Toward a Compact Underwater Structured Light 3-D Imaging System

by

Geoffrey E. Dawson

Submitted to the
Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Mechanical Engineering
ARCHIVED
at the [MASSACHUSETTS INSTITUTE

Massachusetts Institute of Technology

June 2013

© 2013 Massachusetts Institute of

Signature of Author:

i OfF TECHNCLOGY

JUL 3¢ 201

LIBRARIES

Technology. All rights reserved.

V/ V]

Deﬁar’mf&-t oﬁMé‘cﬁanical Engineering

May 10, 2013
- N VA
Certified by:
/ c(Dr. John J. Lefnard
Professor 8f Mechanical and Ocean Engineering
Thesis Supervisor
rF4
Accepted by: - - e

Dr. Anette Hosoi
Professor of Mechanical Engineering
Undergraduate Officer

Toward a Compact Underwater Structured Light 3-D Imaging System

by

Geoffrey E. Dawson

Submitted to the Department of Mechanical Engineering
on May 10, 2013 in Partial Fulfillment of the
Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

ABSTRACT

A compact underwater 3-D imaging system based on the principles of structured light was
created for classroom demonstration and laboratory research purposes. The 3-D scanner design
was based on research by the Hackengineer team at Rice University. The system is comprised of
a low-power, open-source hardware single-board computer running a modified Linux
distribution with OpenCV libraries, a DLP pico projector, camera board, and battery module
with advanced power management. The system was designed to be low-cost, compact, and
portable, while satisfying requirements for watertightness. Future development and applications
may involve navigation systems for an autonomous underwater vehicle (AUV).

An initial study of 3-D imaging methods is presented, and the strengths and drawbacks of each
type are discussed. The structured light method was selected for further study for its ability to
produce high-resolution 3-D images for a reasonable cost. The build of the 3-D imaging system
was documented for reproducibility, and subsequent testing demonstrated its functions and
ability to produce 3-D images. An instruction guide for operation of the device is provided for
future classroom and laboratory use.

The 3-D imaging system serves as a proof-of-concept for utilizing structured light methods to
produce 3-D images underwater. Image resolution was limited by the output resolution of the
pico projector and camera module. Further exploration in obtaining ultra high-resolution 3-D
images may include use of a more powerful projector and a higher resolution camera board
module with autofocus. Satisfactory 3-D scanning validated the performance of structured light
scanning above water. However, contaminants in the water hindered accurate rendering by the
system while submerged due to light scattering. Future development of a on-the-fly mapmaking
system for AUV navigation should include algorithms for filtering light scattering, and hardware
should based on an instantaneous structured light system utilizing the Kinect 2-D pattern method.
Autofocus and increased projector brightness would also be worthwhile additions.

Thesis Supervisor: Dr. John J. Leonard
Title: Professor of Mechanical and Ocean Engineering

Acknowledgments

I would like to thank my advisor and thesis supervisor Dr. John J. Leonard for his guidance and
support during the development of this project. His work on 3-D imaging systems was the
inspiration for this thesis, and I hope he will enjoy utilizing the system for years to come in

classroom demonstrations and future laboratory explorations.

I would also like to thank Dr. Michael Kaess for his assistance with the programming aspects of
this project. Having guidance while setting up the hardware and software systems and help

during troubleshooting was indispensable.

Also, I would like to thank the Hackengineer blog team (www.hackengineer.com) for providing
a structured light 3-D scanner design and code to base the project on. Their previous work
greatly streamlined the imaging system development and allowed for a greater focus to be placed

on development for underwater use.

I would not be the engineer I am today without all the fantastic professors, lecturers and
assistants I have had the pleasure to learn from and work with here at MIT. Thank you for
equipping me with the technical knowledge and intellectual curiosity to pursue a career in

mechanical engineering.

Lastly, I owe a huge thank you to my family for always being there for me. Mom, Dad, Phillip
and Cooper, I would have to write an entire dissertation to enumerate all the ways you’ve given

me love and support.

Abstract

Table of Contents

Acknowledgements

Table of Contents

List of Figures
List of Tables

1. Imntroduction

1.1
1.2

Motivation

Types of 3-D Imaging Technologies
1.2.1 Time-of-Flight

1.2.2 3-D Laser Scanning

1.2.3 Structured Light

2. Theory of Structured Light Techniques

2.1
2.2
2.3
24

Displacement of Parallel Light Stripes
Creating Parallel Light Stripes
Precision and Accuracy

Current Applications

3. Construction of the 3-D Imaging System

3.1

3.2

3.3

Component Selection

3.1.1 BeagleBoard-xM Single-Board Computer

3.1.2 Liquidware Beaglejuice 2 Hi-Capacity Battery Pack
3.1.3 Leopard Imaging LI-LIBCMVGA Camera Module
3.1.4 TI Pico Projector Development Kit

3.1.5 Polycarbonate Waterproof Enclosure

Initializing Software and Code

3.2.1 Installing Angstrom and OpenCV libraries

3.2.2 Preparing Structured Light Images and Makefile
Assembling the System

4. Instructions for Operation

4.1
4.2

Using the Structured Light 3-D Imaging System
Rendering the Output Files with MeshLab

S W O 0 NN ks W

W W W W N NN RN N NN N N N = s s e e e e e e
B W WO O N AN DR W= = = DD = O

5. Example 3-D Images and Discussion
5.1 Above Water Scanning
5.2 Submerged Underwater Scanning
6. Summary and Conclusion
7. Appendices
Appendix A: List of Linux Packages
Appendix B: Camera Module Installation Code
Appendix C: GPIO Button Shutter Code sIGPIO.cpp
Appendix D: Structured Light Algorithm for BeagleBoard-xM
D.1 Makefile
D.2 Structured Light Sequence sl.cpp
8. Bibliography

35
35
36
40
42
42
42
42
48
48
49
53

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:

List of Figures

Diagram of a time-of-flight 3-D imaging scanner

Diagram of a laser 3-D imaging scanner

Diagram of a structured light 3-D imaging scanner

Example of Xbox Kinect projection pattern and distortions
Diagram of structured light principles

Types of light stripe projections

Example of light stripe sequence progression

Example of structured light used to model automotive applications
Picture of a BeagleBoard-xM

Schematic of BeagleBoard-xM

Picture of a Beaglejuice 2 Hi-Capacity Battery Pack

Picture of a Leopard Imaging LI-LIBCMVGA Camera Module
Picture of a TI Pico Projector Development Kit

Wiring the pushbutton to the core module

Completed underwater structured light 3-D imaging system
Image of a dinosaur toy

3-D scan of a dinosaur toy

Image of scanning a mug underwater

3-D scan of a mug underwater

10
11
12
13
15
16
17
20
21
22
23
24
25
30
32
35
36
37
38

Table 2-1:

List of Tables

Accuracy of structured light applications

19

Chapter 1: Introduction

1.1 Motivation

3-D imaging is a fast-growing field of interest. Availability of consumer-grade 3-D printing
systems (such as the Makerbot Replicator) has exploded the past few years - buyers of these
systems can translate CAD files and 3-D images from virtual representations to real-life objects
from the comfort of their homes - and, not to be outdone, growth in industry and research
applications of 3-D imaging has accelerated as well. Uses for such technology include on-the-fly
mapmaking for robots, and metrology methods for a variety of quality control tests. New ways of

implementing 3-D scanning into applications are becoming a commonplace occurrence.

Different types of 3-D imaging systems exist, from the infrared projectors used by the Xbox
Kinect to the time-of-flight systems used to scan skyscrapers. Systems utilizing these techniques
can be used to create models of nearly any desired scene. By taking an image, one can obtain the
data needed to replicate or inspect a physical object in a timely manner. The resulting 3-D
images contain a point cloud that is rendered by a computer to create a mesh, which is
representative of the 3-D scene with respect to the camera lens. It is important to note that most
systems are confined to a cone of vision; therefore to recreate an entire object, a programmed

reference system is needed to merge the scans.

