
Graphs, Matrices, and Populations:

Algebraic Techniques in Theoretical Computer

Science and Population Genetics
by

Alex Levin
Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARC441W.8
MA ̂CWiSETTS :S~TITE

OF -T ECH-N0L0GY

JUL2 5 2

L, -RARIES I
June 2013

@ Alex Levin, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author

Department of Mathematics
April 4, 2013

Certified by........
Bonnie Berger

Professor
Thesis Supervisor

Certified by
Jonathan Kelner

Associate Professor
Thesis Supervisor

Accepted by
Michel Goemans

Chairman, Department Committee on Graduate Theses

Linear

2

Graphs, Matrices, and Populations: Linear Algebraic

Techniques in Theoretical Computer Science and Population

Genetics

by

Alex Levin

Submitted to the Department of Mathematics

on April 4, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we present several algorithmic results for problems in spectral graph

theory and computational biology.

The first part concerns the problem of spectral sparsification. It is known that

every dense graph can be approximated in a strong sense by a sparse subgraph, known

as a spectral sparsifier of the graph. Furthermore, researchers have recently developed

efficient algorithms for computing such approximations. We show how to make these

algorithms faster, and also give a substantial improvement in space efficiency. Since

sparsification is an important first step in speeding up approximation algorithms for

many graph problems, our results have numerous applications.

In the second part of the thesis, we consider the problem of inferring human

population history from genetic data. We give an efficient and principled algorithm

for using single nucleotide polymorphism (SNP) data to infer admixture history of

various populations, and apply it to show that Europeans have evidence of mixture

with ancient Siberians.
Finally, we turn to the problem of RNA secondary structure design. In this prob-

lem, we want to find RNA sequences that fold to a given secondary structure. We

propose a novel global sampling approach, based on the recently developed RNAmu-

tants algorithm, and show that it has numerous desirable properties when compared

to existing solutions. Our method can prove useful for developing the next generation

of RNA design algorithms.

Thesis Supervisor: Bonnie Berger

Title: Professor

Thesis Supervisor: Jonathan Kelner

Title: Associate Professor

3

4

Acknowledgments

I would like to thank my advisors Bonnie Berger and Jonathan Kelner for their help

and encouragement throughout my years in graduate school. I have learned a great

deal from them, and they have truly influenced my thinking about many things,

among them mathematics, research, and the art of giving an effective talk.

I had the great fortune to work with some first-rate collaborators, and am grateful

for the opportunity. Other than Bonnie and Jon, these people are Srinivas Devadas,

Ioannis Koutis, Mark Lipson, Mieszko Lis, Po-Ru Loh, Charles O'Donnell, Nick Pat-

terson, Richard Peng, Yann Ponty, David Reich, and J6r6me Waldispiihl. It has been

a true pleasure working with them. This thesis is based on research done with these

individuals, and I thank them for their contributions.

Laurent Demanet introduced me to an interesting problem in compressed sensing,

which I am currently pursuing. I would like to thank him for stimulating discussions,

and also for serving on my thesis committee.

Many other individuals have helped me launch my mathematical career. At Har-

vard, my professors' enthusiasm for mathematics was infectious. Salil Vadhan got

me started in theoretical computer science through his wonderful complexity theory

course. From Benedict Gross I learned about the beauty of abstract algebra; Prof.

Gross also taught me how to convey complex ideas in an engaging and accessible

manner. I would also like to thank Cesar Silva of Williams College, where I spent

a summer doing research in ergodic theory. Working with Prof. Silva and my fellow

students was fun and intellectually stimulating, and gave me my first true research

experience.

My friends at MIT have made my time here unforgettable. I would like to thank

Eric, George, H6skuldur, Jenn, Jethro, Niels, Qinwen, Rachel, Rune, and many oth-

ers.

Patrice and the rest of the staff at MIT have always been kind and professional,

and have kept things running very smoothly. They have truly gone beyond the call

of duty.

5

Finally, I would like to thank my parents, grandparents, and the rest of my family

for their constant encouragement, their support, and for everything else.

For three years of my graduate career, I was sponsored by the National Science

Foundation Graduate Research Fellowship. My first year at MIT was supported by

an applied math fellowship and by a Liberty Mutual fellowship. I am grateful for the

generous support.

6

Contents

I Spectral Graph Theory

1 Introduction

2 Background

2.1 Positive semi-definite matrices

2.2 Three matrices associated to a graph

2.3 Properties of the Laplacian

2.4 Random walks on graphs

2.5 Electrical flows

2.6 Electrical flows and random walks

2.7 Solving SDD linear systems

2.8 A note on big-O notation

3 Spectral sparsification

3.1 D efinitions .

3.2 The Spielman-Srivastava algorithm

3.3 Analysis of the Spielman-Srivastava algorithm

3.4 A new algorithm for spectral sparsification . .

3.5 Computing effective resistances

3.6 A super-approximation property (optional) . .

4 More background

4.1 Primitives for the Koutis-Miller-Peng solver

7

11

13

19

. 19

. 21

. 23

. 24

. 24

. 27

. 32

. 33

35

. 35

. 37

. 37

. 41

. 45

. 48

51

51

4.1.1 Low-stretch spanning trees .

4.1.2 Incremental sparsifiers .

4.2 Spine-heavy graphs .

5 Improved spectral sparsification

5.1 Overview of our results

5.1.1 The importance of transitivity

5.1.2 The O(mlogn) algorithm

5.1.3 The 0(m) algorithm

5.2 The ((mlogn) algorithm

5.3 Effective resistances via very low-dimensional proj

5.4 Improved sparsification via graph decompositions

5.5 Getting over the Johnson-Lindenstrauss Barrier

5.6 Applications .

5.6.1 Linear system solving

5.6.2 Approximate Fiedler vectors

6 Semi-streaming setting

6.1 Notation and conventions

6.2 The update algorithm

6.2.1 Setup .

6.2.2 Estimating effective resistances

6.2.3 Putting it all together

6.2.4 Error-forgetfulness of the construction . .

6.2.5 Straightforward generalizations

6.2.6 The semi-streaming setting

6.3 Conclusions and future work

57

. 58

. 58

. 58

. 59

. 60

ections 62

. 65

. 67

. 69

. 69

. 70

73

. 76

. 76

. 76

. 79

. 81

. 85

. 86

. 86

. 87

II Population Genetics

7 Introduction

88

89

8

51

52

54

8 Background on population genetics 91

8.1 G enetic drift . 91

8.2 Phylogenetic trees. 93

8.3 Admixture graphs . 93

8.4 Going to multiple loci . 95

9 Methods 97

9.1 D ataset . 97

9.2 The f-statistics and population admixture 99

9.3 The MixMapper Algorithm . 105

9.4 Bootstrapping procedure . 106

9.5 Heterozygocity and drift length . 107

10 Results 111

10.1 Constructing the pure tree . 111

10.2 Case study: The genetic history of European populations 112

10.3 D iscussion . 113

III RNA secondary structure design 118

11 Introduction 119

12 Materials and Methods 123

12.1 Overview of algorithm . 123

12.1.1 The low-energy ensemble of a structure. 123

12.1.2 Sampling from a structure's sequence ensemble. 124

12.1.3 Design algorithm . 126

12.2 Software selection . 127

12.3 Dataset of random target structures and seed sequences 127

12.4 Dataset of known secondary structures 129

12.5 Structure and sequence analysis . 129

9

Characterizing sequences.....

Characterizing structures.

Evaluation of performance

The challenges of fair comparison

. 129

. 129

. 130

. 130

13 Results and Discussion

13.1 Influence of the seed

13.1.1 Impact on success rate

13.1.2 Impact on target probability.

13.1.3 Impact on distance between seed and solution. .

13.1.4 Nucleotide composition of designed sequences. .

13.2 Influence of the target structure

13.2.1 Impact on success rate.

13.2.2 Impact on target probability and base pair entropy.

13.3 Alternate stopping criterion

13.4 Running time and multiple runs

14 Discussion

10

12.5.1

12.5.2

12.5.3

12.5.4

133

.. . . . 133

. 133

. 134

. 136

. 137

. 137

. 138

. 139

. 140

. 142

145

Part I

Spectral Graph Theory

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

Recent years have seen a revolution in spectral graph theory, stemming from new

and unexpected algorithmic techniques and primitives. These novel techniques have

already had a great impact, and have led to the fastest known algorithms for several

classic graph problems.

The new algorithms follow a rich tradition of interplay between graph theory and

linear algebra. The connections between random walk properties of a graph and the

spectral properties of certain matrices associated to it (e.g. the Laplacian matrix)

have been known and exploited for a long time. Most prominent among these is the

relationship between the first nontrivial eigenvalue of the Laplacian and quantities

such as the mixing rate of a simple random walk on the graph.

One of the primary innovations of the past couple of years has involved going be-

yond eigenvalue analysis. Recently, researchers have shown how to very quickly solve

linear systems in graph Laplacians, and these methods have in turn led to advances in

graph algorithms. The fastest-known algorithm for approximating maximum flows on

undirected graphs [14], for example, crucially uses these solvers. One of the concepts

that has been quite fruitful is viewing a graph as an electrical network (with vertices

as nodes and edges as wires), and studying quantities such as potentials and effective

resistances.

Linear algebraic techniques have thus had a large impact on designing fast graph

algorithms, and new graph techniques have crucially relied on advances in linear alge-

13

bra. In fact, the payoff has gone the other way as well, and the story is quite involved.

Starting with the work of Vaidya [73], graph theoretic constructions have been used

to precondition linear systems in Laplacians, and, more generally, in symmetric diag-

onally dominant (SDD) matrices, and have thus played a central role in speeding up

solvers for these systems.

Spielman and Teng gave the first nearly-linear time algorithm for solving SDD

systems; given an n x n matrix with m nonzero entries, their algorithm produces

a solution with accuracy 6 in time O(m log0o 1) n log(1/6)). Unfortunately, the ex-

ponent of the logarithm in the original Spielman-Teng paper was quite large. This

was remedied by seminal works of Koutis, Miller, and Peng [41, 42], who gave an

O(mlog nlog(1/6)) algorithm. In the past year, Kelner, Orecchia, Sidford, and Zhu

proposed a remarkably simple technique that runs in time O(m log 2 n log(1/6)) [38].

In all these cases, graph theoretic ideas, particularly notions of graph approxima-

tion, have proved crucial to the construction of the solver.

The rich and bidirectional interplay between graph theory and linear algebra offers

great promise, and we explore part of the story in this thesis.

