-dimensional cell-culture matrix for use as an improved

model of cell growth in vivo.

TEACHING EXPERIENCE

Teaching Assistant

e Introduction to Experimental Biology, LAB 7.02, MIT (2011)
* Physical Chemistry of Biomolecular System, LECTURE 7.10, MIT (2009)
e General Chemistry, LAB, Columbia University (2006)
* Volunteer ESL teacher, Community Impact Center, Columbia University (2004)

Mentorship and Tutoring

* MIT: Undergraduate Women's Mentoring Program (2012)
e Private tutor for local high-school student in Chemistry I, Boston, MA (2010)
* Volunteer tutor in Molecular and Cell Biology, Columbia University (2006-2007)

RELATED WORK EXPERIENCE
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Part-time research assistant- Dr. Rachael Neve 2009- 2013
MIT Viral Gene Transfer Facility

Interpreted molecular biology vector manipulation and constructed visually informative vector
maps using DNA and graphic software programs.

Environmental Health and Safety (EHS) Committee Member 2009 - 2011
MIT Department of Chemistry

* Participated in EHS committee meetings and lab safety inspections.

Contract technical writer 2004 - 2007
New World Encyclopedia Project

* Performed research on varied topics and wrote articles for online encyclopedia entries.

PUBLICATIONS

Jaffee, MB. & Imperiali, B. Optimized protocol for expression and purification of membrane-bound
PglB, a bacterial oligosaccharyl transferase Prot. Exp. Purif 2013, 89(2):241-50

Jaffee, MB.& Imperiali, B. Exploiting topological constraints to reveal buried sequence motifs in the
membrane-bound N-linked oligosacchal transferases Biochemistry 2011 50(35):7557-67

Burroughs AM, Jaffee M, Iyer LM, Aravind L. Anatomy of the E2 ligase fold: implications for
enzymology and evolution of ubiquitin/Ub-like protein conjugationJ. Struc. Biol. 2008 162(2):205-18

PRESENTATIONS AND POSTERS

Jaffee, M.B. Ethical dilemmas in biomedical sciences Northeastern University, Invited lecture in
Course ESC 153: Science, Technology, & Society. Boston, MA, February 14 h 2013. (Oral)

Jaffee, M.B. and Imperiali, B. N-linked glycosylation in bacteria: Tractable systems for biochemical
& biophysical analysis. MIT Annual Retreat for Building 68, Cape Cod, MA. June 11-12, 2012.
(Poster); and MIT Protein Structure & Function Supergroup, Cambridge, MA, May 1 0 th 2012. (Oral)

Jaffee, M.B. and Imperiali, B. Investigating the mechanism of the oligosaccharyl transferase. MIT
Graduate Biology Journal Club, Cambridge, MA, August 2 4 a 2009. (Oral)

Jaffee, M.B. Biochemical techniques to investigate the mechanism of an enzyme. Undergraduate
Biological Chemistry Club of Wellesley College, Wellesley, MA, May 5th 2009. (Oral)

Felton, J., Jaffee, M., Reich, D. Directed Cell Assembly with Magnetic Nanowires American Physical
Society March Meeting, Baltimore, MD, December 5 h 2005. (Poster)
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