
Bouncing and Walking Droplets:

Towards a Hydrodynamic Pilot-Wave Theory

by ARCHNiE
MASSACHUSETTS INSTMr E

Jan Molacek OF TECHNOLOGY

B.A., Mathematics, University of Cambridge (2007) JUL 2 5 2013

Submitted to the Department of Mathematics LIBRARIES
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Jan Molakek, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .................................................
Department of Mathematics

.ay 3, 2013

Certified by... ....................... -... ... . -

John W. M. Bush
Professor of Applied Mathematics

Thesis Supervisor

Accepted by ............................. Michel Goemans

Chairman, Department Committee on Graduate Theses



2



Bouncing and Walking Droplets:

Towards a Hydrodynamic Pilot-Wave Theory

by

Jan Mola6ek

Submitted to the Department of Mathematics
on May 3, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Coalescence of a liquid drop with a liquid bath can be prevented by vibration of the
bath. In a certain parameter regime, a purely vertical bouncing motion may ensue.
In another, this bouncing state is destabilized by the droplet's wavefield, leading
to drop motion with a horizontal component called walking. The walking drops
are of particular scientific interest because Couder and coworkers have demonstrated
that they exhibit many phenomena reminiscent of microscopic quantum particles.
Nevertheless, prior to this work, no quantitative theoretical model had been developed
to rationalize and inform the experiments before our work.

In this thesis, we develop a hierarchy of theoretical models of increasing com-
plexity in order to describe the drop's vertical and horizontal motion in the relevant
parameter range. Modeling the drop-bath interaction via a linear spring is found
lacking; therefore, a logarithmic spring model is developed. We first introduce this
model in the context of a drop impacting a rigid substrate, and demonstrate its accu-
racy by comparison with existing numerical and experimental data. We then extend
the model to the case of impact on a liquid substrate, and apply it to rationalize the
dependence of the bouncing droplet's behaviour on the system parameters. The the-
oretical developments have motivated further experiments, which have in turn lead
to refinements of the theory.

We proceed by modeling the evolution of the standing waves created by impact on
the bath, which enables us to predict the onset of walking and the dependence of the
walking speed on the system parameters. New complex walking states are predicted,
and subsequently validated by our detailed experimental study. A trajectory equation
for the horizontal motion is obtained by averaging over the vertical bouncing.

Thesis Supervisor: John W. M. Bush
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Chapter 1

Introduction

"Guttas in saxa cadentis umoris longo in spatio pertundere saxa."

"The drops of rain make a hole in the stone, not by violence, but by oft falling."

Lucretius, De Rerum Natura IV.

The impact of liquid drops upon liquid or solid boundaries has long been a source

of fascination and inspiration. Scientific investigations of the interactions between

drops, jets and liquid surfaces were initiated by Lord Rayleigh [104, 105] and Arthur

M. Worthington [128, 129] in the 1870s. In order to study the dynamics of these

processes, often happening over timescales too short for the human eye to perceive,
they developed the technique of stroboscopy, invented by Joseph Plateau who himself

was involved in the study of liquid films and droplets [92]. The stroboscope relies

upon the production of a short intense burst of light, and the art of triggering and

compacting the flash was perfected by Harold E. Edgerton, as evidenced by his pho-

tographs of nuclear explosions. His collection of high-speed photographs [34] included

captivating images of energetic drop impacts with the subsequent formation of craters

with crown-like rims, and undoubtedly spurred a renewed interest in the subject.

The development and wide adoption of high-speed imaging has revealed the full

range of phenomena associated with drop impact [120]. In the coalescence cascade

[121, 5], a succession of progressively smaller drops is created during partial coales-

cence of the original drop with a liquid bath. Following vigorous drop impact on a

bath, ejecta sheets may arise [119], evolving over timescales of mere microseconds.

Experimental [111, 67, 15, 58, 10, 96], theoretical [20, 84, 1, 95, 62, 14] and numerical

[115, 8, 9, 70, 85] works abound, revealing and rationalizing the vast array of possi-

ble behaviour and the rich physics involved. For an overview of the different impact

phenomena, see Rein [106] or Yarin [131].
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The impact of liquid droplets on solid and fluid surfaces is important in a vari-
ety of industrial and biological processes. Industrial applications include insecticide

and pesticide design [36, 80, 127], inkjet printing [126] and fuel injection, as well as

the design of airplane, ship and windmill blades [132]. For many plants and small

creatures, the impact and adherence of a raindrop can lead to tissue damage or other

deleterious consequences, such as compromised photosynthesis in the case of plants

and respiration in the case of insects; thus, the integument of many plants and insects

is hydrophobic [101, 7]. Understanding the dynamics of collisions between drops of

different sizes in the atmosphere is a prerequisite to predicting the onset of rain, while

raindrop impact on the sea or a puddle has major effect on the aeration of the surface

layer and dispersal of spores and microorganisms. The motivation for this thesis is

the hydrodynamic quantum analogue system recently discovered by Yves Couder.

In this thesis, we shall focus on drop impact on solids and fluids at relatively low

impact speeds, in which both the droplet and the impactor are only weakly distorted.

When the impactor is a rigid substrate, the droplet will come to rest on its surface

after a series of rebounds during which its initial kinetic energy is dissipated. When

the impactor is a liquid bath, the drop will eventually coalesce, after the intervening

air layer separating it from the bath beneath it drains below a critical thickness [18].

However, when the bath is shaken vertically, the energy lost to dissipation and wave

creation at each rebound can be offset by a transfer of kinetic energy from the bath.

Thus the coalescence can be prevented, the drop being instead sustained in a bouncing

motion, as was first discovered by Walker [124], since the intervening air layer does

not have sufficient time to drain during impact.

As the amplitude of the bath oscillation is increased further, the drop may ex-

ecute a period-doubling cascade, culminating in a chaotic vertical motion [98], a

feature common to systems involving bouncing on a periodically oscillating platform

[37, 73, 21]. For drops within a certain size range, the interplay between the drop and

its own wave field causes the vertical bouncing to become unstable: the drop begins

to move horizontally, an effect first reported by Couder et al. [19]. Note that for

sufficiently high bath acceleration, known as the Faraday threshold, the bath surface

becomes unstable, and a standing wave pattern emerges [38, 4]. As the bath accel-

eration approaches the Faraday threshold from below, the decay rate of the surface

waves created by the drop impacts is reduced and a particular wavelength is selected,
corresponding to the least stable wavenumber.

Interaction of walking drops and the surface waves reflected from the boundaries

[16, 30] or from other drops [100, 98, 97, 29, 28, 32, 43, 99] leads to a variety of
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interesting phenomena reminiscent of quantum mechanics [6], such as tunneling across

a sub-surface barrier [30], single-particle diffraction in both single- and double-slit

geometries [16] or quantization of circular orbits [43]. Considering the drop motion

from a statistical perspective, interesting patterns emerge in the probability density

function of the drop's position. Harris et al. showed that inside a circular corral, the

density function reflects the most unstable mode of the cavity. Investigation of the

drop's statistical behaviour in more complex geometries is currently underway.

The discovery of the walking drop system by Couder provided the first experi-

mental realization of a pilot-wave system, first theoretically proposed by de Broglie

[22] as a realist, deterministic interpretation of quantum mechanics. This pilot-wave

theory for the dynamics that would underly the statistical theory provided by the

standard quantum mechanics would constitute a hidden variable theory. The two

crucial components of de Broglie's theory, namely the resonance between the particle

and its guiding wave, and the monochromatic nature of the guiding wavefield, are

both present in Couder's system. Von Neumann produced a proof [123] that osten-

sibly ruled out all hidden-variable theories; however, the proof was later found to

be flawed [2, 3]. Nevertheless, the prejudice against pilot-wave theory persists. It is

hoped that with the insights gained from the walking drop system and the rational

theory for it developed herein, this unfortunate historical legacy can be rectified.

Exploration of the possible analogies between the drop-bath system described

above and quantum mechanics is a growing field of research [83, 55, 54, 56]. Com-

pared to the amount of experimental work done, theoretical modeling has been lack-

ing. While an early phenomenological model [100, 32] was capable of reproducing

certain observed behaviours, it was unable to provide quantitative predictions of the

system behaviour. The material in this thesis is intended to improve the situation

by developing the first rational model of the interaction between the drop's vertical

and horizontal motion, which is shown to be necessary to capture the full variety

of the observed droplet behaviour. It should serve as a starting point for numerical

simulations of the system [88, 75]. Moreover, it will guide the experimenters in their

search for new phenomena, a goal first achieved in the results reported in chapter 4.

The work presented in this thesis was motivated by the following basic questions:

" Q1: When a drop is placed on a vibrating fluid bath, over what range of system

parameters will it coalesce, bounce or walk?

" Q2: When it does walk, how quickly will it walk?

" Q3: What is the optimal drop size to prevent coalescence or to observe walking?
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Chapters 3 through 5 provide the answers to these questions, while raising many new

ones.

The need for predictive accuracy and numerical speed necessitated development

of a new model for the drop-bath interaction, which we call the logarithmic spring

model. It is developed in three stages in chapters 2-4. In chapter 2, we treat the

normal impact of a drop on a rigid curved impactor. We there introduce our quasi-

static model, which provides an adequate approximation to the drop dynamics in

the limit of low impact speeds. Its application requires finding the static shape of a

drop under the influence of gravity, which allows for the calculation of drop's surface

and gravitational potential energy. Expressing the static shape in terms of spherical

harmonics then enables us to find the kinetic energy and dissipation associated with

the change of the shape within this drop shape family. Finally, the drop's equation

of motion is derived and solved numerically, and its predictions are compared with

the existing experimental results and numerical work. Our model captures both the

effects of the substrate curvature and the drop's initial kinetic energy on the impact

dynamics. Since the equations of motion show that the reaction force acting on the

drop during impact is nearly linearly dependent on the deformation length, with

a logarithmic correction, we dub this model the "logarithmic spring". Chapter 2

appears as published in Molakek, J. and Bush, J. W. M 2012: A Quasi-static Model

of Drop Impact, Physics of Fluids 24 127103.

In chapter 3, we adapt the model in order to consider low energy drop impact

on a liquid bath, as arises for walking droplets. This is achieved by extending the

quasi-static approximation to the shape of the deformed bath. In order to achieve

sufficient accuracy over the relatively large range of Weber numbers of interest, higher

order terms are included in the equations that are fixed by matching the experimental

data on the coefficient of restitution and contact time. The model is then applied

to rationalize the regime diagrams describing the behaviour of drops bouncing on a

vibrating bath, under the further assumption that the bath returns to its equilibrium

shape between successive drop impacts. A dimensionless number defined as the ra-

tio of the bath driving frequency to the drop natural oscillation frequency, which we

dub the vibration number, is shown to collapse the experimental data for different

values of driving frequency. We predict a number of new bouncing states, as well as

the coexistence of multiple bouncing states with the same periodicity but different

average mechanical energy. The coalescence threshold is shown to be well captured

by the model, confirming that a detailed description of the intervening air layer dy-

namics is not necessary; rather, it serves only to transfer stress between droplet and
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bath. Chapter 3 is currently under review at the Journal of Fluid Mechanics: Drops

bouncing on a vibrating bath, Mol6bek, J. and Bush, J. W. M.

In chapter 4, we consider the spatio-temporal evolution of the bath surface after

each drop impact, then the destabilizing influence of this wavefield on the bouncing

states. For driving close to the Faraday threshold, the surface is found to be locally

approximated by a standing wave with nearly exponential temporal decay and a radial

form described by a Bessel function. By considering the horizontal force balance using

a heuristic formula for the tangential drag on the drop during impact, we are able to

rationalize the limited extent of the parameter range where walking occurs, as well

as the speed of the walking drops. The location and extent of the walking region is

found to be crucially dependent on the stability and existence of the various vertical

bouncing modes. By integrating over one period of the vertical motion, the vertical

dynamics can be filtered out, yielding a trajectory equation for the drop's horizontal

motion. Chapter 4 is currently under review at the Journal of Fluid Mechanics: Drops

walking on a vibrating bath: towards a hydrodynamic pilot-wave theory, Molshek, J.

and Bush, J. W. M.

In chapter 5, we present the results of an integrated experimental and theoretical

investigation of droplets bouncing on a vibrating fluid bath. A comprehensive series

of experiments provides the most detailed characterisation to date of the system's

dependence on fluid properties, droplet size and vibrational forcing. A number of new

bouncing and walking states are reported, including complex periodic and aperiodic

motions. Particular attention is given to the first characterisation of the different

gaits arising within the walking regime. In addition to complex periodic walkers

and limping droplets, we highlight a previously unreported mixed state, in which the

droplet switches periodically between two distinct walking modes. Our experiments

are complemented by a theoretical study based on our previous developments, which

provides a basis for rationalising all observed bouncing and walking states. Chapter

5 is currently under review at the Physics of Fluids: Exotic states of bouncing and

walking droplets, Wind-Willassen, 0, Mohinek, J., Harris, D. M. and Bush, J. W. M.

In chapter 6, we conclude our study of the bouncing and walking drops, discussing

the strengths and weaknesses of our model, and proposing directions in which the

theory might be extended.
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Chapter 2

Drops Bouncing on a Rigid

Substrate

2.1 Background

In this chapter we treat the impact of a liquid drop on rigid or weakly-deformable

substrates. The nature of small droplet collision depends on the wettability of the

impacted surface, which will in general depend in turn on its surface chemistry and

texture [44]. If the droplet wets the substrate, the spreading and detachment of the

droplet will depend critically on the contact line dynamics [131]. In this chapter,

we consider the case of non-wetting impact, in which a thin air layer is maintained

between the droplet and the surface, so that contact line dynamics need not be

considered. Such is the case for relatively low-energy impact of drops on super-

hydrophobic surfaces [125], a rigid surface coated with a liquid film [47] or a highly

viscous liquid surface [25].

We further restrict our attention to low-energy impacts in which the droplet de-

formation remains small, allowing for an analytical treatment. Two key parameters

that characterize the impact are the contact time Te and the coefficient of restitution

CR. The contact time can be defined as the time over which the droplet experiences

a reaction force from the impacted object; the coefficient of restitution as the ratio

of the normal components of outgoing to incoming velocity: CR = (v)na . While,
strictly speaking, these definitions can only be approximate due to the interaction

between drop and impactor via viscous forces in the intervening gas, for the class of

problems to be considered, the resulting ambiguity is negligible.

Six physical variables affect the normal impact of a nonwetting drop on a flat rigid
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surface: the droplet radius Ro and impact speed Vi, the liquid density p, dynamic

viscosity p and surface tension a and the gravitational acceleration g (see Table 2.1).

These give rise to three nondimensional groups. The Weber number We = pRoV/a,

Bond number Bo = pgR3/a and Ohnesorge number Olt = 1i (po) -1/2 prescribe the

relative magnitudes of, respectively, inertia, gravity and viscosity to surface tension.

Considering the effects of the surrounding gas on the drop dynamics requires the

inclusion of two more physical variables - the gas density p., and gas viscosity 1,, -

giving rise to two more nondimensional groups, pg/p and Ohg = ig (apRo)- 1/ 2 . For

the parameter range of interest, p9 /p < 1 and Ohg < Oh, the influence of these

two parameters is negligible. To incorporate the influence of substrate curvature, we

consider the impacted solid to have a uniform radius of curvature R 2 and introduce

the nondimensional group R = 1 - RO/R 2 (see Fig. 2-1). Defining the curvature of a

concave substrate to be negative, we note that R = 1 for a flat surface, R -+ oo for

a sharp pin-shaped surface and 1 = 0 for a surface whose curvature matches that of

the drop.

Figure 2-1: A drop of radius Ro impacts a rigid surface with radius of curvature R2

(see Figure 2b). Several values of the curvature parameter R = 1 - Ro/R 2 are shown:

from left to right, R = 0, R = 0.5, R = 1, R = 2 and R >> 1.

Studies of liquid drop impact at small and moderate Weber numbers (We < 30)

are scarce in comparison with their high Weber number counterparts. Foote [42] was

the first to model numerically the dynamics of a nearly inviscid drop impacting a

solid wall, his computations providing estimates for the contact time, contact area

and pressure distribution inside the drop. Gopinath & Koch [53] modeled the collision

of two identical water drops at low Weber numbers by decomposing their deformation

into spherical harmonic modes. In the limit in (1/We) > 1, they were able to use

approximations of the behaviour of the Legendre polynomials Pm (x) to show that the

contact time increases logarithmically with decreasing We. The inherent symmetry

of the collision of two identical drops means that it is in many ways equivalent to the

rebound of a single drop from a flat rigid boundary and allows us to implement their

results in the present work.

Richard & Qudr6 [109] measured the coefficient of restitution CR of small water
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drops (0.4mm Ro < 0.5mm) bouncing on a super-hydrophobic surface for 0.02 <

We < 2. They reported CR as large as 0.94, noting that it remains relatively constant

above a critical impact velocity below which it sharply drops to zero, presumably

because the contact angle hysteresis becomes important for sufficiently low Weber

numbers. Richard et al. [108] measured the contact time TC in the same configuration

for 0.3 < We 5 37 and found it to be nearly independent of the Weber number in

this range, with a slight increase at the lower end of the We spectrum. Okumura et

al. [84] measured the contact time in the same configuration for 0.003 < We 5 1
and two drop radii Ro = 0.4mm and Ro = 0.6mm, and noted an increase of Tc

with decreasing We, which they attributed to the influence of gravity. They also

presented a simple model for the drop dynamics, using a linear spring approximation

to the reaction force obtained by approximating the drop distortion as a superposition

of pure translation and vibration in the second fundamental harmonic mode.

Simple scaling suggests that the contact time scales as TC - A , as does

the period of free oscillations of a drop [103]. The coefficient A = A (Bo, We, Oh) is

in general a function of the three nondimensional groups. However, when We >> Bo2 ,
the effects of gravity can be neglected (Okumura et al. [84]); similarly when Oh < 1
the effects of viscosity can be neglected. When these two conditions are met, we

expect A ~ A (We). Richard et al. [108] found experimentally that A ; 2.6 for

1 < We < 30, while the numerical models of Foote [42] and Gopinath & Koch [53]

indicate that for We < 1, A (We) ~ ln 1;. The linear spring model of Okumura

et al. [84] predicts A = 2.31 independent of We, and thus must become invalid

for sufficiently low We. We expect the coefficient of restitution CR to depend most

strongly on Oh, with CR -+ 0 as Oh -+ oo and CR -+ 1 as Oh -+ 0. Interestingly, for

sufficiently high We, limoh-,o CR - 0.91 < 1, because part of the initial translational

energy is transferred to oscillations of the drop surface, as demonstrated by Richard

& Qure [109].

We here present a relatively simple model of non-wetting liquid drop impact valid

in the limit of We < 1 that encorporates the influence of the curvature of the

impacted surface. We approximate the drop shape at any instant by one from the

quasi-static family of sessile shapes of a drop in a homogeneous gravitational field.

The precise shape is thus prescribed by the effective Bond number, which will be
the single independent variable in our model. We proceed by finding the first order

approximation to the static drop shape in §2, which yields the change of the drop's

surface and gravitational potential energies. In §3 we find the spherical harmonic

decomposition of the static shape, from which we derive the kinetic energy and viscous
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Table 2.1:
periments,
[116].

List of symbols used together with the typical values encountered in the ex-
at low We reported by Okumura [84], Richard & QuerW [109] and Terwagne

damping associated with a change of drop shape within the static shape family. We

then form the Lagrangian of the system and derive the equation of motion. In §4,
we analyze the asymptotic behaviour of contact time in the limit In 1/We > 1, both

with and without the influence of gravity. We develop a simple numerical model to

which we compare the predictions of the quasi-static model in cases where there are

no existing data. We investigate the role of the substrate curvature on drop dynamics

and show that to leading order the combined effects of curvature and impact speed

can be described by a single nondimensional parameter.

2.2 The shape of a static drop

The leading order deformation to a static drop caused by a weak uniform gravitational

field was deduced by Chesters [13], and subsequently considered by Smith & van De

Ven [114], Shanahan [112] and Rienstra [110]. It will be briefly rederived here, in

part to introduce the notation adopted in this chapter. Consider a liquid drop with

density p, surface tension a and undeformed radius RO, that sits on a solid substrate

with constant radius of curvature R2 (see Table 2.1 for the list of symbols). We set
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Symbol Meaning Typical value
Ro drop radius 0.1 - 1 mm
R 2 substrate radius of curvature -co - 0.1 mm

p drop density 103 kg/M 3

a drop surface tension 10-2 - 10-1 N/m
g gravitational acceleration 9.81 M/s 2

Vi,, drop incoming speed 0.1 - 1 m/s
Vt drop outgoing speed 0.01 - 1 m/s

I drop dynamic viscosity 10-3 - 10-1 kg/(m.s)
A. air dynamic viscosity 2-10-5 kg/(m.s)
TC contact time 3. 10-4 -2- 10-2 8

CR = Vm/Vt coefficient of restitution 0.18 - 1
IC = (r/pg)1/ 2 capillary length 1 -3 mm

We = pRoVi/ra Weber number 0.01 - 1
Bo = pgRIg/ Bond number 10 - 10~1
Oh = p (pRo)-Y' 2 drop Ohnesorge number 0.004 - 2

Ohg = pa (apRo)-" 2 gas Ohnesorge number 10-4 10-
7? = 1 - & relative curvature parameter 0 - 00
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F2

Figure 2-2: Axisymmetric sessile drop of density p and surface tension a resting on
a surface with radius of curvature R2 . Without gravity, the drop would be spherical
with radius RO, under gravitational force g it deforms to a shape given by R = R(O)

in spherical coordinates. The drop shape conforms to that of the substrate over the
area 0 < & < a.

R 2 > 0 if the solid is concave (as in Fig. 2-2) and R 2 < 0 if it is convex. It will

be useful to define the relative curvature parameter 1? = 1 - Ro/R 2 (see Fig. 2-1).

Under the influence of a weak gravitational acceleration g, the drop deforms to an

axisymmetric shape given in spherical coordinates by

R(O) = &o (1 + ef(cos 6)) , (2.1)

where e < 1. We place the center of our coordinate system at the droplet's center

of mass, and align the vector 6 = 0 with gravity. We will assume a contact angle

close to 7r, as our goal is to model the impact of water drops on super-hydrophobic

surfaces, or drops which remain separated from the solid by a thin gas film. The

drop shape conforms to that of the underlying solid in the region 0 K 0 < a. We

write cos a = 1 - 6, with 6 being the relative contact area, specifically, the ratio of

the contact area to its maximum possible value 27fRt, and assume a = 0 (fi/2), so

that 6 = O(e), as will be justified in what follows.

2.2.1 Drop energetics

The surface energy of the drop is given by

S.E. = a 2f fRtlR2 + R'2 sin Od( =

= 2raRO j 1 + 2rf + r2 (f2 + jf'2( _ 2)) + 0 (C) dx (2.2)
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where x = cos 0. The potential energy of the drop is the height of its center of mass

above a reference point, which we choose to be the intersection of the solid and the

axis of symmetry of the system. Then, by definition of our coordinate system, we

have, using (2.1):

P.C. = 'irpg [R(a) cos a + (R(a) sin a)2] =rpgR4 [1+ ef (1-6)-6lZ+O (62)]

(2.3)

The volume of the droplet must remain constant under any deformation. Ex-

pressing the volume as an integral of R(G) and integrating by parts once, we ob-

tain 4 rR,: = 2r g R3 (0) sin OdO. Substituting again for R(0) from (2.1) and using

x = cos 0 yields

f +Ef2dx = 0 (2) . (2.4)

The condition that the center of mass is located at the origin is equivalent to 0 =

- V R4 (6) sin9 cos 0dB. Once again, substituting from (2.1) yields

fxd = O (e) . (2.5)

In the contact region, the value of f(x) is prescribed by the shape of the substrate:

f(x) = R +yf(1-u6)- . 1-ci5x<1 . (2.6)

Substituting for f' fdx from (2.4) into (2.2) gives

S.6. = 2rRg [2+ 2 j2(1 - x 2 ) _ f2 dx + (E3)] . (2.7)

Minimizing the total energy of the drop CTOT = P-. + S.C., subject to the con-

straints (2.4) and (2.5), leads to minimizing the functional

f1 ~f'2(1 - X2) _ f2 - Alf - A2fx dx, where A,, A2 are the Lagrange multipliers

corresponding to the constraints (2.4) and (2.5), respectively. The Euler-Lagrange

equation gives

- [f'( - X2)] + 2f +A,+ AX = 0 ().(2.8)
dx

The general solution of (2.8) (inhomogeneous Legendre's equation) which is well-
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behaved at x = -1, i.e. at 8 = ir, is given by

f(x) = -xln(1 - x)+ + CX (2.9)
3 2

We determine c and A, from constraints (2.4) and (2.5). Absorbing A2 into E finally
gives

f( ) 1 1 4
f~) ( -in 2 )+Vg + " ) , (.0

which is equivalent to Eqn. (12) in Shanahan [112]. Combining expressions (2.6) and
(2.7), and substituting for f(x) from (2.10) yields

S.C. = 21ra-R [2 - (n + 4+ l22+0 (s) . (2.11)

Substituting for f(x) from (2.10) into (2.3) and adding that to (2.11) yields an

expression for the total energy

TO 2 + + R2R2+ 2B. 1 J + +] +0 (E3) . (2.12)

Differentiating (2.12) with respect to E gives E = Bo, differentiating with respect to 6
then gives (6Z - )2 = 0 (Boa), So

J= + 0 (Bo312) . (2.13)
3R

We have thus determined the leading order change to the droplet shape due to gravity.

The deformations are of order Bo and so is the relative contact area 6, justifying the

claim that a = 0 (Ba/ 2).

Using (2.13) we can now write the expressions for the surface and gravitational

potential energy increments, that is, their change due to the drop deformation. It
will be useful later on to include also the next order correction to these expressions,

in order to obtain a better match for Bo near 1. We have solved for the static shape

numerically and, by subtracting the analytically derived first order dependence, were
able to find that the second order correction is well approximated by 21roRg. Thus
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AS.C. 4 B+1 B02 61n +-B
2iaRg 9B 3 2R
AP. . 2 61Z 5 3Mo

S--B 1 +--(2.14)
2xraRj 9B 6 8

Expression (2.14) is in accord with the result of Morse & Witten [81], who found

that the surface energy of a drop subject to a point force f increases by an amount

proportional to f 2 in (1/f).

2.2.2 Spherical harmonic decomposition

In order to compute the kinetic energy of the quasi-static drop in the next section,
we will need the spherical harmonic decomposition of the static axisymmetric profile:

R()= R (1+ Bof(cos0)) = Ro 1+ BoZ bP(cos ) , (2.15)
\ n=2/

where Pn is the n-th Legendre polynomial. The sum begins with n = 2 because bo = 0
from volume conservation (2.4) and bi = 0 from (2.5). A static drop minimizes the

sum of its surface energy and gravitational potential energy.

In order to obtain the surface energy in terms of the spherical harmonic compo-

nents, we substitute f(x) = E'= 2 bnPn(cos x) from (2.15) into (2.7), which yields

2 = 2 + Bo2  bmbn (1 - x2)|,I? - PmPndx + 0 (Boa) . (2.16)

Orthogonality of the Legendre polynomials and integration by parts yields

S.C. = 4x7Ra + 2w Bo2  (m - 1)(m + 2)1 b, +0 (Boa) . (2.17)
m=2 2m+ 1

Obtaining the gravitational potential energy is less straightforward. It might be
tempting to simply use (2.3) and write P.C. = lirpgRj*[1+Bo E 2 bmPm(1-6)-61Z

with 6 given by (2.13). This is equivalent to a drop resting on a circular wire of radius
Rovr2. An alternative choice would be to set 6 = 0 in the previous expression, which
is equivalent to constraining the drop at just one point. Both approaches are unsatis-
factory, especially the latter, as indicated in Fig. 2-3. Although they both give correct
values of bm in the limit of 6 -+ 0 (i.e. Bo -+ 0), we want a good approximation to

42



the next order corrections, which will be used in calculating the kinetic energy and
also in the reference numerical simulation. To that end, we must somehow constrain
the drop over the whole contact area. A simple way to do that is to use the average
over that region:

4 F 1 00
P.C. = vrpJ 1 + Bo EbmPm(x) - (1 - x)Zdx . (2.18)

m=2

Since f Pm2(x)dz = ,~ '(1 - 6), (2.18) can be written

P . 7 -pg 1+2BoE bm PM ] (2.19)
3 M2 M(rn + 1)

Minimizing the sum of (2.17) and (2.19) with respect to each bm immediately yields

2 (2m + 1)Pm(1 - 6) with 6= (2.20)
3 (m - 1)m(m + 1)(m+ 2) 31Z

As Bo -+ 0, bm -+ 2m , the result obtained from the point constraint for all3(r-)()T
Bo. Including more modes obtained by the point constraint method therefore leads

to a shape that diverges logarithmically at x = 1 (see Fig. 2-3a). This divergence

is avoided by our averaging method (2.20) which produces a good representation of

the contact area even for large values of Bo. In Fig. 2-3a, it is evident that the form

obtained by our averaging method is nearly flat over the contact area, instead of

bulging outwards as does the form obtained by the rim constraint method, or curving

inwards as does the form obtained by the point constraint method. In Fig. 2-3b, we

show the static drop shape obtained by the averaging method for several values of

Bo. Once again, the curves are close to flat throughout the contact area for all values

of Bo considered.

2.3 Quasi-static droplet

We now assume that the drop shape is given by

R(0,t) = R? (1 + B(t)f(B, cos0)) = (1+ B(t) b,(B) Pn(cos0) , (2.21)
n=1
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x/RO x/R0

Figure 2-3: a) The static profiles of a liquid drop with Bo = 1 on a flat surface.
The three profiles are the sum of the first 50 spherical harmonic modes obtained
by minimizing the surface and gravitational potential energy of a drop constrained in
different ways, by averaging the reaction force over: the contact area (equation (2.19))
(solid line), the contact area rim (dashed line), and the center of the contact area
(dash-dot line). We see that even for an 0(1) Bond number, the averaging method
provides a good approximation to the actual drop shape, which has a perfectly flat
base. b) The static profile of a drop obtained from the first 50 spherical harmonics
using the averaging method (2.20) for several values of Bo: Bo = 0 (dotted line),
Bo = 0.5 (dash-dot line), Bo = 1 (solid line) and Bo = 1.5 (dashed line).
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that is, it corresponds to that of a static drop with instantaneous effective Bond
number Boeff = B(t). The surface and gravitational potential energy of the drop are
obtained by simply replacing Bo by B(t) in (2.14). We want to calculate the kinetic
energy and rate of viscous dissipation corresponding to this motion in the center-of-
mass frame of reference. Let us first consider the limit of small viscosity, which is
most accessible analytically.

2.3.1 Oh < 1: low viscosity drops

When the ratio of the viscous to surface tension forces, as prescribed by the Ohnesorge
number Oh = p (paRO)- 2 , is sufficiently small, we can approximate the flow inside
the drop by a potential flow. Axisymmetric solutions of the Laplace equation V2 k = 0
in spherical coordinates for the velocity potential 4, which are continuous at the origin,
are of the form r"P,(cos 0) . We can thus write

0(r, 0, t) = ER (j) 4,(t)P.(cos0) . (2.22)

The radial component of velocity is then given by

ur(r,0, t) = e, = Roe, 0 9()P(1). (2.23)aro E_ O n()P CS0

Application of boundary conditions at the surface yields

00

ur( R,0,t) = &9R(t = RB1(t) 1 biPn(cos 0) , (2.24)
n=1

using (2.22) and ignoring the terms B(t)b. which are of order B2 . Therefore 4 (t) =
B(t)bn/n. The kinetic energy of the drop is given by

.=p V -V0 dV= pf V -(OV4)dV =P 4udS=

7rPRj M BboP, sin OdO m (2m+1)

(2.25)
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where we have used V2 0 = 0 and the orthogonality of the Legendre polynomials.