This project’s focus was to create a low-cost, compact, and portable 3-D imaging system for
underwater scanning. Current 3-D imaging systems are large, non-portable, and non-waterproof.
Adapting these systems for underwater use is prohibited by their power and space needs. By
utilizing a design that shrunk the power requirements and footprint, it was possible to create a
low-cost, compact, and portable 3-D imaging system that could be used for the basis of a future

autonomous underwater vehicle (AUV) navigation system.

1.2 Types of 3-D Imaging Technologies

Three techniques will be discussed herein: time-of-flight, 3-D laser scanning, and structured
light. Each technique has its own strengths and weaknesses, and specializes in applications for

different ranges and resolutions.

1.2.1 Time-of-Flight

Laser sourge

Scanned object
C = 299,792,458 m/sec
= 3.3 nanoseconds/m

Figure 1-1: Diagram of a time-of-flight 3-D imaging scanner [1].

A time-of-flight camera measures the amount of time it takes for a light signal to reach and
reflect off of a subject. A single pulse of light is given, and for each point in the image, the
elapsed time is recorded, and distance is calculated relative to the speed of light; thus, a point
that records a longer time is farther from the camera. A point cloud is created by matching these
distances with the direction from which they were reflected, resulting in a 3-D model of the
scene. Time-of-flight is classified as a type of scannerless LIDaR (Light Detection and Ranging)
system [2].

The greatest benefit of a time-of-flight system is that its scans are instantaneous — one light pulse
records an entire image, and it is possible to capture up to 100 images per second. Systems tend
to be efficient and require no large moving subassemblies. Time-of-flight systems can be used

for long-range applications on the order of kilometers. However, the resolution of these systems

10

is relatively low; many systems record QVGA resolution (320x240 pixels) [3]. Depending on the
distance of the subject from the camera, the resulting image resolution can range from
millimeters to meters. Therefore time-of-flight systems are used mainly for purposes in which
time sensitivity, not detail sensitivity, is the primary concern — for instance, tracking human
movement or building maps on-the-fly with moving robots, or for scanning large scenes, like a
building. Contrary to common perception, the Xbox Kinect is not a time-of-flight based system,
though it behaves similarly. The Kinect employs a modified form of structured light patterns that

scans instantaneously, allowing it to track quick movements over time.

The tradeoff of speed vs. resolution is common between different types of 3-D imaging systems;

time-of-flight is favored by applications that emphasize speed and range over resolution.

1.2.2 3-D Laser Scanning

| [pr—

Scanesd obpect

Figure 1-2: Diagram of a laser 3-D imaging scanner [1].

3-D laser scanners triangulate the positions of points relative to the system using laser lines and a
camera sensor. By calculating the distance of points relative to the speed of light, and accounting
for the geometry between the camera, laser source, and point, a point cloud is formed [4]. As the
name suggests, scanning requires time for the laser rangefinder to process all points within the

image.

11

3-D laser scanners cannot be used for long-range applications, such as scanning buildings or
natural formations; its range is limited to meters. However, the resolution of 3-D laser scanners
is very good. Whereas time-of-flight system resolutions can accurately detect on the level of
millimeters, 3-D laser scanners are orders of magnitude better, scanning resolutions on the level
of angstroms. But, scanning is not instantaneous, and systems require mechanical moving parts

to manipulate the laser rangefinder. Thus, systems can be cost prohibitive for certain purposes.

Laser scanners are used commonly for prototyping and reverse engineering, as well as laboratory

and metrology work.

1.2.3 Structured Light

Figure 1-3: Diagram of a structured light 3-D imaging scanner [1].

Structured light scanners operate similarly to laser scanners, though instead of laser points, a
series of light patterns is employed. Whereas laser scanners scan point by point across an object,
structured light scanners scan through depth layers. A typical system utilizes a projector to beam
a pattern of stripes across an object, and a camera sensor determines distortions in the pattern [5].
As different patterns of stripes are projected, the resulting distortions can be stitched together to
determine the distance of points relative to the camera, and a point cloud representation of the

object surface is formed.

12

Projecting many stripes at once allows for fast scanning, though it is not instantaneous like time-
of-flight systems. Structured light projection patterns can be sourced from either lasers or
projectors, though laser systems are very expensive and remain reserved for industrial and

research applications only.

The Xbox Kinect is a special type of structured light scanner that projects an infrared 2-D pattern
similar to a QR code on a subject, which allows it to calculate distortions instantaneously,
without scanning through different depths over time. Instead, it compares the pattern it detects
with the pattern it projects, and calculates depths from the distortions in the 2-D pattern.
However, the resolution is limited to the pattern complexity, which is dependent on the infrared
projection hardware. Therefore it is good for tracking and low-detail applications, but falls short
of applications needing high resolution, such as object model replication and metrology. This
thesis uses traditional structured light techniques because it allows for future development that

will yield higher resolution models than the Kinect model.

Figure 1-4: Example of Xbox Kinect projection pattern and distortions [6].

Resolution is limited by the complexity of the pattern, which is related to the projector
resolution. In the case of lasers, interferometry can be used, resulting in very high resolutions.
Structured light scanners employing projectors are a good tradeoff between resolution and cost
for consumer applications. Recent advances in projector technology have resulted in a new class
of pico projectors — low-cost, low-power projectors that can be used in applications such as

structured light 3-D imaging systems.

13

Structured light imaging systems are adaptable to a wide range of situations and are used in
applications ranging from building scans for projection mapping light shows, object replication,

and consumer electronics, such as the Kinect.

The goal for this thesis is to recreate a structured light 3-D imaging system designed pioneered
by the Hackengineer team, and repurpose it for underwater use. The effects of utilizing
structured light techniques underwater have not been widely explored, and recent developments
in computer and projector technology have enabled the design of a 3-D imaging system that
satisfies power and portability requirements for such research. Observing how such a system
would behave underwater is the first step in creating a more advanced system for research
purposes. Future applications of such a scanner may involve use with an AUV (autonomous

underwater vehicle) for mapping underwater features and robot navigation.

14

Chapter 2: Theory of Structured Light Techniques

2.1 Displacement of Parallel Light Strips

Structured light principles rest on the phenomena that a strip of light projected onto a non-planar
object will appear to be distorted from any angle other than that of 0°, the angle of the strip of
light with respect to its projector source. Placing a camera at an offset angle from the projector
allows images of the distortions to be captured, and knowing the geometry between the projector,
camera, and object of interest results in the ability to calculate the curvature of the object with

respect to the appearance of the distortions.

Light stripe

Shaped Ob]Cd pixcl

object

Stripe number
pe Matri camera
- Can":era
ripe ixe
projector d

Triangulation base
Figure 2-1: Diagram of structured light principles [7].

Projecting a series of light stripes, rather than a single stripe, onto a surface enables a surface

area, not a surface line, to be calculated. Therefore it is faster to use this higher sampling method

15

when reconstructing surface curvature. Using a projector with DLP technology results in sharp

intensity drop-offs between light and dark stripes, and is utilized here to minimize error.

Pattem Pointer = x0 - all black (or white with inversion bit set)

Pattem Pointer = x1 — 50% stripe width

Pattern Pointer =x2 — 258 pixel black stripe width, centered

i

Pattern Pointer = x3 — 128 pixel black & white stripe widths

i

Pattern Pointer = x4 — 64 pixel

I N N B

Pattemn Pointer = x5 — 32 pixel

E

Pattern Pointer = x6 — 16 pixel

E

Pattem Pointer = x7 — 8 pixel

%

Pattern Pointer = x8 - 4

(e

Pattern Pointer = x0 — stripe width = two pixels

000

Figure 2-2: Types of light stripe projections. A series of course to fine projections are shown [8]

Resolution of the 3-D model is correlated to the narrowness of the light stripes. Therefore,
projector hardware is usually the limiting factor, because the number of light stripes cannot
exceed the number of horizontal pixels projected. Generally the camera component resolution
exceeds that of the projector; in this case the camera is VGA (640x480) and the projector is
HVGA (480x320). Using more advanced hardware will result in a higher-quality model;
however, the primary purpose of this project was to shrink the footprint and power requirements

of the system.

