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ABSTRACT

Graphene's unique electrical and mechanical properties have brought it into the
spotlight in recent years. With the number of patents increasing rapidly every year,
production of the material is becoming more and more important We evaluate various
production methods of Graphene, including Chemical Vapor Deposition, Exfoliation, SiC
synthesis, and Nanotube Unzipping. Key findings report CVD having the largest
potential for large-scale production for most applications with lower quality
requirements, while exfoliation of graphite produces lower quality graphene for
applications that do not need large sheets of graphene. Currently, CVD has been able to
produce sheets of graphene with diagonal sizes of 40", with high transparency. Using
the roll-to-roll method, these sheets have proven viable on flexible touchscreen devices.
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Chapter 1

Introduction

Graphene has existed ever since graphite has existed

-Sean C. O'Hern

1.1 Focus of the Paper and Motivation

1.1.1 Focus and Motivation

The focus of this paper is on the manufacturing and use of graphene as a

manufactured product, and the large scale viability of graphene. Focus will be

put on the current production methods of graphene, as well as the potential

limitations of these processes, including Liquid Phase, Chemical Vapor

Deposition (CVD), SiC Synthesis, and other smaller methods. Additionally, the

applications of graphene will consider the current demands of the material, and

how the material should be produced to reach these applications. Finally, the

paper will touch upon which uses of graphene are the most viable in products

in the foreseeable future.

Graphene research has taken off substantially in recent years. New papers are

produced on a nearly daily basis, and the growing interest in graphene is

enormous.1 As shown in Figure 1.1, graphene patents have more than tripled

from 2010 to 2012. From its optical and electronic properties, to the flexibility
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and strength of the material, the possibilities for graphene seem endless. Thus

far, the focus has been in the field of fundamental physics and electronic

devices, but there current potential is reaching into various other fields. One

major concern right now is how to produce graphene readily and efficiently,

and when will it be able to become a viable product in the future. By looking

into various demands of the material, and what processes can produce a

sufficient quality for those demands, graphene can take another step towards

being a real product. One major question remains on the minds of researchers:

will graphene's unique electrical and physical properties be useful enough to

justify the switch to this new material, and will the manufacturing processes

become more affordable and less lengthy to justify this jump?

400

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Publication year

Figure 1.1: Worldwide Graphene patents per year (Red

data taken) 2
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Patents in recent history for graphene have been primarily in research

institutions, thought a few companies are also beginning to patent technologies

and be the first into the field. All of this attention leads to a big push from

companies to develop methods to produce graphene in the most cost efficient

way.

Academic/lesearch Inste 120
Samsung Group 16

Research Coliaboetions 14
Guardian Indusuies Corp 6

Hitci tLd 4
Nenotek instrnm" sInc 4

Hewett-Packard Deelopnant Company LP 3

Inematinal Business Machines Corp 3
Northrop Grumman Systems Corporation 2

Mitsubishi Gas Chemical Company 2
GM Global Technology Operations hic 2

Vorbeck Materials Corp 2
Indendedent liwei3ors0

Others 31

0 20 40 60 0 100 120
Number of patents

Figure 1.2: Patents granted in the Graphene industry by group in 2010 20

1.2 Background Information and Technical Information

1.2.1 What is Graphene?

Carbon is the basis of all living things, and the basis of all of organic chemistry.

Carbon is extremely flexible with its bonding, and can form nearly limitless

possibilities with carbon-based systems, all with varying physical properties.

From tubes of carbon atoms to soccer ball-shaped shells of carbon, the element

varies substantially when the geometric makeup changes. 1
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One of the most interesting all-carbon substances is currently graphene.