Using the rotational symmetry, the viscous dissipation in the drop can be written as

ID = 2) f f~( Onr 2 1 u r2 + , (r2 , 1 Nr i 2o

2] )+ (+ + ( + + dV . (2.26)
JV + (r 00 r r 2 ir r r c9O

For small Oh, we can substitute for u = V4 from (2.22) into the general formula

above, and so derive the expression

Do = 8irpg3 2 (t) b M . (2.27)
m=2

Having computed the coefficients bm we can now derive closed-form expressions for

the kinetic energy and energy dissipation rate. In the Bo -+ 0 limit , we have bm

1 2,+ which implies

2 =0 2m+1 2 /
1Ce0= m=rj~2 (r-) 2 (+2 2  IrPRj 2CKO B30 « 1 (2.28)9 M(M - 1)2(M+2)2 9

where CKo = 0 - =O.19284..., and the energy dissipation rate is

Do8= Rjy R > (2m+ 1)2 - =8 r 2CO 13o < 1 , (2.29)
94E m(m + 2) 2 (m - 1) 9

where Co = 'r- & = 2.0507....

For a finite B, we substitute (2.20) into (2.25) and (2.27). It is found that the

formulae (2.28) and (2.29) overestimate the kinetic energy and dissipation rate for B =
0(1). Although no closed-form expressions could be found for these two quantities
at finite B, a reasonable approximation is given by

.C.O(B) ; rPRB 2 CKO (1-M(B)) and DO(B) - rRg 2 D ( M-(B))

(2.30)
where M(B) = 8In 9

2.3.2 Arbitrary Oh

For arbitrary Oh, the potential flow approximation ceases to be valid and one has to
use a more general method to derive the kinetic energy and viscous dissipation. For
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small B, the spherical harmonic modes are still uncoupled, but now we have

jt2 00
K = pR 2 (t) Am(Oh) 7-m V=87rpR$I 2(t) Dm(Ohm) bm2

m(2m+1) '-2 2m+1
m=2 m=2

(2.31)
The scaled Ohnesorge number Ohm = Ohv/dh is introduced for the sake of conve-
nience. The coefficients Am and Dm are such that the roots of the equation

Oh
Amb 2 -2aDmb+1 =0 ,where a= Oh , (2.32)

N/m (m - 1)(m + 2)

are the two roots with the largest real part of the transendental equation

[(2m+1)-2m(m +_2)_W(b/a)] Jm+3/2(Vf)
b -2a(m-) n+1b =0 where W(x)= J1 - 2W(b/a) V m+1/2(/)

(2.33)

Here Jk(x) is the Bessel function of the first kind of order k and a is defined in (2.32).
For the derivation of (2.33), see Chandrasekhar [11] or Miller & Scriven [76]. The
dependence of Am and Dm on Ohm is shown on Fig. 2-4. From the properties of the
Bessel functions, it follows that W(x) -+ ' as x -+ 0 and W(x) -+ 0 as x -+ oc.

This allows one to approximate (2.32) in the limits of Oh -+ 0 and Oh -+oo [76]. For
low viscosity (Ohm < 0.03) Am -+ 1 (as derived in Section 3.1) and Dm (2m+1)(m-1).

For high viscosity (Ohm > 1), Dm -+ (m-1i( m2+4)+3 and the kinetic energy term is
negligible relative to the surface energy term and so can be discarded. As m -+ oo,
the values of Am(Ohm) and Dm(Ohm) approach limiting values, denoted Ao.(Ohm),
D.(Ohm), which coincide with the values obtained for small surface capillary waves
on a planar surface. Note that D0 0(0) = 2, while D0.(oo) = 1 (see Fig. 2-4).

As in the previous section, we substitute for bm from (2.20) into (2.31) to find that

KC.(B,Oh), 2irpRIb2CK(Oh) (1-M) , D(B,Oh)- 8IrIRgB2C (Oh) (i-vA7
(2.34)

where M(B) =B In _.

CK is a monotonically increasing function of Oh, but since CK(O) = CKo = 0.192
while CK(oo) = 0.212, we can approximate the kinetic term by CKO henceforth
while incurring no more than a 5% error. On the other hand, CD is a monotoni-
cally decreasing function of Oh (see Fig. 2-5 ) with CD(0) = 2 - I = 2.051 and

CD(oo) = 1 + 1 = 1.350, so for problems with 0.01 < Oh < 1 one cannot use either

47



2.

0.

12 10-1
m 12Oh
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Figure 2-4: The dependence of the coefficients Am and Dm from equation (2.31) on

the scaled Ohnesorge number Ohm = ml/ 20h. Curves for m = 2,4,10,40 (triangles,
circles, dash-dot and dashed lines respectively) are shown, together with the limiting

curves for m -+ oo (solid lines) corresponding to planar surface capillary waves.

of the limiting values without sacrificing accuracy.

complication in greater detail.

ca

Prosperetti [94, 95] treats this

1 ' 1010 -2 1 0-1Ohpa o-1

Figure 2-5: The dependence of the dissipation coefficient CD in equation (2.34) on

the Ohnesorge number Oh.

2.3.3 Equation of motion

Having derived the surface, kinetic and gravitational potential energies of the drop,

as well as the viscous dissipation inside it, we can now construct the Lagrangian
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L = K.C. - AS.S. - AP.S. We switch to a coordinate system fixed to the impacted

surface, and assume that it is stationary. The kinetic energy must thus also include

a contribution from movement of the drop's center of mass. We define Rob, to be

the vertical displacement of the center of mass relative to where it would be if the

drop remained spherical. Its dependence on B can be obtained from (2.14) since

AP.S. = -_xrpgNb1:
B 61Z 5 3B

bi = - [In - . (2.35)

Then, as Abi = bY(B)b, the Lagrangian is

[ 2 2,,,~ +V(v~~ 2C
=pR[ (bI +C (1 M(B))+29 - AS.E.(B) + irpg Rb, . (2.36)

We obtain the drop's equation of motion using the Euler-Lagrange equation with

dissipation [122]
d [A] 1WD OL
dj.9J+ 9= j- (2.37)

After nondimensionalizing the time with r = t (a/pR)" 2 , we deduce

[b2+ 1ACKJB + [2b CK] B0+ 20h f CDBr + bl(B-Bo) = 0,
3 6 3

(2.38)

where dashes indicate derivatives with respect to B. M(B) is given by (2.34), CKO =

12 - T7 0.1928 and CD(Oh) is shown on Fig. 2-5. We have used the relation
dAS.E. - - 4'rcRIYB, which follows from the fact that the stationary droplet shapedB 3 1 drole
minimizes the sum of potential and surface energy. Differentiating (2.35), we obtain

61Z 11 3B 3B/4R - 1
bi(B) = In + 3B and bi'(B) = . (2.39)

3 B- 6 4j 3B

When ln(61?/B) >> 1, (2.38) can be greatly simplified by neglecting higher order

terms in B, giving

[ 6 _ 11]
B 6 B ,-B/B+3(B-Bo)=0 . (2.40)

Equation (2.38), or its small Bo approximation (2.40), is our final equation de-

scribing the dynamics of a quasi-static droplet. In terms of simplicity and speed of

numerical solution, it is surpassed only by the linear spring model of Okumura et al.

In contrast to the latter model however, it compares favourably even with extensive
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numerical simulations and experiments, as will be shown in what follows.

2.4 Results

In this section we compare the results obtained with our quasi-static model with pre-

vious models and, most decisively, experimental results reported in the literature. In

order to evaluate the accuracy of the model for parameters not found in the literature

(e.g. different values of 1?), we have also created a numerical model by considering

the spherical harmonic decomposition of the drop (2.15). The Lagrangian constructed

from the surface energy (2.17), potential energy (2.19) and kinetic energy (2.31), to-

gether with the constraint

j EbP..(x)-(1-)Zdx=0 , (2.41)

allows one to obtain the equation of motion for each of the modes:

2m+1
Ambmrr + 2m2OhDmbm,. + m(rn-1)(n+2)bm + SimBO + A 1" P'(1-6) = 0,

(2.42)

where r = t (a/pR) 2 and Ji, is the Kronecker delta function. J is defined as the

largest solution of f(1 - x) = lZx (the length over which the drop surface conforms

to that of the substrate), where f(T) = dE bmPm(x). A is the Lagrange multiplier

corresponding to the constraint (2.41) and its value is determined at each step so that

the value of the left-hand side of (2.41) remains constant except possibly for discrete

jumps when 6 changes discontinuously. We used M = 150 modes in our calculations,

but as few as 20 modes are sufficient to achieve good accuracy (relative to the full

M = 150 simulations) within the range of Weber and Bond numbers examined.

2.4.1 Contact time of an impacting drop

Our quasi-static model provides a simple way of treating the vibrations and impact

of small drops on a rigid surface for small Weber numbers. Drops impacting with

speed V can be modeled by the equation (2.38) with initial conditions B(0) = e,

B7 (0) = We/ 2 /b1(E) with e -+ 0. The contact time of impacting drops has been

studied experimentally by Richard et al. [109], Okumura et al. [84], and numerically

by Foote [42] and Gopinath and Koch [53]. Comparing the contact time obtained by
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solving (2.38) numerically with their results will allow us to determine the range of

validity of our quasi-static model.

Note that from (2.40) we can obtain TC in the low speed limit We -+ 0, where

we expect B = 0 (We'/ 2) from conservation of energy. For Bo < We" 2, the in-

fluence of gravity on the droplet dynamics can be neglected. By assuming B(r) =

A sinwr with A < 1 and approximating ln(7Z/B(t)) e ln(JZ/A), one can reduce

(2.40) to w2 ln(R/A) ; 3, thus -rc = - 7r .n/A) From the initial condition
w 

3
Aw B,(0) ; 3We1/ ln-1(1Z/A), it follows that A n1/ 2 (1Z/A) : V3We'/ 2 and so

TC a - in w?2 +n3ln" 2 In2 + In .n' Analysis of numerical solutions to (2.40)

allows us to determine y and so deduce:

PM2 [I 1 / 1 R 1/2
TC = 7r - n In In/2 +0.55 + _n- _ for Bo < We" 2

3 11 We'/ 2  We1/ 2  J+0/2
(2.43)

The expression (2.43) represents an improvement on the first analytic expression for

the contact time, formula (2.19) from Gopinath & Koch [53], which states Tc =

7r [n We" 2 + 0 (ln in" 2 We-2 1/2 for the case of a flat impactor 1Z = 1.

(2.43) implies that the nondimensional contact time increases without bound as the

Weber number approaches zero; however, in reality the effects of viscosity and other

body forces will alter this result for sufficiently small Weber numbers.

When 1 > Bo > We" 2, we assume that the drop's center of mass will oscillate

around its equilibrium position: B(r) = Bo (1 + A cos wr). The value of the ampli-

tude A is determined from conservation of energy. The kinetic energy associated with

the internal circulation is negligible relative to its translational kinetic energy, as can

be seen from (2.38), their ratio being 3CKo/ In 2 M 1. Thus the initial kinetic energy

of the drop 2irpRIV 2 must equal the sum of surface and gravitational potential energy

at the instant of maximal drop deformation, i.e. when B = Bo(1 + A). Substituting

for B into (2.14) yields A2 = 1 + 3We/ (302 in V), provided in n >> 1. The contact

time equals the difference between the two times when 0 = B(7) = Bo (1 + A coswT),

so re = 2 (7r - cos-1 A-'). In order to obtain w, we calculate the frequency of small

oscillations around the equilibrium drop shape. Substituting B(r) = Bo (1 + fe'w)
into (2.40) with c < 1, gives w ; n(R1/Bo) + C In~I(R/So). Therefore

pR8 (In Z CK MWe
Tr z 2 -- h " + 1r -arecos + for Bo > We" 2 .

3 5o (n R ~
(2.44)
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The results are shown in Figures 2-6-2-8. In Fig. 2-6 we see that the numeri-

cal model (2.42), the quasi-static models (2.38) and (2.40), and the predictions of

Gopinath & Koch [53] all converge for small We, as expected. Our numerical model

is also in good agreement with the numerical results of Foote [42], the difference

for We ~. 1 being due to the fact that the drop becomes elongated upon detach-

ment from the surface, thus prolonging the contact time. This effect was included in

Foote's model, but to capture it within the quasi-static framework, one would need

to decouple the contact area size from the overall drop deformation and solve for the

static shape in negative gravity. While such decoupling would represent an interesting

extension of the quasi-static model and presumably would allow one to better cap-

ture the dynamics for We = 0(1), as our primary focus was the small We limit, this

direction was not pursued. Note also that in the numerical simulation using (2.42),

we set the contact time to be the time necessary for b, to pass zero, i.e. for the center

of mass to return to its initial position before the contact. This alternative defini-

tion of contact time, while making no difference within the quasi-static framework,

was made to eliminate the effects of the oscillations of higher spherical modes on the

actual contact time (inevitable for Oh -+ 0) and thus show the general trends more

clearly.

We can see from Fig. 2-6 that the full quasi-static model is within 12% of the

other results for the entire range of Weber numbers studied, while the simplified

quasi-static model (2.40) is within 10% for We < 0.1. The spring model of Okumura

et al [84] predicts -rc = ir/13/24 = 2.312, which we see is only approximately valid

for 0.2 < We < 1. For smaller Weber numbers, one needs to include more spherical

harmonic modes. In fact, one finds that modeling the first N spherical harmonic

modes together with the constraint b = 0 (drop pinned at one point) gives

r. r ,2n N. By comparison with formula (2.43) we see that one should include

at least N ; '1 ln'14 -e modes for reliable results.

The analytic expression (2.43) suggests that one should use the rescaled Weber

number We/Z 2 to incorporate the effects of curvature and Weber number into a single

nondimensional group; indeed, the numerical results for different 1Z then collapse

onto a single curve (see Fig. 2-7). It can be shown that this collapse follows from

the nature of the linearized boundary conditions and equations employed, which are

valid approximations provided the contact area, that is, the size of the region over

which the drop's shape conforms to that of the substrate, remains small relative to

the total drop area. This relative contact area is proportional to 6, which we know

from (2.13) to be B/3R. This last expression can be quickly derived by considering
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Figure 2-6: Comparison of the nondimensional contact time rc = Tu(pR)/o)1 2 as

a function of the Weber number We = pR$V /o for Oh = t/(puRo)1 /2  0.005
and to = pgR/a = 0, obtained with our quasi-static model (2.38) (solid line),
the simplified model (2.40) (dashed line) and numerical simulation of the first 250
spherical harmonic modes (2.42) (dash-dot line). The predictions of Gopinath &
Koch [53] (U), Foote [42] (v) and Okumura [84] (horizontal line) are included for the
sake of comparison.
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the pressure jump across the drop interface in the contact region, approximating the

internal pressure by 2e/Ro, and calculating the external pressure by balancing the

drop's weight and the total reaction force. Since B = O(We'/ 2 ) from conservation of

energy, the maximum relative contact area scales as We'/ 2/R, the square root of the

resealed Weber number. Therefore, our model should break down when We/R 2 ; 1,
i.e., when the impact speed becomes sufficiently high, or the substrate curvature

sufficiently close to that of the drop, that the contact area becomes comparable to

the drop area and the nonlinear effects become important. Little can be said at this

point about the drop dynamics in the We/i2 > 1 regime.

Our quasi-static and numerical models clearly indicate that both the contact time

(Fig. 2-7) and the coefficient of restitution (Fig. 2-9) increase logarithmically with

decreasing values of the rescaled Weber number. The reason for both of these effects is

the logarithmic divergence of the static shape for small contact areas (see eqn. (2.10)),
which allows the drop to localize its deformation to a small region around the contact

area. Viscous dissipation is then similarly localized and therefore restricted in its

total amount, leading to a higher coefficient of restitution. On the other hand, the

divergence of the static shape allows the drop to deform further with the same increase

in total surface energy, reducing the effective spring constant associated with the

deformation and thus increasing the rebound time. From (2.36) we see that the

total mechanical energy of the drop scales like p 1n2(1/B)b 2, while the kinetic

energy associated with the internal circulation is only of order pRfB 2 (see eqn. 2.28).

Viscosity can only dissipate the latter component, with viscous dissipation scaling

as Apli 2 (2.29). Integrating the dissipation over the contact time, which scales like

(p1?/C)1/2 ln(1/B), we thus expect the relative energy loss during rebound to scale

as Oh/l n(1/B) . Oh/ln(1/We) (see Fig. 2-9).

The effects of gravity have also been studied by Okumura et al. [84], whose

experimental results are shown in Fig. 2-8, together with our analytical expression

(2.44), the quasi-static model (2.38) and the numerical model (2.42). The quasi-

static model stays within 12% of the experimental data for the whole range of Weber

numbers considered. As a reference, we include the line for zero gravity. We see that

the increase in contact time with decreasing We found experimentally by Okumura

et al may be attributed to the effects of small We and not to gravity.
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Figure 2-8: The effects of gravity on the nondimensional contact time rc = T0 r

as a function of the Weber number We = pRoVla/o. The results of the numerical

model (2.42) (dash-dot line), quasi-static model (2.38) (solid line) and the analytical

expression (2.44) (dashed line), all for Bo = 0.05 are plotted, together with the

experimental results of Okumura et al, for Bo = 0.02 (v) and Bo = 0.05 (0). For

reference, the result of the numerical model (2.42) for So = 0 (i.e. no gravity) is also

shown (9).
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2.4.2 Coefficient of restitution

The quasi-static model (2.38) provides a fast way of estimating the coefficient of

restitution. The velocity of the droplet center of mass can be obtained from (2.38)
and (2.39) as (B)b, giving

CR = Vb(B(r,))b(r,)
bj(B(0))B(0)

where r, is the contact time. The dependence of CR on Ohnesorge number, Weber

number and Bond number for a flat surface (1Z = 0) is shown in Fig. 2-9. In order

to check the accuracy of the quasi-static model, we include the results of the full nu-

merical model (2.42). As expected, CR decreases uniformly with increasing viscosity.

Nevertheless, as Oh -+ 0, it does not approach 1, but a somewhat smaller value due
to a transfer of the kinetic energy into the vibrational modes, as observed by Richard
& Quer6. This transfer cannot be captured by the quasi-static model and therefore

the model overestimates CR for low Oh and high We. The match improves with

decreasing We and increasing viscosity. In absence of gravity, CR uniformly increases

with decreasing Weber number, but when Bo > 0, it reaches a peak and then sharply

drops to zero near We ; Bo. Oh as the drop fails to detach. Both of these phenomena

are captured well by our model.

1 1
Bo=O b) Bo=0.03

0.8 0.8

~*O 6

~0.4 0.4 *.u3Eu. *0
~0.6 a 0O.6200

o on

10 10 10 100 10 10- 10 10,
Weber number We Weber number We

Figure 2-9: The dependence of the coefficient of restitution CR on the Weber number
We = pROVj21/o with (a) and without (b) gravity, for a drop impacting a flat substrate
(1Z = 1). Results of the quasi-static model (2.38) (solid lines) and the full numerical
model (2.42) (points) are shown for four values of the Ohnesorge number Oh =
p1/Jfpo : Oh = 0.1 (*), Oh = 0.2 (0), Oh = 0.3 (T) and Oh = 0.4 (A).

57



2.5 Discussion

We have presented a conceptually simple theoretical model for the dynamics of a

drop impacting a rigid substrate, which is valid when the drop deformation remains

small and the effects of contact line dynamics and dissipation in the surrounding

gas can be neglected. It has allowed us to characterize the effects of both the Weber

number and substrate curvature on the dynamics. The form of the equation of motion

suggests that in the small deformation limit these two effects are captured by a single

nondimensional group - square root of the rescaled Weber number We'/ 2 /R, where

Z = 1 - RO/R 2, which is proportional to the ratio of the maximum contact area

to the drop's total area. When Wel/ 2 /JZ < 0.3, the dynamics can be approximated

by a simple differential equation (2.40), which can be interpreted as a logarithmic

spring. The model reproduces all the qualitative features of the drop dynamics and is

in good quantitative agreement (within 10%) with previously reported experiments

and numerical results when We"/ 2/1? < 0.1. It removes the need to deal with the

complicated interaction between the drop and the impacted substrate considered in

the usual numerical simulations, and is very fast to solve numerically. The relatively

simple form of the equation of motion (2.40) also allows analytical treatment in the

We"/ 2/I < 1 limit.

Both the coefficient of restitution and the contact time of the impacting drop in-

crease with decreasing rescaled Weber number. For a fixed impact speed, the rescaled

Weber number is reduced by decreasing the radius of curvature of the substrate. We

note that the wettability of the surface will in general depend not only on the rescaled

Weber number through its influence on the impact dynamics, but also on the surface

microsctructure and its influence on the sustenance of the lubricating air layer. The

spacing and shape of the microstructure for optimal water-repellency has been con-

sidered in the context of static drops [89, 86, 102, 57]. An equivalent study of optimal

water-repellent design in this dynamic setting, wherein both micro- and macrostruc-

ture are important, is left for future consideration.

Approximating the shape of a deformable substrate by its quasi-static shape would

presumable allow one to extend the quasi-static model presented here to a more

general scenario of liquid drops impacting a liquid bath. Such a model would prove

useful in rationalizing the coalescence criteria for impacting liquid drops [18] and the

phase diagrams of drops bouncing on a vertically vibrated liquid bath [33, 98]. The

development of such a model will be the subject of the next chapter.
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Chapter 3

Drops Bouncing on a Liquid Bath

3.1 Background

In this chapter, we generalize the model developed in Chapter 2 to impacts on a fluid

bath, again considering relatively low energy impacts in which both the droplet and

bath are only weakly distorted.

The dynamics of the drop impact depends in general on the drop inertia, sur-

face tension, viscous forces within the drop, bath and surrounding air, and gravity.

Restricting attention to the case of a drop's normal impact on a quiescent bath of

the same liquid reduces the number of relevant physical variables to 6: the gravi-

tational acceleration g, the droplet radius RO and impact speed Vi,,, the liquid den-

sity p, dynamic viscosity p and surface tension a (see Table 3.1). These give rise

to three dimensionless groups. The Weber number We = pRoV/o, Bond num-

ber Bo = pgRg/o and Ohnesorge number Oh = A (opflo)-1/2 prescribe the relative

magnitudes of, respectively, inertial and gravitational pressure and viscous stresses

to curvature pressures associated with surface tension (see Table 3.1 for a summary

of our notation). Considering the effects of the surrounding gas on the drop dy-

namics requires the inclusion of two more physical variables, the gas density p, and

gas viscosity jig, that require in turn two additional dimensionless groups, pg/p and

Oh9 = Mg (opRo)- 1 2 . For the parameter range of interest in our study, p,/p < 1 and

Oh9 < Oh. Thus, beyond providing the lubrication layer between drop and bath

that allows the bouncing states, the influence of air on the dynamics is negligible.

When the bath is shaken vertically, two additional parameters enter into the dynam-

ics, the frequency f and peak acceleration y of the bath vibration. These give rise

to two new dimensionless groups, the first being the dimensionless bath acceleration

r = y/g, the second being the ratio of the driving angular frequency w = 2irf and
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the characteristic drop oscillation frequency wD = (a/p1)"2 [103]. We call this ratio

the vibration number Q = W/WD.

At low forcing amplitude, the drop comes to rest on the vibrating bath, oscillating

with the driving frequency while the air layer drains beneath it. Once the thickness

decreases below the range of molecular forces, the two interfaces connect and the

drop is absorbed into the bath. When the driving acceleration reaches a value corre-

sponding to the bouncing threshold, the bath can transfer enough momentum during

impact to compensate for the energy lost; consequently, the drop can be sustained

indefinitely in a periodic bouncing motion [124]. In this bouncing regime, the drop

and the bath never come into contact, which would lead to coalescence; instead, they

remain separated by an air layer that is replenished after each collision [18]. We note

that there is also a strict upper bound on the bath acceleration that will permit sta-

ble bouncing states: beyond a critical value yF, known as the Faraday threshold, the

entire bath surface becomes unstable to a standing field of Faraday waves with fre-

quency f/2 [38, 4]. For a theory describing the dependence of the Faraday threshold

on viscosity, see Kumar [69]. All experiments reported here were performed below

the Faraday threshold.

As the amplitude of the bath oscillation is increased beyond the bouncing thresh-

old, the drop's periodic bouncing may become unstable and undergo a period-doubling

cascade leading to a chaotic vertical motion, a feature common to systems involving

bouncing on vibrating substrates. The most commonly studied scenario, first pro-

posed by Fermi [39] as a model of cosmic rays, is the dynamics of a ball bouncing on a

vibrating rigid surface [90, 91, 37, 73, 21], one of the simplest systems that exhibits a

transition to chaos via a period-doubling cascade. A simple theoretical model thereof

considers an elastic ball with coefficient of restitution equal to 1 and zero contact time

(that is, instantaneous rebound) bouncing on a flat, horizontal rigid plate vibrating

vertically in a uniform gravitational field. Between this idealized scenario and that

considered in this chapter are various intermediate cases possessing some but not all

of the complications of the bouncing drop problem of interest.

Luck & Mehta [72] considered a bouncing ball with finite coefficient of restitution

CR, and derived analytic expressions for the regions where the ball bounces with a

simple period. In general, when CR < 1, the trajectories were found to be periodic,
owing to the existence of locking regions, where the ball performs an infinite series of

ever-decreasing jumps until the information concerning its initial conditions is lost.

Mehta et al. [74] and Gilet et al. [49] considered the dynamics of a completely inelastic

bouncing ball, Naylor et al. [82] examined the role of air drag on the bouncing ball
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dynamics, Wright et al. [130] examined the role of the surface curvature, and Dorbolo
et al. [26] considered two connected balls. The dynamics of a drop bouncing on a
highly viscous liquid bath have been examined by Terwagne et al. [117], and that
of a rigid ball bouncing on an vibrated elastic membrane by Eichwald et al. [35].
Gilet & Bush [45, 46] examined the dynamics of a liquid drop bouncing on a soap
film and noted the coexistence of multiple bouncing states for a given set of system

parameters, an effect to arise also in our system.

For drops within a certain size range, the interplay between the drop and the waves
it excites on the liquid surface causes the vertical bouncing to become unstable; as
a result, the drop begins to move horizontally, an effect first reported by Couder et

al. [19]. As the bath acceleration approaches the Faraday threshold from below, the

decay rate of the surface waves created by the drop impacts is reduced and a particular
wavelength is selected, corresponding to the most unstable Faraday wavenumber.

Interaction of walking drops and the surface waves reflected from the boundaries [16,
30] or from other drops [100, 98, 97, 29, 28, 32, 43, 991 leads to a variety of interesting

phenomena reminiscent of quantum mechanics [6]. Examples include tunneling across

a sub-surface barrier [30], single-particle diffraction in both single- and double-slit

geometries [16], quantized orbits analogous to Landau levels in quantum mechanics

[43], and orbital level splitting [31]. Harris et al. [59] considered a drop walking
in confined geometries, and demonstrated that the resulting probability distribution

function is simply related to the most unstable Faraday wave mode of the cavity.
Rationalizing these remarkable macroscopic quantum-like phenomena provided the
motivation for this study. In the next chapter, we shall focus on the dynamics of
the walking drops. Our studies will make clear that in order to understand the role

of drop size and driving frequency on the horizontal dynamics, a model of both the
vertical and horizontal drop motion is required. The former will be developed herein.

Gilet & Bush [46] demonstrated that for the case of a drop bouncing on a soap
film, the surface energy of the film increases quadratically with the drop's penetration

depth and thus the film's effect on the drop is analogous to that of a linear spring with
a spring constant proportional to the surface tension. When a drop impacts a rigid
surface, one can approximate the drop's shape by its first two spherical harmonics,
leading to a linear dependence of reaction force on the deformation amplitude and of
the viscous drag on the speed of the drop's centre of mass [84]. Thus, the interactions
in these two disparate systems can both be modeled in terms of a damped linear
spring. To model drop impact on a liquid bath, Terwagne [116] augmented the model
of Okumura et al. [84] by adding a second spring that captures the role of surface
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energy stored in the bath deformation. Such linear spring models break down when

the inertial stresses become comparable to the surface tension (We ? 1), or when

the surface deformation ceases to be small relative to the drop radius. The range of

Weber numbers encountered in the current study extends beyond 1, motivating the

introduction of a more complex model.

Protiere et al. [98] were the first to publish a regime diagram indicating the

behaviour of liquid drops bouncing on a liquid bath (specifically, 20 cS silicone oil),

followed by Eddi et al. [33] who used 50 cS oil. We here extend their measurements,

covering a wider range of drop size and driving frequencies, in order to have a firmer

experimental basis for building our theoretical model of the drop dynamics. The goal

of this chapter is to rationalize the regime diagrams for the vertical motion of the

bouncing drops, such as that shown in Fig. 3-3. In addition to providing a consistent

means by which to describe the vertical dynamics, the model presented here will

provide a crucial prerequisite to rationalizing the drop's horizontal motion, which

will be the subject of the next chapter.

In §3.2 we describe our experimental arrangement and present our data on the

transitions between different vertical bouncing states. In §3.3 we develop a theoret-

ical description of the vertical dynamics of drops bouncing on a vertically vibrated

bath. We first consider a linear spring model, and examine its range of validity and

shortcomings, which motivate the development of a "logarithmic spring" model in

§3.3.2. The logarithmic spring model best rationalizes the experimentally measured

regime diagrams; moreover, it reproduces the observed dependence of the coefficient

of restitution and contact time on the Weber number. Future directions are outlined

in §3.4.

3.2 Experiments

In order to extend the data set reported by Protibre et al. [98] and Eddi et al. [33], we

have recorded the behaviour of droplets of silicone oil of viscosity 20 and 50 cS over

a wide range of drop sizes and driving frequencies. A schematic illustration of the

experimental apparatus is shown in Fig. 3-1. A liquid drop of undeformed radius Ro

bounces on a bath of the same liquid (Fig. 3-2), in our case silicone oil with density

p = 949 kg-m- 3 , surface tension o = 20.6 - 10-3N/m and kinematic viscosity v = 20

cS, or a more viscous silicone oil with p = 960 kg-m- 3 , o = 20.8 - 10-3 N/m and

V = 50 cS. The bath, of depth hE ; 9 mm, is enclosed in a cylindrical container with

diameter D = 76 mm. The container is shaken vertically, sinusoidally in time, with
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Figure 3-1: A schematic illustration of the experimental set-up. A liquid drop bounces
on a liquid bath enclosed in a circular container shaken vertically. The drop is illu-
minated by a strong LED lamp through a diffuser, and its motion recorded by a
high-speed camera that can be synchronized with the shaker.

Figure 3-2: A droplet of radius RO = 0.38mm (a) in flight and (b) during contact
with the bath. The drop motion is determined by the gravitational force g and the
reaction force FR generated during impact.
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peak acceleration -y and frequency f, so that the effective gravity in the bath frame

of reference is g + -y sin(2irft).

The motion of the drop was observed using a high-speed camera synchronized with

the shaker. The camera resolution is 86 px/mm and the distance of the drop from

the camera was controlled with approximately 1% error by keeping the drop in focus,

giving a total error in our drop radius measurement of less than 0.01mm. The drops

were created by dipping a needle in the bath followed by its fast retraction. In order to

systematically sweep the range of drop radii, we started with a drop at the lower end

of the spectrum (radius of roughly 0.1 mm), and repeatedly enlarged it by merging

it with other small drops. We limit ourselves to the range 0.07 mm< Ro < 0.8 mm,

since larger drops do not exhibit any novel behaviour, while smaller drops tend to

coalesce for the range of driving accelerations considered (0 < -y < 7g). The notation

adopted in this chapter together with the range of physical variables considered are

defined in Table 3.1.

3.2.1 Regime Diagrams

A typical regime diagram is shown in Fig. 3-3, where we adopt the nomenclature used

by Protiere et al. [98]. For a droplet of fixed size, below a certain driving acceleration

-yB, the vibrating bath is unable to compensate for the drop's loss of mechanical energy

during impact, and the droplet coalesces after a series of increasingly small jumps.

For y > -yB, the drop bounces with the same period as that of the bath. When the

driving acceleration is further increased, small drops (with Q < 0.6) undergo a period-

doubling cascade (denoted PDC in the figure) that culminates in a chaotic region.