16

It is necessary to project a series of light stripes in succession in order to calculate the object
curvature. Each pixel in the camera image is assigned a value of 1, if a white stripe is
superimposed, or 0, if a dark stripe is superimposed. As the succession of light stripes
progresses, each pixel records a gray code signature of 1s and 0s, which is used to calculate the
distance of a point on the model relative to the camera. Computing all pixel signatures results in
a 3-D model of the object surface. Increasing the number of projections in the sequence will
result in higher resolution and fewer errors, but this requires more time to process and more
computing power. Therefore it is a tradeoff between resolution and speed. For static object
recreation, this is not an issue, and it is best to project sequences until the projector resolution

becomes a limitation.

Figure 2.3: Example of light stripe sequence progression. Each pixel is assigned a gray code
signature of 1s and 0s, which is used to calculate the distance of that pixel from the camera [9].

The series of projections depicted in Figure 2-2 are taken from two rows of those shown in
Figure 1-1. Locations of two different pixels are shown in this example, denoted by red and
yellow, and the 1s and 0s in the legend shows the resulting signatures. The picture on the left is
the first projection in the series; the picture on the right is the seventh. From these signatures,
each pixel’s distance can be calculated from the camera when compared to the expected
signature, calculated from the undistorted stripe patterns. As a result of analyzing the

deformations and calculating distances, a point cloud can be formed, representative of the object

17

being scanned. This .xyz point cloud file can then be viewed using MeshLab, and exported for

further manipulation and 3-D printing.

It is important to note that the resulting 3-D model is from the single-cone perspective of the
camera; to yield a fully defined model from all perspectives requires scans from multiple
positions. Stitching together these scans requires creating a register linking the scans relative to
one another. This is beyond the scope of this thesis, however, register algorithms for this exist
and it is possible to use the compact structured light 3-D imaging system presented here for such

purposes if desired.

2.2 Creating Parallel Light Stripes

Light stripes can be created two different ways. The first involves a projector beaming an image
onto an object. The second uses laser interference to create a light stripe pattern. The use of one

or the other depends on the application.

Projector methods are low-cost and the equipment is widely available. Using a projector with
DLP technology, as opposed to LCD, results in a cleaner projection. Because it operates on the
principle of reflection across millions of mirrors, light intensity is very good and drop-off at the
fringes is low. This results in linear gray value production. However, the resolution of the 3-D
model depends on the pixel resolution of the projector and pixel sub-processing techniques.
Therefore, 3-D models using projector methods can be accurate on the level of microns, though
advanced projection systems utilizing post-processing cost orders of magnitude higher than

simple ones.

Laser interferometry methods are accurate down to the angstrom level, by the nature of the
electromagnetic wavelengths used. However, laser systems are complex and costly, and are
subject to problems not found in projector methods, like speckle noise [10]. Applications for
laser interference systems are mainly found in research laboratories, due to the highly specialized
nature of the equipment and the skillset needed to maintain and operate the machinery. This is

not feasible for consumer applications.

18

2.3 Precision and Accuracy

Precision and accuracy of the structured light imaging system depend heavily upon the depth of
field, camera resolution, and projector resolution. In theory, it is possible to achieve wavelength-
level precision with an optical projector, but in practice, this is infeasible. Methods to deduce
additional accuracy include phase shifting, such that sub-portions of a stripe can be resolved, and
interpolation over a range of images such that accuracy of 1/50 pixel is possible. Examples of

applications in which structured light can be applied are shown below in Table 2-1.

Table 2.1: Accuracy of structured light applications [11]

Application Accuracy
Planarity of 60cm-wide surface 10pum
Shape of engine combustion chamber 2um
Shape of 2” object Tum
Radius of knife edge 0.4pm

Precision and accuracy also depends on the surface of the object being scanned. Translucent or
reflective materials introduce problems and are difficult or impossible to scan, depending on the
severity. These can include organ tissue, wax, clear plastics, and plant matter. More advanced
computer processing is needed to interpret the signals received and deduce what is noise and

what is not [11].

2.4 Current Applications

Structured light imaging systems are used in a variety of fields for 3-D object model

measurement and recreation, though it is more prominent on an industry, not consumer, level.
The most recognized consumer-level application of structured light remains the Microsoft Kinect

peripheral for the Xbox 360, which substitutes the player’s movements for the traditional gaming

controller. Industry and research applications include automotive and medical purposes, such as

19

car seat measurement or combustion chamber volume measurement, and organ scanning and

metrology.

Figure 2.4: Example of structured light used to model automotive applications [12].

Fast fashion clothing companies, such as H&M and Zara, utilize 3-D scanning to reduce
template-to-shelf time to a matter of days. Forensics labs utilize scanning for investigative
purposes, and toolmakers use it to inspect quality of grinds and polishes, just to mention a few

more.

The cost of obtaining and running a 3-D scanning system has fallen such that its adoption into
new industries is to be expected. Because of these lower costs and improved hardware, the focus
of this thesis was to modify a structured light 3-D imaging system such that it could one day be

used for autonomous underwater vehicle navigation systems.

20

Chapter 3: Construction of the 3-D Imaging System

3.1 Component Selection

This thesis aimed to create a low-cost, low-power, compact and portable underwater 3-D
imaging system using the principles of structured light. In order to minimize the footprint and
power requirements of the system, electronic components had to be well integrated. The
Hackengineer team at Rice University previously developed a 3-D imaging system with a
BeagleBoard-xM, pico projector, and camera board. This system basis was then modified to
include better battery management and a specialized enclosure for watertightness. The prototype

cost was approximately $750, and it can be operated for four hours on battery power.

3.1.1 BeagleBoard-xM Single-Board Computer

Figure 3-1: Picture of a BeagleBoard-xM [13].

The BeagleBoard-xM is a $150 ARM-processor based open source single board computer
chosen for its low cost, low power requirements and multitude of ports. The board measures
3.257x3.25” and features laptop-like performance and expandability, while keeping hand-held

power levels.

21

Features include a super-scalar | GHz ARM Cortex A8 processor, 512MB LPDDR ram, 4 USB
2.0 ports, 10/100 Ethernet, DVI-D output, S-video output, stereo audio out/in, microSD card slot,
camera header, RS-232 serial port, and HDMI-out. Other options explored included the
Raspberry Pi and BeagleBone. The BeagleBoard-xM was chosen by the Hackengineer team for

its HDMI-out port, which could connect to a pico projector.

e
gooo
£000

0 xM st
0000000000
2000000000

Figure 3-2: Schematic of BeagleBoard-xM [14].

TI developed the BeagleBoard-xM primarily as an open-source, open-hardware educational tool.
It can run any Linux distribution, though it was discovered that Ubuntu running Unity GUI
consumed 100% of the CPU and was very slow. A modified Angstrom distribution running

GNOME was discovered to be more efficient and was chosen for this project.

3.1.2 Liquidware Beaglejuice 2 Hi-Capacity Battery Pack

The Liquidware Beaglejuice 2 Hi-Capacity Battery Pack is an 8,400mAbh lithium-ion battery
module engineered for use with the BeagleBoard-xM. It is comprised of six battery modules and

a power management chip. Its biggest advantage is that it allows the BeagleBoard to be powered

22

in a portable manner. The pack includes 2-pin barrel jacks for each of its four power output
ports, and can supply 5V up to 4A sustained. A 19V power supply with 2.1A current rating can
recharge the pack in six hours, and LED indicators on the board display what proportion of

charge remains.

Figure 3-3: Picture of a Beaglejuice 2 Hi-Capacity Battery Pack [15].

The Beaglejuice 2 can supply power for a single BeagleBoard-xM up to 20 hours. For this
project, a pico projector was modified to accept power from the Beaglejuice. Though this
reduces total battery life for the imaging system to four hours, it allows the entire system to be

portable and self-contained.