Spectral sparsification

The tangled connections between linear algebra and graph theory are perhaps most

vividly on display in the context of spectral sparsification. On a high level, a spectral

sparsifier of a dense graph G is a weighted subgraph of G that is sparse, yet gives a

strong approximation of G in an algebraic sense. Namely, the Laplacian matrices LG

and LH of G and H are good spectral approximations of each other.

In particular, sparsifiers seem especially well-suited for the problem of solving

linear systems in graph Laplacians; if H is a sparsifier of G, then the Laplacian of H

is a good preconditioner of the Laplacian of G. A natural question, then, is whether

we could construct a sparsifier quickly enough for it to be useful for speeding up linear

system solving.

A very conceptually elegant and fast construction for spectral sparsifiers was given

14

by Spielman and Srivastava. However, it relies on efficient algorithms for solving linear

systems, and thus, in its original form, is not itself useful for linear system solving.

Nevertheless, Koutis, Miller, and Peng used ideas from this algorithm in their papers

[41, 42]. On a high level, their work asks how far one could push the Spielman-

Srivastava construction without relying on solving linear systems. The objects they

get in that manner (which they call incremental sparsifiers) are moderately sparse,

and also provide an adequate spectral approximation. While not as good in quality or

sparsity as spectral sparsifiers, they nevertheless provide preconditioners that allow

them to give fast solutions to linear systems.

Contributions of this thesis

In this thesis, we improve and extend algorithms for spectral sparsification. Because

of the connections between spectral sparsification and linear system solving, we get

faster algorithms for the latter problem as well.

Our first contribution involves speeding up spectral sparsification using a number

of techniques. We start with a natural question of finding tradeoffs between output

size and the running time of the sparsification algorithm. Specifically, we ask whether,

by tolerating output graphs that are bigger (by a polylogarithmic factor) than the

ones output by Spielman and Srivastava, we can make the algorithm run faster. It

turns out that we can do this using the internals of the Koutis-Miller-Peng linear

system solver. By running the original Spielman-Srivastava algorithm on the result

of this procedure, we are able to give a faster spectral sparsification algorithm.

We then introduce a number of other techniques to push down the running time

of the algorithm even further. At each step, we need a more precise understanding of

the internal details of Spielman and Srivastava's algorithm. At the end, we are able

to give an O(m(log log n)0 (1)) algorithm for spectral sparsification of graphs that are

sufficiently dense.

Our faster algorithms for spectral sparsification directly go through to speed up

several numerical algorithms. In particular, the first technique gives the fastest run-

15

ning time algorithm known for computing approximate Fiedler vectors, which has

implications for numerous problems, such as graph partitioning. Additionally, the

sparsifiers produced by our O(m(log log n)O(1)) algorithm can be used for precondi-

tioning linear systems, and because the algorithm is so efficient, this procedure gives

a faster algorithm for linear system solving. The results hold additional theoretical

appeal, since our construction is the first one that makes Spielman-Srivastava-type

sparsifiers useful for linear system solving.

Our second contribution is a low-space algorithm for spectral sparsification. The

algorithm given by Spielman and Srivstava first performs a computation on the entire

dense graph in order to output probabilities associated with all the edges, and then

uses these to sample edges in order to obtain a sparsifier. However, for dense graphs

of the type one would eventually like to sparsify, this may be an unreasonable resource

requirement: in particular, we may not be able to store the entire graph in memory

in order to compute the probabilities.

We would like an algorithm to work when we receive a graph as a stream of

edges, and only have a small amount of storage space to work with. Ideally, the work

space should not be much larger than the space required to store the sparsifier we

eventually output. Furthermore, we would like the procedure to have a running time

that is comparable to that of the original Spielman-Srivastava algorithm.

This question has been studied in the context of cut-preserving sparsifiers by prior

work, as well as by work that is concurrent with and independent from ours. We are

able to give a conceptually elegant solution for the case of spectral sparsification,

based on a simple "rejection sampling" technique.

Organization

In Chapter 2, we give a basic introduction to spectral graph theory, focusing primarily

on properties of the graph Laplacian. We also introduce the connection between

electrical flows and random walks on graphs. Chapter 3 introduces the concept of

spectral sparsification, and presents the algorithm due to Spielman and Srivastava.

16

We give a self-contained analysis of this algorithm, and also present and analyze a

different sparsification procedure. This new algorithm for sparsification is original to

our work, and also proves useful in the semi-streaming algorithm.

We continue our overview of background material in Chaper 4, where we sum-

marize recent work on approximately solving symmetric diagonally dominant linear

systems. While still expository, this material is quite cutting-edge.

In Chapter 5 we present our faster algorithms for spectral sparsification, and their

applications to designing faster linear system solvers. We also give the fastest known

algorithm for computing approximate Fiedler vectors.

Finally, in Chapter 6 we give our space-efficient algorithm for spectral sparsifica-

tion.

Throughout, we have included a number of clearly-marked optional sections.

These sections present research material that is inchoate at this stage, though still

interesting, or background material that is not strictly necessary to the subsequent

discussion. The optional sections can be safely skipped on first reading.

Bibliographic notes

This part of the dissertation is based on published works with several coauthors

(Jonathan A. Kelner, Ioannis Koutis, and Richard Peng). Our semi-streaming al-

gorithm was published as [37], and a journal version is forthcoming in Theory of

Computing Systems. Our results on improved algorithms for spectral sparsification

and linear system solving were originally published as [40] and improved in a followup

work [39]; an early version of these ideas was presented in the unpublished manuscript

[46]. We have reorganized some of the material to improve the flow of the current

document. For example, some of the background material we present is interspersed

with original results from those papers.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

Chapter 2

Background

Spectral graph theory is the study of graphs using certain matrices associated to

them. In particular, the Laplacian, which we define in this chapter, is the funda-

mental object that gives an "algebraic encoding" of the graph. Before we define the

Laplacian, however, we need to review some material on symmetric positive semi-

definite matrices.

2.1 Positive semi-definite matrices

Let A be an n x n symmetric matrix. It is a standard fact that it is diagonalizable with

real eigenvalues and orthonormal eigenvectors. If Ai are the eigenvalues and ua are

the corresponding eigenvectors, then we can write A as A = 1' Aiuiu[= UAUT.

Definition 2.1.1. We say that A is positive semi-definite and write A >- 0 if all the

eigenvalues of A are non-negative.

Equivalently, A is positive semi-definite if for all x E R" it is the case that xT Ax >

0.

We say that A is positive definite and write A - 0 if all its eigenvalues are strictly

greater than 0, or equivalently, xTAc > 0 for all x E R7 .

Suppose that A is positive semi-definite, and its eigenvalue decomposition is given

as EZi=k+1 Aunui[, where the Ai in the sum are strictly greater than zero (in other

19

words, we let A1 = A2 = - = Ak = 0). Then, we denote by A+ the Moore-

Penrose pseudo-inverse of A. One way of defining it is as A+ = E k+1 A 1 T

From this, it is not hard to see that AA+ = A+A, and is equal to the projection onto

span(uk+l, -.) Un)-

Given two n x n matrices A and B, we say that A -< B if B - A >- 0. In other

words, A -< B if and only if for all x E R" it is the case that XTAx < XTBx. Note

that A and B might have very different eigenvectors.

Finally, it is a standard fact that for a symmetric matrix A it is the case that

im(A) = ker(A)'.

We now give a few standard results on positive semi-definite matrices. The proofs

are fairly simple, but the results are fundamental to our work, so we include them for

completeness.

In what follows, and throughout the work, we will use notation such as A-1/ 2 even

when A is not invertible. The notation will mean (A+)1/2

Proposition 2.1.2. Suppose that A and B are positive semi-definite symmetric ma-

trices that have the same kernel. Then A -< B if and only if B-1/2AB- 1/2 -< I, where

I = A+A = B+B is the projection onto the image. Similarly, A - B if and only if

B-1/2AB-1/2 I.

Proof. We will only prove the first statement, as the second one is similar.

In what follows, it is enough to prove all statements about inequality of quadratic

forms for vectors in ker(A)' = im(A), as cross terms will cancel.

Suppose that A -- B. Then, for all x - ker(A)' it is the case that XTAx < XTBx.

Then, for any y, we have yTB-1/ 2AB-1/ 2y yTB-1/ 2BB-1/ 2y =Ty, which shows

that B- 1/ 2AB-1/ 2
-.

Conversely, suppose that B- 1/ 2AB-1/ 2 -< I. We want to show that XTAx < XTBx

for all x. Take y = B 1 /2 x. Then, XTAx = yTB-1/ 2AB-1/ 2 y, which, by the hypothesis,

is at most yTy - XTBx, as required. l

In the propositions that follow, we let iim(A) denote the projection onto the image

of A (and in fact, Iim(A) = AA+).

20

Proposition 2.1.3. Suppose 0 -< A - Iim(A). Then, A+ > im(A).

Proof. Let Amin and Amax be the smallest and biggest nonzero eigenvalues of A re-

spectively. Then, by the hypotheses, Amin > 0, and Amax < 1. Furthermore, A-' and

A- are the largest and smallest eigenvalues respectively of A+. Because the smallest

eigenvalue of A+ is greater than 1, it follows that A+ > Iim(A), as required. E

Theorem 2.1.4. Suppose 0 - A -i B and A and B have the same kernel. Then, it

is the case that B+ -< A+.

Proof. Suppose that 0 -< A < B. Then, we have 0 -< B- 1/2AB-1/ 2 -3 I. By Propo-

sition 2.1.3, we know that B 1 / 2A+B 1 / 2 > I. But that means that A+ > B+, as

desired. R

Proposition 2.1.5. Let A, B and C be positive semi-definite symmetric matrices,

and suppose that A -< B. Then, Tr(CA) < Tr(CB).

Proof. By cyclicity of the trace, we know that Tr(CA) = Tr(C1/2 AC 1/2), which is

equal to K., xC/2 AC/V2 xi. Here, Xi is the n x 1 vector with 1 in the ith entry and

0's everywhere else. Because A -3 B, this quantity is less than or equal to

xC1 2 BC 1/ 2x = Tr(CB).

This completes the proof. El

2.2 Three matrices associated to a graph

Let G = (V, E) be an undirected graph with n vertices and m edges. We identify the

vertex set V with {1, 2, ... , n}. Then, AG is the adjacency matrix of G, which is an

n x n matrix with 0's on the diagonal and a 1 at (i, J) if there is an edge between i

and j. Since the graph is undirected, AG is a symmetric matrix.

Additionally, we define DG to be the diagonal matrix whose ith diagonal entry is

the degree of vertex i.