Note that the finite (nonzero) duration of contact between the drop and the bath

precludes the existence of the locking regions described by Luck & Mehta [721. As

the driving amplitude is increased further, one observes chaotic regions interspersed

with islands of periodicity, most significant for our purposes being the region where

the drop bounces with twice the driving period. It is in this regime that the bouncers

achieve resonance with their Faraday wavefield and so transform into walkers.

Compared to the previously published regime diagrams [98, 33], our data offer

the first insight into the behaviour of the threshold curves for small drop sizes. The

bouncing and period-doubling threshold curves are not nearly vertical for small drops,

as previously suggested, but in fact curve towards higher values of r as R0 -+ 0. Other

novel features are the discontinuity of the bouncing threshold curve at R,0 = 0.25mm

and the realization that the region between the first and second period-doubling
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Symbol Meaning Typical value
RO drop radius 0.07-0.8 mm

p silicone oil density 949 - 960 kg/mr3

p, air density 1.2 kg/m 3

a drop surface tension 20 - 21 mN/m
9 gravitational acceleration 9.81 M/s 2

VAi, drop incoming speed 0.1-1 M/s
V,,t drop outgoing speed 0.01 - 1 M/s

p drop dynamic viscosity 10-3 - 10-1 kg/(m.s)
p, air dynamic viscosity 1.84- 10- kg/(m.s)
v drop kinematic viscosity 10-100 cS

v,, air kinematic viscosity 15 cS
Tc contact time 1-20 ms
CR = V4/V.t coefficient of restitution 0 - 0.4
f bath shaking frequency 40-200 Hz
y peak bath acceleration 0-70 m/s2

w = 27rf bath angular frequency 250 - 1250 rad-s-I

WD = (o/p4)1/2 charact. drop oscillation freq. 300 -5000 s-1
We = pRoVi/ Weber number 0.01 - 1
Bo = pgR/a Bond number 10-3 - 0.4
Oh = p (opRo)f/ 2 drop Ohnesorge number 0.004 -2

Oha = pa(UpRo)-1 2 air Ohnesorge number 10 - 10-3

Q = 27rf Nf/oi7a vibration number 0 - 1.4
r = y/g peak nondim. bath acceleration 0- 7

Table 3.1: List of symbols used together with the typical values encountered in our
experiments, as well as those reported by Eddi et al. [32] and Protiere et al. [98].
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Figure 3-3: Regime diagram describing the motion of a silicone oil droplet of viscosity

50 cS on a bath of the same fluid vibrating with frequency 60Hz. The horizontal axis

is the dimensionless peak acceleration of the bath 1 = 7/g, while the vertical axis

is the drop radius. The bath surface becomes unstable when r exceeds the Faraday

threshold Pp = 5.46 (vertical line). Only the major dynamical regimes are shown:

PDC signifies the period-doubling cascade, Int the region of intermittent horizontal

movement and Walk the walking regime. Lines indicate best fits to threshold curves.

66

0.1



transitions contains both the (2, 2) and the (2,1) modes.

Following Gilet & Bush [46], we adopt the (m, n) notation to distinguish between

different bouncing modes. In the (m, n) mode, the drop's vertical motion has period

equal to m driving periods, and within this period the drop contacts the bath n times.

By contact we refer to that part of the drop's motion when the drop and bath are

being deformed and the air pressure beneath the drop is significantly elevated above

that of the ambient air. We stress that the drop and the bath always remain separated

by an intervening air layer and thus never actually come into contact. Provided the

rebound time is shorter than the time required for the intervening layer to thin below

a certain critical thickness, the drop will detach without coalescing. The chaotic

region is thus difficult to observe experimentally for small drops (i.e. Q < 0.6): once

the bouncing becomes chaotic, the drop will eventually undergo a chattering sequence

and coalesce.

An interesting feature of the system is that there can be more than one stable

bouncing mode for a given combination of drop size and driving [1181. Indeed, several

stable periodic motions may coexist, corresponding to the same mode (m, n) but

having different average mechanical energy (see Figs. 3-4, 3-16 and 3-17) and average

contact time. In order to distinguish between different bouncing states with the same

mode number (m, n), we denote them by (m, n)P. (m, n)' signifies the motion with the

least average energy (corresponding usually to the longest average contact time) and

the p-index increases with increasing average energy. Larger drops do not undergo

a full period-doubling cascade (refer to Fig. 3-3): after transitioning from the (1,1)

mode to the (2,2) mode, further increase of - leads to increasing disparity between

the large and small jumps, until the smaller jump disappears completely. Thus the

drop transitions from the (2,2) mode into the (2,1) mode. This mode then undergoes

a period-doubling cascade and only then enters a chaotic regime. Near the Faraday

threshold (as occurs at r = 5.46 for 50 cS oil at f = 60 Hz), the interaction between

the drop and the slowly decaying standing waves created by its previous impacts may

lead either to walking or to an intermittent behaviour (denoted Int in Fig. 3-3), where

the drop performs a complicated aperiodic horizontal motion and does not settle into

a steady walking state.

In Fig. 3-4, we show the vertical motion of 50 cS silicone oil droplets for sev-

eral driving accelerations over the course of 5 driving periods. We show the 5 most

prevalent modes, specifically, the (1, 1)1, (1, 1)2, (2, 2), (2, 1)1 and (2, 1)2 modes, that

emerge as the driving acceleration is increased progressively. Note that the ampli-

tude of the drop's motion increases with driving acceleration. The motion of the bath
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Figure 3-4: The simplest modes of vertical motion for 50 cS silicone oil drops bouncing

on a liquid bath vibrating with frequency 50 Hz. These are, in order of increasing

dimensionless forcing r = -y/g: (a) the (1, 1)1 mode, r = 1.3; (b) the (1,1)2 mode,
F = 1.4; (c) the (2,2)2 mode, F = 2.35; (d) the (2, 1)1 mode, F = 3.6 and (e) the

(2, 1)2 mode, r = 4.1. The drop radii are Ro = 0.28mm in (a-c) and R0 = 0.39mm in

(d-e). The images were obtained by joining together vertical sections from successive

video frames, each one 1 pixel wide and passing through the drop's centre. The camera

was recording at 4000 fps. Note that in both the (2, 1) modes shown (d-e), the drop

was walking.
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surface cannot be directly observed in Fig. 3-4 due to the nature of the illumination;

nevertheless, one can determine the contact time from the relative positions of the

drop and its reflection in the bath.

We measured the bouncing threshold and the first two period-doubling thresholds

of silicone oil droplets with v = 20 cS and 40 Hz < f < 200 Hz, and with v = 50

cS and 60 Hz < f 5 100 Hz. The results are shown in Figs. 3-5-3-8. In Fig. 3-

5, the bouncing threshold rB = 7B(RO, f, v)lg, the minimum driving acceleration

needed to prevent the drop from coalescing, is shown as a function of the drop size

(vertical axis). We observe that the size of the drop that attains a bouncing state at

the lowest F decreases with increasing frequency, while the minimum of PB remains

roughly constant. One expects that the minimum of rB corresponds to the drop size

for which the driving frequency equals the resonant frequency of the drop-bath system,

with a shift due to the effects of viscosity. Using the vibration number Q = WIWO

instead of Ro on the vertical axis, we see that the data for different frequencies nearly

collapse onto a single curve (Fig. 3-6). Henceforth, we shall use Q in order to display

data for different frequencies in a single diagram.

In Fig. 3-6, we observe that the minimum of Pr occurs at 0 : 0.65 for both

viscosities, which corresponds to Ro s 0.47 (a/pf2j). We note that the minimum of

PB does depend weakly on the driving frequency (Fig. 3-6b): at higher frequencies,
the typical drop radius near the minimum is smaller and the increasing influence of

air drag and dissipation in the intervening air layer results in a shift of the bouncing

threshold curve towards higher driving amplitudes (e.g. f = 200 Hz in Fig. 3-6 ).

On the other hand, at lower frequencies the typical drop radius near the minimum is

larger and a relatively large portion of the mechanical energy is lost to the outgoing

surface waves created by the drop motion. Thus there is an optimal frequency, in our

case f = 80 Hz, for which the sum of these two effects is minimized and the global

minimum of rB is achieved. We observe rB > 0.47 for v = 20 cS and Pr 0.59 for

V = 50 cS.

In Figs. 3-6b and 3-7, we see that the bouncing curves exhibit a discontinuity

at approximately Q = 0.2 - 0.4. This discontinuity arises because smaller droplets

can only exist in the higher energy (1, 1)2 mode and coalesce when this mode can no

longer be sustained by the bath vibration. Larger drops can persist in the lower energy

(1,1)1 mode without coalescing because the intervening air layer takes a relatively long

time to drain. Although determining the exact form of the bouncing threshold curve

theoretically would require a detailed analysis of the intervening air layer dynamics

[60, 62, 68], we will demonstrate in §3.3 that the majority of the bouncing threshold
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Figure 3-5: Bouncing thresholds measured for silicone oil droplets of viscosity (a)

20 cS and (b) 50 cS on a vibrating bath of the same oil. The minimum driving

acceleration r = y/g (horizontal axis) required for sustained bouncing is shown as

a function of the drop radius RD (vertical axis). Experimental results are shown for

several driving frequencies f: 40 Hz (U), 50 Hz (.), 60 Hz (4), 80 Hz (A), 100 Hz

(P), 120 Hz (v), 150 Hz (*) and 200 Hz (*).
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Figure 3-6: Bouncing thresholds. The same experimental data shown in Fig.3-5 is
now plotted as a function of the vibration number Q = W/WD (vertical axis) instead of

drop diameter RO. Data for different frequencies collapse nearly onto a single curve.
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Figure 3-7: Detail of Fig. 3-6 showing the bouncing thresholds for silicone oil droplets
of viscosity 50 cS on a vibrating bath of the same oil. The minimum driving accel-
eration r = 'y/g (horizontal axis) needed to prevent the drop from coalescing with
the bath is shown as a function of the vibration number Q = W/WD (vertical axis).

Experimental results are shown for several driving frequencies f: 40 Hz (0), 50 Hz
(.), 60 Hz (4), 80 Hz (A). The discontinuity of the bouncing thresholds between

r = 1 and F = 1.2 is clearly apparent.

curve runs along a mode threshold obtainable by relatively simple means.

Fig. 3-8 shows the first two period-doubling thresholds. Smaller drops (Q < 0.6)

undergo a period-doubling cascade, so the first two thresholds correspond to (1, 1) -+

(2,2) and (2,2) -+ (4,4) transitions. Larger drops (Q > 0.6) transition from (1, 1) to

(2, 2), then reduce the amplitude of their smaller bounce until a simple period-doubled

bouncing mode (2, 1) is reached, and only then commence the period-doubling cascade

(2,1) -+ (4, 2) -+ (8,4) -+ ... . Note that the low frequency curves are shifted to

the right of their high frequency counterparts (60 Hz curve for 20 cS; 50 - 60 Hz

for 50 cS), an effect due to the influence of the standing waves created on the bath

by previous drop impacts. At lower frequencies, the Faraday threshold is closer to

the period-doubling threshold; thus, the drop impacts create more slowly decaying

standing waves on the bath surface. By reducing the relative speed between the drop

and bath at impact, the standing waves appear to stabilize the vertical motion, and

so delay the period-doubling transitions.

The bounds of the frequency range explored were prescribed by experimental

constraints. The presence of the Faraday threshold provides a lower limit on the

range of frequencies over which the period-doubled modes can arise. For example, for

20 cS silicone oil, period-doubling occurs only for P > 1.58 (Fig. 3-8), while rF < 1.58

for f 5 45 Hz. Thus, for f < 45 Hz, the period-doubling transitions disappear. The
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Figure 3-8: First two period-doubling thresholds for silicone oil droplets of viscosity

(a) 20 cS and (b) 50 cS on a vibrating bath of the same oil. For smaller droplets

(P < 0.6) these are (1, 1) -+ (2, 2) and (2, 2) -+ (4, 4) transitions, while for larger drops

(Q > 0.6) they are (1, 1) -+ (2, 2) and (2, 1) -+ (4, 2) transitions. The experimentally

measured threshold acceleration r = -/g (horizontal axis) is shown as a function of

the vibration number Q = w/WD (vertical axis) for several driving frequencies: f = 40

Hz (0), 50 Hz (9), 60 Hz (4), 80 Hz (A), 100 Hz (o), 120 Hz (V), 150 Hz (*) and

200 Hz (#) .
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upper limit on the frequency range is imposed by the finite resolution of our camera.

Since the walking region of ultimate interest is given by Q = 27rf N/pR3/a < 1.5

(see the next chapter), the typical size of a walker Ro ~ -2/ 3 . Thus, for higher

frequencies, the constant error in drop size measurement leads to increasing relative

error in Q. Similarly, at high frequency, it becomes increasingly difficult to distinguish

between the different bouncing modes, as the motion itself happens over a distance

of at most g(T/2)2 /2 < gf -2/2, which is of order 0.1mm for f = 200 Hz.

3.3 Vertical dynamics

3.3.1 Linear spring model

a) b)

Z=-1 6 1 Z=-

Figure 3-9: A schematic illustration of our choice of coordinates. The vertical position
of the drop's centre of mass Z is equal to 0 at the initiation of impact (a), and would
be -1 if it reached the equilibrium level of the bath (b).

We proceed by describing the simplest model of the drop's vertical dynamics,

analogous to works by Okumura et al. [84], Gilet & Bush [46] and Terwagne [116],

in which the drop-impactor interaction is described in terms of a linear spring. We

nondimensionalize the vertical displacement of the drop by its radius (see Table 3.2

for a list of dimensionless variables) and time by the characteristic frequency of drop

oscillations WD = Vo/pRo [103]. We shall always consider the frame of reference

fixed relative to the shaking platform, and place the origin so that the undisturbed

bath surface is at Z = -1 (see Fig. 3-9). Thus, a drop impacting an undisturbed

surface will make a contact with the bath when its centre of mass is at Z = 0 and

its base at Z = -1. When the drop is not in contact with the bath (Z > 0), it is

acted upon only by gravity (we neglect the air drag, an approximation to be justified

later). Conversely, when it deforms the bath below its equilibrium height, we assume

that the drop experiences an additional reaction force proportional to the penetration
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depth (CZ) and its energy is dissipated at a rate proportional to its speed relative to

the bath (D%- term). We thus expect the drop center of mass Z(r) to be governed

by the following equation of motion:

-- + H(-Z) - (D- + CZ = -Bo*(r) . (3.1)
a-F2 0,r

Here H(x) is the Heaviside step function, which indicates that the bath acts on the

drop only when they are in contact. Bo*(r) = Bo - (1 + r sin f2r) is the effective

Bond number, which reflects the effective gravity in the vibrating bath frame of

reference. The constants C and D can be determined from experiments by measuring,

respectively, the coefficient of restitution CR and the dimensionless contact time rc

of the drop impacting a quiescent bath (r = 0). For small Bo (Bo < Z,(0)), one

can solve (3.1) over the duration of contact subject to the initial condition Z(0) = 0

and Z,(0) = ZO and so obtain Z(r) ; Zo exp (-Dr/2) sin (V/I'r) /vVM, where

C' = C - D2/4. Then we have the approximate relations rc = ir/ vZ and CR =

exp { -7rD/2v I}, or conversely, D = -2 In CR/rc and C = (r 2 + in 2 CR)/r2. As

there is a one-to-one correspondence between pairs (C, D) and (CR,,rc) and the latter

pair is easier to grasp intuitively, we shall henceforth use (CR, rc) to characterize our

linear spring model.

The crucial assumption underlying equation (3.1) is that each time the drop strikes

the vibrating bath, the disturbances created by its previous impacts have decayed

sufficiently to be negligible. Similarly, it is assumed that any distortions and internal

motions of the drop have decayed to the point where we can approximate the drop at

impact as being spherical and in rigid-body motion. To check whether this assumption

is reasonable for the range of parameters examined experimentally, we first look at the

decay rate of drop oscillations. For small oscillations, this problem can be adequately

described with a linear theory and has been treated in several classic papers [11, 76,

95]. The instantaneous drop shape can then be decomposed into spherical harmonics

and the evolution of each mode treated separately by virtue of the linearity. It is found

that the second harmonic mode (corresponding to ellipsoidal deformation) decays the

slowest and the rate of decay is equal to 3.8p/pJ4 [76]. Even if the oscillations are

large and the linear theory is no longer accurate, we expect the deformations to decay

at a comparable rate. The typical time between two subsequent excitations of the drop

is given by 1/f; therefore, provided that (A/pfR]) > 0.5, the oscillations will decay

to less than exp (-19/10) ; 0.15 of their original magnitude and our assumption will
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be valid. This condition can be written in dimensionless form as

Oh > . (3.2)
4ir

Since we are interested only in the parameter regime for which 1 < 1.5, we thus

arrive at the condition Oh > 0.12. For silicone oil of viscosity 50 cS and 20 cS, this

is equivalent to requiring RO < 8 mm and RO < 1.3 mm, respectively, both of which

are amply satisfied in our experiments.

When the driving amplitude is sufficiently far from the Faraday threshold, a similar

argument can be made for the decay rate of the local bath deformation near the drop,
composed of waves with wavelength comparable to or smaller than the drop radius.

Note that each drop impact also creates a propagating wave on the bath, which

decays relatively slowly due to its relatively long wavelength. We assume that this

propagating wave is sufficiently far from the drop on its next impact that it has

negligible influence on its dynamics. These inferences that the drop returns to a

spherical form and the local interface to a plane between impacts are consistent with

our observations, provided the system is sufficiently far from the Faraday threshold.

We now examine the region of validity of the second assumption used to derive

(3.1), namely, that the influence of air drag on the vertical drop dynamics is negligible.

When the drop is not in contact with the bath and Re < 1, approximating the air-

drag using the well-known Stokes formula for a rigid sphere gives

Z,, = -Bo*(r) - 9Oh.Z,. (3.3)

Here Oh, = p/ a-R7 is the air Ohnesorge number, with IO being the dynamic vis-

cosity of air. The Reynolds number is given by Re = 2ROV/ v, = 2(IZri/Oh.)(p./p),

v. and p, being the kinematic viscosity and density of the air. Since the maximum

value of the Reynolds number during the bouncing motion is Re r.,~ 2gRo/fv., we

have rnmx ~ 4 for f = 100 Hz and R = 0.3 mm, and Rem. ~ 16 for f = 40 Hz

and R0 = 0.5 mm. Therefore the Stokes formula cannot be applied and we must use

an approximation to the drag in the regime 1 < Re < 20. A good approximation

(accurate to within 10% in the range 1 < Re < 50) is given by Flemmer & Banks

[40]:

ZT = -Bo(r) - 2OhaZ, (1 + LRe) . (3.4)

Thus the air drag is negligible provided that 'OhaZ,(1 + 18/12) < Bo. Since Z, <
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Dim. variable Nondim. variable Meaning

z Z = z/Ro drop's vertical displacement
x X = X/Ro drop's horizontal displacement
h H = h/Ro bath distortion
t r = wDt time

Tc TC = dimensionless contact tune

f Q = 27rf/W, vibration number

Table 3.2: List of variables used, along with their dimensionless counterparts. RO is
the drop radius and wD = (-/pR)' 1 2 the characteristic drop oscillation frequency.

Bo(2-r/Q) (acceleration times time), we arrive at the condition that

4-Oh, < Q or Pa < 0.09 (3.5)2 pRf

As Ro 0.07 mm, we have Oh, 5 _ 10-4, and so require Q >> 0.035. This condition

is satisfied in our experiments except for the smallest drops at the lowest frequencies.

We proceed by neglecting the air drag, but bear in mind that for Q < 0.2, its influence

may become significant.

Note that because equation (3.1) is linear, the coefficient of restitution CR and

contact time rc should be independent of the impact speed X,(0) = We12 . This

independence has been experimentally observed for liquid drops impacting a soap

film [46], a rigid substrate [109, 108] and a liquid bath [67, 133], but only when

We > 1. For We < 1, CR and rc increase with decreasing impact speed, albeit quite

weakly, as has been demonstrated numerically by Foote [42] and Gopinath & Koch

[52], and experimentally by Okumura et al. [84] for the case of a drop impacting a

rigid superhydrophobic surface.

In order to see the dependence of the dynamics on the Weber number in the liquid-

liquid setting of interest, we have measured Ca and -rc for silicone oil drops of viscosity

20 cS and 50 cS. The contact time was determined as the interval between the time

when the bath beneath the drop first deforms and when the drop visibly detaches

from the bath. The time of detachment is relatively difficult to pinpoint, due to the

small relative speed of the drop and underlying bath at that time. The measurement

error was thus typically larger than the time difference of successive video frames.

In order to determine CR, we fitted the drop motion before and after the contact to

parabolic trajectories, allowing us to calculate the instantaneous drop speed at both

impact and detachment. With decreasing We, the amplitudes of the drop motion
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and bath deformation decrease, leading to a larger relative error in measurement of

CR and rc.

The results are shown in Figs. 3-10 and 3-11. We observe a logarithmic decrease

of both contact time and coefficient of restitution with increasing Weber number,

in line with the numerical predictions of Gopinath & Koch [52]. For small drops

with We > 1, the coefficient of restitution tends to a value of about 0.11 for 50

cS oil and about 0.19 for 20 cS oil, which should be compared to the value 0.22

obtained by Jayaratne & Mason [67] for water (1 cS). Fig. 3-11 indicates that there

is not an appreciable difference in the contact time between the two oils, unlike for

a linear spring, for which larger damping leads to a longer period. As the Weber

number is decreased, the contact time increases progressively until the point (around

We z 0.03) where gravity prevents drop detachment.

0.4

0.35

CI 0. -

0.25

C' 0.2-

0.15 -

0.1

0.05-

0 -2 1
10- 10' 10 10

Weber number We

Figure 3-10: Normal coefficient of restitution CR = V0,,lK,, of silicone oil droplets
impacting a bath of the same liquid, as a function of the Weber number We =
pRoV'/o. Shown are results for 20 cS (M) and 50 cS (V) droplets impacting a
quiescent bath, together with values measured from drops impacting a vibrating bath
just above the bouncing threshold, (o) and (A), respectively.

Within a single regime diagram (i.e. for a fixed driving frequency and oil viscosity)
the Weber number changes significantly with drop size and bouncing mode, while

generally remaining below 1 (the lower extreme being We ; 0.003 for small drops

in the (1, 1) mode at f = 200 Hz, the upper extreme being We ; 2 for large drops
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Figure 3-11: Dimensionless contact time TC = Tc/ (pRi/a) of silicone oil droplets

impacting a bath of the same liquid, as a function of the Weber number We =

pRoin/a. Shown are results for 20 cS (0) and 50 cS (V) droplets impacting a

quiescent bath, together with values measured from drops impacting a vibrating bath

just above the bouncing threshold, (o) and (A), respectively.
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in the (2, 1)2 mode at f = 50 Hz). It is not surprising that the linear spring model

with constant (C, rc) does not compare favourably with the experiments, since one

expects both CR and -rc to depend on We. For example, using constant values of

CR within the experimentally observed range, that is, C7 < 0.22 for 50 cS oil and

CR < 0.35 for 20 cS, leads to a poor match. Note that changing rC (or C) has the

effect of stretching the threshold curves vertically, so by choosing rc s 4.5 we can

match the curvature of the threshold curves. Changing CR (or D) leads mainly to

horizontal translation of the threshold curves on the regime diagram, so by picking

the right value we can hope to fit one of the threshold curves. Fig. 3-12 shows the

results of the model with CR = 0.32 (for v = 50 cS) and CR = 0.42 (for v = 20 cS).
We note that the upper parts of the other threshold curves are also well fit by the

model, likely due to the fact that those parts of the regime diagram are already in the

We > 1 regime, which is nearly linear. Nevertheless, the match for Q < 0.4 is less

satisfactory and the values of CR are unrealistic when compared to those reported in

Fig. 3-10.

A closer examination of the reaction force acting on the drop during rebound (see

Fig. 3-21) provides rationale for the unrealistically high values of CR required to best

fit the data with our linear spring model. During the late stages of contact, the viscous

damping term dominates the spring term in (3.1) and the reaction force acting on

the droplet pulls it towards the bath, a clearly unphysical effect if one neglects the

intervening air layer dynamics. Therefore, a better model would be one in which the

reaction force acting on the drop is always nonnegative:

- Bo* (r) + H(-Z) -max -D CZ, 0 (3.6)

With such a condition, the best match with the experimental data is indeed achieved

with realistic values of CR (specifically CR = 0.3 for 20 cS oil and CR = 0.19 for 50 cS

oil), but now the threshold curves in the regime diagrams are matched less well (see

Fig. 3-13), especially the bouncing threshold. This shortcoming strongly suggests a

Weber number dependence of CR.

While the linear spring models presented in (3.1) and (3.6) do not provide satis-

factory quantitative agreement with the experiments and so will be superseded by an
improved model to be developed in §3.3.2, they have one major advantage. Specifi-

cally, the simple form of the equation of motion for the drop (3.1) allows one to obtain

an analytic expression for the drop motion during both ffight and contact. It is thus

only necessary to obtain numerically the points of first impact and detachment; the
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Figure 3-12: Comparison of the bouncing thresholds and first two period-doubling
transitions measured experimentally and calculated using the linear spring model

(3.1). Refer to Fig. 3-3 to see where these transitions fit into the regime diagram. The
linear model predictions with CR = 0.42 and rc = 4.2 (solid lines) are compared to

experiments with 20 cS oil in which coalescence (A), 1st period doubling (*) and 2nd

period doubling (io)) were measured. The predictions of the model with CR = 0.32
and rC = 4.4 (dashed lines) are compared to experiments with 50 cS oil in which
coalescence (V), lst period doubling (M) and 2nd period doubling (4)) were measured.
The lines shown are, from the left, the bouncing thresholds, (1, 1)1 +- (1, 1)2 mode
transitions, first period-doubling (1, 1) -+ (2, 2) and second period-doubling (2,2) -+

(4,4) or (2, 1) -+ (4,2).
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Figure 3-13: Comparison of the same experimental data as in Fig.3-12 and the pre-

dictions of the second linear spring model (3.6) with CR = 0.3 and rc = 4.2 (solid

lines), and with CR = 0.19 and rm = 4.4 (dashed lines). The lines shown are, from the

left, the bouncing thresholds, (1, 1)1 +- (1, 1)2 mode transitions, first period-doubling

(1, 1) -+ (2, 2) and second period-doubling (2, 2) -+ (4,4) or (2, 1) -+ (4, 2).
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motion in between can then be calculated with great speed, which makes it possi-

ble to obtain qualitatively correct regime diagrams with great resolution. One such

regime diagram is shown in Fig. 3-14, obtained by choosing CR = 0.42 and rc = 4.2

in (3.1). The predicted bouncing thresholds shown in Figs. 3-12-3-13 and 3-14 corre-

spond to the highest driving acceleration for which the drop never detaches from the

bath surface (so that Z(r) < 0 always).

As mentioned previously, there can be several kinds of vertical motion correspond-

ing to the same bouncing mode number (m, n), which can be thought of as different

energy levels. The lowest energy mode tends to be the one where the drop spends the

most time in contact with the bath. When average mechanical energy is increased,

the drop spends more time in the air and less in contact with the bath. Fig. 3-15

depicts the relative contact time as predicted by the linear spring model (3.1), for

the highest stable energy mode. We see two sharp transitions. The first arises for

small drops (0 < 0.55 ), when the higher energy (1,1)2 bouncing mode can no longer

be sustained and collapses to the least energetic vibrating mode (1, 1)1, in which the

drop oscillates on the bath surface with a large portion of the period spent in contact

with the bath. The second arises for larger drops (Q > 0.6), when the higher energy

(2,1)2 mode cannot be sustained and only the base energy mode (2, 1)1 exists. Both

of these transitions are prominent in our regime diagrams (Figs. 3-3-3-8): the former

constitutes the lower part of the bouncing threshold, while the latter constitutes the

upper half of the walking threshold, as will be seen in Chapter 4.

In Figs. 3-16-3-18 we show the two different (1,1) modes, the two (2,1) modes

and the (3,2) bouncing mode, respectively. The dimensionless height of the drop

in the lab frame of reference (solid line) and the equilibrium height of the vibrating

bath (dashed line) are shown as functions of dimensionless time r = f -t. In order

to highlight the difference between the vibrating and bouncing states, the periods

of contact between the drop and the bath are marked by a darker shading. In the

vibrating state (Fig. 3-16a,3-17a) the contact lasts roughly half the period of the

drop's vertical motion, whereas in the bouncing state (Fig. 3-16b,3-17b) the contact

is significantly shorter. The (3,2) mode shown in Fig. 3-18 consists of one long and

one short contact.

3.3.2 Logarithmic Spring Model

We have seen that the coefficient of restitution and the contact time of a drop inter-

acting with a quiescent liquid bath are independent of the Weber number for We > 1,
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Figure 3-14: Regime diagram indicating the behaviour of a bouncing drop in the r -Q
plane, as predicted by the linear spring model (3.1) with CR = 0.42 and -rc = 4.2. Q =

W/WD is the vibration number and 1 = -/g the dimensionless driving acceleration.
In the (m, n) mode, the drop's motion has period equal to m driving periods, during

which the drop hits the bath n times. PDC indicates a region of period-doubling

cascade and chaos. Solid lines indicate lower boundaries of existence (or stability) of

lower energy modes, dash-dot lines indicate upper boundaries. Similarly, dashed lines

indicate lower boundaries of existence of higher energy modes, their upper boundaries

being period-doubling transitions marked by dotted lines.
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Figure 3-15: The relative contact time (fraction of the bouncing period spent in

contact with the bath) of a bouncing drop in the P-2 plane, as predicted by the linear

spring model (3.1) with CR = 0.42 and 'rc = 4.2. Q is the vibration number and r

the dimensionless driving acceleration. Sharp changes of the relative contact time are

evident near r ; 1 (the bouncing to oscillating transition, or the (1, 1)2 -+ (1, 1)1

mode transition), P 2.4 (onset of the (2,1)2 mode) and P ~ 3.7 (onset of the (3, 1)

mode).
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Figure 3-16: Comparison of (a) the low energy "vibrating" (1, 1)1 mode and (b) the
high energy "bouncing" (1, 1)2 mode, as predicted by the linear spring model (3.1)
with 7r, = 4.2, CR = 0.42 for (r, n) = (1.3, 0.35). The dimensionless vertical position
of the oscillating bath (dashed line) and the droplet's center of mass shifted down by
one radius (solid line) are shown as functions of the dimensionless time r = ft, where
f is the bath's driving frequency. See Fig. 3-4 (a-b) for the experimental realizations
of these modes.
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Figure 3-17: Comparison of (a) the lower energy (2, 1)1 mode and (b) the higher
energy (2,1)2 mode, as predicted by the linear spring model (3.1) with rc = 4.2,
CR = 0.42 for (I", Q) = (2.6,0.7). The dimensionless vertical position of the oscillating
bath (dashed line) and the droplet's center of mass shifted down by one radius (solid
line) are shown as functions of the dimensionless time r = ft. See Fig. 3-4 (d-e) for
the experimental realizations of these modes.
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Figure 3-18: The (3, 2) mode, as predicted by the linear spring model (3.1) with

rc = 4.2, CR = 0.42 for (I, Q) = (2.4,0.32). The dimensionless vertical position of

the oscillating bath (dashed line) and the droplet's center of mass shifted down by

one radius (solid line) are shown as functions of the dimensionless time r = ft.

while for We < 1 they depend logarithmically on We (see Figs. 3-10-3-11). There-

fore, while in the former regime we can model the drop by a linear spring, in the

latter we need a nonlinear model in order to capture, above all, the dependence of CR

on We. We derive such a model in Appendix B, using a quasi-static approximation

similar to that developed previously for drop impact on a rigid substrate [77]. The

key idea of the resulting "quasi-static" model is the approximation of the actual in-

stantaneous shape of the drop and the bath by relatively simple shapes, specifically

their quasi-static forms, that may be characterized by a small number of variables. By

calculating the Lagrangian of the system we can then derive the system of equations

of motion for these variables. We then simplify the system to a single differential

equation (B. 14):

/ Zc c2 (v) dZ 3/_2
d2Z + +Oh -- + 3/2 Z= -o*(r) , (3.7)
dr 2 ( Q2(Z) ) Q(Z)dr Q(Z)

where Q(Z) = In (ci/IZI). C3 prescribes the kinetic energy associated with the fluid

motion within the two liquid bodies, c2 (V) the amount of viscous dissipation within

them, and cl the nonlinearity of the spring. For higher values of ci, In (c1/JZI) is less

dependent on Z, thus making the spring more linear. The constants ci are determined

from matching to the observed dependence of the normal coefficient of restitution CR

on We (Fig. 3-10). The best match found is shown in Fig. 3-19, which was obtained by

solving (B.13) for RO = 0.15mm and two viscosities (v = 20 cS and v = 50 cS), with
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the initial conditions Z(0) = 0, dZ/dr = -We. The constants used were C2 = 12.5

for 20 cS and c2 = 7.5 for 50 cS, and cl = 2, c3 = 1.4 were used for both viscosities.