Standoff holes engineered at key locations on the board allow the Beaglejuice 2 to be mounted

underneath the BeagleBone-xM, creating a compact, portable computing unit.

3.1.3 Leopard Imaging LI-LIBCMVGA Camera Module

The Leopard Imaging LI-LIBCMVGA Camera Module is a standard VGA resolution camera
with a camera board featuring a 34-pin connection that is compatible with the BeagleBoard-xM.

Other options, including higher resolution camera modules, were explored, however, the pico

23

projector chosen features HVGA resolution, which is lower than VGA, so increasing the

resolution of the camera module would not increase the resolution of the 3-D model output.

The camera module can be interchanged at a later time with minimal code modification should
new technology develop a pico projector with higher resolution. The project can be expanded

through interchangeability of modules with minimal modifications to the code.

Figure 3-4: Picture of a Leopard Imaging LI-LIBCMVGA Camera Module [16].

3.1.4 TI Pico Projector Development Kit

The TI Pico Projector Development Kit is an HVGA resolution DLP pico projector. It allows for
portable projection and structured light to be engineered into mobile applications; its compact
44.8x67.4x14.2mm dimensions are key to the overall small footprint of the imaging system. At
the heart of the projector is DLP technology, which incorporates micromirrors that create binary
light patterns with speed, precision and efficiency when controlled by the integrated DLP1700
spatial light modulator [8].

Technical specifications include HVGA resolution (480x320), 7 lumen brightness output, 1000:1

contrast ratio, and HDMI input.

24

Modifications to its power supply cable enabled the projector to be connected to the Beaglejuice

2, because the ultra-low power requirement of the pico projector draws only 5V.

Figure 3-5: Picture of a TI Pico Projector Development Kit [8].

3.1.5 Polycarbonate Waterproof Enclosure

Though the imaging system can operate without an enclosure, it is necessary to waterproof the
system for underwater testing. Development toward a AUV navigation system would not be able

to occur if the system cannot withstand being submerged in a tank of water.

A Rose-Bopla IP-67 rated polycarbonate enclosure # 331624120 was employed as the casing for
the project. The IP-67 is broken down as the following: IP (ingress protection rating) 6 (dust-
tight) 7 (waterproof when immersed 1m at 30 minutes). The clear polycarbonate lid allows for
the transmission of light from the pico projector through the casing.

The exterior dimensions of the box are 9.45x6.40x4.72” [17].

Preliminary testing of the enclosure suggested that it would perform satisfactorily while

submerged, and that the contained electronics would remain dry.

25

3.2 Initializing Software and Code

This section explains how the BeagleBoard-xM was initialized, and how C++ code was
compiled onto the system in order to control the projector and camera, and how an output point
cloud file was created. The C++ code was developed by the Hackengineer team at Rice

University.

3.2.1 Installing Angstrom and OpenCV Libraries

The Angstrom distribution of Linux was used for its efficiency when running on the
BeagleBoard-xM. Ubuntu was tested and installed, but eventually abandoned in favor of
Angstrom when it was discovered that the CPU consistently ran at 100%, even after the resource

heavy Unity GUI was replaced with GNOME.

The BeagleBoard-xM has no NAND memory, so it runs the operating system off a microSD that
the user supplies. Therefore a Linux image must be created, downloaded, and packaged onto the
card. Fortunately, a tool called Narcissus exists online, which can be used to create rootfs images

for BeagleBoard applications.

At narcissus.angstrom-distribution.org, the following steps were taken to create a tar.gz image of
an Angstrom Linux distribution with OpenCV libraries and native toolchain ability for code

compilation directly on the BeagleBoard-xM [18].

Machine: beagleboard

Image name: thesis

Complexity: advanced

Release (default): 2011.03

Base system (default): regular (task-base)
/dev manager (default): udev

Type of image: tar.gz

Software manifest: no

SDK type: simple toolchain

SDK hostsystem (default): 32bit Intel
User environment selection: X11

X11 desktop environment: blank

26

Additional packages selections:

Development packages: OpenCV headers and libs

Additional console packages: All kernel modules, OpenCV

Network related packages: NetworkManager, NetworkManager GUI applet

Platform specific packages: OMAP Display Sub System (DSS)
Documentation: BeagleBoard validation GUI extras, BeagleBoard validation GNOME image

The tar.gz image was then downloaded onto a Linux workstation. A microSD card was inserted
into the media reader slot and discovered to have path /dev/sdb after running the —df

command.

The microSD card was formatted into two partitions for a FAT boot and ext3 file system with the

following commands [19]:

mkdir angstrom-wrk

cd ~/angstrom-wrk

wget
http://cgit.openembedded.org/cgit.cgi/openembedded/plain/contrib
/angstrom/omap3-mkcard.sh

chmod +x omap3-mkcard.sh

sudo ./omap3-mkcard.sh /dev/sdb

sync

This resulted in the creation of two mounted directories:

/media/boot
/media/Angstrom

Copying the MLO, ulmage, and u-boot files within the tar.gz image to the boot partition was

executed with the following command:

tar ~-wildcards -xzvf thesis.tar.gz ./boot/*
cp boot/MLO-* /media/boot/MLO

cp boot/ulmage-* /media/boot/ulmage

cp boot/u-boot-*.bin /media/boot/u-boot.bin
sync

27

Copying the file system onto the Angstrom partition was achieved with the following code:

sudo tar -xvj -C /media/Angstrom —f thesis.tar.gz
sync

The microSD card was inserted into the BeagleBoard-xM, and left alone for an hour to configure

itself.

The opkg command was used to ensure that all libraries, including OpenCV were up to date. For

example, updating OpenCV included the following commands;

opkg update
opkg install opencv opencv-dev opencv-samples opencv-dev-samples

It was later discovered while attempting to run the structured light executable file that the
OpenCV library files were not linked, so it was necessary to create symbolic links between .2.2

and .2.2.0 files using the 1n -s command.
A uEnv.txt modification was necessary to recognize the camera board module within the u-boot

environment for the 2.6.32 Angstrom build; adding the following to the file within the boot

directory made the correction:

camera=lbcmvga

A driver module for the kernel was inserted and initialized with the following code:

opkg install kernel-module-mt9v113

setenv camera lbcmvga

At this point the BeagleBoard-xM was configured for supporting the C++ files that would run

the scan and create the point cloud. The next section discusses the compilation of C++ files to

28

run the structured light sequence between the pico projector and camera, and capture the images,

analyze the pixels, and output a .xyz point cloud file.

3.2.2 Preparing Structured Light Images and Makefile

To create a structured light scan, two things were needed: a series of graycoded stripe images to
project, like those in Figure 2-2, and code files to run the sequence of images, capture the camera

output, analyze the pixels, and output a point cloud .xyz file.

A sequence of 20 stripe images and a C++ structured light algorithm sl.cpp were downloaded
from the Hackengineer Google project repository. Another C++ file cIGPIO.cpp configuring the

capture button located on the enclosure was downloaded to control the GPIO139 pin out [20].

The sl.cpp file is broken into three sections. Part one initializes the camera using OpenCV
libraries and compiles an image sequence of increasingly fine stripe projections. The images are
projected through the pico projector and superimposed over the object being scanned, while the

camera captures one image per stripe projection.

Part two includes the decoding and depth-rendering algorithm, determining whether a pixel is
assigned a 1 (light) or 0 (dark) value for each respective stripe image projection overlay. The
discrepancy between the original stripe image output and the camera capture files is computed,
and used to determine the depth of the object relative to the camera for each pixel. A point cloud
is rendered using the resulting data, and stored in the Results folder within the 3DScanner

repository, or onto a thumb drive if detected by the code.

Part three cleans up possible errors by eliminating outlier points caused by noise and other

causes.
The sIGPIO.cpp file is used to execute the sl.cpp file when a physical button on the exterior of

the casing is pressed. It is assigned to trigger the executable when voltage to the 139 GPIO pin is

interrupted by the button action.