21

3

1 2

4

Figure 2-1: An example graph

It is easy to extend these notions to weighted graphs (we assume that all weights

are nonnegative). Indeed, the degree of each vertex is now the weighted degree, i.e.

the sum of weights of edges incident on the vertex. We can let DG be the diagonal

matrix of weighted degrees. As for AG, the (i, y) entry is now given by the weight

wij of the edge between i and j.

We are now ready to define the Laplacian, which plays a crucial role in spectral

graph theory, and by extension, in this thesis. The definition works equally well for

unweighted and weighted graphs.

Definition 2.2.1. The Laplacian of G, written as LG, is given by LG = DG - AG-

For example, consider the (unweighted) graph G in Figure 2-1. It is easy to see

that

0 1 0 0 1 0 0 0

1 0 1 1 0 3 0 0
AG= DG

0 1 0 1 0 0 2 0

0 1 1 0 0 0 0 2

and

1 -1 0 0

-1 3 -1 -1
LG 0

0 -1 2 -1

0 -1 -1 2

22

2.3 Properties of the Laplacian

The Laplacian has numerous useful properties, which we summarize below. Firstly,

for an edge e = (i, j) of G, we let b, E R' be the vector Xi - Xj, i.e. the vector with 1

at i, a -1 at j and 0 everywhere else. There is a degree of ambiguity in what endpoint

of e should take the positive sign, and we make this choice arbitrarily. In the end, it

will not matter.

With this definition, it is easy to see that LG = eEG We bg . If we let Le be the

Laplacian of a graph with vertex set V and whose only edge is e, it is easy to see that

Le = Webeb T. Then, LG = ZeCG Le.

From this one can show that if x is a vector, then

XTLGX we (Xi - Xj)2

e=(i,j)EG

In particular, since this sum is always non-negative, this shows that the Laplacian

is a positive semi-definite matrix. Furthermore, if G is connected, then LG has a

one-dimensional kernel spanned by the constant vector. We define In_1 to be LG G,

the projection onto the (n - 1)-dimensional space ker(LG)'-

Let us consider a special vector x, namely the characteristic vector Xs of some

subset S of the vertices. This xs is a vector that is 1 at elements of S and 0 elsewhere.

What edges contribute to the sum in the expression for x7TLGxS? These are precisely

the edges (i, j) such that i C S and j S or vice versa, i.e. the edges crossing the cut

(S :). Therefore, xTLGxs is exactly the sum of weights crossing this cut, which is

known as the cut value.

Let BG be an m x n matrix with rows indexed by edges of G and columns indexed

by vertices, and whose eth row b T. Let WG be the m x m diagonal matrix indexed

by edges whose eth diagonal entry is we, the weight of edge e. Then, it is not hard

to see that LG = BTWGBG. We will often drop the subscripts on LG, BG, and WG

when the graph we are dealing with is clear from context.

23

2.4 Random walks on graphs

Let us consider a random walk on the graph G. We start at any vertex, and if we are

at vertex i at a given time step, we visit a neighbor j with probability proportional

to the weight of the edge between i and j. In other words, the probability of visiting

j is wig,/di.

This process is a Markov chain with state space given by the vertices of G. The

transition matrix is MG = DjAG. For the graph in Figure 2-1, the transition matrix

is

0 1 0 0

1/3 0 1/3 1/3

0 1/2 0 1/2

0 0 1/2 1/2

Suppose that p E R' is a probability distribution on the vertices of G, i.e. each pi

is non-negative and they all sum to 1. Then, the probability distribution after r steps

of the random walk is given by (MGT)rp.

Random walks on graphs are very natural objects of study, and, in addition,

have numerous applications ranging from Markov Chain Monte Carlo methods to

local graph partitioning. We refer the reader to any standard book or article for

more information. One rather surprising application, which will be useful to our

subsequent discussion, is the following simple algorithm for generating a uniformly

random spanning tree of an unweighted graph G, due to Aldous [7]: We start a

random walk at any vertex, and, as the random walk goes across edges, we add these

edges to the tree provided they do not make a cycle with the previously added edges.

2.5 Electrical flows

The connection between spectral graph theory and electrical network theory has re-

ceived a great deal of attention in recent years. We think of the graph as a network of

nodes (vertices) and wires (edges), where an edge e with weight we has conductivity

We (equivalently, its resistivity is we-)

24

Let us consider driving one unit of current between vertices i and j. Think of

attaching a power source to i and j and dialing up the voltage until one unit of

current flows between them.

In this case, what are the voltages at all the nodes? Let 4 E R' be a vector of

voltages at the nodes (so that 4), is the voltage at vertex r). Using Kirchoff's rules,

we see that the net current coming into vertices r other than i and j is 0, whereas

the net current coming into j and i is 1 and -1 respectively. This means that

0, if r i,j

Ws,r(41)r - s) = drir - ZWs,r s = I, if r = i (2.1)
s-T s~T

-1, if r=j

The notation s - r means that there is an edge between r and s, and Wrs is the

weight of the edge (r, s) in G.

This equation is basically a statement of Kirkoff's law. The quantity 'Dr - 4) is

the potential difference between r and s; by Ohm's Law, dividing it by the resistivity

of the edge (r, s), or equivalently multiplying by Wr,s gives the current from s to r

along the edge. Then, the first sum in (2.1) is just the net current flowing out of

vertex r, which is given by 0 and ±1 depending on what r is, as in the right hand

side of the equation.

Notice also that the sum for a given r is equal to the rth entry of LGI. It fOl-

lows that LGD Xi - Xj, the vector that is 1 at i, -1 at j, and 0 everywhere else.

Therefore, if we could compute the pseudoinverse of LG, we could compute 4 (at least

up to addition of the constant vector). Note that this is good enough, since differ-

ences in potentials, rather than potentials themselves, are the physically meaningful

quantities.

In summary, the vector of voltages is given by L'(Xi - Xj).

Definition 2.5.1. The effective resistance in G between i and j, denoted by RG (i,

is given by the voltage difference that would result between i and j if we drove one

unit of current between them.

25

From the above discussion, it is not hard to see that

RG(i, (X _ Xj)T L+(Xi - Xj) (2.2)

Indeed, 4D = L+(xi - xj) is the vector of potentials set up when we send a unit of

current between i and j and (X, - xj)T? is the difference in potential between the ith

and jth vertices. Therefore, effective resistances in G are given by quadratic forms in

L+ evaluated at particular vectors.

Suppose that e = (i,) is an edge of the graph. Then, we write RG(e) to mean

the effective resistance between the endpoints of e, i.e. RG (e) G(i, j). When the

graph G is clear from context, it will sometimes be convenient to denote RG(e) by

Re, and we use the latter notation extensively in some parts of the thesis.

Proposition 2.5.2. Let G be a connected graph. Then,

E weRG(C) n
ecG

Proof. We know that RG(e) = bT L~b = (L-1/ 2 be)T-(L1/ 2 be), which is equal to

Tr (L-1/2be be L-1/2) Then

S weRGe
ecG

We fT (L1/2bebeLG 1/2
eGG

= Tr WeLG 1/2bebeLG1/2

= Tr (z L- 1/2WebebTL- 1/2
\eG

= Tr(L- 1/2 LGLG 1/2)

= Tr(In_1)

- n-I

as required.

Another useful observation is the fact that if we are given a graph, and we modify it

26

r-1

by adding edges or raising the weights of existing edges, then the effective resistances

between pairs of vertices cannot increase. This will prove very useful in our subsequent

discussion, and is a crucial ingredient of our algorithm for sparsification in the semi-

streaming setting.

More formally:

Proposition 2.5.3 (Monotonicity). Let G1 be a graph, and let G2 be the graph we

get if we add edges to G1 or raise the weights of existing edges. Then, for all vertices

i and j it is the case that

RG1(j) RG2(i

Proof. Clearly, LG1 -d LG2. Therefore, L+G1 - L+2 , and the proposition follows by

the fact that effective resistances are just quadratic forms of Laplacians evaluated at

particular vectors. L

This proposition is also fairly clear from the physical model. An alternate per-

spective and proof of this fact is given in [44, Lecture 9].

2.6 Connections between electrical flows and ran-

dom walks on graphs (optional)

The concept of effective resistance has numerous connections to random walk prop-

erties of the graph. For example, for two adjacent vertices i and j, the effective

resistance between i and j is related to the probability that, given a random walk

starting at i, the walk will visit j before returning to i. Specifically, if we let p be this

probability, then we have p = 1/(diRG(i, j)). Furthermore, from this property, it is

not hard to see that when G is unweighted and (i, j) is an edge, the effective resis-

tance between i and j is exactly the probability that the edge (i,) is in a uniformly

random spanning tree of G.

We follow the presentations in [24, 44], and we assume that our graph is connected.

27

Definition 2.6.1. Let G be a graph, and i and j be vertices. The hitting time of i

to j, written 'Hij, is the expected number of steps it takes for a random walk starting

at i to visit j.

Definition 2.6.2. Given a graph G and two vertices i and j, the commute time

between i and j, denoted by Cij, is given by

'JWij +H Wj

i.e. the expected number of steps it takes for a random walk on G starting i to travel

to j and then return to i.

Note that the commute time is the same even if we flip the indices.

Let T be the (random) time that a random walk starting at i returns to i. Let Tj

be the first time that a random walk starting at i returns to i after visiting j. Clearly

T < Tij; by the time a random walk returns to i after it has visited j it may have

already returned to i previously.

Proposition 2.6.3. It is the case that E[T] = 2m/di.

Proof. The standard way to prove this fact uses the observation that in the stationary

distribution r of the random walk on G the probability of vertex i is 7i = di/(2m).

We sketch the argument. Consider starting a random walk of N steps, where N is

effectively infinite, at the stationary distribution -r. Then, the number of times the

walk visits i is N-ri, and the expected return time to i is the average interval between

visits to i. This is given by the length of the random walk divided by the expected

number of times it visits i, i.e. N/N7ri = 1/7ri.

We give a non-standard proof here. For ease of notation, we assume without loss

of generality that i = 1. Let pj be the expected number of steps to reach 1 starting

at j. Then, p1 = 0 and for j # 1 it is the case that pj = 1 + Ekgj(Wj,k/dj)Wk. To

see this, note that wj,k/dj is the probability of going to k from j. Then, the expected

time to return to 1 when starting from j is the average time to return to 1 from a

neighbor k of j (weighted by the probability of visiting k) plus 1 (for the initial step

28

to k). Multiplying through by dj and moving the sum to the left hand side, we see

that di(Pi - Ek-j Wj,k(Pk= dj. Therefore, (LG)j = dj for J # 1.

Now, (LGP)1 = dj 1 - Zk~1 Wl,k k, and under the assumption that 01 = 0 this

gives - Ek 1 WlkAP.