Graphene is a two-dimensional crystal - a single atom thick sheet of carbon

arranged hexagonally in a honeycomb structure (shown in Figure 1.3).3

Graphene is separate from the rest of the environment and is free-standing,

making it rare, as it is the first readily known and highly researched single-

atom thick material. The material is the structure of Carbon Nanotubes, and

graphite is composed of multiple layers of graphene bonded together, meaning

that graphene has existed naturally in a multi-level version in nature. Graphene

has a number of unique properties, most importantly its high mobility,

flexibility, conductivity, strength, and durability that have sparked the recent

trend of research on the material.3
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Figure 1.3: The Honeycomb Structure of Graphene. 4

1.2.2 History of Graphene

Along with the huge spike in graphene came a large amount of public attention

for the material. Graphene's name stems from the composite of graphite and

the suffix '-ene', which indicates the structure of graphene. Graphene's true 2D

structure was thought to be unstable entirely until it was discovered in 2004.s

Research in nano-materials and nanoscience are part of a developing field that

has been booming in recent years.
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Nanoscience in the 70s-90s was a developing field that was discovering that

the size, not just the composition, of a material could change the properties of

the material substantially. Beginning research on fullerene (materials made

entirely of carbon) molecules was difficult at the time, and progress was seen

in other forms of carbon-based materials, such as the Buckminsterfullerene

developments in the 80s. 6 However, as research progressed, the ideas began

to grow of the potential for sp 2 carbon. Carbon nanotubes (CNT), which are

cylindrical graphite structures on a nano-scale, began to find relevance when

Sumio Iijima discovered that these CNTs behaved very similarly to metals and

semi-conductors, which would mean that carbon could be used to produce

both transistors and the wires connecting them.1 Since these CNTs were so

small, this would allow for electronics functioning on an extremely small scale,

and bring life to the field of microelectronics. Funding began to come in for

CNTs, but growing these tubes in a high enough density, in a chosen geometry,

and with dimensions large enough to prove useful became a bit difficult, and
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their viability as a commercial good still struggles to come to fruition. 6

2013-

2010-2012-

2011-

2010-

2004-

1998-

1997 -

1986 -

1965-1986-

1962.

A major overview of electrochemical approaches for
the production of GN flakes is published

More advances were made in the electrochemical production of
GN flakes (e.g., non-aqueous media, GN composite products,
reduction of GO, etc.)

Graphite was electrochemically oxidised, intercalated
and exfoliated to produce GN flakes (few layers) in
aqueous media

Nobel Prize in Physics was awarded to Geim and Novoselov
for "ground-breaking experiments regarding the two-
dimensional material GN"

Geim, Novoselov and co-workers isolated GN by means of
micromechanical exfoliation

Electrochemistry of GICs was reported in depth in a review
paper

.. TJPAC formalised the definition of GN

The term 'graphene' was suggested to be used to
describe single layers of graphite-like carbon

Electrochemical intercalation of ionic compounds into
graphite layers for battery and high temperature MOSCs

Reduced GO were prepared by chemical and thermal
reduction of graphite oxide

1841 First graphite intercalated compound (GIC) reported

1840.- Graphite oxide prepared by Schafhaeutl, Brodie,
Hummers, Staudenmaier and others

Figure 1.4: An outlined History of the production of Graphene. 7

Graphene began as a description of the single-layer sheets of carbon in

graphite materials, and then in carbon nanotubes. However, graphene

research made substantial leaps in 2001, when Walt de Heer realized that
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Carbon Nanotubes, if unrolled, would retain a large number of their physical

and electric properties.8 This was a large development, as carbon nanotubes

were difficult to manufacture in a consistent and well-controlled way, and

scaling the nanotubes from their single-tube transistors to larger scale

applications in circuits was nearly impossible, and there was a possibility that

graphene could reach a state of commercial use since it was easier to use in

general surfaces of products. Because there was such a large amount of

research already done on CNTs, many of the seemingly strange but

outstanding properties (such as the quantum hall effect that allowed for CNTs

to act as metals and semi-conductors) could be accurately predicted in

graphene. The first real characterization of graphene came in 2004 when

Andre Geim and Kostya Novoselov of Manchester University were able to

finally extract (with Scotch tapes) single layer sheets of graphene from large

pieces of graphite. Since then, graphene has continued to be a point of popular

discussion in the scientific world, with 2010 Nobel Prizes in Physics being

given to Geim and Novoselov for their work.5

1.2.3 Physical Properties of Graphene

Graphene's electrical properties garner most of the attention due to the

possibilities for microelectronics such as flexible display, but graphene is also

an incredibly interesting material from a physical standpoint as well.