29

A makefile combining the sl.cpp and sIGPIO.cpp files into an executable was run using the
make command within the 3DScanner directory containing the sl.cpp, sIGPIO.cpp, images, and
makefile.

3.3 Assembling the System

The core module of the imaging system is comprised of the BeagleBoard-xM, Beaglejuice 2, and
camera module. This module was then mounted inside the enclosure with a custom plastic
bracket, and connected to the pico projector, on its own separate bracket. Securing the
components to brackets with velcro allowed for ease of removal and insertion, which is
important, as the module must be removed for charging and downloading output .xyz files. A
waterproof pushbutton for initiating the 3-D image capture executable was installed into the top

of the enclosure and wired to the core module.

Figure 3-6: Wiring the pushbutton to the core module.

Before mounting the BeagleBoard-xM to the Beaglejuice 2, GPIO pin 139 and ground were
prewired in preparation to connect with the waterproof pushbutton. Wiring the pin first was
necessary, because the header exists on the underside of the BeagleBoard-xM and was

inaccessible after mating with the Beaglejuice 2.

30

Plastic standoffs were then used to attach the BeagleBoard-xM to the Beaglejuice 2 at four
overlapping locations on the PCBs. The BeagleBoard-xM was oriented above the Beaglejuice 2
such that power input to the BeagleBoard was situated directly above power output from the

Beaglejuice 2. A 2-barrel connecter was used to supply 5V power to the BeagleBoard-xM.

The camera module was then inserted into the 34-pin camera header on the BeagleBoard-xM,
completing the construction of the core module. A magnetic 2x telephoto lens was attached to
the camera using a washer so that its frame of vision would match the projector throw. Without

this lens, the stripe projections would only fill a quarter of the camera’s field of vision.

The pico projector, prior to connection with the BeagleBoard-xM, had to have its power cord
modified. Originally, the device sourced power from a wall plug that connected to a transformer
brick. Cutting away the brick, stripping the wire, and soldering the leads to a salvaged 2-barrel

connector yielded a cord that could be plugged into the Beaglejuice 2 for power.

Two brackets were made within the enclosure, one to support the core module and one to support
the pico projector. Mounting the pico projector and camera module at the same height was

critical for accurate scanning, as the algorithm is set up for minimal homography.
Soldering the leads from the waterproof pushbutton to the wires prepared on the BeagleBoard-
xM, and then mounting the core module and pico projector to their respective brackets

completed the build. The polycarbonate cover was then reattached with screws.

The following picture shows the completed 3-D imaging system turned on. Notice the push

button on top to activate image capture, placed such that it is analogous to a normal 2-D camera.

31

Figure 3-7: Completed underwater structured light 3-D imaging system.

32

Chapter 4: Instructions for Operation

4.1 Using the Structured Light 3-D Imaging System

It is first necessary to charge the system. Remove polycarbonate cover from the enclosure by
removing the six screws accessible from the top, and remove the core module from the bracket
by pulling up and away from the velcro. If necessary, unplug the pico projector, or remove it as
part of the core module. Be careful to not pull the module out forcefully, because it remains
tethered by the wire leads connected to the pushbutton switch mounted on top of the enclosure.
Insert the 19V barrel pin into the DC port located on the Beaglejuice 2. Charging may take up to
6 hours; status can be checked upon pressing the white indicator nub on the Beaglejuice 2. A

series of LEDs like those on the Macbook Pro will indicate charge status.

When charging is complete, turn on the power to the Beaglejuice 2 by operating the switch
located next to its power outputs. Insert the module in the reverse order of which it came out, and
re-secure the pico projector. Do not reattach the cover yet. Press the power button on the pico
projector to turn it on. Ensure that the projector focus is correct for the desired distance from the
object of interest by using the focus scroll wheel on the side of the projector. The BeagleBoard-
xM will automatically power on once voltage is detected, and the system will auto-login. Use

password “admin” if needed.

After plugging in a keyboard and mouse to the USB slots, navigate to the 3DScanner folder with
terminal using commands 1s and cd. Insert a USB thumb drive for storing output .xyz point
cloud files into a USB port. Run the sIGPIO executable with command . /s1GPIO. This will
activate the first scan sequence, which is sacrificial. Remove the mouse and keyboard, and

reattach the cover tightly while leaving the USB thumb drive attached in the USB port.
Now the system is ready to use. Press the pushbutton on top to begin capturing a 3-D image. The
sequence of stripes will be projected from the pico projector, and the camera will capture images

for each projection. A point cloud file will automatically be written onto the USB thumb drive.

33

Each rendering will take approximately 10 seconds. Press the pushbutton again to capture

another scan, and repeat as desired. The system will last approximately four hours per charge.

4.2 Rendering the Output Files with MeshLab

Postprocessing of each .xyz file is required to obtain a 3-D model. This can be done with

MeshLab, a free open-source point cloud renderer.

To begin, open the enclosure cover and retrieve the USB thumb drive. The .xyz point file clouds

will be arranged chronologically as result 0.xyz, result_1.xyz, etc.

Install MeshLab onto the workstation if it is not already present. Import the desired .xyz mesh
file into MeshLab. The program will render the point cloud. Eliminate any erroneous points or

undesired sections, if need be, using the delete vector point command.

Compute normal with Filters > Point Set > Compute Normals For Point Sets and set the number
of neighbors to 100. Check the “flip normals with respect to viewpoint” box, and make sure
Render > Lighting > Light On is enabled. Continue to Filters > Color Creation and Processing >

Per Vertex Color Function and modify the values to best fit the application.

Export the file in whatever desired format is available, such as .3df, .obj, or .stl. MeshLab

supports a wide variety of file formats.

34

Chapter 5: Example 3-D Images and Discussion

5.1 Above Water Scanning

The system was first tested dry to verify the performance of the structured light system.

A small plastic dinosaur toy approximately 17 taI.l was chosen to be scanned because of its size
and detail. The dinosaur had four legs, a long neck and a head with a bump on top. Its skin was

ribbed with a rough texture.

Figure 5-1: Image of a dinosaur toy.

Scanning a toy of such detail would test the limitations of the 3-D imaging system. Would the
system detect the toy at all, because of its small size? How well would it be able to trace the

shape of the body? Would it be able to capture details, such as the ribbing on the skin and the

bump on top of the head?

Using the 3-D imaging system yielded the following model, after cleaning away erroneous points

in MeshLab:

35

Figure 5-2: 3-D scan of a dinosaur toy.

The structured light 3-D imaging system successfully capture the shape of the dinosaur toy, and
was able to recreate features such as the bump on its head and spacing in between legs from a
scan distance of one foot. However, the resolution was not fine enough to detect the ribbing on
the skin. This was not surprising, due to the lack of resolution in the pico projector and camera
board module. At a scanning distance of one foot, the calculated resolution was 0.635mm. The
ribbing was finer than this, so it could not be recreated. Four cavities in the surface from bad
graycode signatures due to misread stripe patterns were discovered, but not deemed to be
significant. Modifying the system in future iterations with high-resolution hardware would fix

detail and cavity issues.

5.2 Submerged Underwater Scanning

After successful verification of the system above water, the system was submerged in a tank for

underwater testing.

36

The 30 gallon tank was filled with tap water and placed in a dark room. One cupful of dirt was
added to the mixture to help simulate conditions in an outdoor body of water. The system was

placed one foot away from the area where objects would be submersed for scanning.

The dinosaur was not detected during its initial underwater scan, due to the addition of
suspended particles scattering light in all directions, so a larger object had to be chosen. A mug,

due to its large and simple shape, was chosen to be the basis of underwater testing.

Figure 5-3: Image of scanning a mug underwater.

The mug featured a large, cylindrical body with an ornamented handle, and measured

approximately 7” in height and 6 across.