Changing c, alters the slope of the line in Fig. 3-19, while changing c2 shifts the line

vertically. The fits were found to be quite insensitive to the value of c3 , suggesting

that the internal fluid motion does not play a significant role in the impact dynamics,

which is consistent with the scaling argument presented in the previous chapter.

0.4

0.35

0.3

0
0.25-

0.2--
0

0.15

o 0.1 -
0

10 10~ 10 10
Weber number We

Figure 3-19: The dependence of the normal coefficient of restitution CR = Vost/V1

for silicone oil droplets impacting a bath of the same liquid, on the Weber number

We = pRO F/a. Shown are the experimental results for 20 cS (0) and 50 cS (V)
droplets impacting a quiescent bath. (e) and (A) denote analogous CR values for

droplets impacting a vibrating bath just above the bouncing threshold. Solid lines

indicate the values obtained using the logarithmic spring model (B.13) with Ro =

0.15mm for c = 2, c2 (20 cS) = 12.5, c2(50 cS) = 7.5 and c3 = 1.4.

In Fig. 3-20, the model predictions for the temporal evolution of the penetration

depth are compared to the experimental data for 0.68 < We < 0.96. Clearly, the

linear spring model (3.1) overestimates CR and both linear models (3.1) and (3.6)

underestimate the time elapsed until IZI = 0, the drop's "rebound time". Note that

the actual dimensionless contact time for We e 0.8 is approximately 4.3, as the drop

detaches while the bath is still deformed. In Fig. 3-21, we compare the predictions

of the three models for the evolution of the dimensionless drop acceleration during

contact. The linear models produce substantially different curves from the logarithmic
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Figure 3-20: The dimensionless depth of penetration IZI = IzI/RoWe"/ 2 of the drop's

center of mass below its height at the outset of contact (see Fig. 3-9), as a function

of the dimensionless time r = t (a/pR3)1/2. The predictions of the linear spring

model (3.1) (dashed line), alternative linear spring model (3.6) (dash-dot line) and

the logarithmic spring model (3.7) (solid line) for RO = 0.3mm and We = 0.8 are

compared to the experimental values for Ro = 0.14mm, We = 0.73 (U), RO =

0.20mm, We = 0.68 (A) and RO = 0.33mm, We = 0.96 (V).
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Figure 3-21: The dimensionless acceleration Z,, = (d2z/dt2 ) (pRn/)" 2 of the

drop's center of mass as a function of the dimensionless time r = t (a/pRg) 2 . The

predictions of the linear spring model (3.1) (dashed line), alternative linear spring

model (3.6) (dash-dot line) and the logarithmic spring model (3.7) (solid line) are

shown for Ro = 0.3mm and We = 0.8.
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Figure 3-22: Comparison of the regime diagrams measured experimentally and those

calculated using the logarithmic spring model (3.7). (a) The model predictions with

c, = 2, c3 = 1.4, C2 = 12.5 and f = 80 Hz (solid lines) are compared to experiments

with 20 cS oil in which coalescence (A), 1st period doubling (*) and 2nd period

doubling (o) were measured. (b) The predictions of the model with c, = 2, C3 = 1.4,

C2 = 7.5 and f = 80 Hz (dashed lines) are compared to experiments with 50 cS oil

in which coalescence (A), 1st period doubling (o) and 2nd period doubling (P) were

measured.
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model, predicting a significant acceleration immediately after impact and a stronger

reaction force during the later stages of contact. The first linear model (3.1) also shows

an unphysical negative reaction force during the late stages of contact, as indicated

by the dip below the gravitational acceleration for T > 3.8.

Using the same combination of constants C as in Fig. 3-19, the regime diagram

predicted using the logarithmic spring model (3.7) matches well with the experimental

data (Fig. 3-22). Specifically, the lower part of the experimentally observed bouncing

threshold curve now corresponds to the (1, 1)1 +- (1, 1)2 mode transition, which was
not the case for the previous models. The mode transition (2,1) - (4,2) for 20 cS

(upper-right corner of Fig. 3-22a,b) is matched least well; however, the match is still
better than that produced by either of the linear models. Note that we had no freedom

in choosing the curvature (vertical scale) of the threshold curves in Fig. 3-22 unlike

the previous cases (Figs. 3-12 and 3-13), where it was determined by the parameter

Tr (or spring constant C). In the logarithmic spring model (3.7), the spring constant

is 1.5/Q(Z) and therefore, apart from the weak nonlinear contribution from Q(Z), is

determined from the low Weber number analysis. The fact that the curvature and

peaks of the predicted threshold curves correspond to those measured experimentally

provides additional verification of our model.

A useful way to characterize the drop's impact in relation to the bath vibration is

provided by the impact phase relative to the driving, defined as the weighted average

of the driving phase Sr over the contact time:

4 = L F(r) (11T) dr/ j F(r)dr (mod 27r) , (3.8)

where F(r) = 02Z/9r2 + Bo*(r) = Zi,(r) + Bo(1 + r sin Sr) is the dimensionless

reaction force acting on the drop during contact. Thus, 4 = 7r corresponds to impact

at maximum upward bath velocity, whereas 4) = 0 corresponds to the impact at

maximum downward bath velocity. The impact phase 4> divided by ir is shown in

Fig. 3-23 as a function of the driving acceleration r = 'y/g for three values of Q,
specifically, Q = 0.2, 0.5 and 0.8. The results were obtained using the model (3.7) with

C1 = 2, c3 = 1.4, c2 = 7.5 and f = 80 Hz. The weighted average of 4)/n is indicated

by dark lines and dots, while the extent of contact is marked by shaded regions with

lighter shading indicating that the droplet is in contact during the corresponding
phase only on a small number of impacts per its period of motion.

For Q = 0.8 (Fig. 3-23c), the drop coalesces with the bath when r < 0.49. As

the driving is increased above this value, the drop begins to detach from the surface
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Figure 3-23: The dependence of the impact phase <) (solid lines, points), defined in

(3.8), on the driving acceleration r = y/g for three values of the vibration number Q:

(a) Q = 0.2, (b) Q = 0.5 and (c) Q = 0.8 (refer to Fig. 3-22a). Contact is marked

by the shaded regions, wherein darkness of the shading indicates the relative number

of contacts including the given phase. Where possible, the periodic bouncing modes

(m, n) are indicated.
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(white regions), and the contact time decreases as indicated by the vertical extent
of the shaded region. The impact phase slowly increases from approximately r at
P = 0.5 to 1.21r at r = 1.9, where the first period-doubling occurs. There, the even
and odd contacts separate, with the impact phase of one increasing and of the other
decreasing. At r s 2.3, one of the ends of contact joins with the beginning of the
following contact and the completely period-doubled (2,1)1 mode is formed (note
the discrete change of impact phase by 7r). Increasing the driving to r - 2.95, the
(2,1)1 vibrating mode becomes unstable to the (2, 1)2 bouncing mode, with markedly
shorter contact time. Once in this mode, we can decrease the driving acceleration
to P 2.7 before we switch back to the (2,1)' mode. Further increase of P beyond
P = 3 leads to a period-doubling cascade and the onset of chaos at F s 3.45.

The most common bouncing modes are labeled in Fig. 3-23, where we observe that
the impact phase is higher for higher energy (bouncing) states than their lower energy
counterparts, with the higher energy state disappearing once the phase dips below r.
This disappearance can be rationalized by considering the vertical bath speed in an
inertial frame of reference, given by -(o/Q) cos(hr), which achieves its maximum
value when 4 = 7r. Thus, when 4 = r, the bath transfers the maximum momentum

possible to the drop during contact; below this value the drop cannot maintain the
higher energy level and collapses to a lower energy bouncing mode. We note that with
increasing vibration number Q (or, equivalently, increasing drop size), the duration
of contact increases, chaotic bouncing states are replaced by periodic states, and the
lower energy modes (1, 1)1 and (2,1)1 shift to lower driving accelerations.

3.4 Discussion

In our experiments, we have classified the drop dynamics for a wide range of driving
frequencies and drop sizes, and reported a number of new bouncing states. We have
reported the full bouncing threshold curve and shown that it can be discontinuous. We
observed the existence of two distinct bouncing states corresponding to the same mode
number (m, n), which we dubbed bouncing and vibrating. The transition between
these two energy levels of the same mode plays a crucial role in the coalescence of
small drops and in the onset of walking for larger drops. For small drops, the contact
time in the (1, 1)1 mode, being roughly half the oscillation period, is longer than the
thinning time of the intervening air layer, resulting in coalescence. The lower part of

the bouncing threshold curve therefore lies along the (1, 1)1 - (1, 1)2 transition curve.

The peak of the walking region typically occurs on the transition curve between the
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2,1)1 and the (2,1)2 mode, as will be shown in Chapter 4. The dominance of the

(2,1)2 mode beyond this point is responsible for the walking region having only finite

extent.

We have thus delineated the different regimes arising in the vertical dynamics of a

drop bouncing on a vibrating bath and rationalized them using a logarithmic spring

model for the drop-bath interaction. For small driving accelerations, the bath cannot

transfer energy to the drop at a rate sufficient to compensate for viscous dissipation

and wave creation; consequently, the drop coalesces when the intervening air layer

thins below a critical thickness. For higher driving accelerations, simple periodic

bouncing is observed, which tends to become unstable to more complex bouncing

states with longer period, as the driving amplitude is further increased. Generally,

as the driving acceleration is raised, the average contact time of the drop decreases

and the amplitude of its bounce increases, but the change between bouncing modes

is sometimes discrete. For even higher accelerations, chaotic bouncing is the norm,

interspersed with windows of periodicity. Nevertheless, the chaotic regions disappear

for larger drops and near the Faraday threshold, where the standing wave pattern

created by the drop's impacts acts to stabilize the vertical motion by reducing the

relative speed of the drop and bath at impact.

We have developed a, series of models of increasing sophistication to describe

the dynamics of drops bouncing on a vibrating fluid bath. The dynamics involve a

complex interplay of the drop and bath deformation and also of the air flow in the in-

tervening layer during contact. However, provided there is no coalescence, the air film

between the drop and the bath serves only to communicate normal stresses between

the two. We have shown that in the parameter regime of interest, many factors can be

neglected, such as the role of air drag during flight and the residual bath deformation

generated by previous drop impacts. This allowed us to simplify the dynamics to the

point that it could be captured by a single differential equation, with the reaction

force acting during contact modeled as a linear or logarithmic spring. The linear

spring model, which has been used previously to model drop rebound from a rigid

substrate [84], has two free parameters, the spring and dissipation constants, which

can be determined experimentally by measuring the contact time TC and coefficient

of restitution CR.

The linear spring models, by virtue of their linearity, were unable to correctly

model the dependence of CR on the impact speed. Nevertheless, their integrability

allows fast numerical solution, which might make them preferable in some cases where

speed takes precedence over accuracy. The logarithmic spring model is new, derived
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by analysis of the dynamics at very small Weber numbers and extension to the pa-

rameter regime of interest. It has 3 free parameters, which can be determined by

measuring TC and CR for two different impact speeds. Only the logarithmic spring

model was found to be consistent with the experimental data for Weber numbers

smaller than one. Even the bouncing threshold, which in general requires under-

standing of the intervening layer dynamics, could be almost entirely rationalized by

considering mode transitions and contact time. For applications requiring a highly ac-

curate representation of the temporal dependence of the reaction force, as will be the

case for the model of walking drops treated in the subsequent chapter, the logarithmic

spring model will be invaluable.

Throughout our analysis, we have assumed that both the drop and bath defor-

mations are dissipated between impacts, an assumption that breaks down as one

approaches the Faraday threshold. Then, the purely vertical bouncing states can

be destabilized by the standing waves, giving rise to walking states, an effect to be

treated in Chapter 4. There, we couple the drop's vertical dynamics, as described

herein, to its horizontal dynamics. In order to determine the amplitude of the standing

waves created and the tangential acceleration they impart to the drop, it is necessary

to know the impact phase and the temporal dependence of the reaction force. The

model for the vertical dynamics developed herein provides this information, the ab-

sence of which is responsible for the shortcomings of previous theoretical descriptions

[19, 32] of this relatively subtle system.
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Chapter 4

Drops Walking on a Vibrating

Bath

4.1 Background

A liquid drop placed on a vibrating liquid bath can achieve a vertical bouncing motion

by virtue of the sustenance of an air layer between the drop and bath [124, 18]. For

drops within a certain size range, the interplay between the drop and the waves it

excites on the liquid surface causes the vertical bouncing state to become unstable

to a walking state [19]. The interaction of the walking drops and their guiding wave

field leads to a variety of phenomena reminiscent of quantum mechanics, including

tunneling across a sub-surface barrier [30], single-particle diffraction in the single- and

double-slit geometries [16], quantized orbits [43] and orbital level splitting [31]. This

hydrodynamic system bears a remarkable similarity to an early model of quantum

dynamics, the pilot-wave theory of Louis de Broglie [23, 6, 59].

Protiere et al. [98] presented a regime diagram of liquid drops bouncing on a

liquid bath (specifically, 20 cS silicone oil), as did Eddi et al. [33] for 50 cS oil. In

the previous chapter, we have extended their measurements to cover a wider range

of drop size and driving frequency, in order to have a firmer experimental basis for

building a theoretical model for the drop's vertical dynamics. In section §3.3, we

developed a hierarchy of theoretical models and showed that the experimental results

are best matched by describing the interaction as a logarithmic spring, analogously

to impacts on rigid substrates (Chapter 2). We noted the existence of two distinct

modes with the same period and number of jumps per period, which we refer to as

"vibrating" and "bouncing" modes. In the lower energy vibrating mode, the contact
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time of the drop is set by the vibration frequency of the bath, while in the higher

energy bouncing mode, by the drop's characteristic frequency of oscillations. The

possible coexistence of these two vertical modes for the same parameter combination

will be relevant here.

In order to understand the role of drop size and driving frequency on the bouncing

dynamics, a model of both the vertical and horizontal drop motion is required. No

satisfactory quantitative model exists to date. Couder et al. [19] introduced a simple

model of walking drops that was further developed by Protiere et al. [98], both models

being based on the approximation that the wavefield is sinusoidal and centered on the

last impact. The shear drag in the intervening air layer was misidentified as the major

force resisting the drop's horizontal motion, an assumption to be corrected here. We

also point out the shortcomings of their scaling for the averaged reaction force acting

on the drop F ~ my(r/TF), where m is drop mass, f the driving acceleration, r

the contact time and TF the Faraday period. If the drop is to keep bouncing, the

average reaction force must equal the drop weight: F = mg. It will be shown here

that the horizontal force on the drop increases with driving acceleration not because

of an increasing vertical reaction force, but due to an increase in the magnitude of

the standing wave pattern induced as one approaches the Faraday threshold.

Eddi et al. [32] presented a more detailed model which included the contribu-

tions to the wavefield from all previous impacts, but the divergence of their wavefield

approximation at the centre of the impact precludes its suitability for modeling the

transition from simple bouncing to walking. While the theoretical models of Couder's

group capture certain key features of the walker dynamics, they contain a number of

free parameters that can only be eliminated by careful consideration of the impact

dynamics. More recently, Shirokoff [113] treated the wavefield created by drop im-

pacts in more detail, but only the most recent impact was considered; moreover, no

connection was made between the model's free parameters and the experiments.

The goal of this chapter is to develop a theoretical model capable of providing

quantitative rationale for the regime diagrams of the bouncing drops, such as that

shown in Fig. 4-4. In addition to rationalizing the limited extent of the walking

regime, the model should allow us to understand the observed dependence of the

walking speed on the bath acceleration. By time-averaging over the vertical dynamics

described in §3.3, we here develop a trajectory equation for the walking drops. Our

model predicts the existence of several of the experimentally observed walking states,
such as low and high energy resonant walking, limping and chaotic walking. The

possible coexistence of these states at the same parameter combination may give rise
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to a complex mode-switching dynamics.

In §4.2 we describe our experimental arrangement and present our data describing

the observed dependence of the walking thresholds and speeds on the system parain-

eters. In §4.3 we analyze the spatio-temporal evolution of the standing waves created

by a drop impact on the liquid bath for peak driving accelerations near the Faraday

threshold. In §4.4, we consider all the major forces acting on the drop during flight

and rebound and so obtain a consistent model for the drop's horizontal and vertical

dynamics. By analysing the model in the limit of short contact time relative to the

driving period, we obtain a trajectory equation appropriate for small walking drops.

In §4.5 we present the model predictions and compare them to the experimental data.

Specifically, we examine the role of drop size and driving acceleration on the walking

speed and the role of oil viscosity and driving frequency on the extent of the walking

regime. We also highlight the role of the vertical dynamics in setting the boundaries

of the walking regime. Some simplifications of the full model are made in order to

obtain a relatively simple scaling for the walking speed and insight into the walking

thresholds. Future research directions are outlined in §4.6.

4.2 Experiments

In order to extend the data sets reported by Protibre et al. [98] and Eddi et al.

[32], we measured the walking thresholds and walking speeds of droplets of silicone

oil of kinematic viscosity 20 and 50 cS, for a broad range of drop sizes and driving

frequencies. A schematic illustration of the experimental apparatus is shown in Fig. 4-

1. A liquid drop of undeformed radius Ro bounces on a bath of the same liquid

(Fig. 4-2), in our case silicone oil with density p = 949 kg-m-, surface tension
a = 20.6 -10-3 N/m and kinematic viscosity v = 20 cS, or a more viscous silicone oil

with p = 960 kg-m- 3, a = 20.8- 10-1 N/m and v = 50 cS. The bath of depth hB e 9
mm is enclosed in a cylindrical container with diameter D = 76 mm. The container

is shaken vertically, sinusoidally in time, with peak acceleration -y and frequency f, so

that the effective gravity in the bath frame of reference is g + -y sin(27rft). The motion

of the drop was observed using a high-speed camera synchronized with the shaker.

The camera resolution is 86 px/mm and the distance of the drop from the camera

was controlled with approximately 1% error by keeping the drop in focus, giving a

total error in our drop radius measurement of less than 0.01mm. The drops were

created by dipping a needle in the bath then quickly retracting it [98]. The drop's

initial conditions play little role in its subsequent dynamics, provided coalescence is
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Figure 4-1: The experimental setup. A liquid drop bounces on a vibrating liquid bath

enclosed in a circular container. The drop is illuminated by an LED lamp, its vertical

motion recorded on a high-speed camera and its horizontal motion recorded on a top

view camera. Both cameras are synchronized with the shaker.

avoided. However, a certain amount of hysteresis may arise as the various thresholds

are crossed.

Figure 4-2: A droplet of radius RO = 0.38mm (a) in flight and (b) during contact

with the bath. During flight, its motion is accelerated by the gravitational force g

and resisted by the air drag FDA that opposes its motion v. During contact, two

additional forces act on the drop; the reaction force F normal to the bath surface

and the momentum drag force Fo tangential to the surface and proportional to the

tangential component of v.

We continue to use the notation adopted in the previous chapter and summarised

in Table 3.1. We shall also keep using the (m, n) notation to distinguish between

different bouncing modes, following Gilet & Bush [46], and use a superscript to dif-

ferentiate between the different energy levels. The (2,1)1, (2, 1)2 and (2, 2) walking

modes are shown in Fig. 4-3, together with more complex behaviours observed in
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walking drops.

4.2.1 Walking thresholds and speeds

Each impact of the drop on the vibrating liquid bath creates a transient wave that
propagates outwards from the centre of impact, leaving in its wake a standing Faraday
wave pattern that decays exponentially with both time and distance from the impact
centre [32]. As the driving is increased, the temporal decay rate of the standing
wave pattern decreases and the total amplitude of the surface deformation increases,
being the sum of the standing waves generated by all previous impacts. When the
drop is in the (2, 1) bouncing mode, it lands on the bath when the standing wave
beneath it is convex, bulging upwards: the drop lands on the crest of its associated
wave. Consequently, a small perturbation of the horizontal position of the drop during
flight leads to a horizontal component of the reaction force imparted during impact
that may destabilize the pure bouncing state.

Below a certain driving threshold, which we denote by the walking threshold 1w,
the drop's horizontal movement is stabilized by air drag, shear drag in the intervening
air layer and the force resulting from the transfer of horizontal momentum imparted
by the drop to the surface waves. Mechanically, the latter arises since the non-
axisymmetric deformation of the drop and bath induced by an oblique impact leads
to a horizontal pressure gradient in the contact area due to fluid inertia. For r > rw
these stabilizing forces can no longer offset the destabilizing wave force and the drop
begins to walk. We henceforth shall refer to drops walking in the (2, 1) bouncing
mode as resonant walkers, due to the periodicity of their vertical motion precisely
matching that of the Faraday wavefield. In certain regimes, the drop then settles into
a state of straight-line walking with a steady speed. The walking thresholds have
been investigated by Protibre et al. [100] for silicone oil with viscosities ranging from

= 10 to 100 cS. They found that the walking regime exists only for a small range of
driving frequencies, with the typical frequency decreasing with increasing viscosity,
as indicated in Table 4.1.

We have measured the walking thresholds for oil with viscosity 20 cS and 50 cS, in
both cases spanning the whole range of frequencies over which walking occurs. The
experimental results are shown in Fig. 4-4. The vertical axis denotes the vibration
number Q = W/WD, the ratio of the driving angular frequency w = 2irf to the
characteristic oscillation frequency of the drop W0 = (o/p )1/2 (see §3.2). We first
note that the walking threshold curves are composed of two distinct parts joined at
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Figure 4-3: Examples of the vertical motion of 50 cS silicone oil drops walking on

a liquid bath vibrating with frequency 50 Hz. These are, in order of increasing

complexity: (a) the (2,1)' mode, RO = 0.39mm, r = 3.6; (b) the (2, 1)2 mode,
Ro = 0.39mm, r = 4.1; (c) the (2,2) limping mode, RO = 0.57mm, P = 4.0; (d)
switching between the (2, 1)1 and (2, 1)2 modes that arises roughly every 20 forcing

periods, Ro = 0.35mm, F=4.0; (e) chaotic bouncing, RO = 0.57mm, P = 4.0. Here

RO is the drop radius and P = -y/g the dimensionless driving acceleration. The images

were obtained by joining together vertical sections from successive video frames, each

1 pixel wide and passing through the drop's centre. The camera was recording at

4000 fps.
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Viscosity [cS] fman [Hz] fp [Hz] fma, [Hz]

10 100 110 125
20 60 80 90
50 40 55 60
100 35 45 50

Table 4.1: The range of driving frequencies for which drops can walk, for various
values of the oil viscosity, as reported by Protibre et al [100]. Walking occurs for
fmin < f < fmax, with the minimum value of FW/IF occurring at f = fp. For
f = f,, the smallest relative driving acceleration Pw/rF is required to produce a
walking drop. The resolution of their frequency sweep was 5 Hz.

Pwm = minn {rw}, the minimum driving acceleration required to produce walking.

While the lower branches of the threshold curves seem to have similar slopes for all

frequencies, the slopes of the upper branches decrease dramatically with increasing

frequency, until disappearing completely as f approaches fma. We also observe that

the peak of the walking regime moves to higher Q with increasing frequency, but

never greatly exceeds Q = 1.

The dependence of the horizontal walking speed on the driving acceleration is

shown in Fig. 4-5. The walking speed generally increases with increasing drop size,

but this trend may be violated for larger drops due to complications associated with

the vertical dynamics, an effect to be discussed in §4.5.

4.3 Waves on the Bath Surface

The purpose of this section is to describe the evolution of the bath deformation caused

by a single drop impact. We will assume the deformations to be small and additive, so

that the bath shape after multiple drop impacts can be simply obtained by adding the

contributions from successive impacts. We are particularly interested in the long-term

evolution of the surface waves, which is important in the dynamics of walkers close

to the Faraday threshold. Of course, the bath surface profile only influences the drop

dynamics when the drop is in contact with the bath; thus, any transient behaviour

arising between impacts is irrelevant to our model and need not be considered.

We thus consider a single, normal impact of a liquid drop on a flat vibrating liquid

bath. We assume that the drop is initially spherical and therefore the wavefield

is radially symmetric about the point of impact. The dimensional height of the

bath surface will thus depend only on time and distance from the axis of symmetry:
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Figure 4-4: The walking thresholds for silicone oil droplets of viscosity (a) 20 cS and

(b) 50 cS on a vibrating bath of the same oil. The experimentally measured threshold

acceleration F = y/g (horizontal axis) is shown as a function of the vibration number

1 = W/WD (vertical axis) for several values of the driving frequency f: 50 Hz (0), 60

Hz (M), 80 Hz (A) and 90 Hz (V). The dashed lines are best-fit curves provided to

guide the eye.

h'(x, y, t) = h'(r', t). We nondimensionalize the governing equations using length-

and timescales deduced from the drop radius RO and the characteristic oscillation

frequency of the drop WD =(a/pR)1/2

h = h'RO , r = r'/Ro , r = Wpt = t (a/pR3)/2 , Z = z/Ro , k = k'RO . (4.1)

The Hankel transform H(k, r) of the dimensionless surface height h(r, r) is defined

by

H(k, ) = h(r, r)Jo(kr)rdr so that h(r, r) = j H(k, r)Jo(kr)kdk . (4.2)

Here, and throughout the chapter, Ji(x) denotes the Bessel function of the first kind

and order i. The effective gravity in the bath frame of reference, defined as the sum

of gravity and the fictitious force arising in this vibrating reference frame, is given by

Bo*(T) = Bo (1 +IF sinfT) . (4.3)

In the frame of reference fixed with the oscillating bath, the quiescent bath surface
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Figure 4-5: The walking speed of silicone oil droplets for (a) v = 20 cS, f = 80 Hz

and (b) v = 50 cS, f = 50 Hz, bouncing on a vibrating bath of the same oil, as a

function of the driving acceleration. The experimentally measured speeds are shown

for several droplet radii RO. For 20 cS, RO = 0.31 mm (V), 0.38 mm (0) , 0.40 mm

(4) and 0.43 mm (U), while for 50 cS, A) = 0.25 mm (A), 0.34 mm (A), 0.39 mm

(4) and 0.51 mm (M). In (a), the walking speeds reported by Protiere et al. [98] are

shown for comparison, for drop radii 0.28 mm (A), 0.35 mm (0) and 0.41 mm (<).
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is located at Z = 0 at all times. The vertical position Z(r) of the drop will be

represented by its centre of mass shifted down by one radius, so that Z(r) = 0 when

the drop first makes contact with the unperturbed bath. Z(r) is then governed by

( 2Z
2= F() - Bo*(7-) ,(4.4)

where F is the dimensionless reaction force acting on the drop. The Hankel transform

of the surface height can be modeled by the following equation:

Her + 20hek2H + H [k 3 + ko*(r)] = - -F(r) J(wk), (4.5)H + H3 F( m45

where w is the dimensionless extent of the contact region and Oh, lie/ (apRO)" 2

is an effective Ohnesorge number (see Appendix C, §C.0.2). When Bo < 1, we can

approximate the forcing term in (4.5) by a point forcing (see §C.0.3) and so obtain

2
Her + 20hek2HT + H (k3 + kBo*(r)) = - kF(r). (4.6)

In §C.0.4 we analyze the long-term evolution of the bath surface following a single

drop impact when the forcing is close to the Faraday threshold rF. We find (see

eqn. (C.50)) that the impact creates a standing wave with nearly sinusoidal time-

dependence and Bessel function spatial-dependence, which decays exponentially in

time. The rate of decay is proportional to the relative distance from the Faraday

threshold 1- r/rF. The amplitude of the wave is given by the integral of the reaction

force F over the contact time, multiplied by the Green's function for (4.5), which is

approximately sin Qr/2:

4v(2-7 k 2kyohe/ 11UQT r
h(r,r) . k F(u) sin du] cos -exp - - 1)- Jo(kcr)

3,F 3kF + Bo se2 2 krF 7D

(4.7)

The critical (most unstable) wavenumber kc is found to be close to the Faraday

wavenumber kF, given by the dispersion relation [4]

kF+ Bo -kF =~U2 (4.8)
4

Eqn. (4.7) is found to be a good approximation provided that (p3f/a 2)1/ 3 < 2

(C.51), which is satisfied for the parameter range of interest. In order to obtain a

closer match with experimental data, the analytic expression (4.7) is superceded by a

106



slightly more complex relation, derived in §C.0.5 using a more complete description

of the wavefield:

4V/2- k kF0hY2 [lu H (r) (/ rh(r, r) ; + F(u) sin -duexp - - 1 - Jo(kcr),
3 3k2j+ o r2 7 F rTD(

(4.9)
with ft(r), k, and rD now determined by a numerical scheme described in §C.0.5. To

illustrate the accuracy of (4.9), we compare it to a full numerical solution of (4.6) in

Fig. 4-6.

20 cS 80 Hz b 50 cS 50 Hz
0.2-0.

0.1 0.1

0 0

-0.1 -0.1

S-0.21 -0.2

-0.3 -0.3

-0.4 -0.4

-0.5' -0.510 1 2 3 4 5 0 1 2 3 4 5
t/TF tITF

Figure 4-6: Comparison between the full numerical model (dashed line) and the
long-term approximation (C.50) (solid line) for (a) 20 cS oil and (b) 50 cS oil. The
dimensionless height of the surface h(0, r) at the centre of drop impact is shown as a
function of time, nondimensionalized by the Faraday period TF = 2/f. The surface
is forced at t = TF/4 and then evolves freely.

4.4 Horizontal Dynamics

In this section, we combine our models for the vertical drop dynamics developed in

§3.3.2 and the standing wave evolution (from §4.3) in order to describe the complete

drop dynamics. The model presented here is readily generalizable to a full three-

dimensional model; however experimental evidence indicates the prevalence of a 2-

dimensional motion, in which the drop is confined within a vertical plane unless

perturbed transversely by an external force or through interaction with boundaries.

We thus expect that a 2-D model will suffice in describing the behaviour of a drop
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bouncing on an unbounded vibrating liquid bath.

We nondimensionalize the position and time as in §4.3, and denote the horizontal

drop position by X(r) = x(r)/Ro.

4.4.1 Horizontal drag during contact

10
normal Weber number WSN

IIN

10110 0

Figure 4-7: The tangential coefficient of restitution Cik = V/ as a function of

the normal Weber number WeN - p 2 .(v')2/, where vi vN are the tangential and

normal components of the drop velocity relative to the bath surface. Data for 20 cS

(v) and 50 cS (A) silicone oil are shown, together with the values obtained with the

model (4.10) with C = 0.3 for Ro = 0.1 min (solid line) and o = 0.4 mm (dashed

line). The impact angle with respect to the bath surface ranged from 450 to nearly

900.