Therefore,

- k~1 Wl,k(Pk

d2

LGO 3

This system must be solvable, so it must be the case that the vector on the right

hand side is orthogonal to the kernel of LG, i.e. its entries add up to 0. Since y> d=

2m - di, we see this amounts to 2m - di - EZk- W,kk = 0, i.e. 1+ Ek-1 W,kAP =

2m/dI. Noting that the left hand side of this expression is the expected amount of

time it takes for a random walk starting at 1 to return to 1, we see that we have

shown the assertion of the proposition.

Now, notice that Cij = E[Tij]. We let p be the probability that a random walk

starting at i visits j before returning to i; it is not hard to see that p = Pr[Ti = Ti].

Furthermore, as in [24], we can see that

E[Tzj] - E[T] = E[T - T]

=pE [Ttj - TI|Tjj = T] + (I - p) E [Tjj - TI|T < Tjj]

(1 - p)E[Ti]

The last line follows because in the case that T < Ti, the walk has returned to i

without visiting j first. The expected additional time beyond T it takes to visit j is

exactly E[Tij].

The previous equation means that p = E[Tj]/E[Tjj]. Substituting in E[T] = 2m/di

and E[Tij] = Cij, we have proved:

29

Theorem 2.6.4. Given a random walk starting at i, the probability that it visits j

before returning to i is given by
2m

diCij

where di is the degree of i.

Let us now connect these concepts with electrical flows. Consider the vector

p, where Ok is the probability that a random walk starting at k visits j before i

(with the convention that the random walk visits the vertex at which it starts).

Then, clearly pi = 0 and pj = 1. Furthermore, for k # i, j it is the case that

Pk = (1/dk) fk wk,f(Pf. Indeed, this just decomposes the relevant probability de-

pending on the first step. The random walk visits node f with probability wk,e/dk,

and conditioned on this first step, the probability of visiting j before i is exactly pO

(this holds even if f is i or j).

It follows that (L O)k = 0 for k ({i, j} and oj - pi = 1.

Consider = -/RG(i, j). By adding a constant to all components of 4, we can

assume that Ji = 0; doing this does not affect the electrical flow produced by (D. We

know that (LO)k = 0 for k ({i, j} and - = 1. Therefore, by uniqueness of

solutions to the (discrete) Laplace equation, we must have O =

Now, the probability that a random walk starting at i visits j before returning to

i is exactly

wi,k(Pk = (L)i. (2.3)

The quantity (Lp)i, in turn, is the current flowing into i when the vector of voltages

is given by p, which is exactly 1/RG(i, j). Indeed, when the voltages are given by

D, there is one unit of current flowing out of i, and the statement follows since

O= - /RG(i,). We conclude that the desired probability in (2.3) is 1/(diRG(i)_

By setting 2 m/Cij equal to 1/RG(i, j), we see:

Theorem 2.6.5. The commute time Cij is given by 2mRG (j)

Furthermore, we can now easily prove a well-known result in the case that there

is an edge between i and j.

30

Corollary 2.6.6. Suppose G is unweighted. If there is an edge between i and j, then

the commute time between i and j is at most 2m.

Proof. Indeed, if there is an edge between i and j, then the effective resistance between

i and j is at most 1, hence, by the above theorem, the commute time is at most 2m,

as required. l

Finally, we relate the effective resistance of an edge e to the probability that

the edge will be chosen in a random spanning tree. Let e = (i, J) and consider

running Aldous's algorithm for generating a random spanning tree using a random

walk starting at i. Let q be the probability that e will be in a random spanning tree,

and p, as above, be the probability that a random walk starting at i visits j before

returning to i.

Then, we see that
1

q + (1 -p)q.

Indeed, let us condition first of the events that the random walk does or does not

visit j before returning to i. In the former case, with probability 1/di, it visits j on

its first move, and in that case the edge is taken to be in the spanning tree. On the

other hand, if it visits any other vertex first but still visits j before returning to i,

then there is no way at e will be taken, since it will cause a loop.

Condition now on the event that the random walk returns to i before visiting .

Then, in terms of visiting j, we are back to where we started, and the edge is taken

for the spanning tree in the same circumstances that it is at the beginning of the

random walk. This happens, in particular, with probability exactly q.

Therefore, by solving the above equation for q, we see that q = 1/(dip) = RG (i)

as required.

Theorem 2.6.7. In an unweighted graph G, the probability that an edge e is in a

random spanning tree of G is exactly RG(e).

As an example, consider an edge e whose removal would disconnect the graph.

The effective resistance of this edge is 1, and it is also in every spanning tree of the

graph, so the probability of it being in a random spanning tree is 1 as well.

31

This theorem also gives us another intuitive explanation for the monotonicity law

(Proposition 2.5.3). Indeed, suppose that we start with an unweighted graph G1 and

add edges to produce a new graph G2. Consider an edge in e of G1. Since we have

added new edges to make G2 it makes intuitive sense that the probability that this

edge is in a random spanning tree of G 2 is at most the probability that it is in a random

spanning tree of G1. Indeed, with new edges added, there are more opportunities to

make spanning trees, and any given edge of G1 becomes less essential.

2.7 Solving SDD linear systems

In this section, we summarize some results on approximately solving symmetric di-

agonally dominant linear systems.

Definition 2.7.1. We say that a matrix A is symmetric diagonally dominant (SDD)

if it is symmetric and for all i it is the case that Ai ;> E i I Ai

Suppose we are given an SDD matrix A that is n x n with m nonzero entries. Say

we want to solve the system Ax = b, and, in a slight abuse of notation, let x be the

true solution. The methods developed in recent years allow us to find a vector : such

that |KX - |XHA < 3HXI A, where A - |Ais the A-norm (i.e. ||YHJA= yTAy). The running

time is O(m log0o1) n log(1/6)).

We may also try to "solve" linear systems in the case that A is not invertible. In

this case, the "solution" is A+b, and the results from above apply to this case as well.

In fact, Spielman and Teng found it useful for their analysis to consider the solver

as a linear map. To do this, they ran the iterative steps a fixed number of times, and

used Chebytschev iterations-essentially iteratively computing a polynomial of the

matrix A-rather than the conjugate gradient method.

When this is done, we can get the following stronger result, using the algorithms

of Koutis, Miller, and Peng [42]. Specifically, the solver linear map defines a linear

map that approximates A in the spectral sense:

32

Lemma 2.7.2. Let A be an SDD matrix. There is a symmetric operator A such

that

1-6)A- A6 -- (I + 6) A

and that for any vector b, the vector A+b can be evaluated in O(m log nlog(1/6)) time.

The notation O(-) hides factors polynomial in log log n (see Section 2.8 for more

details).

The condition that A b can be quickly evaluated just says that we can solve linear

systems quickly; the quantity is the approximate solution to the linear system.

This statement is a little different than the analogous one in [70]; in that paper,

the operator approximated A+ rather than A. This is a minor difference, however,

and the two viewpoints are equivalent. In our perspective, we only deal with the

operator A6 through its pseudoinverse.

2.8 A note on big-O notation

Before proceeding much further, we should clear up some of the notational inconsis-

tencies in the literature. Throughout this thesis, O(.) will hide constant factors, O(-)

will hide factors of logo() n (i.e. polylogarithmic factors), and O(-) will hide factors

polynomial in log log n. The papers [41, 42] use O(-) where we use 0(.).

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

Chapter 3

Spectral sparsification

We are now ready to introduce the concept of spectral sparsification, which plays a key

role in this work. After reviewing the definitions and basic properties, we will show

the algorithm due to Spielman and Srivastava for constructing a spectral sparsifier.

We will provide a full analysis of this algorithm, which is somewhat different from

the one presented in [69], but which resembles the argument in Srivastava's thesis

[71]. We also propose and analyze an alternative algorithm, which is useful in our

semi-streaming construction.

3.1 Definitions

Let G be a graph and H a weighted subgraph of G (i.e. all edges of H are edges of

G, though the weights might be different).

Definition 3.1.1. With G and H as above, we say that H is a 1 ± c spectral sparsifier

of G if it is the case that

(1 - E)LG - LH & (1 + E)LG (3.1)

In other words, H is a 1±6 sparsifier of G if the Laplacians of G and H approximate

each other well in the spectral sense.

Spectral sparsification is a very powerful notion of graph approximation. If H is

35

a sparsifier of G, it approximately preserves numerous properties of G. For example,

if A, < A2 < - < A, are the eigenvalues of L0 and li < Z2 K - - , are the

eigenvalues of LH, then it is the case that (1 - E)Aj < A2 < (1 + E)Aj (see, e.g. [69]).

Because values of cuts are given as quadratic forms of Laplacians evaluated at

particular vectors (namely the characteristic vectors of one side of the cut), we see

that a spectral sparsifier of G preserves cut values to within a 1 ± C factor. Cut-

preserving sparsifiers (also known as combinatorial sparsifiers) were introduced by

Benczdlr and Karger [12] in the context of cut and flow problems, and our prior

observation shows us that the notion of spectral sparsification is at least as strong as

the notion of combinatorial sparsification. In fact, one can prove that it is strictly

stronger. In particular, there exist graphs G and cut-preserving sparsifiers H such

that the H do not satisfy the properties of spectral sparsification.

By taking pseudoinverses, we also have the following inequality.

L -- L_ I L (3.2)
1+ 6 1 - 6

Since effective resistances are given by the quadratic form defined by a Laplacian

pseudoinverse evaluated at at certain vectors, it follows that H preserves effective

resistances between vertices in G to within a 1/(1 - c) factor. This observation will

prove crucial in our semi-streaming algorithm.

Of course, in order to be useful for speeding up approximation algorithms, we

would like the graph H to be as sparse as possible. Since G can have up to 0(n 2)

edges, an edge count that is 0(n log0o 1) n) is considered fairly good. In fact, the

algorithm due to Spielman and Srivastava, which we review and extend in this work,

gives us a graph of O(n log n/E2) edges. Batson, Spielman, and Srivastava [11] gave

a deterministic polynomial-time algorithm for constructing a sparsifier with O(n/C2)

edges. However, their algorithm, while still polynomial time, is significantly slower.

36

3.2 The Spielman-Srivastava algorithm

The first constructions of spectral sparsifiers were quite complicated. In 2008, Spiel-

man and Srivastava gave a conceptually elegant procedure that also produced sparser

results. Like the algorithm of Benczdir and Karger, theirs is based on a random sam-

pling procedure, where we take edge samples with replacement and add them into

the sparsifier with certain weights.