Scanning underwater introduced new variables that would challenge the system’s ability to scan
an object with good fidelity. Three main concerns were that the system would take on water due
to insufficient seals or a leaking pushbutton, the projector brightness would be insufficient, and
that the introduced particles suspended in the water tank would create movement and scatter
light, thereby introducing error into the scans. Because structured light scanning takes time to

complete, it was postulated that movement of obstructing particles would introduce errors into

37

the pixel graycode signatures, which would then result in miscalculations when determining

distances for the point cloud rendering.

Figure 5-4: 3-D scan of a mug underwater.

A resulting scan of the mug is shown above. As suspected, the addition of suspended particles
caused severe scattering of light. This image shows the point cloud from a shifted angle — not
straight on, from the camera perspective. One can see that the system recorded the suspended
particles, and therefore was unable to “see” parts of the mug behind the dirt. However, the mug
was detected, as the large body shown. There appears to be a gap between the body and the
handle. This scan is unusable for any metrology or recreation purposes, but it shows that the

system can work in terms of object detection.

The test was repeated to verify this phenomenon, and all yielded similar results. However, the
system was sufficiently watertight and did not draw on any water during the testing period, being
able to withstand 5-minute intervals submerged underwater, and the pico projector brightness

was sufficient at close range, alleviating two of the three concerns enumerated earlier.

38

An algorithm for eliminating scattering, and using the Kinect style of 2-D structured light
patterns for instantaneous processing would significantly improve scanning in future iterations.
Additionally, autofocus for scanning a large range of distances should be implemented in

subsequent builds.

Taking these suggestions into account during the next build iteration would result in the next step

toward an on-the-fly mapmaking navigation unit for a AUV,

39

Chapter 6: Summary and Conclusions

A waterproof structured light 3-D imaging system was created as a proof-of-concept for
classroom and laboratory research purposes. The primary objective was to construct a
functioning underwater system that satisfied footprint and power requirements, yielding a low-
cost, compact, and portable unit. The result was an imaging system that could be explored further

one day to create an autonomous underwater vehicle (AUV) navigation system.

The proof-of-concept was built for approximately $750, and was comprised of a low-power,
open-source hardware single-board computer running a modified Linux distribution with
OpenCYV libraries, a DLP pico projector, camera board, and battery module with advanced power
management. Hardware component selection and code was based off of previous work by the
Hackengineer team at Rice University. A watertight enclosure enabled testing of the system in

rugged environments that would normally be inaccessible to other 3-D imaging systems.

An instruction guide was included for operation of the system. Future improvements to the
proof-of-concept system may include automatic execution of the sIGPIO script so that a mouse

and keyboard are not necessary to initialize the system, and an external power port.

Rendering low-detail objects was successful after post-processing for above-water scans. The
system can reproduce models with accuracy on the order of millimeters, although noise from the
low-resolution camera introduces cavities and errors. Range was limited by manual focus on the
projector, and image resolution was limited by the output resolution of the pico projector and
camera. Further exploration in obtaining ultra high-resolution 3-D images may include use of a

higher resolution projector and a higher resolution camera board module.

During underwater scanning, backscattering caused by reflective particles suspended in the water
and hindered performance severely. The system was able to detect objects, but the output point
cloud was accompanied by noise and unacceptably low levels of detail for purposes other than

object detection. However, watertightness of the system was satisfactory, and the imaging

40

system was able to stay submerged underwater in multiple five-minute increments during testing
without taking on water. Pico projector brightness was sufficient for close-range testing,

although it would be insufficient for scanning farther beyond 6-7 feet.

The results were useful in determining that structured light scanning using a sequence of stripes
is not ideal for underwater usage. Factors introduced by submerging the system in water limited
its performance by preventing clear, detailed scanning. As such, it is recommended that advances
in filtering algorithms that can compensate for reflective suspended particles and fast-response 3-
D scanning systems, such as the Kinect’s QR code-like structured light pattern or time-of-flight,

be used in future development of a AUV navigation system.

41

Chapter 7: Appendices

Appendix A List of Linux Packages

toolchain

initscripts
opencv-dev
opencv-samples
opencv-samples-dev
python-core
python-modules
sysvinit
sysvinit-pidof
task-native-sdk

Appendix B Camera Module Installation Code [20]

camera=lbcmvga

vram=16M

opkg install kernel-module-mt9v113

Appendix C GPIO Button Shutter Code sIGPIO.cpp [20]

/* Copyright (c) 2011, RidgeRun
* All rights reserved.
*

From https://www.ridgerun.com/developer/wiki/index.php/Gpio-int-test.c

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are
met:

* 1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the RidgeRun.
4., Neither the name of the RidgeRun nor the
names of its contributors may be used to endorse or promote products

* O F o % 4 o % %
w

42

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY RIDGERUN ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RIDGERUN BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

* O ¥ ok * * F

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <fcntl.h>

#include <poll.h>

#include <signal.h> // Defines signal-handling functions (i.e. trap Ctrl-
C)

#include "sl.cpp"

/**

* Constants
**/

#define SYSFS_GPIO_DIR "/sys/class/gpio"
#define POLL_TIMEOUT (3 * 1000) /* 3 seconds */
#define MAX_BUF 64

/**

* Global variables
**/

int keepgoing = 1; // Set to 0 when ctrl-c is pressed

/**

* gignal_handler
**/

// callback called when SIGINT is sent to the process (Ctrl-C)
void signal handler(int sig)

{

printf("Ctrl-C pressed, cleaning up and exiting..\n");
keepgoing = 0;
}

/**

* gpio_export
**/

int gpio_export(unsigned int gpio)

{

43

int fd, len;
char buf[MAX BUF];
fd = open(SYSFS_GPIO_DIR "/export", O_WRONLY);
if (fd < 0) {
perror("gpio/export”);
return f£d4d;
}
len = snprintf(buf, sizeof(buf), "%d", gpio);
write(fd, buf, len);
close(fd);
return 0;

}

/**

* gpio_unexport
**/

int gpio_unexport(unsigned int gpio)
{
int fd, 1len;
char buf[MAX BUF];
fd = open(SYSFS_GPIO DIR "/unexport", O WRONLY);
if (fd < 0) {
perror("gpio/export");
return £fd;
}
len = snprintf(buf, sizeof(buf), "%d", gpio);
write(fd, buf, len);
close(fd);
return 0;

}

/**

* gpio_set_dir
**/

int gpio_set_dir(unsigned int gpio, unsigned int out_flag)
{

int fd, len;

char buf[MAX_BUF];

len = snprintf(buf, sizeof(buf), SYSFS_GPIO_DIR "/gpio%d/direction",

gpio);
fd = open(buf, O_WRONLY);
if (fd < 0) {
perror("gpio/direction");
return f£d;
4
if (out_flag)
write(fd, "out", 4);
else
write(£fd, "in", 3);
close(fd);
return 0;

}

/**

* gpio_set_value
**/

44

int gpio_set value(unsigned int gpio, unsigned int value)

{
int fd, len;
char buf[MAX BUF];
len = snprintf(buf, sizeof(buf), SYSFS_GPIO_DIR "/gpio%d/value", gpio);
fd = open(buf, O_WRONLY);
if (£4d < 0) {
perror("gpio/set-value");
return fd;
}
if (value)
write(fd, "1", 2);
else
write(fd, "0", 2);
close(fd);
return 0;
}

/**

* gpio_get_value
**/

int gpio_get_ value(unsigned int gpio, unsigned int *value)
{
int f£d4, len;
char buf[MAX BUF];
char ch;
len = snprintf(buf, sizeof(buf), SYSFS_GPIO_DIR "/gpio%d/value", gpio);
fd = open(buf, O RDONLY);
if (£d < 0) {
perror("gpio/get-value”);
return £d;

}
read(fd, &ch,

1);
if (ch '= '0") {
*value = 1;

} else {
*value = 0;

}
close(fd);
return 0;