All previous models of walking drops have assumed, following the argument first

proposed by Protiere et al. [98], that the shearing inside the intervening air layer

provides the principal contribution to the horizontal drag during impact. Instead, we

propose that the dominant contribution comes from the direct transfer of momentum

from the drop to the bath during impact. The resulting horizontal force is difficult to

characterize analytically or numerically, due to the asymmetry of the drop and bath

surfaces involved, but the resulting tangential coefficient of restitution CT = v;t/vT

is straightforward to measure experimentally.
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We have recorded C for silicone oil drops with 0.1mm < Ro < 0.6mm, v = 20
cS and v = 50 cS and a wide range of normal and tangential velocities (0.01 m/s
< vT, vf 0.8 m/s). The results are shown in Fig. 4-7 as a function of the normal
Weber number WeN = pPO(vy)2 /u. The data indicate that CR depends only weakly

on the oil viscosity. Note that we have controlled neither the tangential velocity vi
nor the normal velocity vg and the incident angle 0 thus ranged from nearly 90* (for
normal impact) to 45'. The near collapse of the data onto a single curve implies that,
over the parameter regime of interest, CRT does not depend appreciably on either 0
or v , which indicates that the tangential drag force depends linearly on vj. We
conclude that the dimensionless tangential force on the drop P is a function of
the drop position Z, normal velocity Z, and the normal force F, multiplied by the
tangential velocity: FD = C(Z, Z,, F) - X,. For the sake of simplicity, we assume
PF = C - F' -X,. The coefficients C and a can be determined by matching the
experimental data; the best match is achieved for 1 < a < 1.5. We shall use a = 1,
and so write

PD= C - F -Xr where F = Z,, + o* . (4.10)

The experimental data is best fit by choosing C = 0.3, as is shown in Fig. 4-7, where

the two curves indicate the model predictions for Ro = 0.1 mm and Ro = 0.3 mm.
Using the shearing force in the air layer as the dominant drag force gives F,, F1/2

(see Appendix D), leading to an underestimation of the tangential drag for high Weber
numbers (since F1/2 < F).

4.4.2 Horizontal drag during flight

When the drop is in flight (specifically, not experiencing a reaction force from the
bath), its dynamics may be approximated by the system

Xrr = -FDT(V
V

Zr. = -Bo*(r) - FDO(V ) , (4.11)

where, as previously, Bo* (r) = o(1 + r sin 1r) is the effective gravity in our vi-

brating frame of reference, V = (X? + Z2)1/2 is the dimensionless droplet speed, and
FDA is the air drag. We assume that the drag is always opposite to the velocity
and its magnitude is a function of speed only, thus neglecting the effect of the bath

on the air flow around the drop [50]. The maximum value of the Reynolds number

lZea = 2ROVma/ a = 2gR0/fv, varies between 4 for f = 100 Hz and RO = 0.3 mm
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and 16 for f = 40 Hz and RO = 0.5 mm, so the Stokes formula for the air drag on

a rigid sphere is no longer accurate. Moreover, the motion of drop is unsteady and

we need to take into account the variable flow profile around the drop. The Strouhal

number St = WRO/VX = rRof 2/g, a measure of the flow unsteadiness, is typically

between 0.1 and 1 in our system. Chang & Maxey [12] showed that the relative mag-

nitude of the correction to the Stokes drag is on the order of Re -St/6 when both of

these dimensionless numbers achieve small or moderate values:

9 ~[1\
FDA = OhaV 1+0 IReSt) (4.12)

We shall show that the correction in (4.12) is negligible in its effect on the horizontal

drop dynamics relative to the sum of the Stokes drag and the momentum drag during

impact. To that end, we average the horizontal equation of motion over the period of

drop's motion P, giving us the average drag on the drop. Integrating (4.10), we derive

that the momentum drag contribution to the average drag scales like X, -C(f F)/P =

C . XBo, since by periodicity the integral of the reaction force on the drop f F

must equal the integral of the gravitational force f Bo = Bo - P over the period.

The contribution of the air drag scales simply like X, - [9Oha + 0 (jQha1ReSt)].

The relative magnitude of the Stokes drag to the momentum drag contribution is

therefore given by 90ha/2C?30 z 20taa71/2 P-3/2g1Ri5/ 2 , which varies between 0.36

for RO = 0.2 mm, and 0.02 for RD = 0.6 mm. As expected, the air drag plays much

smaller role for larger drops and is never the dominant source of momentum loss, but

for drops below RO = 0.4 mm it cannot be neglected. However, the relative magnitude

of the air drag correction to the momentum drag, given by 30harzeSt/4CBo =

25paa1/2fp3-/2g-1Rl/ 2, varies between 0.08 for Ro = 0.2 mm and f = 80 Hz and

0.03 for Ro = 0.6 mm and f = 50 Hz. Therefore we shall from now on neglect the

correction term.

It is also straightforward to check that in the vertical direction the drag is negligible

relative to gravity, their ratio being at most 9pA4/2pfRg, which is at most 0.04 for

RO 2 0.2 mm and f 50 Hz. Therefore (4.11) can be simplified to

9
XT = -OhaX, Z,, = -Bo*(r) . (4.13)

2

4.4.3 Horizontal kick

The remaining force to be evaluated is the horizontal component of the reaction force,

arising due to the slope of the wavefield beneath the drop. It is important to clarify
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the somewhat artificial distinction between the reaction and drag forces. By the

reaction force, we mean that part of the total force on the drop during contact that

is independent (to leading order) of the drop's horizontal velocity. Conversely, the

drag component was found to scale linearly with the drop's horizontal speed. Had

the drop impact been instantaneous, the tangential component of the reaction force

could be obtained from its vertical component simply by calculating the slope of the

interface at the position of the drop:

- Oh(X, r)
FT = - Ox F (4.14)

assuming small slope (so that sinG O 0 for the slope angle ). Such an approximation

loses accuracy when the contact time of the drop becomes comparable to the Faraday

period, because the slope of the interface changes significantly during contact. The

interplay between the interface deformation beneath the drop and its changing slope

further away is far from trivial. Unless one can afford to numerically model the whole

complex dynamics of this interaction (which would decrease the speed of computation

by many orders of magnitude), one can do no better than calculate a weighted average

of the slope over the contact time. The average slope weighted by the instantaneous

reaction force (4.14) is the most natural and yields the best results; thus, it will

adopted in our model. However, the predictions obtained using this model for Q > 1

or for the (2,1)' walking mode are likely to be skewed, due to the contact time

extending over a relatively large fraction of the Faraday period.

4.4.4 Summary of the model

The vertical dynamics of the drop is governed by the logarithmic spring model de-

veloped in §3.3.2 in order to capture the dynamics of drop rebound on a liquid bath

for Weber numbers ranging from small to moderate (We < 3). It was derived using

a variational approach by assuming a quasi-static form for both the drop and inter-

face shape during impact. The dimensional form of the model equations is presented

in (4.15) below. When the drop is in flight, it is acted upon only by the effective

gravity (gravity plus the fictitious force in the vibrating bath reference frame), with

air drag being negligible. During contact the drop also feels a reaction force depen-

dent on the relative position of the drop and bath height z - h, as well as a drag

dependent on the relative speed of the drop and bath i - h. Unlike for a linear

spring model, the dependence of the reaction force on the relative position and of the

drag on the relative speed is not linear, as evidenced by the logarithmic correction in
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(4.15). This nonlinearity has the effect of reducing dissipation and prolonging con-

tact for smaller impact speeds. There is also a correction to the drop inertia coming

from the drop's internal fluid motion. The three coefficients ci present in the model

were fixed by matching the experimentally measured coefficients of restitution and

contact times, as described in §3.3. The model was shown to accurately predict the

regime diagrams of the drop's vertical bouncing motion. Writing m for the drop mass,

g*(t) = g + y sin (27rft) for the gravitational acceleration in the vibrating bath frame

of reference, and FN = mi + mg* (t) for the normal component of the reaction force

acting on the drop, we have

mi = -mg*(t) in flight,

(4.15a)

1+ C3_d_+ 4 rMRoC2) + 2ra(z -h) = mg* (t) otherwise.
-z-h z-h z-

(4.15b)

The drop is defined to be in flight when either z > h or when FN, as computed from

(4.15b), would return a negative value. The constants used here, as in MBI, were

ci = 2, c3 = 1.4, c2 = 12.5 for 20 eS and c2 = 7.5 for 50 cS. These values can be

determined either by matching the known normal coefficient of restitution C4N and

contact time TC of the drop and their dependence on We, or by fitting the regime

diagrams of the vertical bouncing motion, as was done in MBL The total height of

the standing waves in the bath frame of reference h = h(X, r) can be expressed as

the sum of contributions from all previous impacts:

N

h(x, t) = E ho(x, x, t, t,) . (4.16)
n=1

The single contribution ho(x, xn, t, tn) resulting from an impact at (x, t) = (xn, tn) is

given by the long-time approximation (C.52):

2 kFRO Ro k2 12
h(X , n, it, tn) ;ZsV 0 aA FN(e') sin (,7rft) dt' X

7r 3k2e Mo + Lo

ft(t ) I /r - tfl
X A exp (/F - T J (kc (x - Xn)) (4.17)

Vt - t T I
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In order to increase computational speed, the number of previous impacts stored is

kept to a manageable size by discarding those whose standing wave amplitude has

decayed sufficiently (below 0.1% of its inital value). Since the contact takes place

over a finite length of time, x, and to, are taken as the weighted averages of x and t

over the contact time:

Xn = FN(t')(t')dt' FN ()dt , tn = FN(t')t'dt'E FN()d. (4-18)

Finally, the horizontal dynamics is governed by

mi + D(t)d = -h , FN (4.19)

where D(t) = C pRo/OaFN(t) + 67rROia is the total instantaneous drag coefficient

and C is the proportionality constant for the tangential drag force. If our model is

correct, the value of C should be close to 0.3. In fact, we expect it to be slightly

less than 0.3, as the tangential coefficient of restitution measured experimentally

also includes the contribution from the shearing in the intervening air layer. This

contribution is presumably smaller for walking drops, which, after repeated impacts

on the bath with associated shear torques, should acquire a rotation which would

reduce the relative velocity of the two surfaces during contact.

4.4.5 Analysis for small drops

We now simplify the equations (4.17)-(4.19) by assuming that the drop is in the

(2, 1)2 mode and Q < 1, which means that the drop is bouncing periodically with the

Faraday period TF = 2/f and the contact time per period is much shorter than TF.

It follows that f|+TF FN (t')dt = f+T m(t) + mg*( I)de= i 1 t+TF + mgTF = mgTF.

We can define the phases 4I and 4D as follows:

FN (t') sin (r fi) de = FN(t)dt s in = mgTF sin - (4.20a)

FN (e) cos (irf t') dt' = FN(t)dt' COS TF cos 20)I Li co2=m 2(42b

Thus, sin (4j/2) is the weighted average of sin(irft) over the duration of the contact

and similarly cos (4 ?/2) the weighted average of cos(irft). For small Q, the contact

time is sufficiently short that we have I P 4). We then define the phase of impact
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T by the following relation:

sin <4 = 2sin - cos- - (4.21)
2 2

Approximating ka by kF and ft(t) by cos (irft) as in (0.49), we can write (4.17) as

4 1 cos(irft) -t
ho(x, x., t, t,,) ;: A sin, - - exp (r/rF - 1) Td (kF(X -~ Xn)) ,

2i k"- R O 0k2 1/
where A = -kF & m/ mgTF . (4.22)

x3kF2R8+ Bo ap12

Following Eddi et al. [32] we introduce the dimensionless "memory" parameter

Me Td (4.23)
TF(1 - r/rF)

that prescribes the inverse of the decay rate of the waves and so the number of

the previous impacts that significantly contribute to the overall surface deformation.

Assuming that the drop's horizontal speed varies on a timescale that is much longer

than the bouncing period, we can integrate (4.19) over one period to obtain

Oh 9 N e-n/Me (
mi+ Di = -mg-= -Amgsin -- r Jo(kF (X - Xn , 4.24

where D = C/fpRo/amg + 67rRo/La is the average horizontal drag coefficient. We

have used (4.21) and the assumption that the contact time is much smaller than TF,

approximating t'-tn by tN+1 -tn. We have also reversed the sequences {xn} and {tn},

so that (xi, ti) now corresponds to the most recent impact. We can easily generalize

(4.24) to the case of drop walking in a plane rather than a line, by replacing /Ox

with V:

N _/M
mi + D: = -mgVh =-Amg sin 4,V : F J0 (kF(" - x.)), (4.25)

n=1 T

which represents the walker's horizontal trajectory equation.

Now we assume that the drop is walking horizontally with steady average speed

v, so that x(t + TF) - x(t) = v -TF. We can then rewrite (4.24) as

N e-n/M,

Dv = !Amg -kFsin Z -i / J1 (nkFTFv) (4.26)
2=
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In order to simplify the subsequent equations, we here neglect the contribution of the

air drag to the total average drag D, and derive

o =kFs-iIM n- 12J1 (nkFTFv) - (4.27)
PRO 2CT' n1

In (4.27), only M, and 4j depend on the bath acceleration. While M, depends

strongly on the distance from threshold, 1, changes more gradually, with values

generally in the range 0.25 < sin (P < 0.65. For the sake of simplicity, at this stage

we set sin Ii to be a constant. Finally, we use C = 0.2, a value that is found to best

fit the data (see §4.5). After all the aforementioned simplifications, we are left with

a relatively simple expression for the horizontal particle speed:

V = 5 a A sin 4ikFT; 1/2  e n/Me 1/2 J 1 (nkFTFv) . (4.28)
2~k Pn=1

For small values of Me (far from the Faraday threshold), (4.28) has only one solution,
v = 0, i.e. a droplet bouncing with no lateral motion. When the memory increases

above a critical value M', however, the zero solution becomes unstable and a pair

of nonzero solutions appear (one negative, one positive). It is possible to obtain an

approximation to Me by taking the limit v -+ 0 (i.e. approaching the critical value

from above), or equivalently J (nkFTFv) -+ nkFTFv/2 for each n, which means that

(4.28) is satisfied for

v = 0 or 1 = A sin C ik2T1/2 X e-n/Men1/2 . (4.29)
n=1

MI is then the value of Me for which the latter equality is satisfied. We approximate

the infinite sum

Ze~n/MInl/ 2 = e-IM/ex1/ 2dx (1 + o (M;,)) ~- r (3) M1 2 , (4.30)
n=1 2

and so deduce

-2/3 r -2/3

m v s 4 5 2 /OTF 5V2i1r sin Di (kFo) 5  j 2

e 2 4 VPRo 6(3kI S2 +Bo) rRo

(4.31)

By combining (4.31) with (4.23), we can derive an approximation to the walking
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threshold Fw, while (4.28) enables us to calculate the dependence of the walking

speed v on the driving acceleration. The comparison of the predictions for this small

drop regime with experimental results is shown in Figs. 4-8-4-9. We note that without

the detailed knowledge of sin<>j (we used a constant value), the predictions are not

entirely satisfactory. Although in Fig. 4-8 we see that the predicted walking threshold

does shift to higher Q with increasing frequency, the change is not sufficiently large.

Moreover, we cannot capture the finite size of the walking regime, specifically, its

confinement to Q < 1, without considering the switching of vertical bouncing modes.

In Fig. 4-9, we compare the predicted walking speed dependence on driving ac-

celeration with the experimental data. By choosing the phase <>j appropriately, we

can match the data for at least one drop size. However, the match for the other

drop sizes is then rather poor, with the model being too insensitive to drop size for

20cS (Fig. 4-9a) and too sensitive for 50cS (Fig. 4-9b). Additionally, the slopes of

the experimentally measured curves decrease for larger driving accelerations, while

the theoretical curves show no such trend. This discrepancy can largely be attributed

to the gradual change of phase with increasing driving acceleration, a necessary in-

plication of the periodicity condition. Furthermore, in Fig. 4-9b the phase changes

discontinuously around r ~ 0.92FF due to a transition between the (2, 1)1 and (2, 1)2

walking modes (see §5).

1 4 4 1 (b)

0.8 0.8

0.6 1 - 0.6
X 4

0.4 0.4

20 cS 50 cS

0..7 0.8 0.9 1 0.8 0.85 0.9 0.95 1
rF F

Figure 4-8: The walking thresholds as predicted by (4.31) for (a) 20 cS droplets at

driving frequency f = 60 Hz (solid line), f = 80 Hz (dashed line), f = 90Hz (dash-

dot line) and (b) 50 cS droplets at f = 50 Hz (solid line) and f = 60 Hz (dashed

line). These should be compared to the corresponding experimental data at driving

frequency f = 50 Hz (o), f = 60 Hz (E), f = 80 Hz (A) and f = 90 Hz (V).
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r/r F / F

Figure 4-9: The walking speeds of silicone oil droplets for (a) v = 20 cS, f = 80Hz
and (b) v = 50 cS and f = 50 Hz, as a function of the driving acceleration relative
to the Faraday threshold P/PF. In (a), the experimental data for R = 0.31 mm (V),
0.35 mm (.), 0.38 mm (ip) and 0.40 mm (4) are compared to the speeds obtained
using (4.28) with sin bi = 0.5. In (b), the experimental data for Ro = 0.25 mm (A),
0.34 mm (*), 0.39 mm (4) and 0.51 nmn (0) are compared to the predictions of
(4.28) with sin FD = 0.7.

v [cS] f [Hz] coefficient C v [cS] f [Hz] coefficient C

20 60 0.21 50 40 0.21
20 80 0.17 50 50 0.17
20 90 0.21 50 60 0.33

Table 4.2: The values of the tangential drag coefficient C used for the different coi-
blinations of oil viscosity v and driving frequency f in our simulations.

4.5 Results

The results of our theoretical model from §4.4.4 are shown in Figs. 4-10-4-15. In

Figs. 4-10-4-13, the value of the tangential drag coefficient C in (4.19) was fit for

each combination of frequency and viscosity in order to obtain the best match with

experimental data, as shown in Table 4.2. The coefficient C remained in the interval

[0.17, 0.33], which is roughly consistent with the experimentally obtained upper bound

of 0.3. The value for v = 50 cS and f = 60 Hz is slightly higher than the rest,

presumably because it lies close to the limits of validity (see eqn. (C.51) ) of our

long-time approximation of the standing wavefield (C.52).

In Fig. 4-10, we show the predicted walking regimes for the two viscosities and

several driving frequencies. The solid lines indicate the outer limits of the walking
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0.6- 40.6

0.4 0.4

20 cS 50 cS
0.91 0. 2

.7 0.8 0.9 1 0.8 0.85 0.9 0.95 1

r/F F

Figure 4-10: The walking thresholds for silicone oil droplets of viscosity (a) 20 cS

and (b) 50 cS on a vibrating bath of the same oil. Our model predictions (lines)

are compared to the existing data in the r/rF - Q plane, where 1/PF is the ratio of

the peak driving acceleration to the Faraday threshold and Q = W/WD the vibration

number. Experimental data is shown for several driving frequencies f: 50 Hz ((p.)

and (>) for data from Protiere et al. [98]), 60 Hz (U), 80 Hz ((A) and (A) for data

from Eddi et al. [33]) and 90 Hz (V).
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regimes, which for lower frequencies extend as far as the Faraday threshold. For

higher frequencies (e.g. f = 90 Hz, v = 20 cS) such is not the case, as the vertical

dynamics becomes chaotic for r < rF. We note that while it is possible to have
drops walking above the Faraday threshold, the motion is highly irregular, since the

wavefield is no longer prescribed by the impacts of the drop alone, with Faraday waves

arising throughout the container.

In Fig. 4-11, we show the regime diagram of the drop's horizontal and vertical

motion for v = 20 cS silicone oil and several values of frequencies for which walking

occurs. The walking regime, denoted W, is located in the region where one of the

(2,1) modes is stable sufficiently close to the Faraday threshold to create long-lived

standing waves. As the driving frequency is increased, the walking regime moves

to higher Q and decreases in size until it disappears completely. Conversely, as the
driving frequency is reduced, the Faraday threshold decreases and penetrates further

into the region of steady (2,1) bouncing. For sufficiently low frequency, the Faraday

threshold is lower than the minimum driving acceleration required to sustain a period-
doubled mode and the walking region disappears entirely. Therefore, walking occurs

only in a finite interval of driving frequencies.

Our model predicts that in most walking regions, the droplet is in the higher energy

(2,1)2 bouncing mode (see Fig. 4-3b and 4-16b), especially for higher frequencies,
smaller drops and lower viscosities. However, there are cases (e.g. when v = 50 cS
and f = 50 Hz) when the model predicts that drops can walk even in the lower energy

(2,1)1 mode (see Fig. 4-3a and 4-16a). We note that our model is less accurate for

the lower energy mode, due to its longer average contact time, which leads to an

overestimation of the walking regime for v = 50 cS and f = 50 Hz.

In Fig. 4-12, we compare our model predictions of the walking speeds with the
existing and new experimental data. As with the walking thresholds, the match

is better for fluids with smaller viscosity. Compared to the previous predictions

for the walking speeds [98] which were significantly too high, our model achieves a

satisfactory match. We note that a slight overestimate for larger drops (see Fig. 4-

12b, Ro = 0.51mm) arises as a result of the point force approximation (eqn. (C.27) ).
The walking speed generally increases with increasing driving acceleration and drop

size. However, this trend can be violated when the drop switches from one bouncing
mode to another. Most striking is the switch from the (2, 1)1 mode to (2,1)2, as is
evidenced by the discontinuities in the theoretical curves in Fig. 4-12b in the region
0.9 < F/rF < 0.95 for the smallest three drops examined. When walking occurs in

the region of chaotic vertical motion, the walking speed varies between each contact
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Figure 4-11: Regime diagrams delineating the dependence of the form of the drop's

vertical and horizontal motion on the forcing acceleration F = -y/g and the vibration

number Q. Silicone oil of viscosity 20 cS is considered and several values of the driving

frequency: (a) f = 50 Hz, (b) 60 Hz, (c) 70 Hz, (d) 80 Hz, (e) 90 Hz and (f) 100 Hz.

The walking regime (W) occurs primarily within the (2, 1) bouncing mode regimes,
and a sharp change in the slope of its boundary is evident across the border between

the (2, 1)1 and (2, 1)2 modes. The walking regime, whose extent is seen to depend

strongly on f, generally borders on chaotic bouncing regions (C) both above and

below. Where available, experimental data on the first (A) and second (v) period

doubling and on the walking thresholds (0) are also shown. The rightmost boundary

corresponds to the Faraday threshold Pr. Characteristic error bars are shown.
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0.75 0.8 0.85 0.9 0.95 10 8.8 0.85 0.9 0.95 1
r/rF r/F

Figure 4-12: The walking speeds of silicone oil droplets for (a) v = 20 cS, f = 80 Hz

and (b) v = 50 cS, f = 50 Hz, as a function of the dimensionless driving acceleration.
Our model predictions (lines) are compared to the existing data for selected drop radii.

These are: (a) Ro = 0.31 mm (Y), 0.35 mm (0), 0.38 mm (N) and 0.40 mm (4,
<); (b) RO = 0.25 mm (A), 0.34 mm (o), 0.39 mm (4) and 0.51 mm (0). In (a),
the predicted range of instantaneous walking speeds in the chaotic bouncing regime

is indicated by the shaded regions. Discontinuities in slope of the theoretical curves

indicate a switching of vertical bouncing modes from (2, 1)1 to (2, 1)2 with increasing
'. Characteristic error bars are shown.
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depending on the phase and depth of the previous impact. This is indicated in Fig. 4-

12a for the smallest three drops by the shaded regions, which mark the possible range

of the instantaneous walking speeds. The solid curves within these shaded regions

were obtained by averaging the horizontal speed over many impacts.

In order to verify that the switching between the two different (2,1) modes is not a

peculiarity of our theoretical model, we measured the contact time of drops in or near

the walking regime. The ratio of the contact time to the period of vertical motion,

te/T, is shown as a function of drop radius in Fig. 4-13. The experimental results are

shown in Fig. 4-13a, while the theoretical predictions are shown in Fig. 4-13b. Both

plots indicate the appearance of the (2, 1)2 mode at r = 3.9, which is characterized

by te/T < 0.3. Also evident is the increased range of drops in the (2,1)2 mode

with increased driving acceleration. We observe a satisfactory match between theory

and experiments. The model consistently underestimates the relative contact times

relative to the experiments owing to the different way of defining contact in each case.

Experimentally, we measured the interval between the first contact and detachment of

the drop. This interval is in general longer than the period of positive reaction force,

our theoretical definition of contact time, due to the effects of the intervening air

layer dynamics. Fig. 4-14 shows the dependence of the walking speed on the driving

acceleration and drop size, as predicted by our model. The maximum walking speeds

arise at the Faraday threshold for drops near the upper limit of the walking regime.

In Fig. 4-14a, the region of chaotic vertical motion (0.4 < 1 < 0.7, 0.9 < r/rF < 1)

is marked by oscillations in the walking speeds. In Fig. 4-14b, the transition from the

(2,1)' mode to the (2,1)2 mode can be discerned from the sharp change in orientation

of the velocity isoclines. In Fig. 4-15(a,c), we show the extent and depth 1- rw/rF

of the walking region across a range of driving frequencies, as predicted using a single

value for the proportionality constant C = 0.2. Our model predicts that walking only

occurs for 52 Hz < f < 103 Hz when v = 20 cS and for 39 Hz < f < 80 Hz when

v = 50 cS, which is in agreement with the range found experimentally by Protiere et

al. [100] (see Table 4.1). In Fig. 4-15(b,d) we show the different vertical bouncing

modes of drops at the walking threshold. Besides the familiar (2, 1) modes and their

period-doubled variants (arising for f > 70 Hz for v = 20 cS, f > 50 Hz for v = 50

cS), we also note the existence of "limping" drops at smaller frequencies, for which

two strong impacts of the drop, roughly one Faraday period apart, are separated by a

relatively weak impact. A few of the simplest limping modes are shown in Fig. 4-16d-

f, together with chaotic limping (Fig. 4-16g) and non-limping modes (Fig. 4-16a-c).

Finally, we note that the lower boundary of the walking region consists predominantly
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Figure 4-13: The fraction of the drop's bouncing period T spent in contact with the

bath, as a function of the drop radius. Experimental results (a) for dimensionless
driving r = 3.7 (v), P = 3.8 (O ), r = 3.9 (4), P = 4.0 (A) and P = 4.1 (U) are

compared to the theoretical predictions (b) for the same set of r. The appearance
of the higher energy (2, 1)2 mode (see Fig. 4-3a,b) at P = 3.9 is marked by a discrete
decrease of contact time.

0.8

0.4

'"& "''I.5 0.21
0.8 0.85 0.9 0.95 0.85 0.9 0.95

r/F F

0.75

Figure 4-14: The walking speeds [mm/s] obtained with our model for (a) v = 20

cS, f = 80 Hz and (b) v = 50 cS, f = 50 Hz. The horizontal axis indicates the

ratio of the peak driving acceleration to the Faraday threshold, while the vertical axis

indicates the vibration number Q = W/WD.
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of chaotic walkers, for which the vertical motion is aperiodic. This makes it difficult

to experimentally determine the walking threshold for small drops, for which random

horizontal motion might also be attributable to weak air currents above the bath.

0.2

0.15

0.1

0.05

0 60 70 80 90 100
driving frequency f [Hz]

50 60 70 80 90
driving frequency f [Hz]

50 cS

40 50 60 70
driving frequency f [Hz]

(d) A

80 40 50 60
driving frequency f (Hz]

Figure 4-15: The walking region for (a-b) 20 cS and (c-d) 50 cS silicon oil drops,

as predicted by our model (eqns.(4.15-4.19)). Horizontal axes indicate the driving

frequency f, while the vertical axes indicate Q = w/WD. In (a,c), the relative distance

from walking threshold to Faraday threshold 1- Iw/PF is shown. The various modes

of vertical bouncing at the walking threshold are shown in (b,d), most significant

of which are the two (2, 1) modes (resonant bouncing with the Faraday period, see

Fig. 4-16a-b), and the different kinds of "limping" drops (the (2, 2),(4, 3),(4, 4) modes,

Fig. 4-16d-f) where a relatively weak contact arises between a pair of strong contacts.

In general, the walking regime's lower boundary adjoins a region marked by chaotic

bouncing (Fig. 4-16(c,g)).

4.6 Conclusion

Several new phenomena have been observed experimentally and rationalized theoreti-

cally, most notably the coexistence of different vertical bouncing modes in the walking
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Figure 4-16: The most common bouncing modes of 20 cS drops near the walking
threshold. These are (a) the (2,1)1 mode, (b) the (2,1)2 mode, (c) chaotic bouncing,
(d) the (2, 2) mode, (e) the (4, 3) mode, (f) the (4, 4) mode and (g) chaotic limping.
Modes (d)-(g) are referred to as "limping" modes, due to the short steps alternating
with long ones.
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Figure 4-17: Comparison of the regime diagram for 20 cS silicone oil and f = 80

Hz, as predicted by our model, to the experimental data. The data on the bouncing

threshold (-), first (A) and second (v) period doubling and on the walking threshold

(U) are shown. The rightmost boundary corresponds to the Faraday threshold F1.
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regime for identical system parameters. Switching between the different modes can

lead to discontinuous or non-monotonic dependence of the walking speed and contact

time on the driving acceleration. Our model also predicts that for higher frequencies,

the walking regime does not necessarily extend to the Faraday threshold, and may

instead give way to a chaotic walking state.

We have combined models for the vertical and horizontal dynamics of bouncing

drops in order to rationalize the extent of the walking regimes and the dependence

of walking speeds on the forcing acceleration. We have reduced the number of free

parameters from as many as 5 in some of the previous models to one with tight

bounds. Our remaining fitting parameter is the constant of proportionality C, defined

in (4.10), which can be rewritten

f F T (r)dT f X,,dr l-C
C= 1- C (4.32)f FN()Xdr f X, (Z,, + Bo*(r)) dr (1 + C ) We(.2

where FN, FT are the normal and tangential components of the dimensionless reaction

force acting on the drop during contact, and C1, CI are the normal and tangential

coefficients of restitution, respectively. The values of C used in our model were

between 0.17 and 0.33, while experimentally it was found to be near 0.3. The match

with experiments is improved significantly relative to existing models [19, 98] due to

a more thorough analysis of the standing waves created by the drop impacts and the

forces acting on the drop during impact.

Our model, summarized in §4.4.4, combines the description of the vertical dynam-

ics (4.15) developed in MBI and the horizontal dynamics (4.19) via an approximate

description of the Faraday wavefield (4.16-4.18). The approximation, derived ana-

lytically in Appendix C, is valid for a finite range of oil viscosities defined in (C.51)

that includes those examined experimentally. Assuming that the drop is a resonant

walker in the (2,1)2 bouncing mode and that its horizontal speed changes slowly rel-

ative to its bouncing period, one can average out the vertical motion and derive a

trajectory equation (4.25) for the drop's horizontal motion. The more exotic walking

states, such as limping or chaotic walking, will be the subject of a future study of

gait changes in walking droplets.

The model was kept relatively simple for the sake of tractability. As a result, there

are cases where the simplifying assumptions are being pushed to their limits; never-

theless, it should be straightforward to extend the validity of our model starting from

the same equations and include higher order corrections. First of the simplifications

made was the approximation of the underlying standing wave field by the formula
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(4.7), which works well for the oil viscosities used in our experiments, as shown in

Fig. 4-6. However, if the model is to be extended to smaller or higher viscosities, it

might be necessary to including higher order terms in evaluating the integral (C.47)

using Laplace's method, in order to achieve sufficient accuracy within the first few

Faraday periods. The heuristic formula for the tangential force during impact is

another major simplification of the model, which ties the tangential and normal com-

ponents of the reaction force. The actual temporal profile of the tangential force is

likely to be slightly different than that given by (C.46), leading to increased error for

long contact time. On the other hand, when the contact time is much shorter than

the Faraday period, the temporal profile is inconsequential, as only the overall loss of

tangential momentum will affect the walking dynamics.