Graphene's unique physical properties raise a few questions about its

potential as a structural material. Graphene is transparent, and extremely
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flexible. Graphene is exceptionally strong, with a breaking strength of over 100

times that of steel film, given the same thickness with fracture strength of 125

GPa.9 In fact, it is the thinnest material currently known, and the strongest The

Young's Modulus of graphene in tension has been measured to be 1 TPa, three

times that of steel, and is extremely light, weighing a fraction of a percent of

the weight of other materials, with a specific surface area of 2630m 2/g. 9

Graphene is also known for its thermal properties, specifically its thermal

conductivity of -5000 W/mK, which allows for it

Additionally, holes in graphene can actually be fixed by simply having

materials around the sheet that contain carbon. When pure carbon surrounds

the material, holes are fixed entirely, with the carbon "snapping" into the

lattice structure of the sheet Also nano holes (defects) may be used to

selectively pass ions and atoms, which may be used to make superefficient

membranes for desalination and atomic sieving.

Many crystals cannot grow in a stable state when in their 2D arrangement due

to the requirement of high temperature and the instability that thermal

fluctuations can cause for 1D and 2D objects. Crystals on a nanometer-scale

can exist, but as the size increases, the 2D crystals naturally converge to a

more stable 3D object in nature. However, this is not necessarily true in a

laboratory setting, as the crystals can be handled at a low enough temperature

so as to not cause these thermal fluctuations to break the existing ionic bonds.
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1.2.4 Electronic properties of graphene

Perhaps the most exciting properties of graphene are the electronic properties.

These properties are what make graphene have such high potential as the

future of electronic devices, just as silicon changed the scope of the entire

electronics world years before. Graphene is a semi-metal, differing greatly from

3D crystals of graphite. Because of its specific lattice structure, it acts as a zero-

bandgap semi-conductor and has exceptionally high electron mobility at a

resting temperature (up to 200,000 cm 2/(Vs) ).10 This information was

highlighted in 2008 by researchers at Columbia University, who found that the

electron mobility of graphene was substantially higher when suspended

150nm above a Si/SiO2 gate electrode. 10 This work showed the potential of

graphene as a conducting ultrathin material, and reduce Dirac peak widths 10

fold compared to sheets that were not suspended.10

Graphene has been found to have a band gap tunable between 0 and .25 eV,

which is substantially lower than Si with a band gap of 1.17 eV at OK and 1.11

at 300K.11 Uniquely, the mobility of graphene is relatively unchanged in a large

temperature range. Additionally, the conductivity is higher than that of copper,

with values of 4e2/h being reported. However, impurities in graphene can

reduce electron mobility and conductivity substantially, which requires more
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precise manufacturing to avoid. Many production methods produce lower

quality graphene, which can serve purposes in more simple applications.1

One major concern with graphene is the lack of current technology to produce

large sheets of the material, meaning that multiple pieces may need to be

stitched in order to obtain a sheet large enough. Stitching at the boundaries can

cause the electronic properties to suffer, depending on the quality of the

stitching. Researchers have found that growing graphene at a more rapid rate

led to tighter stitching between sheets of the graphene, which led to higher

quality graphene. This was tested using electrodes on top of a substrate to

measure the specific boundaries and determine ways to reduce electron

mobility losses.12
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Chapter 2