We sample edges with probabilities proportional to their "importance" in the

graph. In particular, at least for an unweighted graph, one intuitive measure of the

importance of an edge for problems related to cuts and connectivity is how likely that

edge is to appear in a randomly generated spanning tree of the graph. As we saw

before (Theorem 2.6.7), this quantity is given by to the edge's effective resistance.

In the Spielman-Srivastava algorithm, the probability of picking an edge e at each

step is proportional to its weight multiplied by its effective resistance RG(e). In other

words, the probability of sampling an edge e is given by weRG(c)/(n -

Algorithm 1 Sparsify
Input: G = (V, E, w)

Set H to be the empty graph on V.
for i 1 to N = O(n log n/c 2) do

Sample edge e E G with probability p, proportional to weRG(C) (i.e. pe
weRG(e)/(n - 1)) and add it in with weight we/(Npe) to H

end for

3.3 Analysis of the Spielman-Srivastava algorithm

The result we get on the Spielman-Srivastava algorithm is a little stronger than what

the authors gave in their paper. This is because we use a stronger concentration of

measure theorem [74, 32].

In order to simplify notation in the analysis, we will assume that G is unweighted.

It is straightforward to adapt the proof to the general case.

Theorem 3.3.1. The Spielman-Srivastava sampling algorithm (Algorithm 1) pro-

duces a 1 ± e sparsifier H of G with high probability.

37

We do this by reducing the sparsification problem to that of approximating the

projection matrix In- = LGL+. Recall, as before, In- is the projection onto ker(LG)-

We know that LG= eEG bebT. Multiplying both sides of the equation by L-1/2

on the right and left, and letting ve = L 1 / 2 be, we see that ZecG VeV T = In-1. The

Spielman-Srivastava sparsification scheme is essentially a way of sampling the ve to

get something close to the matrix In1. This will in turn be enough, by the following

lemma.

Lemma 3.3.2. Suppose that we have Z _WVejV[- In_1 < e for some ei and

weights wi. (Here, is the L2 operator norm.) Then, taking the graph H obtained

by adding edges ei with weights wi gives us a 1 ± e spectral sparsifier of G.

Proof. We note that to prove that H is a 1 ± e sparsifier of G it is enough to show

the inequality (3.1) for all x C ker(LG)', rather than all x E Rn. Indeed, writing a

given x E Rn as x = y + z for y E ker(LG)' and z E ker(LG), we will see that all

terms involving z will be 0.

For a matrix A, the condition ||A - In-1I < means that XTAx - XTXI < EXTX

for all x. This amounts to saying that

(1- e)xTX < X T Ax < (1 + e)XTX

for all x.

Now, for a given y E ker(LG)', we can write it as Lax for some x, and yTLGY

xTx. Furthermore, if A = wiviv [, we have xTAx = yTLGALGy, which is equal to

yT (Ei wibebT) y, which equals YTLHY for H as defined in the theorem statement.

From this, it is easy to see that (1 - e)LG -< LH -< (1 - E)LG, as required.

Proof of Theorem 3.3.1. For i from 1 to N let ei be an edge sampled with probability

proportional to its effective resistance. We will show that

N (1 pei)veive -ini E (3.3)
i=1

38

holds with high probability. If the inequality holds, then Lemma 3.3.2 it is easy to

see that the graph H obtained by adding in edges ej with weight 1/(Npe,) is a 1 ± c

sparsifier of G.

Note that ||VeV || = ||Ve||2 = bT L+be = G(e). Write VeVe = perT T where as ine e RGe) e, reasi

the algorithm p, = RG(e)/(n - 1). Note that each Te has norm r/n - 1 (and hence

TeTf has operator norm n -1). Further, we see that if p is the probability distribution

on edges assigning e a probability of Pe then the expected value of Ter with respect

to p is Ia_1. Because TeF' = (1/pe)VeVT, we see that the probability in (3.3) is exactly

Pr ZTeTe - In1 <e . (3.4)

The Ahlswede-Winter Theorem (a matrix version of the Chernoff bound) allows us to

analyze the deviations from the expected value that we get when we independently

sample. Using [74, Corollary 3] (also proved in [32]), we see that the probability in

(3.3) is at least 1 - n exp (4 42). The n - 1 in the denominator of the exponential

function comes from the fact that each TeT has operator norm at most n - 1 (it is

exactly n - 1 in this case).

By taking N = O(n log n/c 2) samples, we can make the probability larger than

1 - n-d; we can get the claim for any given d by taking a big enough constant in the

expression for N.

Therefore, we see that by sampling the TeTT with the appropriate distribution,

we get an approximation to the identity with high probability. Noting that TeTT

(1/pe)VeVTj, we see that we get a 1 ± e sparsifier with high probability. El

The argument in [69] also required showing that by estimating the effective resis-

tances, one could still get a high quality sparsifier. This is easy to prove given our

formulation.

Corollary 3.3.3. Suppose that we have estimates Ze for the effective resistances.

Consider sampling edges with probability P, that is proportional to Re, i.e. Pe =

Re/ (Zf G f). If all the Pe are at least (I/ape, then by running the algorithm for

39

generating H with N replaced by aN we will have the same high probability guarantee

on H being a 1 ± c sparsifier of G as in the original algorithm.

Proof. Write vev[= Pe'ie-f, where -e = /pe/peTe, and therefore ?jfjT|| < (n -

1)pepe, which is at most a(n - 1). Then, analogously to the above proof, we see that

the probability in (3.4) with the Te, replacing the re, is now at least

S2N'
1-nexp 4a(n - 1))'

where N' is the number of samples we take. Therefore, taking N' = aN gives us the

desired high probability claim.

Koutis, Miller, and Peng [41] had a slightly different perspective on sparsifying

using approximate values for effective resistances. Their result is essentially the same

as the corollary proved above. In fact, the proof we give simplifies the one in [41].

Corollary 3.3.4. Given a graph G, let the S, for each edge e be numbers such that

Se > we RG(e) for all e. Let S = ZeG Se. Then, by taking O(S log n) samples in the

Spielman-Srivastava sampling procedure we obtain a subgraph G' of G which, with

high probability, satisfies G -< 2G' -s 3G.

Proof. The probability with which we sample edge e is Se/S which is at least weRG(e/S.

The latter quantity is equal to pe/(S/(n - 1)). Therefore, by Corollary 3.3.3, taking

(S/(n - 1))O(n log n) = O(S log n)

samples is enough to get the approximation guarantee with high probability. (We

remark that the desired approximation guarantee in the theorem has a constant E,

which we absorb into the O(-) notation for the number of samples.) F1

Note, in particular, that if Se = weRG(e), then the above proposition tells us to

take O(Slog n) edges, where S = ECG Se = n - 1. This matches the result that we

need O(n log n) edges to get a sparsifier when we use the correct effective resistances

to compute the sampling probabilities.

40

3.4 A new algorithm for spectral sparsification

Instead of sampling edges with replacement, we can also run a procedure where we

consider each edge, and accept or reject it with a certain probability. In this case,

the number of edges in our sparsifier will be a random variable (though one tightly

concentrated around its mean).

Consider the following algorithm:

Algorithm 2 Alternative sparsify
Input: G
Output: H, a 1 ± c sparsifier of G (with high probability)

for all edges e of G do
for i from 1 to N = O(n log 2 n/c 2) do %Run this loop implicitly

With probability pe = weRG(e)/(n - 1) add e to H with weight

we/(Npe)
end for

end for

Nafvely, it looks like the sampling should take O(mN) time. However, we run

the inner loop implicitly: the number of times we pick edge e follows a binomial

distribution, and we can sample this quickly to drastically reduce the running time.

Indeed, the probability that we get j copies of edge e is O3 := (I)p(- pe)Nj.

Therefore, to sample the inner loop for a given edge e, we pick a uniformly random

r from [0, 1]. We .compute i3, and if r < 43o, then we do not include e in the spar-

sifier. Otherwise, we generate /1, /2, etc. in turn, until we have found a j such that

I #k I < E3 =0 Ok; we add j copies of e to H. For a particular edge e, the

total running time is 0(1) (to generate r, compute /o, and compare the two) plus a

constant times the (random) number of samples of e we take.

Thus, because the total number of samples we take throughout the algorithm is

O(N) with high probability, we have:

Proposition 3.4.1. The total running time of Algorithm 2 (if we know all the pe) is

0(m + N) = O(m).

We know that 0(m + N) = 0(m) in the regime of interest because sparsification

41

only makes sense when the number of edges in the sparsifier, O(N), is much smaller

than that in the original graph.

Now we are ready to prove the algorithm's correctness.

Theorem 3.4.2. The algorithm above produces a 1 ± c sparsifier of G with high

probability. Further, with high probability, the number of edges in the resulting graph

is O(N) = O(n log 2 n/c 2).

Again, to simplify notation we assume that G is unweighted.

Proof. For i from 1 to N, let Xi,e be the random variable that is TF% =T (1/Pe)VeVT

with probability Pe and 0 otherwise. Let Ai,e be the random variable that is 1 if Xi,e is

nonzero, and 0 otherwise. Then, E[Xi,e] = vevT. Further, for a given i, we know that

E [Zee Ai,e] , the expected number of nonzero Xi,e (over all the e in G), is exactly

eEG Pe = 1, and, by a Chernoff bound, is at most O(logn) with high probability.

Let Y = ECG Xi,e. We have that E[Y] = >e E[Xi,e] = I_. Further, by the

triangle inequality, we have that ||Y|| is at most n - 1 times the number of nonzero

Xi,e (since the TeT all have norm n - 1), and is thus at most 0(n log n) with high

probability. Let Y = (1/N) j=1 Yi. Then E[Y] = I,_,.

We claim that

Pr[IY - Ing|| > e] < ne- nog) (3.5)

This is once again proved by matrix-valued Chernoff bounds, but the proof is a

little more complicated since |jY|| can be large. However, this happens rarely, and

does not affect the overall result.

Consider the auxiliary random variable fi, which is the same as Y when at most

0(log n) of the Xie (over e E G) are nonzero, and 0 otherwise. We will prove that the

expected value of Y is very close to In-1. Further, since 0'j = (n log n), we will be

Nable to apply matrix Chernoff bounds to prove that K= ?' is tightly concentrated

around its expectation, hence to NIn_1 (since E[YJ] ~ E[Y]). Finally, because Y and

Yi coincide overwhelmingly often, we will be able give a strong bound the probability

of E> Y deviating from its expectation.

42

We know that YI = E + (Y - Yi), hence

E[Y] = E[Y]+E[Y- 1|Yi =Y1]Pr[Y=Y]+E[Yi-Yi|Y #Yi]Pr[Y Yi].

The second term is 0, and the third term is E[Yjif $ Y] Pr[' # Y] since the only

time that Y can differ from Yi is when Yi is 0.