More important, and likely the major source of error of our model, is the approx-

imation of the horizontal kick received by the drop during impact, as summarised

in equation (4.14). This result was deduced by assuming that the impact is much

shorter than the Faraday period and that the bath disturbance radius is much shorter

than the Faraday wavelength. For larger drops or drops in lower energy modes these

assumptions are no longer strictly valid. Nevertheless, the model predictions still fare

rather well. In order to improve upon this approximation, terms involving higher

spatial and temporal derivatives of the surface profile could be added to (4.14). On

its own [88], or combined with a numerical model that captures the outgoing tran-

sient surface wave created at each impact [75], our model represents the first rational

hydrodynamic pilot-wave theory, and provides a solid foundation for modeling the

quantum-like behaviour of walking droplets.
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Chapter 5

Exotic states of bouncing and

walking droplets

5.1 Background

Drops bouncing on a vibrating fluid bath [124, 18] have recently received considerable

attention for two principal reasons. First, they represent a rich dynamical system,

exhibiting many features of low-dimensional chaotic oscillators [48, 46, 45]. Second,

in certain parameter regimes, the bouncers walk horizontally through resonant inter-

action with their wave field [19, 98, 33, 32, 78]. The resulting walkers represent the

first known example of a macroscopic pilot-wave system [23, 79, 88, 17], and exhibit

many features thought to be exclusive to the microscopic quantum realm [6], includ-

ing self-organising lattice structures [29, 28], single particle diffraction [16], quantized

orbits [43], orbital level splitting [31], tunneling effects [30] and wave-like statistics in

confined geometries [59].

Consider a fluid of density p, kinematic viscosity v and surface tension a in a

horizontal bath of depth H driven by a vertical vibration of amplitude A and fre-

quency f = w/(27r). The effective gravity in the vibrating bath frame of reference is

g* (t) = g + -y sin (27rft) where g is the gravitational acceleration and -y = Aw2. At
low forcing acceleration, the fluid remains quiescent in the vibrating frame; however,

above a critical acceleration amplitude -yF corresponding to the Faraday threshold,
the layer becomes unstable to a field of standing Faraday waves [4, 27]. The waves are

subharmonic, with half the frequency of the vibrational forcing, WF = w/2, and with
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wavelength AF = 21r/kF prescribed by the standard surface wave dispersion relation:

w} = tanh(kpH) gk + ). (5.1)

In the experiments of interest, the vibrational forcing is less than the Faraday thresh-

old, -y < -yF; consequently, the interface would remain flat if not for the presence of a

droplet.

When a fluid drop is placed on a vibrating bath (Fig. 5-1), there are three basic

outcomes: the droplet may either coalesce, bounce in place or walk across the fluid

surface [98, 32, 124]. For -y <yB ?- g, where 'yB is the bouncing threshold, the applied

forcing is insufficient to levitate the drop, which then settles towards the bath. The

intervening air layer thins until reaching a critical thickness at which Van der Waals

forces between drop and bath initiate coalescence. For sufficiently large -Y > 'YB, this

air layer is sustained during impact, precluding coalescence and enabling a stable

bouncing state. Beyond a critical forcing threshold, - > -N, where 'u is the walking

threshold, the stationary bouncing state is destabilised by the underlying wdve field,

giving way to a dynamical state in which the drops walk across the fluid bath. The

walking regime arises only for a limited range of drop sizes and forcing conditions.

Figure 5-1: Walking drop of 20 cS silicone oil of radius 0.48 mm (a) before, (b) during,

and (c) after an impact with a bath of the same liquid vibrating at 70 Hz.

Couder's group has characterised the behaviour of drops bouncing on a fluid bath

in terms of the drop diameter D = 2ro and dimensionless forcing acceleration P = -/g.

Protiere et al. [98] conducted experiments with a viscosity-frequency combination of

50 cS-50 Hz and summarised their results in a regime diagram illustrating the droplet

behaviour in the D-I plane. For low forcing accelerations, simple bouncing arises:

the drop hits the bath once every driving period. Increasing the acceleration leads

to a period-doubled bouncing state for medium-sized drops. For relatively small and

large drops, a period doubling cascade may occur, culminating in temporally chaotic

behaviour. For the larger drops, an intermittent regime can also arise in which the

drop changes from one bouncing state to another in an irregular fashion. For drops

within a limited size range, there is a critical [,,, = - 0 /g above which they walk along
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the surface of the bath. The walking regime was assumed to be associated with a
fully period doubled bouncing state; more complex walking modes will be highlighted
herein. A similar regime diagram was obtained for a 20 cS-80 Hz combination, yielding
the same four characteristic modes [33, 32]. The theoretical rationale for the form
of the regime diagrams was only recently developed [78, 79], and will be built upon
herein.

Gilet & Bush [48] considered the motion of a drop on a vibrating soap film,
and demonstrated that the film behaves like a linear spring with a spring constant

proportional to the surface tension. They observed and rationalised a number of
complex bouncing states, multiperiodicity (the existence of different bouncing states
at identical system parameters), and period doubling transitions to chaos. Different
bouncing states were denoted by (m, n), where m/f represents the period of the
mode, during which the drop contacts the surface n times. The dynamics of interest
here, of droplets bouncing on a vibrating fluid bath, are significantly complicated by
the influence of the fluid bath's inertia.

Molacek & Bush [78] (henceforth MB1) examined droplets bouncing on a vibrating
fluid bath, and detailed both experimentally and theoretically the dependence of the
bouncing mode on the system parameters. They introduce the vibration number,
Q = 27rf /prOy-, the relative magnitude of the forcing frequency and the drop's
natural oscillation frequency, and summarised their results in regime diagrams that
indicate the droplet behaviour in the Q-F plane. They demonstrate that droplets of
a given size can bounce at the lowest forcing amplitude when Q e 0.65, that is, when
the drop is forced at its natural frequency. They noted different bouncing states with
the same periodicity, which they denote by (m, n)', where the integer superscript
i increases with the states's mean mechanical energy. In addition to identifying a
number of new bouncing states previously unreported, MB1 developed a theoretical
model that rationalises the observed dynamics. The vertical interaction between
the bouncing drop and the liquid bath during drop contact was described using a
logarithmic spring model, which built upon their model of drop impact on a rigid
substrate [77].

Molacek & Bush [79] (henceforth MB2) extended their theoretical model in order
to capture the dynamics of walking droplets. Specifically, their logarithmic spring
model was supplemented by consideration of the wave field of the bath, which may
destabilise the stationary bouncing states. While they rationalised the limited extent
of the walking regime, they did not characterise the dependence of the walking style
on the system parameters. Their model successfully rationalised the experimentally
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reported transitions from bouncing to walking states, as well as the dependence of the
walking speed on the system parameters. They also noted the coexistence of different

walking states at the same system parameters, and highlighted the predominance
of the (2,1)1 and (2,1)2 modes. Finally, they reported a number of exotic walking

states, including chaotic walkers and "limping" drops that walk with unequal steps,
the subject of the present study.

The goal of the current study is to extend our knowledge of the bouncing drop

dynamics by presenting the most detailed regime diagrams to date. In addition

to reporting a number of new exotic bouncing and walking states, we extend the

predictions of our theoretical model [78, 79] in order to rationalise our observations.
In section 5.2, we describe our experimental set-up. In section 5.3, we present the

experimentally obtained regimes diagrams in which we identify the different walking

and bouncing modes. We also examine the dependence of the walking speed on the

bouncing mode. In section 5.4, we review our theoretical model and compare its

predictions with our new experimental observations. Our results are summarised in

section .

5.2 Experimental set-up

In Figure 5-2 we present a schematic illustration of our experimental set-up. A circular
fluid tray of diameter 76 mm and depth 16 mm is oscillated vertically in a sinusoidal

manner with frequency f, amplitude A and peak acceleration y = (21rf)2 A. The tray

is vibrated by an industrial shaker mounted on a massive levelling platform, which

rests beneath an optical table. The shaker is driven by a power amplifier controlled
using a data acquisition system and custom software. We measure the acceleration
using two piezoelectric accelerometers, and use a feedback loop to maintain a constant
vibration amplitude, corresponding to a tolerance of 0.01 g in vibrational acceleration
amplitude. An air bearing carriage with a square cross section is mounted to a
levelling platform to ensure that the vibratory motion lies strictly along a single
vertical axis. The air bearing minimises lateral vibration introduced by the shaker,
a technique developed for careful studies of vibrated granular layers [107, 51, 24]. A
thin coupling rod connects the shaker to the slider bar of the air bearing.

We use two different silicone oils, the first with kinematic viscosity v = 20 cS,
density p = 949 kg/M3 and surface tension or = 20.6 mN/m, the second with v = 50

cS, p = 965 kg/m 3 and a = 20.8 mN/m. We identify the Faraday threshold FyF for

each combination of experimental parameters by gradually increasing the acceleration
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amplitude y until standing waves with frequency f/2 spontaneously form at the free

surface. The precise value of IfF depends on the vibration frequency, the depth and

viscosity of the oil. The dimensionless Faraday threshold is denoted by 1> = fF/9-

Oil drops are created by rapidly extracting a submerged needle from the fluid bulk

[98]. Of the droplets formed, we select those of radius ro between 0.20 mm to 0.51

mm. The undeformed drop radius ro is measured optically with a high-speed camera,

recording at 4000 frames per second. The optical set-up results in a pixel density

of 71 - 88 pixels per mm, leading to an uncertainty in drop radius of ±1.5%. The

horizontal motion of the drop is captured from above with a Machine Vision CCD

camera and is tracked using particle-tracking software. We performed measurements

Figure 5-2: Schematic illustration of the experimental set-up. The vibrating bath is

illuminated by two LED lamps, and the drop motion recorded by two digital video
cameras. The top view camera captures images at 17.5 - 20 frames per second, while

the side view camera records at 4000 frames per second. The video processing is done

on a computer.

for a single drop size by either increasing or decreasing the driving acceleration in a

stepwise manner from some initial value of F, with typical step size d = 0.11. The

entirety of the bouncing and walking regimes could thus be explored by varying y

between _Y and yF.

5.3 Experimental results

Three different combinations of fluid viscosity and forcing frequency were investi-

gated. A 20 cS silicone oil bath was forced at 70 and 80 Hz, and a 50 cS oil bath at 50
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Fluid Driving Regime
viscosity frequency diagram Bouncing and walking modes

20 cS 80 Hz Fig. 5-3(a) (2,1)1, (2,1)2, (2,2),
(4,2), (4,3), (4,4), chaotic. Fig. 5-4

50 cS 50 Hz Fig. 5-3(b) (2,1)1, (2, 1)2, chaotic. Fig. 5-5
20 cS 70 Hz Fig. 5-3(c) (2,2), (4,3), (13,10), (2,1)1,

(2,1)2, mixed mode, chaotic. Fig. 5-6

Table 5.1: The observed walking and bouncing modes for the three viscos-
ity/frequency combinations examined. Modes in bold typeface are those for which an
associated spatio-temporal diagram is included (see Figs. 5-4 to 5-6).

Hz. A full exploration of both walking and bouncing region was conducted for the 20

cS-80 Hz combination, since this exhibited the richest behaviour. For the other two

combinations, we focused on characterising the walking regimes. For each combina-

tion of oil viscosity and driving frequency we present a regime diagram indicating the

droplet bouncing behaviour in the F-Q plane (Fig. 5-3), as well as spatio-temporal

diagrams of selected bouncing and walking modes (Figs. 5-4-5-6). In Table 5.1, a

summary of the observed bouncing and walking modes is provided.

In the three regime diagrams reported in Fig. 5-3, the horizontal axis is the di-

mensionless forcing r = -y/g, and the vertical axis is the dimensionless vibration

number Q, a proxy for drop size. Individual markers correspond to experimental ob-

servations, with square and round markers denoting stationary bouncing and walking

states, respectively. The colour of the marker denotes the observed bouncing or walk-

ing mode. We first describe the experimental results, and reserve the comparison

with theoretical predictions for section 5.4.

A full exploration of both the bouncing and walking regime for the 20 cS-80 Hz

combination is shown in Fig. 5-3(a). For relatively weak forcing, 1.5 < IF < 2.3,

the (2,2) bouncing mode is dominant; however, a band of the (4,4) mode (Fig. 5-

4(a)) is also observed for vibration numbers Q < 0.5. As r is increased, additional

m = 4 modes are observed. Specifically the (4,3) mode (Fig. 5-4(b)) arises in a

region around r ; 2.6 and Q ; 0.5, and the (4,2) mode (Fig. 5-4(c)) appears for

almost all vibration numbers investigated, for r > 3.3, spanning both the bouncing

and walking regimes. A region of (2, 1) bouncing modes extends from r = 2.5 up to

FF for vibration numbers between 0.6 and 1. This region crosses into the walking

region; it starts out in the low energy (2, 1)1 mode, and then transitions into the high

energy (2, 1)2 mode as r is increased. This (2, 1) region also arises for smaller drops,
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Figure 5-3: Regime diagrams indicating the dependence of the droplet behaviour on
the dimensionless driving acceleration, P = y/g, and the vibration number, Q =
27rf v'pr/r. (a) The 20 cS-80 Hz combination for which PF = 4.22 i 0.05. (b) 50
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indicate the observed bouncing mode.
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Sz 0.4 - 0.5, along a band with r ranging from 2.9 to 4, stretching into a seemingly

chaotic region. Three distinct regions of complex or chaotic motion are observed.

One exists for drops bouncing with 2.3 < r < 3 and Q # 0.4. Another arises near

3.5 < r < 1F, 0.4 < Q < 0.8 and spans the bouncing and walking regimes. For larger

drops (fl s 1) there is a region of complex or chaotic behaviour stretching from

the bouncing (r ; 3.1) into the walking regime, and up to the Faraday threshold.

Generally, near the Faraday threshold, the walking is observed to be chaotic, with

only a relatively small window of periodic walking, for 0.8 < S1 < 1, above which

chaotic bouncing is observed. For Q ; 1, we observed stationary chaotic bouncing

drops that, when perturbed with a submerged needle, transitioned into the stable

(2,1) walking mode.

The regime diagram deduced for the 50 cS-50 Hz combination is shown in Fig.

5-3(b). The observed modes were (2,1)1, (2, 1)2, and chaotic bouncing, the form of

which are presented in Fig. 5-5. Walking occurs only in the (2, 1)1 and (2, 1)2 modes;

the horizontal drop speed being significantly larger in the former than in the latter.

The (2, 1)1 mode (Fig. 5-5(a)) has a longer contact time than the (2,1)2 (Fig. 5-

5(b)), and the phase at which the drop impacts the vibrating bath is also different.

In the high energy (2,1)2 mode, a much more rapid shift in momentum occurs during

impact. The drop is generally in the (2, 1)' mode near the walking threshold, but as

r is increased the drop transitions to the (2, 1)2 mode, remaining in this state until

the Faraday threshold is reached. Chaotic bouncing is observed for lower forcing and

drop size (Fig. 5-5(c)).

The regime diagram for the 20 cS-70 Hz combination is shown in Fig. 5-3(c) and

includes a number of "exotic" bouncing and walking modes. Outside the walking

region, three bouncing modes are observed. For large (P ; 1) and small (Q ;

0.4) vibration numbers, chaotic or highly complex bouncing states are seen. Fig.

5-6(a) shows a spatio-temporal evolution of a highly complex (13,10) mode. For

intermediate 0, (4,3) and (2,2) bouncing modes arise, the former being observed for

drops with 0i; z 0.4 - 0.6, and the latter for Q ; 0.6 - 0.8. Fig. 5-6(b) shows the

spatio-temporal diagram of a drop in the (2,2) mode. We refer to these as limping

drops, owing to their unequal step sizes. The (4,3) and (2,2) modes stretch into the

walking region, where the (2, 1) modes are dominant. Generally the (2,1)2 mode is

observed at lower Q than the (2,1)' mode.

Of particular interest is the region of "mixed states" for I' > 3.1 and 0.55 < 0 <

0.8. Here the drops alternate between the low and high energy (2, 1) modes, as shown

in Fig. 5-6(c), where the evolution is from (2, 1)1 to (2, 1)2 to (2, 1)' to (2, 1)2. While
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Figure 5-4: Some of the bouncing modes observed for the 20 cS-80 Hz combination.

(a) Bouncing (4,4) mode. r = 2.3, Q = 0.45. (b) Bouncing (4,3) mode. r = 2.7,
0 = 0.45. (c) Bouncing (4,2) mode. r = 3.5, Q = 0.42.

Figure 5-5: Some of the modes observed for the 50 cS-50 Hz combination. (a) Walking
(2, 1)' mode. F = 3.7, Q = 0.59. (b) Walking (2, 1)2 mode. r = 4.0, Q = 0.44. (c)
Chaotic bouncing with no apparent periodicity. P = 4, Q = 0.94.

the height of the jumps are roughly equal, the phase of impact shifts rapidly. In Fig.

5-7(a), the horizontal trajectory of a drop in the mixed state is shown. The shading

of the trajectory reflects its local horizontal speed which fluctuates by a factor of 4

as it switches between the fast (2, 1)1 mode and the slow (2,1)2 mode. Fig. 5-7(b)

shows the velocity of the mixed mode as a function of arc-length. The variation of the

velocity occurs over a distance of approximately one Faraday wavelength, resulting

in a highly peaked power spectrum (Fig. 5-7(c)). We note that the mixed mode is

generally stable to the perturbation arising when the drop interacts with the boundary

of the fluid tray. However, by redirecting the drop with the meniscus of a submerged

pin or interaction with a boundary, the mixed mode can be destabilised, causing the

drop to shift into either the (2, 1)1 or (2, 1)2 walking modes. Fig. 5-7(d) shows the

trajectory of a mode switcher settling into the high energy (2, 1)2 mode after being

perturbed by ani approach to the boundary at nearly normal incidence. We note

that we might alternatively have denoted the mixed state by a purely periodic mode,

(24,12); however, we find it useful to distinguish between the two phases of its motion

((2, 1)1 and (2, 1)2), in which its speed is markedly different.
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Figure 5-6: Some of the modes observed for the 20 cS-70 Hz combination. (a) Exotic

bouncing mode (13,10): highly complex periodic motion. r = 3.3, Q = 0.97. (b) The

limping drop, a (2,2) walking mode. P = 2, Q = 0.42. (c) The mixed walking state,

shown here evolving from (2,1)1 -+ (2, 1)2 -+ (2, 1)1 -+ (2,1)2. P = 3.4, Q = 0.72.

5.4 Theoretical predictions

In order to obtain theoretical predictions for the dependence of the bouncing be-

haviour on the system parameters, we adopted the model presented in MB1 and

MB2. There, it was shown that the vertical drop motion is governed by

-mg*(t) = mi in free flight (Z > 0 or FN 0) ,

-1g*(t) = (+ M + oc2 (v) + 2iraZ during contact

(5.2)

where m is the drop mass, z its centre of mass, Z = z - h is the height of the drop

above the bath surface. During free flight, the drop responds only to gravity. During

impact, FN(t) = mn + mg*(t) is the normal component of the reaction force acting

on the drop. The constants used here, cl = 2, c3 = 1.4, c2 = 12.5 for 20 cS oil

and c2 = 7.5 for 50 cS oil, were deduced in MB1 by matching with experimental

measurements of the normal and tangential coefficient of restitution. To consider

1-dimensional horizontal drop motion, we write h = h(x, t) as the total height of the

standing waves in the bath frame of reference. h(x, t) can be expressed as the sum of
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contributions from all previous impacts:

N

h(x, t) = 1 ho(x, x,, t, t,,) . (5.3)
n=1

The contribution ho(x, x,., t, ta), resulting from a single drop impact at (x, t) =

(x, t), can be approximated, in the long-time limit, by a standing wave decay-
ing exponentially in time with a spatial profile prescribed by a zeroth order Bessel
function of the first kind, Jo(x):

2- kF.r0  rokS.Lp cos(ift)
h0(x, x,, t t) x Jo (kF(x - xn '- x

r 3kr2+ 1o e-
F 0t,, - tf

exp (r/rF - 1) Td Ij FN(t') sin (rft') dt' . (5.4)

Here Bo = pgro/a is the Bond number, and Td is the characteristic decay time of the

unforced waves, which depends on the fluid viscosity and the critical wavenumber.
piff is a phenomenological viscosity required to ensure that the decay rate of the

waves matches that in a fully analytical model (MB2, Appendix A.1). The integral

of the reaction force, FN(t) is carried out over the duration of contact.

In order to increase computational speed, the number of previous impacts stored

is kept to a manageable size by discarding those whose standing wave amplitude has

decayed sufficiently (below 0.1% of its initial value). Since the contact takes place
over a finite length of time, x. and t,, are taken as the weighted averages of x and
t over the contact time te, defined as the interval during which the vertical reaction
force FN(t) on the drop is positive:

An FN(e')x(e')dt' n FN(e)e'de 55
" e FN(') dt' 'ft.5 FNedt

The horizontal dynamics is governed by

ah(x, t)mi + D(t)= - - FN(t) , (5.6)
ax

where

D(t) = 0.17 FN(t) + rroia 0+ Vaf) (5.7)

is the total instantaneous drag coefficient. The subscript a denotes air. The first
term represents the momentum drag induced during impact, the second term the
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aerodynamic drag induced during flight. The term on the right hand side of Eq.
(5.6) is the propulsive wave force applied during contact, which is well-approximated
by the tangential component of the total reaction force.
The system of equations (5.2)-(5.6) was solved numerically, with time step 0.05 "r/a

during contact, the duration of which was typically at least 4f/rgOl. We followed
a procedure akin to that adopted to obtain the experimental data reported in Fig.

5-3; specifically, we scan a wide range of Q (0.2 < Q < 1.2), with increments of
dQ = 0.005. For each Q value, we start at a value of P close to the Faraday thresh-
old, specifically r = o.99rF, then decrease P in small increments until reaching some
pre-defined lower limit. We shall refer to one such sweep of r as a run. The bath is

taken to be initially quiescent, h(x, 0) = 0. We performed several runs, starting each
with different initial conditions on the drop position z(0) and speed i(0), so as to
increase the likelihood of discovering all the possible bouncing modes in case of the

coexistence of multiple modes. Usually, this meant setting z(0) = 0 and varying i(0)

between -0.3 and 0.3.
For relatively large drops close to the Faraday threshold, as in our experiments,

both walking and bouncing states may arise at identical system parameters. To ensure

resolution of the walking solution, the initial horizontal speed was set to a value

higher than the equilibrium speed. Then, for each run, we slowly decreased r in steps
dP = o.OO1PF, at each step waiting for the walking speed to converge, specifically

until the difference between the average walking speed at successive impacts drops
below 0.1% :

0.999 < < 1.001, (5.8)

where V and ot are the average horizontal drop speed up to the time of the penultimate

and last impacts, respectively.
At each P value, we recorded the period of vertical motion and number of contacts

per period, which yielded the (m, n) mode number. We also recorded the average
contact time 'c, the total contact time per period of vertical motion divided by the
number of contacts n. This allowed us to differentiate between different energy levels,
as the high energy modes had Tc < 5VprO1 (typically, Pc _ 3.5Vpr7/a), while
the low energy modes had Tc > 5V/r1/o (typically, ic - 8Vpr1/o). When the
forcing is decreased below a critical value rw, the walking speed drops to 0. The
equations of motion can then be simplified somewhat, as (5.6) is identically 0, and

JO (kc(x - x,)) = 1 in (5.4). Asimilation of the data obtained by this procedure

yielded our theoretical regime diagrams (Fig. 5-3).
The solid coloured regions of Fig. 5-3(a)-5-3(c) indicate the theoretically pre-

141



dicted bouncing modes. The red line indicates the predicted walking threshold. For

the 20 cS-80 Hz combination (Fig. 5-3(a)) several modes are found to exist where

predicted, including the observed (2,1), (2,2), (4,4), (4,2), and chaotic modes. The

experimental walking threshold for large and small vibration numbers (P < 0.7 and

Q > 0.9) coincide with the theoretical predictions; however, for drops of intermediate

size, the agreement is less convincing. The (4,3) bouncing mode is experimentally

observed for smaller drop sizes than predicted, and the experimental (2,1)1 bounc-

ing region extends further into the theoretical (4,3), (2, 1)2 and chaotic regions than

predicted. The model does capture the observed (2, 1)1-branch cutting across several

other regions near r s 3 - 4 and 9 < 0.6.

For the 50 cS-50 Hz combination (Fig. 5-3(b)), the observed and predicted (2, 1)1

and (2,1)2 modes coincide convincingly, and the theoretical and experimental walk-

ing threshold also match. Furthermore, chaotic bouncers were observed inside the

theoretically predicted chaotic region. The (4,3) walking regime was not observed

experimentally, but might have been, had larger drops been examined.

For the 20 cS-70 Hz regime diagram (Fig. 5-3(c)), the observed chaotic region

for large drops (Q t 1) coincides with that predicted. For smaller drops (1 1

0.4 - 0.6), the observed (4,3) mode is offset relative to that predicted, as was the case

in the experiments at 20 cS-80 Hz (Fig. 5-3(a)). The (2,2) bouncing mode is also

observed at slightly lower vibration numbers than predicted. The observed high and

low energy (2,1) modes do not coincide with the theory within the walking region,
but the walking threshold is generally well-predicted. The mixed mode region found

experimentally corresponds closely to the theoretically predicted region of coexistence

of the (2, 1)' and (2, 1)2 modes. We note that a true mixed mode, characterised by a

stable periodic shift between the low and high energy (2,1) modes, has not yet been

observed theoretically.

Finally we note that, in our experiments the threshold between bouncing states

generally depends on whether it was approached from above or below. Specifically, by

increasing and decreasing r across a regime boundary, the r threshold between states

has a characteristic uncertainty of AP ; 0.1. This hysteresis, which may reflect the

existence of prolonged transient behaviour, provides some rationale for the relatively

small discrepancy between theory and experiment. We note that significantly less

hysteresis was apparent in the simulations, which could be simply extended beyond

the transient.
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5.5 Conclusion

5.1 We have conducted a combined experimental and theoretical study of drops bounc-

ing on a vibrating fluid bath, and focused on the parameter regime of interest to those

studying hydrodynamic quantum analogs. By comparing our experimental results

with the theory developed in MB1 and MB2, we have extended the current knowl-

edge of the bouncing droplet system. We have enumerated the myriad styles in which

drops can bounce and walk, and presented, in Fig. 5-3, the most detailed experimen-

tal and theoretical regime diagrams to date. We have highlighted a mixed state, in

which the walking drop shifts between two distinct modes, a state that may serve

as an analog of a superposed state in quantum mechanics. Particular interest has

been given to elucidating the rich and varied dynamics within the walking regime, an

understanding of which will assist in rationalising the quantum mechanical behaviour

of walking drops.
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Chapter 6

Concluding Remarks

For a drop walking on a vibrating bath, three timescales are important. The short-

est of them is the bouncing timescale, given by the interval between the successive

drop impacts, typically the Faraday period. The intermediate walking timescale is

prescribed by the drop's horizontal motion, given by the time required to walk one

Faraday wavelength. The longest statistical timescale emerges when the drop is con-

fined to a finite region of space, and is given by the typical time required for a coherent

statistical behaviour to emerge. To discern the spatial profile of the probability distri-

bution function of the drop, the drop's position needs to be recorded over time longer

than the statistical timescale. In this thesis, we have developed models to describe

the drop's motion on the first two of these three timescales, with a simple model for

the statistical timescale treated in Appendix E.

In Chapters 2 and 3 we developed a model that describes the drop motion on the

bouncing timescale. In the parameter regime of interest to hydrodynamic quantum

analogues, the Weber number varies from 0.01 to 10, necessitating a model that

captures the dynamics in both the high and low We regimes. This was achieved with

the logarithmic spring model, which captures the increasing ability of the drop and

bath for increasingly small We to store the initial kinetic energy of the drop in the

surface energy associated with the deformed surface. At the same time, the model

captures the increased energy loss to dissipation and outgoing waves with increasingly

large We, and the heavier role of fluid inertia.

We first demonstrated the accuracy of the model by comparison with the existing

numerical results and experimental data describing drop impact on rigid substrates.

We observed a satisfactory match and were able to derive analytical results for the

contact time and coefficient of restitution. The model was derived for a substrate

of arbitrary radius of curvature, and demonstrated that for small Weber numbers,
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the effects of inertia and substrate curvature are captured with a single dimensionless

parameter, which we called the rescaled Weber number. Experimental data only exists

for impacts on flat boundaries. It would thus be interesting to study experimentally

the effects of substrate curvature in order to test the model predictions, specifically

to observe what happens when the substrate curvature approaches that of the drop.

In Chapter 3, we extended the model to consider drop impact on a fluid bath,

assumed to be initially quiescent. We validated the model by rationalizing existing

and new regime diagrams that characterize the behaviour of drops bouncing on a

vibrating bath. Using the dimensionless vibration number, we were able to collapse

our experimental data for different frequencies. We demonstrated that the minima

of the bouncing and period-doubling threshold curves correspond to drops for which

the resonant frequency of the drop-bath system matches the driving frequency. We

showed that the bouncing threshold, the minimum driving acceleration required to

prevent drop coalescence, can be accurately predicted using the model without any

detailed knowledge of the intervening air layer dynamics. Furthermore, we highlighted

the existence and possible overlap of two energy levels of the bouncing modes (1,1)

and (2,1). The threshold between the (1,1)1 and (1,1)2 modes sets the lower branch

of the bouncing threshold curve, while the (2,1)' - (2,1)2 threshold causes an abrupt

reversal in the slope of the walking threshold curve (Fig. 4-11).

In Chapter 4, we developed a quantitative model of the walking drops by sup-

plementing the model of the bouncing dynamics with a theoretical description of the

evolution of the standing waves on the bath surface. The wave formula derived, ob-

tained via a long-time analysis of the Hankel-transformed fluid equations, was shown

to be sufficiently accurate even for times as short as one Faraday period after impact,

thanks to the fortuitous combination of the fluid viscosity and driving frequency in

the parameter range of interest. A heuristic formula for the tangential drag on the

drop during impact was used to complete the physical picture. In the process, we

corrected an error in the literature, the misattribution of the origins of this drag to

shear in the intervening air layer. A more comprehensive experimental study of the

tangential force balance during an oblique drop impact would be of benefit in the fu-

ture, along with further theoretical developments to describe a wider range of system

parameters.

Using our model, we successfully rationalized the extent of the walking region

and the dependence of the walking speed on the system parameters. We also gained

an intuition into why walking occurs only for a small window of driving frequencies:

this is due to the relative locations of the regions of stability of the two (2, 1) modes
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and the Faraday threshold. By integrating over the vertical dynamics, we obtained

the trajectory equation describing the drop's horizontal movement on the walking

timescale. This trajectory equation represents an important contribution to the first

rational theory for a pilot-wave system and has already proven useful in more complex

contexts such as walkers on a rotating bath [88, 87].

In Chapter 5 we further investigated the walking region, using new combinations

of driving frequency and oil viscosity We discovered new walking states, the most

interesting one being the mixed state where the drop switches periodically between

the (2, 1)1 and the (2, 1)2 bouncing modes. This state may serve as an analogue of a

superposed state in quantum mechanics. The experimental results were compared to

the theory developed in the previous chapter and further validated our model.