State of Production: Challenges and General
Information

2.1 Current Processes

2.1.1 Mechanical Exfoliation and Micromechanical Exfoliation

Mechanical exfoliation is the most basic way of acquiring graphene sheets, first

demonstrated by Novoseloc and Geim. 1 Nicknamed the "scotch tape" method,

it can be replicated at home with a piece of graphite and scotch tape by simply

sandwiching a small piece of graphite in the tape, pulling it apart, and

repeating the process, removing excess as necessary. Eventually, what remains

is a very thin layer of graphene, which can be transferred onto a piece of

silicon. This results in relatively inconsistently shaped graphene, which may

be more than one layer thick. However, it is incredibly inexpensive, and is

practical for applications requiring low degrees of precision or quality.1
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Figure 2.1: A piece of Graphite, A roll of Scotch Tape Signed by Andre Gein, and a

graphene transistor.1

Some micromechanical exfoliation, however, is an incredibly precise

procedure. These more advanced procedures involve precisely cleaving off

sheets of graphene from pieces of graphite under a high resolution

microscope, and with high precision.13 This is a time intensive method, but

was one of the first ways that graphene was able to be removed in a high level

of quality. This procedure, while producing quality results, is generally used in

a laboratory setting due to its high degree of accuracy and low volume of

graphene produced, the method isn't currently viable on a large scale. 3
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2.1.2 Chemical Vapor Deposition

Chemical Vapor Deposition (CVD) is the most reliable source of large sheets of

graphene. CVD generally consists of a clam-shaped furnace, and transition

metal surface, and a pump or exhaust that connects to the gas inlet and

provides the process with a carbon-based precursor, such as ethanol, methane,

etc. As the precursor passes over the heated substance, in many cases copper,

the graphene is deposited on the surface and then the copper is removed, as

depicted in Figure 2.1. The process can produce square meters of graphene

sheets at a time, and can be used to provide graphene to applications that

require large sheets, such as transparent conductive applications (Touch

screens, Photovoltaics, etc). Additionally, the properties that come from CVD

are comparable to those produced and exfoliated by other methods.

(b) W(d)

Figure 2.2: CVD Growth Process of Graphene.' 4

The one substantial downside to CVD is the current cost of production. The

primary concern for this is the high cost of energy required to keep the

temperature of the process so high. Research is being done to reduce the

necessary temperature of the process, which would make the method

substantially more viable in large scale production. Another issue that needs to
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be addressed is the issues with transferring the sheets of Graphene after they

have been produced, as this is the major source of quality issues with the

method. Since copper is a conductive material, producing electronic devices on

the surface of the material can lead to a shorting of those devices, so the

material must be moved to a non-conducting substrate, which drive up the

energy costs and cause many problems withstanding the growth temperature.

CVD is not a flawless growth model, however. Studies have been conducted on

the method, and there have been significant growth defects in relatively large

quantities despite the graphene being considered continuous without properly

accounting for them. A few of the ways to reduce these defects are to: ensure

the copper foil is free of surface imperfections before using it, clear the copper

of any dust particles before use, and to ensure the copper is free of impurities

that can becomes released during heat treatment.

2.1.3 Large Scale Production of Graphene Through CVD

In what may be the most recent advances in CVD growth, researchers at the

Oak Ridge National Laboratory (ORNL) have found that large scale production

of graphene may be possible at atmospheric pressure. Samples of up to 40" in

diagonal measurement have been produced by using a large scale 67 foot long

furnace with gases of a low H2 and CH 4 that reduced their flammability at

atmospheric temperatures. 15 The copper foil was electropolished before the

growth, and it was found to produce graphene with lower frequencies of
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defects than that produced by unpolished or etched copper. 15 Transferring the

graphene with a large, commercial lamination machine allowed for easy and

usable transferring, which allows for this method to function for many

applications.

Additional work is has researched the possibility of using roll-to-roll

production methods of large sheets of graphene film, some up to 30" in size. 16

The concept undergoes a relatively standard CVD synthesis on a copper (Cu)

foil, but the transfer method is where the method differs. The graphene sheet

on the Cu foil is laminated with a polymer support between two metal rollers

before being run through a secondary series of rollers with an etching solution

for the copper, leaving only the graphene and polymer. Finally, the graphene is

run through a final series of rollers with the target substrate, leaving the

graphene on the desired surface. Figure 2.3 illustrates the process.