Thus, we have I,_, = E[Y] = E[Y2]+ Pr[Y $ Y]E[Y Yi]. Now, each draw of

Y has norm at most 0(n3), since there are at most 0(n2) of the TeT[, each of norm

n - 1. Therefore, the norm of Pr[Y = Yj]E[Y I Y] can be made smaller than I/nd

for some d, since the probability Pr[Y f Yi] can be made small.

Therefore, In1 - E[>] < 1/n.

Now, E [j = NE[Yi], and

Pr EY - NE[f] > cNjE[Yi]j| log . (3.6)

This follows by matrix Chernoff bounds, specifically [74, Corollary 3]. We need the

n log n in the denominator of the exponent because O(n log n) is an upper bound on

the norm of the Yi.

Furthermore,

i - NI,,_1 < 5 - N E [Yij] + N||E [!] - In_1||.

Because E[Y2] is very close to In-,, the second quantity is tiny; with appropriate

constants it can be made smaller than any inverse polynomial in n. It is certainly

smaller than cN/2. Therefore,

Pr -NIn_ >,EN < Pr[- NE[] > EN/2J,

which is equal to Pr [' - NE[j] > (c/2jjE[Yji]j)NjjE[fY]j] . Using (3.6), we see

43

that this quantity is is at most

e E[0 (IEfl g n log n

(recall that E[lj] is very close to 1, so we can absorb its contribution into the 0(-)

notation). For N O(n log 2 n/E 2) as in the algorithm, this quantity is very small.

Let A be the event that Yi = Y for all i, which occurs with high probability. Then,

for any event B, it is the case that Pr[3] Pr[B, A] + Pr[B, A] < Pr[L, A] + Pr[A].

In particular,

Pr[Y - NIn1 > eN] Pr[Y - NIn_1 > EN, A] + Pr[A]

= Pr [(-- NI_1 > N, A] + Pr[A]

< Pr [ZY - NIni > EN + Pr[A]

(The second line follows because when A is true, Y = Y,, by definition.)

The final quantity is very small for N as above. This shows that Y is tightly

concentrated around its expectations.

Because

Y =T1p,)ev

where the ej are edges that were selected (with multiplicities), we see (again by

Lemma 3.3.2) that Algorithm 2 puts in edges correctly to give a 1 ± 6 sparsifier with

high probability.

To prove that the size of the sparsifier is O(N) with high probability, we con-

sider the Ai,e. Then, the size of the sparsifier is K=1 ZeEG Ai,e, whose expectation

is N. Further, it is a sum of independent {0, 1}-valued random variables, hence by a

Chernoff bound, it is tightly concentrated around its expected value.

Notice that our sparsifiers require 0(log n) more edges than the Spielman-Srivastava

sparsifiers. This is because of the stochasticity in the number of edges we select at

44

each i. This quantity is 1 in expectation, and is at most O(log n) with high probability.

By the same argument as the one used to prove Corollary 3.3.3, we see that if

we use estimates Pe = &/ (EfG Rf) such that Pe > (l/a)pe for all e, then we will

need to increase N by a factor of a in the algorithm to match the high probability

guarantee of the algorithm that makes use of the correct effective resistances.

The result is even more flexible. For example, if we can guarantee that pg/a <

Pe aPe, for some small a > 1 (it will be the case that a < 2 in our setting)

then by sampling using the probabilities P, we still get a 1 ± E sparsifier with high

probability. Indeed, the number of nonzero Xie is still O(log n), and the norm of the

Tee increases by at most an o factor, as in Corollary 3.3.3. We can thus carry the

proof through almost unchanged. As before, we can increase N by a constant factor

to overcome the increased error probability caused by our estimates.

Interestingly, the result holds even when ZeCGIe is something other than 1. The

added flexibility that the method offers is useful to our analysis.

3.5 Computing effective resistances

The algorithms we give above rely on knowing the effective resistances, as these give

us the required probabilities. The effective resistances can be computed exactly by

first computing L+, and then using the formula RG(i, (X, - Xj)TL+(Xi - Xj).

Unfortunately, while doing this is polynomial time, it is not efficient enough in

certain contexts. For example, many algorithms that are sped up by sparsifiers,

including Benczdlr and Karger's original application, proceed in two stages. First, we

compute a sparsifier of the input graph, and then we run the original algorithm on the

sparsifier. For this two-stage process to give a speedup, the sparsification algorithm

has to be extremely efficient (and in particular, it should take less time to sparsify

the input graph than to run the original algorithm on it).

As we noted, it is enough to use good estimates of the effective resistances, rather

than the exact quantities. This suggests a simple speedup: instead of using L+, we

could approximately solve linear systems in LG with one of the fast solvers. This

45

is not fast enough, however, since we still need to compute m quantities, each one

requiring an application of the solver.

An ingenious trick in the paper allows for estimating all the effective resistances

very quickly. First we can obtain a different expression for the effective resistance,

via a simple algebraic manipulation:

R' (i, j) =(Xi -xj)TL±(xi -xj)

S(Xi - xj)TL+LL+(xi - X)

S(Xi - xj)T L+BTW1/ 2W1/ 2 BL+(Xi - Xi)

S|Wx/2BL+() 2

The advantage of this definition is that it expresses the effective resistance as the

squared Euclidean distance of two points, given by the ith and jth column of the

matrix W 1/ 2BL+.

This new expression still involves the solution of a linear system in L. The

natural idea is to replace L with an approximation L satisfying the properties de-

scribed in Lemma 2.7.2. So instead of RG(i, J) we compute the quantities ?G (i _

W/ 2BL+ (Xi _ Xj) 2

How big does the 6 have to be in order to give us a constant approximation

guarantee (i.e. to approximate the quantities to within a constant factor)? In the

original construction, Spielman and Srivastava took it to be inverse polynomial in n.

In our work [40], we showed that in fact a constant 6 is good enough. This directly

improves the running time of the procedure by a logarithmic factor.

Lemma 3.5.1. For a given q, if L satisfies (1 - 6)L - i 2 (1 + 6)L where 6 = 1/8,

then the approximate effective resistance values RG(ulv) |W1/ 2BL+(x _ Xv 2

satisfy:

(1 - 17)RG (u, v) G A0 Qa, V) < (1 + r1)RG (U, V).

Proof. We only show the first half of the inequality, as the other half follows similarly.

46

Since L and L have the same null space, by (3.2) the given condition is equivalent to:

1L+ + L.
1+n - 11 -

Since L+ - +,+ we have

RG(u, v) (Xu - Xv) (XU - Xv)

< (1+ 6) (XU - XV)TL(XU - Xv)

+ 1 6) (XU - XV)TLLL(X, - Xv).

Applying the'fact that L -< (1+ 6)L to the vector L+ (xu - Xv) in turn gives:

RG(U, V) < (1 + 2(XU - Xv)T LLL+(Xu - Xv)

(1 + 6)2||W 1/ 2 BL+(XU - XV) 2 AG(UV)

The rest of the proof follows from <1 - ?)/4 by choice of 6. l
(1+6)2 -

Of course, even though we can now quickly solve the linear systems using an

approximate solver, there are still m systems to be solved. To work around this

hurdle, Spielman and Srivastava observe that projecting the vectors to an O(log n)-

dimensional space preserves the Euclidean distances within a constant factor (with

high probability), by the Johnson- Lindenstrauss theorem. Algebraically this amounts

to computing the quantities ||QW"/ 2BL+(xi - Xi)| 2, where Q is a properly defined

random matrix of dimension k x m for k = 0(log n). The authors invoke the result

of Achlioptas [2], which states that one can use a matrix Q each of whose entries is

randomly chosen in {±I/vk}.

Since each ||WI/2BL+ (xi - X) 112 is within a constant factor of RG(i, j), and mul-

tiplying by Q preserves the lengths of all of these vectors up to a constant factor (with

high probability), we see that the ||QWI/2BLj(Xi - Xj) 12 are also within a constant

factor of RG(z

The construction of the sparsifiers can can thus be broken up into three steps.

47

1. Compute QWI/2 B. This takes time O(km), since B has only two non-zero

entries per row.

2. Apply the linear operator L+ to the k columns of the matrix (QWl/ 2B)T, using

Lemma 2.7.2. This gives the matrix Z = QW 1/2B-L. The running time of

this operation is ((mlog 2 n log(1/6)). As we showed before, we can take 6 to

be constant, so the running time is 0(m log 2 n).

3. Compute all the (approximate) effective resistances (time O(km)) via the square

norm of the differences between columns of the matrix Z. Then sample the edges

(in time O(m + n log 2 n/c 2)).

Throughout, we will consider running the sparsification algorithm on graphs that

are large enough so that the O(n log 2 n/c 2) in the sampling time is dominated by the

other factors in the running time of the algorithm. Indeed, for it to make sense to

sparsify a graph in the first place, the graph should be sufficiently dense (namely m

should be big enough relative to n, e.g. m > nlog2 n/ 2). For such graphs, we have

proved:

Theorem 3.5.2. Let G be a graph that is sufficiently dense. We can find a 1 ± c

sparsifier H of G in time O (m log 2 n).

3.6 A super-approximation property (optional)

Let us once again consider the Spielman-Srivastava algorithm run with the exact

effective resistances. We know that if G is a graph and H is its sparsifier produced

by that algorithm, then H approximates certain graph quantities to within a 1 ± 6

factor.

One could expect to do better than the 1 ± c worst-case approximation guarantee

in certain instances. We consider a particularly interesting example. For unweighted

and connected G, the sum of the effective resistances of all the edges is n - 1. Let

us consider calculating the sum of the effective resistances of edges of G using H. In

48

other words, what is >eEG bTL' b,? Of course, this is merely a theoretical exercise;

since we know the correct answer, there is no algorithmic gain to performing this

calculation using the graph H. However, it is a natural question to try to analyze

how this invariant behaves when we use the graph approximation H.

We have

Z bijLjbe = (bT L 1/2) L 1/2 be)
eG eG Ge H

= KJTr (b 1/2bbT L 1/2)
eEG

Tr (L1/2LGL 1/2)

We will study this trace by considering the trace of the inverse matrix. Consider

Tr (L 1/2L)L = Tr (L 1/2LHL 1/2). (3.7)

We know that LH is the sum of N = O(nlogn/c2) terms of the form webebT for

e E G and we NR0 (e) Thus, the trace on the right hand side of (3.7) consists

of a sum of N terms of the form webj Lbe, so each term is (n - 1)/N, meaning

that the trace is n - 1. Moreover, if H is a 1 ± E sparsifier of G, then we know that

each eigenvalue of L- 1/ 2LHL 1/2 is of the form Ai 1 + i where I pi < O(E). Now
GG

Tr (L_1/ LHL_ 1/2 = Ai = n - 1, hence E pi =0. The inverse, L /2 L+L /2 has

eigenvalues 1/A= 1 - pi + 0(c 2). Therefore, Tr(L 2 LLL - (n - 1) i +

0((n - 1)62). The sum of the ji is zero, so this is equal to (n - 1)(1 ± Q(62)).