/**

* gpio_set_edge

**/

int gpio_set edge(unsigned int gpio, char *edge)
{
int f£d, len;
char buf[MAX_BUF];
len = snprintf(buf, sizeof(buf), SYSFS_GPIO DIR "/gpio%d/edge", gpio);
fd = open(buf, O_WRONLY);
if (fd < 0) {
perror("gpio/set-edge");
return £d;

45

write(fd, edge, strlen(edge) + 1l);
close(fd);
return 0;

}

/**

* gpio_fd_open

**/

int gpio_fd_open(unsigned int gpio)

{
int £d, 1len;
char buf[MAX BUF];
len = snprintf(buf, sizeof(buf), SYSFS_GPIO DIR "/gpio%d/value", gpio);
fd = open(buf, O _RDONLY | O_NONBLOCK);
if (£d < 0) {
perror(“"gpio/fd_open”);
return £fd;
}

/**

* gpio_fd_close
**/

int gpio_fd_close(int fd)
{

}

/**************************************-k*************************

* Main
**/

return close(fd);

int main(int argc, char **argv, char **envp)
{

struct pollfd fdset[2];

int nfds = 2;

int gpio_fd, timeocut, zrc;

char *buf[MAX BUF];

unsigned int gpio;

int len;

//if (argec < 2) {

// printf("Usage: gpio-int <gpio-pin>\n\n");

// printf("waits for a change in the GPIO pin voltage level or input

on stdin\n");
// exit(-1);
/7%
// Set the signal callback for Ctrl-C
signal (SIGINT, signal_handler);
//gpio = atoi(argv{l]);
gpio = 139;
gpio_export(gpio);
gpio_set_dir(gpio, 0);
gpio_set_edge(gpio, "falling"); // Can be rising, falling or both
gpio_fd gpioc_fd_open(gpio);
timeout = POLL_TIMEOUT;

46

while (keepgoing) {
memset ((void*)fdset, 0, sizeof(fdset));
fdset[0].fd = STDIN FILENO;
fdset[0].events = POLLIN;

fdset[l].fd = gpio_fd;
fdset[l]}.events = POLLPRI;
rc = poll(fdset, nfds, timeout);
if (rc < 0)
printf("\npoll() failedi\n");
return -1;
}
if (rc == 0) {
printf(".");

if (fdset[l].revents & POLLPRI) {

lseek(fdset{1l].fd, 0, SEEK_SET); // Read from the start of
the file

len = read(fdset{1l].£fd, buf, MAX BUF);

//printf("\npoll() GPIO %d interrupt occurred, value=%c,
len=%d\n",gpio, buf[0], len);

printf("Starting Scan\n");

slScanner();

printf("Scan Complete\n");

printf("Press button to scan again or Ctrl C to quit");

b
if (fdset[0].revents & POLLIN) {
(void)read(fdset{0].fd, buf, 1);
printf("\npoll() stdin read 0x%2.2X\n", (unsigned int)
buf[{01]);
}
fflush(stdout);

}
gpio_fd_close(gpio_fd);
return 0;

47

Appendix D Structured Light Algorithm for BeagleBoard-xM [20]

A Makefile is used to call and run scripts sl.cpp and sICPIO.cpp. This outputs a .xyz file, which
can then be exported to MATLAB for processing. This code was created by the Hackengineer

team at Rice University.

D.1 Makefile [20]

'make’ build executable file 'mycc’

'make clean' removes all .o and executable files
.PHONY: depend clean

SCAN = slGPIO
DISPLAY = display

CC = gcc

CFLAGS := -g -Wall -DLINUX $(shell pkg-config opencv --cflags)
LIBs := $(shell pkg-config opencv --1ibs)

LFLAGS =

Source files

SRCs = \
s1GPIO.cpp
#sl.cpp \

List of object files to compile
OBJs = $(SRCs:.cpp=.0)
all: $(SCAN)

$(DISPLAY): display.o
gcec -g -Wall

$(SCAN): $(OBJs)
$(CC) $(CFLAGS) $(INCLUDES) -o $(SCAN) $(OBJs) $(LFLAGS) $(LIBs)
cp $(SCAN) Release/

%.0: $.cpp %.h
$(CC) $(CFLAGS) $(INCLUDES) -c $< -0 $@

clean:
$(RM) *.0 *~ $(SCAN)

48

D.2 Structured Light Sequence sl.cpp [20]

J1017077707707700770707700707777770707777777707770707777777770740777777077777777
// sl.cpp
//

//*F***xxxkx*PART1 - Project SL and Cap Imgskk¥*skkksddk

//Sequentially project and capture 20 images

;;*********PARTZ - Decode captured imagesgk ¥k kkkkkkk

;j*********PART3 - Project 3D object with oOpenGL#*k %%k
;;//

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h> // For my own paranoia's sake
#include <opencv/cv.h>
#include <opencv/highgui.h>
#define WHITE_THRESHOLD 5
#define BLACK_THRESHOLD -5
#define NUM_IMAGES 18
#define CAM WIDTH 640
#define PROJ _WIDTH 640
#define Z_SCALE 500 //250 works
//#define TEST RECOGNIZER
int gray2bin(int gray):
bool file_exists(const char * filename);
int slScanner(void);
int slScanner(void)
{
J/***k** %%k *PART1 - Project SL and Cap Imgsk**kkikkkdk
//Initialize
IplImage* slPat[NUM_IMAGES] = {0};
IplImage* capImg[NUM_IMAGES + 1] =
// int height,width, step,channels;
uchar *data;
char s[128];
int i,outFileNum=0;
//Usage
//if(arge>1){ .
// printf("Usage: sl images are in same folder named grayIMGx.png
and range from 0-19\n");
// exit(0);
/7%
//Load sl images
#ifndef TEST_RECOGNIZER
for(int i=0;i<NUM_IMAGES;i++){
sprintf(s,"%d.png",i+1});
slPat[i]=cvLoadImage(s);
if(1slPat[i]){
printf("cCould not load image file: %s\n",s);
exit(0);

{0};

}

// create a window

49

cvStartWindowThread();
cvNamedWindow("mainWin®”, CV_WINDOW_NORMAL) ;
cvSetWindowProperty("mainWin", CV_WND_PROP_FULLSCREEN,
CV_WINDOW_FULLSCREEN);
// pause
cvWaitKey(500);
// set up camera
CvCapture* capture = cvCaptureFromCAM(CV_CAP_ANY);
if (!capture){
fprintf(stderr, "Camera not found \n");
getchar();
exit(0);
}
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME HEIGHT, 480);
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME WIDTH, 640);
//cvSetCaptureProperty(capture, CV_CAP_PROP_FPS, 5);
//cvSetCaptureProperty(capture, CV_CAP_PROP FRAME COUNT, 1);
//Maybe this will fix the frame delay?
//Display images and capture
for(int i=0;i<NUM_IMAGES;i++){
// show the image
cvShowImage("mainWin", slPat[i]);
// pause
cvWaitKey(5);
// capture the image
cvGrabFrame (capture);
cvGrabFrame (capture);
cvGrabFrame (capture);
cvGrabFrame (capture);
cvGrabFrame (capture); //Get to last frame in buffer
capImg[{NUM_IMAGES + 1] = cvRetrieveFrame(capture);
// write the image
//cvWriteFrame (writer, capImg[i}]);
capImg[i] = cvCloneImage(capImg[NUM IMAGES + 1]);
sprintf(s, "results/%d.png",i+1);
cvSaveImage(s,capImg[i]);
}
cvReleaseCapture (&capture);
//Display captured images for debug
for(int i=0;i<NUM_ IMAGES;i++){
// show the image (for debug)
cvShowImage ("mainWin", capImg[i]);
// pause
cvWaitKey(100);

}
#else // TEST_RECOGNIZER
for(int i=0;i<NUM IMAGES;i++) {
sprintf (s, "setupp/%d.png" ,i+1l);
capImg[i]=cvLoadImage(s);
if(tcapImg{i]){
printf("Could not load image file: %s\n",s);
exit(0);