Graphene on
Polymer support polymer support Released

polymer support

Trget substrate
Grapheneon CL foil C Grapheneon target

Figure 2.3: The roll-to-roll method of producing large areas of graphene. 16
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This method allows for the successful production of graphene on flexible

substrates, rather than the previously required rigid substrates. By reducing

the chance of error during the transferring of the graphene, it allows for a

more consistently high quality graphene, with sheet resistances of -125 Ohms

and exhibiting the quantum Hall effect. With production of stacked graphene,

sheet resistances of-30 Ohms were observed with 4 sheets of graphene.

These two methods were able to produce sheets with 97.4% and 90%

transparency respectively. 16

2.1.4 Liquid Phase and Thermal Exfoliation

Liquid Phase production is a simple method for acquiring graphene. The

procedure involves submerging a graphite block in a liquid medium and

rubbing the graphite block while applying an ultrasonic treatment to the

medium and the rubbing agents. 17 Liquid phase production of graphene is

currently very viable for production in the near future. However, liquid phase

typically produces graphene flakes rather than larger, more consistently sized,

graphene sheets. 17 This limits the usefulness of this production method for

applications that require large sheets, but lends to a high chance of success in

the world of conductive ink and paints, since those applications would not

require sheets of graphene. Recent developments with rod-coating techniques

have been found to, in combination with the liquid phase exfoliation, produce

thin, flexible, and conducting films. 17This method involves rolling a rod

through the liquid medium with the graphene, and producing a thin sheet along
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the surface of an object, and then letting it rest. This process can result in the

production of multi-layer graphene, which can be problematic if that is not the

desired product.

Figure 2.5: Unzipping of Carbon Nanotubes. 18

Additionally, Thermal Exfoliation can be used to unzip CNTs in order to

produce a most consistent a higher quality product, but this results in a

relatively higher cost. Unzipping nanotubes can result in relatively small sheets

of graphene (the length of the tubes), which doesn't necessarily solve the issues

of liquid exfoliation.1 8 This produces narrow width graphene nanoribbons
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(GNRs), which can be useful for their controllable widths and lengths, and

smooth edges for electronic applications. In 2009, researchers at Instituto de

Ciencia de Materiales de Madrid found that these nanotubes can be unzipped in

a few different way, but among the primary methods are chemical exfoliation,

and synthetic exfoliation, though these methods remained to be relatively small

means of production, and with very similar properties to those of the original

CNTs, allowing them to work as fillers as CNTs as well. 19

2.1.5 Synthesis using Silicon Based Substrates

Silicon Carbide (SiC), a material that is currently very common in the

electronics world, can be used to grow graphene. Graphene can be synthesized

on the surface of SiC, which could allow for electronics and graphene to be

manufactured together or more fluidly. Synthesis on SiC or Si wafers was

thoroughly researched at the Leibniz Institute for Solid State and Materials

research.19 While synthesizing graphene on the surface of cubic B-SiC, they

were able to find that they were able to produce high-quality graphene with

only negligible interactions with the SiC substrate.19 By saturating the area

around the substrate with carbon, the researchers observed a production of a

film of graphene onto the annealed surface of the SiC, fitting within the lattice

structure of the SiC as shown in figure 2.4.
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Figure 2.4: Graphene's placement on the SiC surface. 19

Production via this method yields very high quality graphene, with large

crystallites having next to no issues with impurities or imperfections, with

some research being done However, again, this process comes at a very high

cost, primarily due to the >1000* C required temperature of production and the

high cost of SiC wafers. However, this growth method also has the possibility of

applications with high-frequency transistors capable of -1 THz. One issue of

quality of the production comes from the multi-layered graphene have terraces

in the second and third layers.

2.1.6 Other Growth Methods

There are a number of other growth methods, but many of them are not

commercially viable due to the very high cost or low potential for scaling.