Therefore, for the sum of effective resistances, the distortion caused by evaluating

using H is substantially smaller than what we would naively expect (1 ± O(E2) vs.

1±I (c)).

It would be interesting to find other examples where better-than-expected ap-

proximation properties hold, or to prove that certain randomized constructions yield

them. What can we say, for example, about sums of quadratic forms of LG versus

LH evaluated at random vectors?

49

There are potential algorithmic applications if such properties can be shown to

hold. For example, if we have an algorithm that only needs to evaluate quantities

which satisfy certain super-approximation properties, then we can argue that we

will need a worse-quality (and faster-to-construct) sparsifier than one would naively

assume.

Finding quantities for which we have super-approximation properties, and seeing

if we can leverage this to construct faster algorithms, is thus an intriguing avenue of

investigation.

50

Chapter 4

More background

This chapter presents more advanced background material. Most of the content

consists of primitives that are important for the solvers of Koutis, Miller, and Peng

[41, 42].

4.1 Primitives for the Koutis-Miller-Peng solver

4.1.1 Low-stretch spanning trees

Let G be a graph, and let T be a subgraph of G that is a spanning tree of G. Consider

some edge e of G. Then, there is a unique path Pe in T that joins the endpoints of e.

The stretch of an edge e E G is defined in reference to this path. It is given by:

stT (e) =We (W (4.1)
\f C Pe

Let us consider, for example, the case of unweighted graphs. Then, the stretch of

edge e is given by the length of the path in T joining the endpoints of e.

Notice that the quantity Zfc, wf 1 is just the effective resistance in T between

the endpoints of edge e. Indeed, wf 1 is the resistivity of the edge f, and since T is a

tree, the effective resistance between any two points is just the sum of resistivities on

the path between the two points (in the physical model, we can think of resistors in

series).

51

The total stretch of G through T, which we write as stT(G), is given by the sum

of the stretches of each edge of G. In other words,

stT(G) = Z st(e).
eEG

Proposition 4.1.1. Given a graph G and a tree T, the total stretch stT(G) is given

by Tr(L LG).

Proof. We have

Tr(LTLG 1/2LGL 1/2

= Z we Tr (L+1/2bebT L 1/2
eG

= ZWeb TL be
ecG

= ZweRT(e)
eGG

= ZtT(G)
ecG

F1

It is an important problem to design spanning trees with low average stretch.

The best algorithm is the one by Abraham, Bartal, and Nieman [1], as improved by

Koutis, Miller, and Peng [42]. We summarize the statement in the following theorem:

Theorem 4.1.2. Given a graph G with n vertices and m edges, there is a spanning

tree T of G such that stT(G) = 0(mlog n). Moreover, this T can be found by an

algorithm running in time 0(m log n).

4.1.2 Incremental sparsifiers

In [41], Koutis, Miller, and Peng asked whether they could get anything useful out of

the Spielman-Srivastava construction, without having to rely on linear system solvers.

Given a tree spanning tree T of G, we know that for any edge e, it is the case that

52

stT(e) > weRG(e). Since it is easy to compute the stretches of all the edges in 0(m)

time (using an offline lowest common ancestor algorithm [31]), it is possible to sample

with probabilities proportional to stT(e). One can use the results of Corollary 3.3.4

to determine how many edges to take in order to get a high-quality approximation of

G.

Of course, such an approximation would not be of any use unless the number of

edges was significantly smaller than m. For this, Koutis, Miller, and Peng take the

tree T to be a low-stretch spanning tree of G. The intuition is that the lower we

get stT(G) the fewer samples we need to take, since the sum of the overestimates

of the probabilities defines the number of samples. Unfortunately, taking the low

stretch spanning tree does not yield a small enough number of samples, so instead,

the authors consider the graph G' that is the same as G except that the weights of

the edges of T are scaled up by a suitably chosen factor K.

We then run the procedure described above on G'. We lose a factor of K in the

approximation guarantee. However, by scaling up tree weights we in fact lowered the

total stretch by a x factor, and, for suitable i, we will have have a small enough edge

count in the graph we output. We call this graph the incremental sparsifier. For the

analysis, it also turns out to be useful to exercise care and count multiple copies of

the same edge as only one edge; this helps us get an edge reduction even for sparse

graphs, which is required for preconditioning very sparse systems of equations.

We summarize the result below; for details, see [41]. The , factor is the factor by

which we increase the weights of the tree edges. In Koutis, Miller, and Peng's paper

[41], they set Kto be 0(log4 n).

Theorem 4.1.3. Let G be a graph. Then, there is an algorithm for constructing a

subgraph K of G such that, given ru:

* G -< K - 3G

* K has n - 1 + O((m/K) log 2 n) edges

53

The algorithm succeeds with high probability and runs in time

O(m log n + m log 3 n/r4

The 0(m log n) in the running time comes from the computation of the low-stretch

spanning tree, and the computation of the stretches. The ((mlog 3 n/i) is the time

required to sample.

If the tree is given, then we only need to compute the stretches (which takes 0(m)

time [41]) and sample. This gives a running time of O(m + m log3 n/K).

Note that the incremental sparsifiers that we construct have a significantly higher

distortion than spectral sparsifiers, and also have more edges (at least for large in).

This is the tradeoff we have to accept in order to avoid using linear system solvers.

Despite this tradeoff, the incremental sparsifiers make good preconditioners for solving

linear systems.

Interestingly, incremental sparsifiers have also played a role in our algorithms for

speeding up spectral sparsification; see [46] and Section 5.5.

4.2 Spine-heavy graphs

Koutis, Miller, and Peng [42] show that it is often useful to consider graphs that have

spanning trees of extremely low stretch.

Definition 4.2.1. Let G be a graph with n vertices and m edges. We say that it is

spine-heavy if it has a low-stretch tree of stretch at most 0(m/ log n).

In other words, the stretch of this tree is an ((log 2 n) factor better than the

worst-case guarantee of Theorem 4.1.2.

Among other improvements to the results of [41], the article [42] showed that

systems of equations in spine-heavy graphs can be very efficiently solved, provided

we have the low-stretch spanning tree available. In particular:

54

Theorem 4.2.2. Let G be a spine-heavy graph and let T be its tree such that stT(G) =

O(m/ log n). Then, given T, we can solve linear systems in LG to precision 6 in time

O(m log(1/6)).

The stronger statement of Lemma 2.7.2 applies here as well: we can consider the

solver as defining a linear map that spectrally approximates LG'

Note that the approximation to G we get in the previous sections, where we take

a low-stretch spanning tree (e.g. output by the algorithm of Theorem 4.1.2) and scale

up the edge weights by a factor of r = O(log 2 n), is a spine-heavy graph.

Proposition 4.2.3. There is an O(m log n) algorithm that produces an approxima-

tion G' of a graph G and a tree T' in G' such that:

" G' is spine-heavy, and namely stT (G') = O(m/ log n).

" G - G' - O(log2 n)G.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Chapter 5

Improved spectral sparsification

This chapter presents some of our improvements on the spectral sparsification algo-

rithm of Spielman and Srivastava. The work here arose out of a simple question: can

we trade off the running time of the sparsification algorithm for the size of the sparsi-

fier we output? In other words, can we find an algorithm that is faster than Spielman

and Srivastava's, but that potentially produces a sparsifier with a higher edge count?

Such tradeoffs and improvements were considered in the case of cut-preserving spar-

sifiers in a recent paper by Fung et al. [27]. We thus sought to produce similar results

for spectral sparsifiers.

Given that solving linear systems in order to estimate the effective resistances is

the bottleneck of our algorithm, we looked for ways of speeding up that step. In

fact, we found a simple way of solving linear systems on a modified graph, which

introduced some distortions into our estimates of the effective resistances. In order

to overcome these distortions, we were, in turn, required to take more samples to

produce our sparsifier. In short, this exactly gave us the tradeoff we sought.

Pushing these ideas further, we were able to substantially speed up constructions

of spectral sparsifiers almost to linear time. The construction is fast enough to allow

us to use the resulting sparsifier as a preconditioner for solving linear systems in LG,

giving an improved running time for that problem. Another theoretical consequence

is that ours is the first construction of Spielman-Srivastava type sparsifiers that is

useful for linear system solving. (The situation is not quite as satisfying as we would

57

like, as we still need to use linear systems, albeit more specialized ones that are fast

to solve, in the construction of the sparsifier.)

All of these results are very much in the original spirit of sparsification. Specif-

ically, our results show that for the applications cited above, we get a running time

savings by first creating a sparsifier. Given that a sparsifier is a very strong approx-

imation of a graph, the fact that we can construct it quickly enough to speed up

already-fast algorithms is indeed very surprising. This was also the case in Benczd'r

and Karger's original paper on cut problems [12], where the key idea of speeding up

the algorithm was to (very quickly) construct a sparsifier first.

5.1 Overview of our results

5.1.1 The importance of transitivity

In several of our results, we will make use of the transitivity property of the spectral

sparsification construction. If we have a 1 ± E1 sparsifier H1 of a graph G and we run

use the Spielman-Srivastava algorithm to produce a 1 ± E2 sparsifier of H 1, the result

is clearly a (1 ± Cl)(1 ± E2) sparsifier of G (with high probability).

In our applications, H1 will be a graph of "intermediate" size: the number of

edges will be significantly smaller than m = |E(G) but bigger than O(n log n/E2). If

we have a fast algorithm for producing H1 (as will be the case in the instances where

we apply the construction), then we can subsequently sparsify H1 down to a graph

of O(nlogn/E2) edges, and moreover, if JE(H1)l is much smaller than m, this step

will take less than 0(m) time. In many important parameter regimes this two-step

process gives us a faster algorithm for spectral sparsification.

5.1.2 The O(mlogrn) algorithm

The original algorithm of Spielman and Srivastava already includes a number of in-

genious techniques that make it run very fast. In order to speed up the algorithm

further, we need to break the central bottleneck, which comes from having to solve

58

O(log n) linear systems each of which takes O(m log n) time. We improve the running

time of this step by allowing for cruder, but more easily-computable, approximations

of the effective resistances. It was shown in [41] that if we estimate the effective

resistances, the Spielman-Srivastava scheme still goes through, but we may need to

sample more edges to compensate for the loss of accuracy.