We believe that the work presented in this thesis will serve as a useful reference for

future theoretical, numerical and experimental investigation of this walking droplet

system. In particular, we hope that the logarithmic spring model and the trajec-

tory equation derived herein will enable more sophisticated numerical modeling of

the system [75] and guide the experimental search for new hydrodynamic quantum

analogues.
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Appendix A

Silicone oil properties

The dependence the density and surface tension on viscosity

following fit functions:

can be captured by the
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Figure A-1: The surface tension (a) and density (b) of silicone oil as a function of
the viscosity v. Squares indicate the values for the standard set of industrial oils with
0.65cS< v < 1000cS, while the lines indicate the fitted curves (A.1).
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v [cS] p [kg/n 3] o [mN/m] V99/v38 [4pt]
0.65 761 15.9 0.31
1.0 818 17.4 0.37
1.5 853 18.0 0.46
2.0 873 18.7 0.48
3.0 898 19.2 0.51
5.0 918 19.7 0.54
10 935 20.1 0.56
20 950 20.6 0.59
50 960 20.8 0.59
100 966 20.9 0.60
200 968 21.0 0.60
350 970 21.1 0.60
500 971 21.1 0.60
1000 971 21.2 0.61

Table A.1: The physical properties of the standard set of industrial silicone oils (poly-

dimethylsiloxanes) at T = 25*C. The density p, surface tension a and the viscosity-

temperature coefficient v(990)/v(380 ) are all monotonically increasing functions of

the viscosity.
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Appendix B

Derivation of the Logarithmic

Spring Equation

We consider the regime We < 1 and build a quasi-static model similar to that

developed for drop impact on a rigid substrate [77]. The actual instantaneous shape

of the drop and the bath are approximated by relatively simple shapes characterized

by a small number of variables. The family of shapes we choose is one consisting of

sessile shapes of liquid drops resting on a liquid bath (now not necessarily made of the

same liquid as the drop). The reason for this choice is that in the We < 1 regime,

when the overall rebound dynamics is slow relative to the dynamics of the typical

surface waves created, one expects the surface shapes to equilibrate to some quasi-

static form [1]. If the drop has surface tension 0' and density PD, and the bath ar and

pB, the sessile shape family has dimensionality 3 by Buckingham's theorem; it can be

parametrized by two Bond numbers A = BoD = pDgR/aD, C = BOB = pBgR/OB

and the parameter B = 0DBOD/B. Although in our system we have o = aB and

P = PB, initially we keep these variables separate in order to describe the deformation

of the drop and bath independently. Parameter A prescribes the magnitude of the

drop's deformation, B the vertical bath deformation and C the horizontal extent

of bath deformation. Minimizing the total potential energy of the drop and bath

allows one to obtain the sessile profile of the drop-bath system and the corresponding

values of the total surface and gravitational potential energy. Keeping A, B and C

independent for the time being, while setting aD = aB = a and PD = PB = p for the
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sake of simplicity, we obtain

S.X.ToT 2 A2 n 6 -1) +2B2 I 6 4
iraRg 9 (A+B)C 2}9 A+B 3}

P-TOT A In 6 -y+1 - B (1. 6 ) + A
ircrRgBo 9 ((A+B)C C A+B 6 9C

Here -y = 0.577216 ... is the Euler-Mascheroni constant, arising via a small-argument

approximation of the Bessel function Ko(x). When the fluid viscosity is sufficiently

low (Oh < 1), the flow inside the drop and bath can be approximated by a potential

flow. Note that in our experiments, 0.1 < Oh < 1. Expressing the drop deformation

as a sum of spherical harmonic modes, one can then evaluate the kinetic energy

associated with a continuous change of drop shape within the sessile shape family

(i.e. when A = A(t)). The kinetic energy of the bath, moving as a result of time-

dependent parameters B and C, can be similarly obtained using the Hankel transform

of the bath surface deformation. The total kinetic energy of the system is then given

by

KX.TOT 7rA 2

IrpR C3/ 2 + -CKOb 2 + 2,2
9 3

(B.2)

where A (n6 ) _Y B 6 5) 0 (B3)
3= ( A+ B)C 3 A- +(BIn

is the dimensionless height of the drop's center of mass (Z = z/Ro) and CKO

2 /12 - 17/27 ; 0.193. The coordinates are chosen such that Z = 0 when the drop

is spherical and the bath flat (A = B = 0, corresponding to the initiation of impact).

The viscous dissipation inside the drop and bath can also be calculated using the

potential flow approximation, provided the condition Oh < 1 is satisfied. Doing so

yields

VTT 21rA 2

7r/,A$ C1/2
+ -CDob2

9

where CDo = 2/4 - 5/12 x 2.051. For a more detailed derivation of equations

(B.3-B.4), see the previous chapter. Using expressions (B.1)-(B.4), the equations of
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motion can be derived using the Euler-Langrange equation with dissipation [see 122]:

d r2 + 1 D9 TOT 8[ - . x- (B.5)dt OX 2 9X OX 'B5

where the Lagrangian £= IC.6.T - S.EqyOT - P.E6TOT. It should be stressed that

the expressions (B.1)-(B.4) are only leading order approximations valid in the limit

of small deformations (i.e. when A, B, C < 1), which arises for impacts at small We.

In order to avoid dealing with a system of 3 differential equations with 3 variables,
we need to further simplify the model. Since the drop and bath consist of the same

liquid, we expect their deformation to be similar in magnitude (i.e. A(t) % B(t)),
which can be verified either experimentally or by solving the full 3 x 3 system. There-

fore, we set A = B. In the moderate Weber number regime (0.01 < We < 1),
deformation of the bath occurs predominantly in the region near the drop. The hor-

izontal lengthscale of significant bath deformation, though increasing in time, then

remains comparable to the drop radius RO throughout the impact, suggesting that

we approximate C by a constant. Doing so, we are left with a single independent

variable A(t). Thus (B.1)-(B.4) simplify to

S.6 ~TOT 2 l3lc 11 'P.&.TOT 4 2 A 2

SruRO - A 2 211) -PC--T-O - + -- (B.6)
7r-RO2 9 A 6 7raRO28o '3 5 C '

KC.E.TT 2 2 2 A2 VTOT 8 rA 2  16  *2~2-Z + -C,,,A2 + -CooA (B. 7)rpR5 3 9 9C3/ 2  xpR8 9C1/ 2 + 9

with
A 35

Z=-- 21n--InC-2y-- . (B.8)
3 A 6

We now express (B.6) and (B.7) in terms of Z instead of A, employing the fact that

for small A, (B.8) can be rewritten as

A = - (13.9)
21n (-1/Z) +

Assuming IZI < 1 and keeping only the leading order contributions in each expres-

sion, we obtain

3
-E*TOT ' __fV P.&.TOT _: 4_ B.0

lrtT~ n-(-/IZI) Zro (B.10)

FC.E.TOT 2 (2CKO + rC-3/ 2)2 2  VTOT (16Co+8rC'/ 2 ) 22
wpR8 3 n2 *(a/IZI) 7r In2 (a/IZI) (B. 11)
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Switching to the dimensionless time r = t/(pRM/a)1/ 2 and using (B.5), we derive the
following equation of motion, keeping the leading order terms only:

d2Z 3CKo + 1.5rC-3 /2 6rC'/ 2 + 12CDO dZ 3/2-- 1 + + Oh -- +Z = -BO.dT[ In2 (a/IZI) In2 (a/IZI) dr In (a/Z[)
(B.12)

Equation (B.12) suggests that the impact of a drop on a quiescent bath can be
approximated by a "logarithmic spring" model of the form

d2Z c3  c2(Oh) dZ 3/2-- 1 -+ Z = -o , (B.13)
dr2 n2 (C,/|Z ) In2 (CI/lZI) d7 'n(ci/IZ)

where ci, c2 and c3 are constants to be determined. Replacing Bo in (B.13) by the

effective Bond number Bo*(r) = Bo - (1 + r sin Qr), we obtain the logarithmic spring
model for a drop bouncing on a vibrating bath:

d2Z c __ c2 (i) dZ 3/2
1+ + Oh -- + Z = -Bo*(r) , (B.14)

dr 2  + Q2(Z) Q(Z)dr Q(Z)

where Q(Z) = ln(ci/IZI).
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Appendix C

Derivation of the equations for the

bath interface shape

We here derive the equations governing the evolution of the radially symmetric distur-

bance on a liquid bath caused by the rebound of a liquid drop. Besides the assumption

of radial symmetry, we approximate the excess pressure distribution (the difference

between the local pressure and the atmospheric pressure) over the contact area be-

tween the drop and the bath (i.e. the area where the intervening air layer thickness

is much smaller than the drop radius and the two liquid-air surfaces have almost the

same profile) by a constant: p(r, t) = p(t). Nondimensionalizing using the drop radius

RO and the characteristic drop oscillation frequency WD = (a/p )1/ 2, we have

h = h'/Ro,r = r'/IRo, r = twD, Z = z/R, k = k'RO , (C.1)

where h = h(r, -) is the bath surface height, r the distance from the axis of sym-

metry, r the dimensionless time, Z the drop vertical height and k the dimensionless

wavenumber. Then the extra surface potential energy is given by

AS.E. = aR,2j 2irr [ 1+ h 2 (r) - ] dr - rcRx j rh' (r)dr , (C.2)

provided that h'(r) < 1, where a is the liquid surface tension. Similarly, the extra

gravitational energy is given by

AP.E. = pgR j 2irr-2h2(r)dr = nrpgR j rh2 (r)dr , (C.3)
f/* 2
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where p is the liquid density and g the gravitational acceleration. Finally, the presence

of the excess pressure above the contact area gives rise to a pressure potential energy

AP..P = p(r)Rg o 27rrh(r)dr = 21r*fp(r) j rh(r)dr , (C.4)

where w is the dimensionless radius of the contact area. In order to proceed further, we

need to convert the equations derived so far into ones involving the Hankel transform

of the surface height. The Hankel transform H(k) of the surface height h(r) is defined

as

H(k) = j h(r)JO(kr)rdr so that h(r) = j H(k)JO(kr)kdk , (C.5)

where JO(x) is the Bessel function of the first kind of order 0. The Plancherl theorem

states that for two functions f(r), g(r) and their Hankel transforms F(k), G(k), the

following relationship holds:

f f (r)g(r)rdr = f F(k)G(k)kdk . (C.6)

Using the Plancherel theorem, we can easily convert the equation (C.3) to

APS. = f9Rj H 2(k)kdk . (C.7)

Substituting for h'(r) = - f k 2 Ji(kr)H(k)dk into (C.2) and using the closure equa-

tion fo' xJi(ux)J(vx)dx = 8(u - v)/u, where 6(x) is the Dirac delta function, we

obtain

ASX. = 7raig j H 2(k)k 3 dk . (C.8)

Finally, (C.4) can be rewritten as

AP..p = 2lrR3p(r) j H(k)k f Jo(kr)rdrdk = 2irR}p(r) j H(k)J1(kw)wdk

(C.9)

C.0.1 Small viscosity

When the viscosity of the liquid is small, we can approximate the flow inside the

bath by potential flow. The general axisymmetric solution to V 2 < 4= 0 in cylindrical
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coordinates, which decays as r -+ oo, can be written as

P(r, z, t) = p(k, r)Jo(kr)ek'kdk
0o

(C10)

The linearized kinematic boundary condition at the surface Ro ah t) = uZ(x, 0, t) =

RA 12"'=o implies

H(k, t)Jo(kx)kdk =
00

p(k, t)Jo(kx)k dk ,
0o

(C.11)

and therefore y(k, t) = RIk(k, t)/k. Equation (C.10) can therefore be written

4(r, z, r) = R4Jo 00H(k, r)Jo(kx)e kdk

The kinetic energy of the bath is given by

=- ~jVI-VP V=-

=1 J M -dS =

V- (4'V4) dV =

4-427rxdx = 7rR
o~z f 2 (k, t)dk

where we have used the Plancherel theorem again and approximated the direction

of the surface normal vector as vertical. It can similarly be shown that the viscous

dissipation in the bath is given by

V = 87rpR H 2 (k, t)k2dk .

Then the equations of motion can be derived via the Euler-Lagrange equation with

dissipation [41, 122, p.271]

d 92
dt am,

2 D
~2 ft

(C.15)

where 2 is the Lagrangian, defined as

Z = K.C. - AS.S. - AR.E. - P.E.P .
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Substituting for 2 from (C.16) into (C.15), and using the expressions (C.7)-(C.9),(C.13)-

(C.14) yields

H+2kH+ [k 3 +ko]H+ PWJ(kw)=0 , (C.17)
pR3 pR3 R

where Bo = pgRS/c is the Bond number. Going back to the dimensionless time

r = twD, we obtain

Ropw
Hr + 20h- k2Hr + [k 3 + kBo] H + J1(kw) =0 , (C.18)

with Oh = p/(apRo)1/2 being the Ohnesorge number. The total reaction force FR

acting on the bath, given by FR = Rg f7 21rrpdr = irw 2Rip, is the same force acting

on the drop, so that mi = FR - mg. Rewriting the last expression in terms of the

dimensionless coordinates, we get Z,. = ,jow 2p/c - Bo = F - Bo, and so (C.18)

can be rewritten as

HTr+ 20h. k2H7 + [k + kBo] H + F w -0 , with F = Z,,+ Bo . (C.19)

C.0.2 Appreciable viscosity

For appreciable viscosity, the fluid motion diverges significantly from potential flow

near the surface and the method described above can no longer be applied. However,

considerable accuracy can be maintained without sacrificing the simplicity of (C.19)

by replacing Oh by a phenomenological or "effective" Ohnesorge number Ohe, so that

the rates of decay predicted by this pseudo-linear model and the full analytic model

coincide. Alternatively, one can try to match the experimentally observed decay

rates, as was done by Eddi et al. [321. To determine the value of Oh, analytically, we

follow Prosperetti[93] and match the principal decay rates of the surface waves with

wavelength k by replacing equation (C.19) with

4 J1 (kw)
A (k, Oh, Bo) Her + 20h- D (k, Oh,6B) k2H, + [k' + kBo] H + FJ = 03 w

(C.20)

where the coefficients A, D are chosen so that the roots of the equation

Oh~ -ka/
Ax 2 + 2aDx + 1 = 0, where a = (BO + k2 )1/ 2 (C.21)
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are the two roots with the largest real part of the polynomial equation

[(X + 2a)2 + 1]2 = 16a3(x + a) . (C.22)

Then

Ohe = Oh - D . (C.23)

It can be shown that D -+ 2 as p -+ 0, while D -+ 1 as t -+ oo [71]. On the other

hand, A -+ 1 as M -+ 0 and remains close to 1 for Oh - k/ 2 < 0.3. Prom now on we

will thus approximate A by 1 and write Oh, instead of Oh.

When the bath is shaken vertically with frequency f and peak acceleration 1g,
we need only replace Bo by an effective Bond number Bo* which is now a function of

time:

Bo*(r) = Bo (1 + F sin fr) , (C.24)

and represents the sum of gravity and fictitious forces in the non-inertial frame of

reference fixed with the oscillating bath. Here Q = W/WD = 27rf/wD is the vibration

number. Thus we arrive at the equation

2H 4 J, (wk)
Hr, + 20hek2 H+ [k3 + kBo*(r)] H = -F w (C.25)

3 w

We are interested in the behaviour of the model for k near kF, the Faraday wave-

length, which is defined by the dimensionless dispersion relation [see 69, p. 1121]

1
k +3o - 1k -2 (0.26)

4

particularly in the regime Q < 1 where we observe walking. Since Bo -kF is positive,
2/3we have kF < 23

C.O.3 Point force approximation

We seek to show that for the range of parameters explored in our experiments, wkF

is always small, so we can approximate the impact forcing by a point forcing. During

rebound, the extra pressure in the intervening air layer beneath the contact area can

be bounded below by half the capillary pressure /Ro [63]. The drop's change of

momentum during impact is at most AP ! ,rpJ42v, where v is the drop speed at

impact. The rebound time is roughly tc * 4 (PRj/o')1 2 (see MBI, Fig. 8); thus, the

typical force on the drop during rebound is FR - AP/tc - (pRo)/2 2v. Dividing
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the typical reaction force by the lower bound on the pressure yields an upper bound

on the typical contact area: iRjw 2  2R We"/2, where We = pRov 2/- is the Weber

number. Hence W2 < 2We 1/2/r. For droplets bouncing periodically with the Faraday

period (twice the driving period) we have Z (T + 9) = Z(r). The acceleration of the

drop in flight is Bo so the maximum dimensionless relative velocity is We,,/ = o .
Therefore, wkF < [o30, /2 (/q)2/3 = (Bo)1/2 (n)1/6

Since J,(x) = - + O(x), for '2 < 1 we can approximate J,(x) by x.

Thus we can write J, (wk)/w = k/2, provided w2kk/8 5 2Bo ( 1/3 < 1. Restricting

ourselves to the region Q < 1, it follows that by using the point force approximation we

commit a relative error of at most 213o in estimating the forcing for each wavenumber.

Typically, RO ; 0.3 - 0.4 mm (5o = 0.04 - 0.08) leading to a relative error of at most

10 - 15%. We note that this is likely an overestimate of the relative error, as the

actual contact area and relative velocity of impact will both be significantly smaller

than the upper bounds used.

C.0.4 Analysis of the standing waves for small viscosity

We shall henceforth use the point force approximation, bearing in mind that it might

lead to an overestimate of the bath deformation for larger drops (Ro > 0.4 mm).

Thus (C.26) simplifies to

Hr + 20hek2Hr + H (k 3 + kBo*(r)) 2 kF(r). (C.27)

We shall write T(k) = Oh,(k) -k2 for simplicity and consider presently the case of no

forcing (right-hand side of (C.27) equals zero), assuming Oh, < 1:

Hrr + 2THr + H (k3 + kBo*Qr)) = 0 . (C.28)

Making the substitution H(r) = exp(-Tr)7i(r), we can convert (C.28) into the

Mathieu equation and by applying Floquet's theorem we obtain the form of general

solution of (C.28):

H(r) = cHi(r) + c2H 2(r) = cl exp (/3r) fI(r) + C2 exp [(6 - 2T)r] f (7r/P - -r)
(C.29)

where ft(r) is a periodic function with period 4r/Q. Below the Faraday threshold,
we may assume without loss of generality that # < T < 0, so that H2(r) decays faster

than H(r). Thus, for large times, H1(r) will dominate the behaviour of H(r). Now

160



we return to (C.27) and consider the Green's function G(r, ro) for the forcing, defined
as the solution of

G,.r + 2TG, + G (k3 + kBo (1 + F sin QT)) = 6(T - ro) (C.30)

We can write G(r, ro) as a linear combination of the two solutions of the homogeneous
problem (C.28). Equation (C.30) implies that G(ro, ro) = 0 and G,(ro+, ro) = 1, from

which we derive

Hi(r)H2(r) - H2(r)H(ro)
G(r, To) = - .(TO)H2 ( (0.31)

The denominator in (C.31) is the Wronskian W(H 2, HI)(ro), which satisfies W, =

-TW, implying W(ro) = exp (-Tro) W(0). Using this identity and the forms of Hi
and H2, we can express (C.31) as

e-( )rt(r))f (fj - ro) - e(- 2 T)(r-r0)f(,r) (M - T)
G(r, ro) = 7 (0)f (7) + H(0)Hf. (r) - 2H(0)R (r) (f3 - T) (0.32)

By neglecting the H2 component of G(T, rO) for large times, when it has decayed

sufficiently relative to H1 , we can approximate the solution to (C.27) as follows:

H(,r) ;z: - kF(r')G1(r')d-r' e-#'f(,r),

exp(3u)f (j - u)
where Gi(u), = - ) + () +) . (C.33)

R(0)Hf ( 7) + I(O)fr, (m) + 2 (T - )R(O)H (t

In order to proceed, we need to determine the periodic function ft(r). We decom-
pose H(r) into its Fourier components, starting with the sub-harmonic component
with angular frequency Q/2:

00

H(r) = e - . (0.34)

Substituting this form into (C.28) yields

Q2 k 2ko- 0+ 2T,+8 i (#On + Tn) - kBor H H2-n+ = .

(C.35)
This recurrence relation along with the reality condition H. = H*. and smoothness

of H(t), limin,1 ,0 jnHnj = 0, allows one to obtain the complete Fourier series of H(r),
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involving two multiplicative constants (one for the odd terms, the other for the even

terms), which are determined from the initial conditions. The growth rate # depends

on r, corresponding to the amplitude of the bath oscillation; for r < rF, 0 < 0

and H(r) decays exponentially in time, while for r > [F, P > 0 and H(r) grows

exponentially. Pp denotes the Faraday threshold, and we will be interested in the

behaviour of H(r) for r near F. Since 3 = 0 for P = rP, # must be small for r near

r, . Finally, the value of the Faraday threshold depends strongly on the wavenumber

k. We are interested in the wavenumbers k near kc, the critical wavenumber where

PF(k) achieves a global minimum. Assuming that for small damping (Oh, < 1) the

function H(r) is nearly sinusoidal, so that the terms JHN dominate all others, we

obtain

H, k3 + kBo - 2+ 2T+ i (#Q + T11) -kBori* = 0 . (C.36)

Writing H1 = jH 1 - e" and considering the real and imaginary parts separately, we

obtain

k3+kBo- +2T# = 1kBor sin(29) , 2+T = kBoF cos(20) . (C.37)
4 2 o

When Ohe = 0, rP = 0, and kc = kF; therefore, we expect ke ; kF when Oh, is

small. Then, we assume 1/1 < 1, write k = kF(1+ 6k) with 6k < 1, and expand in

powers of 6k to obtain

sin 2 6++ Bo + ((6k)2)+ o(p) 7 = -T+ Cos 20 . (C.38)
2 BoP 2

Assuming 0 < 1 so that 1 sin20 - 6, we can write cos 26 = 1 - 292 and substitute

for 0 from (C.38) to deduce

Bork 2(3k2 + BO) 2(k - kF )2
#r= -T+ 1 F ~ B o2k . (C.39)

Setting #= 0, solving for Pr and minimizing with respect to k yields

k an kF (1 62 2 hjkF1 12  \2 (+3 1(1f2
icc~kp(Bo. 5 B K E E B~

(C.40)
Ohe0kpF

where e = 3k2 + (C.41)
Fks +0
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so that

#2 r heki1 - (1 + 262) (k - kC)2 (.2

and
E k-kc
2 2ekF

The long-term behaviour of H(k, r) is thus given by

H(k,r) e A(k)e(k)r cos - + . (C.44)
2 2 2kF

In order to simplify the subsequent formulae, we introduce the decay time rD by

writing
1

3(k) = (F/rF - 1) ~ 3 - (k - kC)2 . (C.45)
TD

By comparison with (C.42) we have

Ohe
Ir - (Oh4Y')- 3 -, (1 + 2, 2) .(0.46)

We henceforth assume that r < 1F, so f(k) < 0. When #I1rk2 > 1, 3(k) has a sharp

maximum at kc and we can use Laplace's method:

fCO

h(r, r) = H(k, r)Jo(kr)kdk a

P cOs f (x - \ r T 0 A(k)e.-Or(kk~c) 2 cos k - kc Jo(kr)kdk a
2 (rF \rD I 0 2kF

Scos -- A(kc)exp(/F - 1)JO(kCr)k 1+ (C.47)2 exp {1/16f2k2# 1 } #r4r

Here we have used the identity fo* exp (-ax2 ) cos bxdx = exp (-b 2/4a) ~/7 . There-

fore, within a certain radius r(r) ~v~'r, the surface height can be approximated

by a standing wave with a radial profile prescribed by a Bessel function. We as-

sume that the drop is within this radius as measured from all the previous impacts
for which the corresponding standing wave has not yet decayed sufficiently to be
negligible. This condition sets an upper bound on the allowable horizontal speed

IdX/dI 2 < 2#1 (1 - r1/rF) TD. In order to approximate the wave amplitude A(kc),
we use ft(r) - cos (Q-r/2) in (C.33) to obtain

2 lu
G1(u) g -- sin 2. (C.48)
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Substitution of (C.48) into (C.33) and (C.47) yields

4k nr QT. J eXP{(/IF 1) /rTD}
h(r, T) CO 2o F(u)sin -du]epI(lr 2 Jo (kcr).

3 Q 2 [f 2 exp {1/16e2kF(1 r}9) (0.49)

When 16E2k2 1 T > 1, exp {1/16E2kJfl1r} m 1 and by using (C.46) we can approxi-

mate (C.49) as

h(r,r) sA cos 2 exp {(r/rF - 1) r/TD} r- 2 J(kcr) , (C.50)
2

4V ksck F Oh 2 Ud
where A = 4 k + [J F(u) sin -u .

3 3k2+ Bo [12u

The approximation (C.50) is valid when Me 2/lTk2 >> 1 and #irk2 > 1. We are

interested in the bath distortion only insofar as it affects the drop dynamics; therefore,

the earliest time after the initial disturbance at which we need use the approximation

is on the next impact, a Faraday period later (assuming the drop is in the (2, 1)2

mode). We thus require that 16E2 1rFk2 > 1 and 91rFk > 1. Employing the lower

bound kF > (n/2)2 / 3 following from the definition of kF (0.26), together with (C.46),

the, two conditions are met provided

4 < 9
0.014 P (27r /)- 4  ( l /2/3 ; 2.4 (C.51)

For v = 20 cS and 50 Hz < f 5 100 Hz, we obtain values between 0.09 and 0.12, while

for v = 50 cS and 40 Hz < f < 80 Hz, we obtain values between 0.22 and 0.28. For

lower viscosities, the lower bound is violated, while for higher viscosities, the upper

bound is violated. In those cases, the approximation (C.50) becomes accurate only

after multiple Faraday periods have elapsed since impact and higher order terms in

the Laplace approximation (C.47) need to be included to achieve sufficient accuracy

for all drop impacts. Nevertheless, for our purposes, the leading-order approximation

(C.50) will suffice.

C.0.5 Numerical simulation

The approximations to the critical wavenumber kc, Faraday threshold rF and the

decay time rD, given by the formulae (C.40) (C.41) and (C.46), respectively, are

only valid in the limit e < 1, where e = Ohjkp/(3k + Bo). As the values of these

parameters play a crucial role in the evolution of the standing waves near the Faraday
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Figure C-i: Comparison between the full numerical model and the long-term approx-
imation (C.52). The bath surface is forced at time t = tim and then evolved freely,

and the amplitude of the standing wave A(t) = h(0, t) is recorded, as computed by
a full numerical scheme solving (C.27) (Aam and as given by (0.52) (Ath). The
average ratio Anum lAth over TF t i 6T0F ( A) and over TF & t 10TF (v ) is shown
as a function of t mp for different combinations of oil viscosity and driving frequency:

(a) v = 10 eS and f = 100 Hz, (b) v = 20 eS and f = 80 Hz, (c) v 20 cS and

f = 50 cS and (d) v = 100 cS and f = 40 Hz. The ratio tends to 1 for large times,
except near tiaiF when Gi(trmp) m 0 and other wavenumbers contribute to the
overall amplitude beside the region near kF-
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vF kc/kF FrD flk1rF
[cSI [Hz] e theor. num. theor. num. theor. num. theor. num.

10 100 0.097 3.324 3.326 0.991 0.988 0.804 0.816 44.35 44.69
10 120 0.102 4.526 4.530 0.990 0.987 0.868 0.883 43.07 43.41
20 60 0.156 2.562 2.566 0.976 0.971 1.126 1.173 25.60 26.26
20 80 0.170 4.220 4.228 0.971 0.965 1.303 1.369 25.32 25.99
20 90 0.176 5.159 5.170 0.969 0.962 1.373 1.447 25.08 25.76
50 40 0.311 2.707 2.731 0.903 0.904 1.664 1.967 12.59 14.38
50 50 0.335 4.028 4.073 0.888 0.888 1.893 2.311 13.12 15.03
50 60 0.353 5.514 5.586 0.875 0.874 2.056 2.577 13.45 15.47
100 40 0.563 4.334 4.646 0.683 0.772 1.721 3.295 9.51 13.47
100 50 0.597 6.251 6.789 0.644 0.746 1.775 3.779 10.29 14.65

Table C.1: Comparison of some of the critical parameters describing the standing
wave evolution, as calculated numerically and given by the theoretical approximations
(C.40), (C.46), for the combinations of oil viscosity v and driving frequency f at
which walking occurs. These are the Faraday threshold rF = 'yP/g, the ratio of
the most unstable wavenumber kc to the Faraday wavenumber kF, the ratio of the
Faraday period iF to the decay time rD and the parameter 81 k'.rF, which describes
the increase of the decay rate of H(k) as k moves away from kc. The parameter E,
defined in (C.41), was assumed small in our theoretical analysis. We observe a good
match for small v, which gradually worsens as v (and thus also e) increases. The
error is of order c2 .

threshold, in order to achieve a better match with experiments for larger values of e

(e.g. when v = 50 cS), we calculate them numerically. Starting from the recurrence

relation (C.35), the conditions n = H*% and lim.,ee InHnI = 0 yield a unique

solution for r, given fl. The solution can be found by choosing arbitrary values of HN
and HNN-2 for some large odd N, then working backwards using the recurrence relation
and finally rescaling all terms in order to satisfy the reality condition fn = H*'
Choosing N > 15 usually suffices to achieve 10-digit accuracy in P. Thus, given k
and f, we can find the corresponding P. Setting # = 0 gives us PF(k), and minimizing
with respect to k yields kc and rF. In order to obtain rD, we need only calculate
r' corresponding to some small 8 and then use the relation rD = (I"/PF - 1)/,3.
Table C.1 compares the values obtained analytically and numerically.

In our analytic treatment of the standing wave evolution, we have approximated
the time-periodic part H(T) = A**,, exp (ilnhr/2) of the Hankel transform of
the surface height by its first Fourier component: H(r) H L II exp (iMnr/2) =
cos (AT + 0) (H2, = 0 for the sub-harmonic mode). When the viscosity is appreciable,
accurate representation of the time-periodicity requires inclusion of the next Fourier
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modes H±3 . Therefore, the approximation to the standing wave evolution, which will

be used in the numerical model, is given by (compare with (C.50)):

h(r, r) z 4f7kpOhe F()G1(u)d exp (J/F - 1) Jo(kc r)
3 3k , + BO rD

(C.52)

where

f(r) = 2n+1 exp {if(n + 1/2)r} , (C.53)
n= -2

and G1(u) is given by (C.33) with / = 0. The values of f2n+1 are obtained by solving

the recurrence relation (C.35) with # = 0, k = k, and subject to the conditions

Hn = H* , liminl;., InH, = 0 and 111 = 1. We illustrate the accuracy of the

approximation (C.52) in Fig. 4-6, where it is compared to a full numerical simulation

of the bath deformation. The full numerical solution was obtained by solving (C.27)

for k, = nok with k = 0.001 and 1 < n < 2000 and approximating h(r, t) ;

200 H(k,, r)Jo(kar)k,6k. We observe a good match between the full numerical

solution and the approximation (C.52) for both viscosities.
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Appendix D

Shearing in the Intervening Air

Layer

When the thickness of the air layer separating the drop and the bath decreases to

a value much smaller than the drop radius, the infinite space assumption used to

calculate the air drag acting on the drop breaks down and we describe this part

of the droplet motion as contact. However, due to the air viscosity resisting the

drainage of the intervening air layer, the two liquid-gas surfaces never join. The

film drainage problem is an interesting one and has been studied, among others, by

Hartland [60, 61, 64, 62, 63, 66, 65], Jones & Wilson [68], or more recently by Gopinath

& Koch [53]. The scenario most accesible to theoretical analysis is the limit We < 1,

i.e. slowly approaching or settling drops, when the pressure distribution in the drop

over the contact area can be assumed constant. Even then the intervening layer

thickness, as a function of the distance from the axis of symmetry, is given by a

complicated system of differential equations and has to be solved numerically; in the

case of We,~ 0(1) any fast numerical solution for the air layer profile is unlikely to

exist. At the same time, knowledge of the profile is crucial to calculating the drag

on the drop as the tangential stress in the air layer is inversely proportional to its

thickness. In general, the intervening air layer thickness is almost constant over the

"contact area", being thickest in the center and then slowly thinning with increasing

radial distance from the axis of symmetry. At the edge of the contact area the air layer

thickness sharply decreases to its minimal value before rapidly increasing outside of

the contact area [68].

We shall use the simplest possible model of the air layer, in order to obtain an

order of magnitude value for the total drag on the sphere. We will assume constant

thickness over the entire contact area and use no-slip boundary condition on each
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surface. Moreover, we assume that the horizontal drop speed is small enough that

the distortion of the drop and bath can be assumed radially symmetric at the leading

order and that the vertical speed of impact is small enough that the contact area can

be assumed horizontal. While the first assumption is generally satisfied for walking

drops, the second is violated when We > 1, as is the case for f c 60 Hz and Q ;i 1.

The significant distortion of the bath then results in a more efficient transfer of the

momentum from the drop to the bath and thus a higher total drag.