These methods are generally higher quality, but on a smaller scale. Many times

the methods can be replicated to a very similar degree with a substantially
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lower cost (IE Spray coating an object vs using Laser Abalation). As research

continues with graphene, it is likely these methods will remain used in a

laboratory setting when production numbers are not as important as in a

commercial setting.
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2.1.7 Comparing the Various Growth Methods

Each of the various growth methods have different advantages and

disadvantages, but there are a few key criteria that can be used to evaluate the

growth methods against each other. Among these criteria are the following:

Maximum Area Produced, Defect Occurrence, Energy Required, Rate, and Cost

Table 2.1: A Comparison of the Different production methods of graphene 15,20

CVD Up to 40" High Moderate High energy High Cost
Diagonally 15  Quality scalability, Requirement

but with due to
recent temperatures
advances over 1000'C
the
scalability
is possible

Liquid Phase Nanosheets: Moderate High Moderate Energy Low Cost
from nm to a Quality, Scalability Cost
few gm but with

impurities
CNT Unzipping Nanotubes: High Moderate Moderate Energy Potential for

<10 [im Quality scalability Cost low cost, but
generally currently has a

higher cost
SiC Synthesis Thin films: High Moderate High Energy High Cost due to

>50 gm Quality Scalability Requirement, expensive
Temperature substrate
requirement of
over 1000*C

FMicromechani Flakes: 5 to High Small Low Energy Cost High Cost
cal Exfoliation 100 pm Quality but Scalability

with
uneven
films

Chemical Nanoflakes or Low Purity High Relatively Low Low Cost
Reduction of Powder: nm w/ a high Scalability Energy
Graphite to a few [im defect Requirement
Oxide density
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Chapter 3

Applications of Graphene and Their Demands

3.1 Electronic Applications

3.1.1 Flexible Electronics

The combination of graphene's flexibility and its electronic properties have

given rise to the possibility of making electronics in the future that are able to

bend to high degrees than what are currently possible. Flexible and

transparent conductors (FLC) offer a large range of interesting options for

unique products, such as flexible touchscreen devices, thin film photovoltaics,

printable electronics, and flexible transistors. Aside from graphene's flexibility,

it also has the ability to stretch up to 20% of its original dimensions. 10

Currently, the most common FLC is indium-doped tin oxide (ITO), however,

this conductor is incredibly expensive, and in short supply. Additionally, the

material can behave as a ceramic, leaving the possibility of fracturing in the

products. This leaves the need for a better FLC, and graphene might just be

that FLC.'17

Flexible electronics, however, require relatively large sheets of graphene that

must be produced separately and later applied to the electronic. These

requirements seem to point to CVD as the best option, as a large sheet can be
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produced in a high-temperature zone separately, and then applied to the

electronic during production. However, transferring the graphene after CVD

can still be difficult, as can problems in the sheet of graphene. One alternative

solution in development is coming from liquid phase exfoliation. In this rod-

coating method, a liquid medium saturated in the graphene flakes can be used

to produce a FTC by rolling the medium into a thin and flexible sheet.17 If this

process proves to be viable, it will likely mean that flexible electronics may be

able to be produced at a more reasonable cost level than CVD can currently

provide. 21 However, until this point is reached, CVD remains as the most viable

production method for touchscreen devices.

In fact, with the recent success of the CVD production methods, particularly

the roll-to-roll method, the production of these screens is quickly becoming a

reality. By rolling the graphene onto the polymer supports, the researchers

were able to transfer the graphene onto touchscreen device surfaces, leading

to a functioning touchscreen device using graphene, as shown in Figure 3.1.16
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d

e

Figure 3.1: An overview of the roll-to-roll method being applied, including the

flexibility of the film after transferring (c) and the functioning device (f). 16

3.1.2 Field Effect Transistors

The potential to manufacture graphene-based transistors is a large part of the

reason that graphene is such an exciting potential product. Because of its high

32
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carrier mobility, graphene could form some of the best high performing

transistors for radio-frequency applications. Transistors with high cut-off

frequencies, some as high as 155 GHz, have been made using the material in 40

nm transistor lengths.22 However, these applications require a high degree of

quality and consistency. In recent work, graphene has been grown on a copper

film via CVD for these applications, and then transferred onto a diamond-like

piece of carbon, where it was able to act as a suitable high frequency

transistor. 22

As a logic transistor, however, graphene finds a bit of a struggle. Graphene

works well because of its high mobility and quantum-hall effect, but the fact

that it lacks a band-gap means that it's less effective for digital switching in a