#endif

//***x%xxxxx*xPART2 - Decode captured images**xks&kks k¥

// First initialize a matrix for showing the decoded values, needs 10
bits,

50

// so could move to short* if memory becomes an issue.
int *columnmap = (int*)calloc(capImg[0]->imageSize, sizeof(int));

if(columnmap == NULL) {
printf("Allocaticn for column map failed! Aborting\n");
return 1;

H

// We're going to step over matching inverse pairs of projected
patterns, and
// perform a threshold operation to determine whether a given pixel is
white
// or not.
for(int i=0;i<NUM_IMAGES;i+=2){
printf("Processing scan patterns %d, %d\n",i,i+l);
uchar* datal = (uchar*)capImg[i]->imageData;
uchar* data0 = (uchar*)capImg{i+l]->imageData;
for (int y=0;y<capImg[i]->height;y++){
for(int x=0;x<capImg{i]->width;x++) {
int u = y*capImg[i]->widthStep+x*capImg[i]-
>nChannels;
if(columnmapf[u] == =1){
// We have discarded this pixel
continue;
}
int grayl datalf[u] + datal[u+l] + datal[u+2];
int gray0 = dataO[u] + dataO[u+l] + dataO[u+2];
// shift our Gray code bit vector
columnmap[u] = columnmap{u] << 1;
if(grayl - gray0 > WHITE_THRESHOLD) {
// We have a white pixel!
assert((columnmapfu] & 1) == 0);
columnmap[u] [= 1;
} else if(grayl - gray0 < BLACK_THRESHOLD) {
// A black pixel
assert((columnmap[u] & 1) == 0);
columnmapfu] |= 0;
} else {
// Not quite sure about this pixel: Punt!
columnmap(ul] = -1;

}

// Avoid memory leaks!
// printf("Releasing images %d, %d\n", i,i+l);
// cvReleaseImage (&capImg[i]);
// cvReleaseImage({&capImg[i+l]);
S
// Convert Gray code to decimal
for(i = 0; 1 < capImg[0]->imageSize; i++){
// int tmp = columnmap[i];
columnmap[i] = gray2bin(columnmap[i]);
// printf("Gray: %4x -> Binary %4x\n",tmp,columnmap([i]};

// TODO: Test against projector patterns -> 0 disparity
// TODO: Test with SL images
//Find available filename on jumpdrive
sprintf(s,"/media/sdal/result%d.xyz",outFileNum);
while (file_exists(s)) {
ocutFileNum++;

51

sprintf(s,"/media/sdal/result%d.xyz",outFileNum);

// Write the pointcloud
FILE *f = fopen(s,"w");
if (f == NULL) {
printf("Error opening %s: Trying local directory...\n",s);
FILE *f = fopen("result.xyz","w");
if(f == NULL) {
printf{"Error opening result.xyz: Aborting!\n");
return 1;

}

}
printf("Writing pointcleoud...\n");

for(int y = 0;y < capImg[0]->height; y++){
for(int x = 0;x < capImg[O0]->width; x++) {
int u = y*capImg[0]->widthStep+x*capImg{0]->nChannels;
if(columnmap[u] == -1) continue; // Discarded!
float disp = (float)columnmap{u]/(PROJ_WIDTH) -
(float)x/CAM WIDTH;
// printf("$f\n",disp);
if(disp == 0.0) continue;
float z = (float)Z_SCALE/(disp);
fprintf(£f,"%d %d %$f\n",x,y,2);
}
}
fclose(f);
//***x*x*Part3d - Project 3D object with openGL*****kkkx
for(int 1 = 0; 1 < NUM_ IMAGES; i++){
cvReleaselmage (&capImg[i]);
//cvReleaseImage (&slPat[i]);

}

//Exit
cvDestroyWindow("mainWin");
free(columnmap);

return 0;

// Convert a 10-bit Gray code value into a binary integer representation
// Thanks to http://www.dspguru.com/dsp/tricks/gray-code-conversion
int gray2bin(int gray){

unsigned int temp = gray ~ (gray>>8);

// Our error condition should propagate

if(gray == ~1) return -1;

temp ~= (temp>>4);

temp ~= (temp>>2);

temp ~= (temp>>1);

return temp;

}

bool file exists(const char * filename)
if (FILE * file = fopen(filename, "r"))

fclose(file);
return true;

return false;

52

Chapter 8: Bibliography

[1] 3D Scanners: A Guide to 3D Scanner Technology. Photograph. rapidform.com. Web. 16
April 2013. <http://www.rapidform.com/3d-scanners/>.

[2] Iddan, Gavriel, and Giora Yahav. "3D Imaging in the Studio and Elsewhere." Proceedings of
SPIE. 4298 (2003): 48.

[3] Schuon, Sebastian, Christian Theobalt, James Davis, and Sebastian Thrun. "High-Quality
Scanning Using Time-of-Flight Depth Superresolution." JEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops. (2009): 1-7.

[4] Marshall, Gerald. Handbook of Optical and Laser Scanning. Marcel Dekker, 2004.

[5] Furht, Borko. Encyclopedia of Multimedia. 2nd. Springer, 2008. 222.

[6] Reza, Andres, dir. Kinect With Nightshot. Youtube, 2010. Film. 17 April 2013.

<http://www.youtube.com/watch?v=nvvQJxgykcU>.
[7] Hecht, Jeff. Lasers Bring Gesture Recognition to the Home. 2011. Photograph. Laser Focus
WorldWeb. 18 April 2013. <http://www.laserfocusworld.com/articles/2011/01/lasers-

bring-gesture-recognition-to-the-home.htmI>.

[8] Using the DLP Pico 2.0 Kit for Structured Light Applications. 2011. Photograph. Texas
Instruments. Web. 18 April 2013. <http://www.ti.com/lit/an/dlpa021a/dlpa021a.pdf>.

[9] Structured Light vs. Microsoft Kinect. 2011. Photograph. Hackengineer, Houston. Web. 18
April 2013. <http://www.hackengineer.com/structured-light-vs-microsoft-kinect/>.

[10] Dainty, C. Laser Speckle and Related Phenomena. Sprinter Verlag, 1984.

53

[11] Gupta, Mohit, Amit Agrawal, Ashok Veeraraghavan, and Srinivasa Narasimhan. Measuring
Shape in the Presence of Inter-Reflections, Sub-Surface Scattering and Defocus. 2011.

[12] Structured Light for 3D Scanning. Brown University, 2007.

[13] Unknown. Photograph. Web. 25 April 2013.
<http://robotstore.cc/images/detailed/0/tmp_drOUz4.jpg>.

[14] Unknown. Photograph. Web. 25 April 2013.

<http://www.linuxfordevices.com/images/stories/beagleboard xm schematics.jpg>.

[15] Unknown, Photograph. Web. 26 April 2013.
<http://antipastohw.pbworks.com/f/1343068375/BeagleJuice2 Front.jpg>.

[16] Unknown. Photograph. Web. 26 April 2013.
<http://www.mouser.com/images/leopardimaging/lrg/LI-LBCMVGA..jpg>.

[17] Unknown. Photograph. Web. 28 April 2013. <http://www.rose-
bopla.com/Prod Pgs/Basic Boxes/Prod Polycarb 33.htm>.

[18] Caicedo, Jorge. "How to Install OpenCV on a BeagleBoard-xM with Angstrom OS." Jorge
Engineer. 21 Jan 2012. Web. 29 April 2013.
<http://installangstromonbeagleboarxm.blogspot.com/2012/01/how-to-install-opencv-on-

beagleboard-xm.html>.

[19] Weaver, Trey. "Installing Angstrom on the BeagleBoard-xM." 31 Oct 2010. Web. 29
April 2013. <http://treyweaver.blogspot.com/2010/10/installing-angstrom-on-

beagleboard-xm.html>.

[20] "Kinect-Like-3D Camera." Hackengineer. 7 Feb 2012. Web. 4 May 2013.

<http://www.hackengineer.com/3dcam/>.

54