Let us assume that the drop is separated from the bath by a thin air layer of

constant thickness a over a circular contact area with radius L. When the drop is

moving vertically, the situation is radially symmetric. Morever, assuming s < L, the

lubrication approximation results in the air pressure being independent of the vertical

position inside the gap to leading order, and the air velocity being horizontal. On

the other hand, if the drop was moving horizontally with speed V, no-slip boundary

conditions for the air velocity in the gap, with u(x) = 0 at the lower boundary and

u(x) = VA. at the upper boundary, would result in the air speed increasing linearly

in the vertical direction from 0 to V. Then the total tangential drag force on the drop

would be simply

FD= J d =rL2= (D.1)

where i. is the viscosity of air. Since during the impact of a walking drop the drop

velocity is nearly vertical, we will assume that its small horizontal component V has

a negligible impact on the intervening layer drainage and thus the thickness s can be

calculated by assuming purely vertical drop motion. Once we obtain the thickness s

we calculate the drag FD from (D.1).

Therefore we now consider a vertical drop impact, use cylindrical coordinate sys-

tem such that the bath surface is at z = 0, while the lower drop boundary is at

z = s(t) for 0 5 r < L(t). From the radial symmetry of the situation and the lubrica-

tion approximation, the air velocity inside the gap is purely radial: u(x) = U7 (r, z)er.

Neglecting any circulation in either of the liquids, we impose no-slip boundary con-

ditions u,.(r, 0) = 0, u,(r, s(t)) = 0. Neglecting the air inertia, we have

+9 p92 = 0 .(D.2)

Solving (D.2) subject to the boundary conditions given above yields

Ur(r, t) = 1p(rt) Z( - s(t)) . (D.3)
2p1. cor
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Conservation of mass requires

2wr j ur(z)dz = j2r' dr' (D.4)

Substituting for ur(z) from (D.3) we obtain

i8p(r, t)
= 6par; (D.5)

Solving (D.5) subject to the normalizing condition p(L, t) = 0 we obtain

p(r, t) = 3A (r2 - L2) (D.6)

The total normal reaction force on the drop is then obtained by integrating (D.6)

over the contact area. We obtain

FR 2 3 7itIL ds/dt (D7)
2 3

A more detailed calculation, taking into account also the air flow just outside the

contact area, would yield

3 ds/dt r 31r 3+,6
F = -- r.L [ 1+ c 3E2+ E3 + f where E= /2-Ros/L . (D.8)

Once we determine the evolution of contact area size L(t), we can then calculate s(t)
by solving (D.7) or (D.8) with appropriate initial conditions and using the reaction

force FR(t) obtained from our model of vertical dynamics. There are two ways in

which one get eliminate L(t) from the differential equations above:

(A) We can use the low We approximation to the contact area, assuming that the

pressure inside the drop is roughly 2/Ro (capillary pressure), while the pressure in

the bath just below the contact area is roughly zero (discounting atmospheric pressure

contribution from both terms), so the pressure inside the intervening air layer will be

roughly a/Ro. Then the reaction force can be obtained by integrating this pressure

over the contact area:

FR = 7rL 2 a/Ro , (D.9)

from which we can deduce L once FR is known. We will further approximate the

equation (D.8) to
3 4 ds/dt (D4Rs1R= -- IryL s 1+ L , (D.10)
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which is a good approximation to (D.8) both in the limit E < 1 and E >> 1, where

= v/WZhi/L. Substituting for L from (D.9) into (D.10) and reverting to our dimen-

sionless coordinates, we obtain

dS/dr _ 2F (D.11)
S3 Oha (4F 2 +9S 2 )

where S = s/Ro is the dimensionless air layer thickness, Oha pa/ (p0j) 1 / 2 the air

Ohnesorge number and F(r) = Z,,(r) + Bo*(r) is the dimensionless reaction force

acting on the drop. The dimensionless form of (D.1) then reads, after substituting

for L from (D.9):

PD = OhFXr (D.12)

(B) A cruder approximation, leading to somewhat simpler model, is given by

assuming L constant in (D.7). We integrate (D.7) assuming the beginning of impact

at t = 0 and s(0) = oo, giving

2 I FR(t')dt' . (D.13)
2s2 (t) 37rpaL4 Jo

Substituting for 1/s(t) from (D.13) into (D.1), we obtain

FD = ( riya 1/2 t FR(t')dt'] V , (D.14)

which in the dimensionless form reads

PD = I F(T)dr' X (D.15)

Assuming a sinusoidal dependence of F on time F(r) Fma sin (irr/7rc), where rc

is the contact time, we have f F(r')dr' =Ema (1 - cos = Fm 27 sin 2

Therefore the total loss of horizontal momentum (assuming it is small relative to the

total horizontal momentum, so that X,. stays roughly the same during contact) is

fo FD(')dr' = [2Fma-COh.] 1/2 X, Je sin rdr'. When the droplet is bouncing

with the Faraday period, we must have lo" F(r')dr' = BorF = Bo', from which we

get TrcFm. = Bol. Thus

IrC2 4 r 1/2 r 11/2 2 T
4D(2')dr' = - [t7r - rcX, . (D.16)

I ' ' af j
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Therefore, under this approximation, the loss of horizontal momentum grows linearly

with the contact time and we can therefore achieve the same effect by having a

dimensionless force PD = [2X,] 2 act on the drop whenever it is in contact

with the bath.
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Appendix E

Walker Motion along a Line in a

Central Force: the 1-dimensional

Simple Harmonic Oscillator

E.1 Background

We here consider the motion of a walker along a line in a linear central force, which
provides the simplest way to confine the drop's motion. We proceed by simplifying the
trajectory equation (4.25), in order to describe motion in 1 dimension, and investigate
the regime diagram of the drop's motion in the high memory limit. We observe
several types of qualitatively different behaviour depending on the two remaining free
parameters. The most prevalent of these is the ground state, where the drop executes
a periodic motion with amplitude equal to a quarter of the Faraday wavelength,
and the unbounded solution, where despite the action of the central force the drop's
position diverges to infinity with increasing time. In between these two extreme
dynamical limits, the drop movement is typically chaotic, with occasional windows of
periodicity. We investigate the dependence of the distribution function on the system
parameters. Surprisingly, the average kinetic energy of the drop is independent of
the central force strength and is found to be exactly equal to its free space value.
We examine analytically the threshold above which the unbounded solutions exist,
showing that it too is independent of the strength of the central force. Finally, we
discuss the variety of new questions that this introductory examination has posed
and outline the directions of future research in this area.
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E.2 Equations of Motion and Walking Threshold

Consider a walker constrained to move along a line in the presence of a central force

of the form F(x) = -kx. The trajectory equation (4.25) is readily generalizable to

this case:
mnii + A+ + kx = -mgVh(x, t) , (E.1)

where m is the mass of the drop, f the effective drag on the drop, g the gravitational

acceleration and h is the effective height of the surface waves created by all the

previous drop impacts:

n-1 ;i-n)/Me

h(x, t) = A n iJo (kFIX(t) - Xi) (.2n-i

Here, as before, Jo(x) is the Bessel function of the first kind and zero order. We now

consider a similar scenario in 1-dimensional space, where the standing wave created

by the drop impact has the spatial form of a sinusoid rather than a Bessel function.

For the sake of simplicity, we approximate the temporal damping of the waves as

being purely exponential. Then the equations (E.1-E.2) take the form

mi+D±+kx=-mgA L e(in)f M cos [k F(x(t)~x I
i=O

;Z mgAkF tie sn [kF(X(t) -x(s))] ds (E.3)

Here, as before, the memory parameter Me, as defined in (4.23), denotes the number

of previous drop impacts that significantly contribute to the total wavefield. Now by

rescaling x and t such that x = x'/kF, t = mt/D, k' km/ 2  m 3= 3TF

and then dropping the primes, we can transform (E.3) into the -form

i + + kx = A j e(S-t/MCsin (x(t) - x(s)) ds . (E.4)

By splitting sin (x(t) - x(s)) = sin x(t) cos x(s) - sin x(s) cos x(t), and writing

I(t) := j e(8-/M cos x(s)ds (E.5a)

12(t) := j e(A-i)/Me sin x(s)ds , (E.5b)
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we arrive at the equivalent description of the motion in terms of a system of ODEs:

i + i + kx = A [I1 sinx - I2 cos x] (E.6a)

= 1+ cosx (E.6b)

j2 = - I2 +sin x (E.6c)

There are thus 3 parameters we can vary, the memory Me, force strength k and wave

amplitude A. We will be particularly interested in the limit of Me -+ oo.

The principal advantage of writing the trajectory equation (E.4) as the system

(E.6) is that instead of needing to know the entire history of the drop position x(t)

in order to calculate the integral on the right-hand side of (E.4), we need only keep

track of four variables x, i, I1,, 12. This provides an enormous computational benefit

which will enable us to track the drop motion over very long times. Unfortunately,

this way of rewriting the trajectory equation is unique to one dimension, where any

linear combination of monochromatic waves can be rewritten as a combination of a

sine and a cosine.

E.2.1 Walking Threshold

We proceed by deriving the minimum memory necessary for walking to occur, which

we denote Mew = Mew(A, k).

Negligible central force. In the limit k -+ 0, we get a motion in free space.

Besides the usual stationary solution x(t) = £o, there exists a steady walking solution

x(t) = £o + vwt for Me > Mw. Substituting for x(t) into (E.4), we obtain Vw =

A f** e~sl* sin (vws) ds = A M2,W from which

Vw = [A - Me- 2] 1/2 Mew = A-' 1 2  (E.7)

General central force. Now we assume that k > 0 and that we are just above

the walking threshold. Assuming the motion to be sinusoidal with an infinitesimal

amplitude, we write x(t) = 6eiwt with 6 < 1 and substitute into (E.4) to obtain, after

neglecting terms of higher order in 6:

k~w2+w=Ax2Me2+iwMek - 12+ iw = AM e . (E.8)1 + W2Me
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Comparing the imaginary parts of (E.8) we obtain 1 + W2Me2 = AMe2, or equiva-

lently Me = (A - w2)-/ 2 . Substituting this result into the real part of (E.8) gives

k - 2 =2(A - w2-1/2 which can be written as

p(w2 ) := W4 + (w 2 - A) (w2 - k) 2 = 0 (E.9)

The cubic p(z) can be shown to have a single real root for A, k > 0, and since

p(O) = -Ak 2 < 0 while p(A) = A2 > 0 and p(k) = k2 > 0, the root must lie between

0 and min {k, A}. It is straightforward to show that Mew - A'/ 2 when k < A and

Mew ~, k/A when k >> A, as is shown in Fig. E-1.

3

2

1
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~-, -2 -1 0
log A

1 2 3

Figure E-1: The dependence of the threshold value of memory Mew at which walking

occurs, on the wave amplitude A and force strength k. The level sets of Mew are

plotted on a log A - log k plane.

From now on we shall consider only Me >> MeW

E.3 Regime Diagram of the Walking Motion

We solved the system (E.6) numerically spanning the entirety of the region 10-3 <

A 5 10n, io-3 <k < 102, for Me = 109. Depending on the required level of accuracy,

we used either a second-order implicit method with time step At = 0.005 or a third-

order implicit method with At = 10-'. The probability distribution function of
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x(t) and &(t) was recorded by storing the values of x and i at each timestep, which
also allowed for subsequent evaluation of the average potential and kinetic energy.
The length of time over which the system was recorded was varied depending on
the rate of convergence of the probability density function, varying between 5 - 105
and 30 - 10. The initial conditions were kept the same throughout, specifically,
x(0) = I(0) = 12(0) = 0 and &(0) = 0.01, corresponding to a small initial disturbance
at time t = 0.

In Fig. E-2 we show the various types of motion observed. We summarize our

results in a regime diagram (Fig. E-3). When A < 0.04 or k > A (see Fig. E-2ab),
the drop is strongly confined by the central force and its position switches periodically
between +7r/2 and -7r/2. The switching occurs over a short period of time relative to
the period of the motion, which can be shown analytically to be approximately 4k/A
when k > A. We call this motion the ground state, since it corresponds to the lowest

possible drop potential energy, the zero solution being unstable in the high memory
limit. When k ~ A (see Fig. E-2eh), the drop is still strongly bound by the central

force, but its motion is no longer periodic: small variations arise in the position at
which the drop seems to settle (for A < 1), or around which it oscillates (for A > 1)
before switching to the opposite side of the origin. We call these kinds of motion the

chaotic ground state. As the force strength k is reduced further below the value of A,
the motion becomes increasingly chaotic, its amplitude increases and we characterize

it as fully chaotic.

Note that although the transition from chaotic ground state to chaotic motion
is often discrete, it can also happen gradually. For the purposes of quantitative
determination of the threshold in the regime diagram, we use the following criterion:
We calculate the ratio # between the fourth moment and the square of the second
moment of the drop's position:

= 2 where M. = lim Ix(t)Indt (E.10)
(M2)T-+oo fo

The value of # approaches one when the amplitude jx(t)l is strongly confined to a
single value, # = 1.8 when the position is uniformly distributed over an interval
symmetric around the origin, and finally 8 = 3 when the position distribution is
gaussian. Therefore, for the ground state we have P s 1 while for chaotic motion
# - 3; we shall set the threshold between the chaotic ground state and fully chaotic
motion at 0 = 1.8, i.e. the value for a uniform probability density of x(t).

In Fig. E-2cdf we show the various instances of fully chaotic motion. The motion is

179



composed of a fast oscillation, with period on the order of A-"/ 2 , around a mean that
slowly and chaotically varies in time. Generally speaking, the amplitude of the motion
is larger for smaller k and larger A, but the relationship is in not straightforward.
While the probability distribution function is typically symmetric around the origin
in the chaotic regime, when the parameter k is sufficiently small this no longer holds

and we observe motions which lie on one side of the origin only, as is shown in Fig. E-
12. The boundary of the region where these non-axisymmetric solutions may arise

is outlined in the regime diagram (E-2), but further investigation is needed as the

initial conditions presumably play a significant role in the establishment of this kind
of motion.

Finally, when A is larger than some critical value Ac, the drop's position can

destabilize into a motion that diverges to infinity for large times (see Fig. E-5). In
this type of motion, the two timescales of the drop's motion are clearly visible, with a

fast oscillation superposed on a slower monotonic mean motion. This motion, which
we call the unbounded solution will be the subject of the next section, where we

deduce that the critical value AC is equal to 86.641 independently of k. Note that

this statement is not in contradiction with the earlier statements of the existence of
the ground state - both solutions are possible when k >> A > Ac, depending on the

initial conditions. For A below but relatively near AC, the motion is marked by rapid
oscillations around a slowly increasing mean, followed by a rapid return to the origin,

as is shown in Fig. E-2g and Fig. E-6. The maximum amplitude of the motion gets

progressively larger as one approaches AC from below, as documented in Table E.1.

E.4 Energetics

The total energy of the walking drop can be defined as

1. 2 + 1kX2+ h(x) whereiTOT:=ix +-x+hx

h(x, t) = A J e(t-)/Me cos (x(t) - x(s)) ds = A (1, cos x + I2 sin x) . (E.11)

The three components of the total energy are, in turn, the kinetic energy j.2, the

potential energy IkX2, and the energy stored in the wavefield, given by its height h(x)
at the drop's location. We also define the mean kinetic and mean potential energy
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Figure E-2: The position x(t) of the drop as a function of time for various combina-
tions of the wave amplitude A and the central force strength k: (a) A = 0.001 and

k = 0.001, (b) A = 0.1 and k = 10, (c) A = 1 and k = 0.1, (d) A = 1 and k = 1,
(e) A = 1 and k = 10, (f) A = 5 and k = 2, (g) A = 20 and k = 0.05, (h) A = 50
and k = 50.
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Figure E-3: The regime diagram deduced from solution of the system (E.6), describing
the behaviour of a drop walking in 1 dimension subject to central force, for Me =
101. Four different dynamical states are observed according to the value of the wave

amplitude A (horizontal axis) and central force strength k (vertical axis): a ground
state (A < 0.03 or k > A), a chaotic ground state (k ~ A), chaotic motion k < A and

unbounded solutions A > Ac e 86.6. The regions where an asymmetric probability

density was observed (for small k) are also indicated.
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by taking a long-term average:

K.CC. = I (i2) := Jim } ±2 (t)dt , P.E..v =1 k (x2) := lim IkX2 (t)dt .
2 T-+oo -2 2 T-+oo (E.12)

Despite the different kinds of behaviour observed, one statistical feature of the

system shows remarkable regularity: In the limit of Me -+ oo, the mean kinetic

energy is equal to A/2, i.e. its value for rectilinear walking without any central

force, or it is equal to 0 (for the unbounded solution or for the unstable zero solution

x(t) = 0). This can be shown by differentiating (E.11) with respect to time:

-CToT =±H + kx± + A± (-I1 sinx + I2 cosx)+ A (1cosx + I2 sin )
dt

- ± [+kx+ A(I 2 cosx -Isin)] + A [1- ' (Ii cosx+1 2 sinx)] =

= A - i2 h(x)(E.13)
Me

Integrating (E.13) from 0 to T for large T, we find

(±2) = )A - (h(x)) - lim Eo 1(T) - Crr(0) (E.14)
Me T-+oo T

For the zero solution, we have EroT(t) = ETOT(O) = h(0) = AMe so (.2) = A -

A = 0, while for the unbounded solution EroT(T) kx 2 (T)/2 = AT and so again

(±2) = A - A = 0. For non-zero bounded solution we have (h(x)) = 0 and ETOT

bounded, giving (k2) = A.

No such simple result could be found for the mean potential energy, where a set

of discrete values was hoped to be observed. The potential energy is bound below

by its value for the ground state, which is just k(7r/2) 2 = P.E.o. Figure Fig. E-4a

shows the dependence of P.E./k on A and k, while Fig. E-4b shows the dependence

of P.E. - P.C.o; neither exhibits any obvious quantization.

E.5 Unbounded solution

Assume that x(t) is composed of a slowly varying large component and a small cor-

rection, whose amplitude also varies slowly:

x(t) = X(et) + Y(et)y(t) + o (Y) , with X > 1 and Y, e < 1 . (E.15)
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Figure E-5: The position x(t) as a function of time for A = 87 and k = 100 for initial
conditions x(0) = Ii(0) = 12(0) = 0 and :(0) = 5. The solution diverges from the

origin starting from around t ~ 60, with the transition shown in more detail in the

inset.
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Moreover, we assume that y(t) is periodic with period P.

generality, we can assume ft+P y(s)ds = 0, since we can absorb the average value of

y(t) into the slowly varying part X(Et). Now we substitute (E.15) into the governing

system of equations (E.6) in the limit Me -+ oo. Then (E.6bc) imply

11 cosx = cosX (1 - jY 2y2) - YysinX + 0 (Y3 )

i2 = sinx = sinX (1 - jY2y 2) + Yy cos X + 0 (Y3 )

(E.16a)

(E.16b)

Now, using repeated integration by parts, we have

J cosX(Es)ds =
f XX sinX
Co sX(e*)X'ds I$ +

sin X

sinX
=EX'

X",
- cosX-a +

X"
- cosX -.. +

CX13

I
f cos X1'

J X -3

X" Vil
sinX

sinX Xds =

3X"2 ds
X14 ) a

3X"2)

By the same method, we derive

sinX(es)ds=- cosX X"
-sinX-i -cosX

Using the fact that ft+P y(s)ds = 0, single integration by parts gives

J Y(es)y(s)sin X(es)ds = Y sin X I
Y 2 (fs)y2 (s) sinX(Es)ds = Y2 sinX

y(s)ds + 0 (EY) ,

y2(s)ds +0 (tY 2) .

Analogous results hold if one replaces sin X in (E.19) by cos X . Combining (E.17)-

(E.19) and substitution of (E.15) into (E.6) yields

kX +eX'+Y (#+ + ky)+O ( 2XEY) =

YJy(s)ds -
EX43

1y2 2
- EX,

0 
1

+( X4,
y y 2 \

;X31EX2)
(E.20)
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Provided that EX' - Y < 1, the leading order terms in (E.20) give kX = A/EX', or,

equivalently, eXX'= A/k, which can be integrated to yield

X(t) 2A(t (E.21)
k I

The condition of slow time dependence of X requires (t - to) ~ -, which implies

X ~.' &-1/2, consistent with our assumption that X > 1. Now for X given by (E.21),
the expression (X'"/XM - 3X"2 /eX 5 ) on the right-hand side of (E.20) vanishes, and

AX"/EX' 3 = -k, which enables us to simplify (E.20), after multiplying through EX',
to

(EX')2 + (EX') Y (i + p + A J y(s)ds) + Y2lAy 2 = 0 (C3/2, EY, 61/2y 2) . (E.22)

It can now be seen from (E.22) that the natural choice of Y, and indeed the only

choice consistent with our assumptions, is Y = EX', which sets all the terms on the

left-hand side of (E.22) at the same order. We thus arrive at

1+P+y+A y(s)ds+ Ay2 = 0(J"2) , and Y = EX = 2 k(tA (E.23)

Differentiating (E.23) with respect to time and neglecting higher order terms, we

obtain

9i+P+Ay+Ay= . (E.24)

Note that if a solution to (E.24) is periodic with period P, it necessarily satisfies

ft+P y(s)ds = 0, as can be immediately obtained by subtracting (E.23) evaluated at

t + P and t.

It is the existence and stability of a periodic solution to (E.24) that determines

whether an unbounded solution exists for a given A and k: provided such periodic

solution exists and is stable, there are initial conditions on x, i, 1, 12 that will en-

sure that x(t) will have the asymptotic form given by (E.15). From (E.21), it then

necessarily follows that [c(t) -+ oo as t -+ oo. Conversely, if the periodic solution

to (E.24) is unstable, the unbounded solution will not be observed. Since (E.24) is

independent of k, the existence and stability of the periodic solution depends only on

A. It will be shown that for A > Ac a 86.64 stable periodic solution exists, while

for A < Ac it does not. As A approaches AC from below, we see large deviations

of x from 0, with x(t) closely following the initial stages of the unbounded solution,

187



10 20 30 40 50 60 70 80 83 85
0.001
0.01
0.1
1

10

589
67.6
19.5
12.0
5.46

1165
129

31.1
11.4
6.14

2869
304
44.7
15.6
6.86

5524
573
72.7
21.3
7.60

9252
956
109
25.9
7.73

14354
1480
165
30.8
11.3

21146
2159
232
38.6
12.9

30396
3114
333
47.6
14.2

33668
3436
369
52.7
16.4

36135
3727
404
57.9
16.7

Table E.1: Maximum value of jx(t)l for selected values of k and A below the critical
value Ac. A rapid increase of the foray distance is evident as A -+ AC for all k.

presumably because the higher order terms in the expansion (E.15) have a stabilizing

effect. Nevertheless, as lxi increases the higher order terms become progressively less

important until the inherent instability of y(t) causes a rapid collapse towards the

origin. The typical magnitude of these excursions in x is shown in Table E.1 for

various values of A and k.
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Figure E-6: The position x(t) as a function of time for A = 80 and k = 10, for initial
conditions x(O) = 11(0) = 12(0) = 0 and ±(0) = 5. The walker slowly drifts away
from the origin while oscillating rapidly, before it snaps back to the vicinity of the
origin and the process repeats.

We now

parameter.

AT-1yyr =

focus on the case A > Ac. Since Ac ; 86, we will regard A as a large

Rescaling time by writing t = Tr, we have T-"3y7 r + T~2y, + Ay +

0. Considering the leading order balance, the only self-consistent choice
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of T is T = A-1/2, which gives

yrer + yy, + A~1 2 (yr, + y) = 0 where y(T) = y (tA"/2) (E.25)

5

0-

CM-5-

10

-10 0
-5 0 Y 5 10dy/dT

Figure E-7: The limit cycle for the system (E.25) together with a part of an un-

bounded trajectory starting at (y, y,, yrr) = (5,0, -7) in the (y, yr, yrr) space, shown

from two different angles.

E.5.1 The large wave amplitude limit A -+ oo

For large A, the periodic solution of (E.25) will be close to the periodic solution of

Yrrr + YYr = 0 , (E.26)

for which the integral f y(s)ds over one period vanishes. The period of y(r) will

be denoted by p = PA/ 2 . Note that we now have to enforce this vanishing average

condition, since by dropping the smaller two terms in going from (E.25) to (E.26), this

condition is no longer automatically satisfied by every periodic solution. Equation

(E.26) can be integrated once to give

2= (E.27)
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The constant A has to be non-negative for a periodic solution to exist, since 0 =

f y,,(s)ds = } f A - y2(s)ds < ' f Ads = }pA, where the integral is taken over one

period of z. Therefore we can write A = F2.

Y, + (y2 - F2) = 0 . (E.28)

For each choice of constant F, equation (E.28) describes a conservative system, as

can be seen by multiplying (E.28) by 2 y, and integrating once more to give

y 2 + }y 3 F 2y =E (E.29)

Thus E is conserved in time and can be thought of as energy, and the level sets of

E coincide with the trajectories of y in the y - y, phase plane. The system has two

fixed points at y = ±F, with y = -F being a saddle point and y = F being a center.

Therefore E = - F3 corresponds to a constant solution, while E = 3F3 corresponds

to a homoclinic orbit; periodic solutions thus occur for -2F 3 < E < 2F 3 . The

requirement of a zero time average of y selects a single value of E for each F, since

the time average is a monotonically decreasing function of E. This value was found

numerically to be EO = 0.66314F 3 . Since it is very close to the value corresponding

to the homoclinic orbit, the two orbits lie very close to each other, as illustrated in

Fig. E-8.

E.5.2 Finite wave amplitude A

The fact that the zero time-average trajectory lies close to the homoclinic orbit means

that for A -+ oo the intersection of the limit cycle in the (y, yr, y,,) space with the

y, = 0 plane (the Poincar6 section) will lie close to the locus of the homoclinic

intersections, which are given by (2F, 0, -3F 2 ) according to (E.28). For a finite A,
the image of the limit cycle in the Poincar6 section y, = 0 will thus lie close to the

parabola y1, = -y 2 - This property helps us to plot the Poincard section of the

stable manifold of the system with the yr = 0 plane, as is done in Fig. E-9. Note

that, had we plotted the section in normal y - y, plane, the inherent thin profile

of the manifold would hide any internal structure. Using instead yr" + Iy 2 for the

vertical axis reveals the branching structure of the manifold for different values of A

(Fig. E-9). We see that as A is decreased, the cross-sectional area of the manifold,
together with the number of its branches, decreases until only two thin branches

remain. When A is decreased below Ac the stable manifold disappears completely
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Figure E-8: The trajectories in the y -y, plane for the equation (E.28) with F = 1 are

marked by dashed lines. The two critical points are a center at (1, 0) and a saddle at

(-1, 0). The periodic solution with zero time average lies very close to the homoclinic

trajectory, and is indicated by a solid line.
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(Fig. E-9e). In order to determine the value of Ac with significant precision, we
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Figure E-9: The intersection of the stable manifold with the y, = 0 plane for different

values of A: (a) A=1000, (b) A=300, (c) A=200, (d) A=120, (d) A=87, (e) A=86.

The number of passages through the y, = 0, y > 0 half-plane before divergence to

infinity is shown for points outside the stable manifold. A reduction in the volume of

the manifold with decreasing A is evident, together with its disappearance at A = 86.

solved the equation (E.25) with A slowly decreasing in time. Every time the solution

passed through the y > 0, y, = 0 half-plane, we recorded the intersection and the

current value of A. The results are shown in Fig. E-10, with each point representing

one such intersection. As A is decreased, the limit cycle undergoes a period-doubling

cascade and becomes a strange attractor; with further reduction of A it eventually

becomes unstable, which was manifest by a sudden exponential growth in y(t). We

repeated this process several times with increasing precision and thus obtained the

value AC = 86.641 ± 0.001.
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Figure E-10: The y-component of the intersection of the limit cycle with the yr = 0
plane as a. function of A. As A is decreased progressively, the limit cycle undergoes
a period-doubling cascade, and below A = 87.23 becomes a strange attractor, with
windows of periodicity. The strange attractor becomes unstable at A = 86.641t0.001.
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E.6 The probability distribution function

We have investigated the dependence of the probability distribution f(x) of x(t) on

the three system parameters Me, A and k. Firstly, the distribution was found to

quickly converge to a limiting value as the memory was increased. In Fig. E-11,

we plot the distribution function for A = 0.25 and k = 0.1 and several values of

memory ranging from Me = 32 to Me 106. As we see, the distribution function

for Me = 256 already lies very close to the high memory limit; thus, we expect the

following statements and results for the high memory limit to be directly applicable

to both the high and mid-memory regime. The profile of the distribution function is

0.14 0.06
S ---Me=32

0.12 Me=64
-- Me=256

0.1
fit 0.04-

'0.08
L0.03-

0.02
0.04- -- -Me=256

0.01 Me=10 5

Me=10 6

-% -10 0 10 20 -% -10 0 10 20
x x

Figure E-11: The probability distribution function f(x) of the drop position x(t) for

A = 0.25, k = 0.1 and five values of the memory. These are (a) Me = 32, 64, 256

and (b) Me = 25,105,106. A fast convergence to the high-memory limit is apparent.

closely tied to the behaviour of the solution and thus each of the 4 dynamical states

identified previously has a characteristic profile of f(x). For the ground state one sees

two sharp peaks at x = ±ir/2, with f(t7r/2) being nearly 0.5. As we enter the chaotic

ground state regime, the peaks get wider, with secondary peaks emerging. This trend

is seen in Fig. E-12, where we plot the distribution function deduced for two values

of A and a range of k between 0.001 and 100. As we cross into the region of fully

chaotic motion, f(x) becomes either gradually (Fig. E-12a) or abruptly (Fig. E-12b)

gaussian, with most of its weight centered around the origin. Further decrease of k

leads to a flattening and spreading of the distribution. For certain values of A (Fig. &-

12a) this trend continued all the way down to k = 0.001; for others (Fig. E-12b) we

observed the development of a minimum of f(x) at x = 0, which gradually separates
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the distribution function into two nearly disconnected parts. Below a certain value of

k, the drop remains locked in one of the two regions, and only one of the two branches

of the distribution function is then visible.
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Figure E-12: The logarithm of the probability distribution function f(x) as a function

of x (vertical axis) and k (horizontal axis) for two values of A: (a) 1.58 and (b) 39.8.
The horizontal scale is logarithmic, while the vertical scale indicates x113 , in order to

capture the profile of the distribution function both at small and large x. In (a) the

transition from the ground state to the chaotic ground state is clearly visible near

log k = 1, while the transition to a chaotic region around log k = 0.2 is more gradual.

In (b) the transition to fully chaotic motion arises at log k = 1.2; at log k = -0.8 the

distribution function becomes asymmetric.

More work is needed to understand the nature of the transition from a symmetric

to asymmetric distribution function and the mechanism behind this phenomenon. For

now, our work as summarized in Fig. E-3, suggests that the asymmetric distributions

appear in two separate regions. One lies near the critical value AC and the drop's

movement there is thus driven by the tendency to follow the unstable solution until

eventual collapse towards the origin. The other region comprises small values of A

and k, and it is there where least is known about the solution.

Several important questions are raised by this study. Is the probability distribution

unique up to a mirror image around the origin? If not, what is the region of uniqueness

and how can we rationalize it? Is it possible to rationalize the spatial extent of the

distribution function, given A and k? And if there are multiple possible distribution

functions, would they show the kind of quantization of the potential energy that has
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so far eluded us? Until now, all analytic headway was made in the regions of unstable

solutions and the ground states, where the drop behaviour is very regular.

Our investigation produced several results relevant to the 2-dimensional walking

drop system studied experimentally. First, we showed that the mean square veloc-

ity of the drop is independent of the central force and thus equal to its value in

force-free unbounded space. It would be worth checking whether this also holds in

two dimensions. Further, we verified the prevalence of the ground state, in which

the drop is bound to the smallest value of potential energy. This state corresponds

to the 2-dimensional state where the drop orbits the origin along a circle with di-

ameter corresponding to the first minimum of the Bessel function. Similarly to our

1-dimensional system, this ground circular orbit is the most commonly observed state,
however, higher level circular orbits exist. It remains to be seen whether these higher

energy states have any 1-dimensional analogues. Finally, we have observed probabil-

ity distribution functions of the chaotic states resembling the profiles of the first and

second eigenmodes of the quantum-mechanical simple harmonic oscillator. It seems

that higher eigenmodes are not attainable in our system, which raises the question of

what crucial feature is missing in our model that is required for these eigenmodes to

be observed.
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