logic transistor. However, the industry potential for a graphene would be

pretty substantial, as other semi-metal transistors are currently the only major

players in the market. One way that that has been overcome has been through

the introduction of edge effects and quantum confinement of narrow width

GNRs, created by unzipping nanotubes. This means that thermal exfoliation

could be one of the more effective ways of producing graphene for these

applications. Synthesizing graphene on SiC is also a possibility for the

production of graphene for transistors, but the substrates used are relatively

expensive.
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3.2 Materials Applications

3.2.1 Energy Applications

In addition to other, more commercial, applications, graphene also has

applications in the world of clean energy. Graphene's high specific surface area

(-2600m2/g) and ability to quickly transfer electrons, the material is being

assessed in energy applications. A few of the possibilities for the material

currently include graphene-based electrodes for lithium ion batteries and for

some capacitor applications. 23 Graphene currently helps to increase the

recharge capacity of some of these batteries in a laboratory setting, and could

help increase the capacity of conductors and reduce the losses in

electrochemical double layer capacitors (EDCLs) by using graphene as spacers

within the capacitors themselves. For these applications, liquid based

exfoliation techniques work well, due to the need for a moderate level of

quality, but at a relatively low price to keep the price of these batteries and

capacitors down.24 Solar panels also have graphene in their potential future,

the electronic properties of graphene make it highly functional in solar

applications. Additionally, since graphene is transparent, solar cells could be

built into windows, allowing for buildings to regain lost energy through solar

power. These applications, however, would require large sheets of the

material, at a relatively high quality. This kind of scaling and quality would

have to come from CVD developments, especially with windows and solar

panels being so dependent on size.
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3.2.2 Sensors

Because graphene has a conductance that changes with the extent of the

surface absorption, the large specific area of the material, and the low Johnson

noise, the material shows promise for detecting various molecules. These

molecules can include gases, biomolecules, and other materials. When the

other materials are absorbed, the interaction and charge transfer between the

two creates a chemical response.25 When there are changing carrier densities

and Fermi level, as well as the resistance of the graphene, the graphene is

likely being doped with the molecules, allowing for detection of them. For

these applications, the chemical reduction of graphene production allows for

the best reactions from the sensors. The low cost, despite the relatively low

quality, allow for this growth method to work well with sensor applications.25
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Chapter 4

Conclusions and Areas for Potential Progress

4.1 Conclusions

4.1.1 Most viable Production Methods for large scale graphene

Of the various production methods, the two that stick out most clearly are

Chemical Vapor Deposition and exfoliation based techniques. Between the two

techniques, they provide methods for producing large volumes of lower

quality (via exfoliation), as well as large sheets of high quality (via CVD) and

seem to cover the vast majority of applications for graphene. It seems as

though many of the technologies currently being pursued are based on these

two methods. In fact, the vast majority of graphene patents in recent years

have been based in CVD growth and exfoliation research, as shown by Figure

4.1. Moving forward, it appears that these two synthesis techniques will be the

major players in the graphene industry, and are the most viable production

methods on a large scale. The primary applications of graphene will likely

focus on the material's unique potential in electronics, specifically transistors

and in flexible touch screen devices.
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Figure 4.1: A breakdown of the number of patents in various growth

methods. 20

4.2 Looking Forward

4.2.1 Current work Being done and considerations for future work.

From the research being done with large-scale furnaces and synthesis on large

scales to the work being done with development of 3D graphene nano-

networks from mass CVD synthesis, the industry is in a clear move towards

viability as a product. As the price of graphene continues to fall, the scalability

of the material will have to be the focus of research, and products will see

graphene as more of a realistic goal, and not just a miracle material that is out

of reach. Within the next couple of years, it is clear the graphene will continue

to be a hot topic in the world of physics, manufacturing, and the overall
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scientific community. Once a large scale production of the material is achieved,

it will appear in everyday devices with higher and higher degrees of frequency.
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