In particular, we estimate the effective resistances by using a spine-heavy approx-

imation to G. This is a graph that has an extremely good low stretch spanning tree.

In [42] it was shown that linear equations in Laplacians of spine-heavy graphs can be

solved to precision 6 in O(mlog(1/6)) time (see Theorem 4.2.2). Further any graph

can be easily transformed into a spine-heavy approximation while distorting the effec-

tive resistances by at most an O(log 2 n) factor. Using this spine-heavy approximation

in order to quickly estimate effective resistances, and then sampling with respect to

these estimates, allows us to get a sparsifier with O(n log 3 n/ 2) edges in 09(m log n)

time. The details are given in Section 5.2.

5.1.3 The O(m) algorithm

Several more obstacles needs to be circumvented for an even faster algorithm. Even

assuming a computationally free SDD solver, estimating the effective resistances via

the Johnson-Lindenstrauss projection requires operating on m vectors of dimension

O(log n), which is too expensive. This forces us to try to decrease (hopefully down

to a constant) the dimension of the projections. Of course this introduces higher

distortions in the estimates for the effective resistances, but as we noted above the

algorithm can compensate by taking more samples. The second key to our result

comes into play here: transitivity. We observe that it is enough to produce a spar-

sifier with m' = O(m/ log 2 n) edges since we can then run our original sparsification

algorithm in time O(m'log2 n) = 0(m) and get the final sparsifier. This trick allows

us to reduce the dimension of the JL projection to a constant, for large enough m.

The details are given in Section 5.3.

However to get these severely distorted estimates for the effective resistances,

it is not enough to just take our ((mlogn) algorithm and replace the Johnson-

59

Lindenstrauss projection by a constant-dimensional one. The remaining bottleneck

is the running time of the solver; its construction requires at the minimum the com-

putation of a low-stretch tree which takes O(m log n) time [1]. The solver steps after

the construction of the low-stretch tree take O(m) time on a spine-heavy graph. This

implies that we would be able to sparsify in O(m) time if the computation of the

low-stretch tree were not an issue.

To solve this problem, we show that every graph can be decomposed into graphs

of diameter O(log n) with relatively few edges between the pieces. Spanning trees

with O(log n) average stretch can be easily computed for each of these pieces, and

thus we sparsify them separately and then put the results together. The details are

given in Section 5.4.

5.2 The O(m log n) algorithm

We have seen in Corollary 3.3.3 that if we use estimates to the effective resistances,

rather than the true values, the Spielman-Srivastava scheme still works, but in order

to produce the sparsifier we have to compensate by taking more samples. Specifically,

for a > 1, if the probabilities with which we sample all edges are at least 1/a of the

true values, then we have to take a times as many samples. An equivalent way of

expressing this is the following lemma:

Lemma 5.2.1. Suppose that we run the Spielman-Srivastava algorithm and sample

edges with probabilities proportional to qe such that

weR G(e) < 4e < weRG(e)

for all edges e. Then, taking a times as many samples gets us a 1 ± e sparsifier with

the same high probability guarantee as the Spielman-Srivastava algorithm run with

probabilities proportional to weRG (e).

Indeed, it is not hard to see that the bounds on 4e imply that the probability with

which we sample edge e is at least pe/a for all e.

60

We are now ready to state our first theorem.

Theorem 5.2.2. There is a 1k e sparsification algorithm for graphs with m > n log3 n

edges that runs in time O(mlog n). The output sparsifier contains O(nlog3 n/c 2)

edges.

Proof. Given the input graph G we construct a spine-heavy graph H satisfying the

properties of Proposition 4.2.3. The construction can be done in time O(mlogn).

Then, we have

1 -RG(i j) < RH(i, j) < RG(ij).
O(log2 n)

We run the procedure for estimating effective resistances (Section 3.5) on H to

approximate the effective resistances RH(i, j) within a constant factor. Step 2 of the

process runs in O(m log n) time on H, by Lemma 2.7.2, since each linear system takes

09(m) time.

The output is a set of estimates that are correct to within a constant factor with

high probability. To make these estimates conform to the statement of Lemma 5.2.1,

we divide them by a constant factor, which does not change the sampling probabilities.

Then, the calculated approximate effective resistances, NH (i,) satisfy

1 RG(ij) < NH(i) < RG(-,j
O(log n)

Finally we let We weH(i, j) for all edges e = (i, j) of G and sample the edges of

G with probabilities proportional to 4e. By Lemma 5.2.1 with a = O(log 2 n) we see

that we get a 1 ± e sparsifier with O(n log3 n/c 2) edges.

We should note that in the first version of this work [46], we used an incremental

sparsifier to estimate the effective resistances instead of a spine-heavy approximation

as above. An incremental sparsifier of a graph G has poly-logarithmically fewer edges

than G, and approximates it to within a poly-logarithmic factor. This, in turn,

allows us to quickly compute the required approximations to the effective resistances,

and then proceed as in the algorithm above. Subsequent improvements in the linear

61

system solver [42], and in particular the observation that systems arising from spine-

heavy graphs can be solved extremely quickly, allowed us to come up with the simpler

version we presented here.

5.3 Effective resistances via very low-dimensional

projections

With the improvement of the last section, all three steps of the Spielman-Srivastava

algorithm take O(m log n) time; our goal now is to reduce this to 0(m). The extra

logarithm in the current implementation is due to the dimension k = 0 (log n) of the

projection matrix Q, and we address this issue here.

It is worth noting that once we have a sparsifier H with 0(--) edges such that

(1-QG H -- (I + G,

we can afford to fully (1 ± f)-sparsify that H using our O((m log2 n) algorithm. The

sparsifier of H (with 0(n log n/E2) edges) will then be a 1 ± e-sparsifier for G.

Since we can take more samples, we are able to underestimate probabilities more

aggressively by decreasing the dimension we project onto, and still get a good approx-

imation to G with high probability. In order to show that we do not underestimate

effective resistances by too much, we need a more detailed understanding of the rela-

tionship between the dimension k and the approximation guarantee. This is provided

by the version of the Johnson-Lindenstrauss theorem stated as Lemma 7 of [34]:

Lemma 5.3.1. Let u be a unit vector in R'. For any given positive integers k,

let U1,..., Uk be random vectors chosen independently from the v-dimensional Gaus-

sian distribution, which we call N'(0, 1). For Xi = uTUi, define W = W(u)

(X 1 ,..., Xk) and L = L(u) = ||W||2 . Then for any /3> 1:

1. E(L) = k,

2. Pr[L > /3k] < 0(k) exp(- (# - (1 + In 0))),

62

3. Pr[L < k/3] < O(k) exp(-((3 - (1 - Ini3)).

This basically quantifies the distortions in the length of a vector when projecting

it on random vectors, as is done in standard analysis of the Johnson-Lindenstrauss

theorem. (In the lemma, the vector is normalized to have unit length; the expected

square length of a unit vector is k, but we can make it 1 by dividing the matrix

entries by 1/V k.) Using this viewpoint we see that this lemma essentially gives us the

probability of increasing or decreasing sizes of a given vector by a certain factor when

we multiply the vector by a random matrix of Gaussian entries.1 Roughly, the third

part states that for a given small constant r < 1, the probability of underestimating

distances (and hence effective resistances in our application) by an nr factor is around

O(n-rk/ 2). By setting k sufficiently large and applying a union bound, we obtain that

with high probability all estimates are at least Q(n-r) of the true quantities required

by the Spielman-Srivastava algorithm.

Combining this with the fact that weight times effective resistance is upper bounded

by 1, one can show by concentration of measure theorems that the normalizing factor

(i.e. the weighted sum of the estimated effective resistances) stays within a constant

factor of its true value with high probability. Therefore, with high probability we un-

derestimate the edge selection probabilities by at most a factor of 0(nr). The number

of samples we need to take as a result is nl+r log n. As long as this is smaller than

M/ log 2 n we can sparsify in 9(m) time. This shows that as long as m is big enough

relative to n, we can sparsify in linear time, as we claimed in the introduction.

We formalize this argument below. In fact, we integrate the results of the previ-

ous subsection, where we sped up the linear system solving by using a spine-heavy

approximation.

Lemma 5.3.2. There is an algorithm that, on input a graph G with n vertices, m

edges, a low-stretch spanning tree for G with total stretch ((m log n), and a parameter

t, generates a 1 ± E sparsifier with O(11 log n/c2) edges in 09(m log m n) time.
3nt log 2

'This is a minor difference from previous parts, where we use matrices with entries randomly
chosen in ±1/Vyk

63

Proof. We first construct in 0(m) time the spine-heavy graph G' that O(log 2 in)-

approximates G (i.e. such that G - G' 0 0(log 2 n)G). We then apply the Spielman-

Srivastava procedure in order to estimate the effective resistances in G'.

Invoking Part 3 of Lemma 5.3.1 with # = '2 shows us that when we project

onto k dimensions, the probability of underestimating by a factor of /3 is at most:

O(k) exp (2(1 - 0-1 - ln0)) < O(k) exp (2(1 - InO)) < O(k)(3/)1

where the first inequality follows from k/2 > 0 and 1 - 0-1 < 1. So when (3/)7 =

n-d, taking a union bound over all m < n2 edges gives that no edge's effective

resistance is underestimated by more than a factor of /3. The requirement on k

imposed by this is:

O(k)(3/0)' < n

k > 2dlogp/3 in + log 3 k + 0(1)

Setting d to be some constant and taking the value of /3 as before we see that

taking k = O(log m i n) will give us the required high probability claims.
3t log n

This shows that projecting in order to estimate effective resistances and using

these to estimate edge selection probabilities will give us values that are at least

an nt log 2 n/m factor of the true value (for / as above). Following the proof of

Lemma 3.5.1 we can see that using an approximate solver introduces a small mul-

tiplicative error. Using the fact that G' is a graph that O(log2 n)-approximates G,

we see that this method produces approximates probabilities in G that are at least a

factor of ! of the true values.

Consider sampling with these estimated probabilities. Then, by the discussion at

the beginning of Section 5.2 with a = m/(nt), we see that to sparsify we need to take

0(i!j! log ne- 2) samples.

64

The running time of this process is dominated by amount of time it takes to do

k solves in LG', namely O(km) by Lemma 2.7.2. For the choice of k as before this is

0(im log m-,- n), as required.
3nt log2 n

Theorem 5.3.3. Given a graph G with n vertices, m edges such that m > n log5 n,

and a low-stretch spanning tree with stretch 0(mlogn), we can generate a 1 ± E-

sparsifier H of G with O(nlog n/c 2) edges in 0(mlog ,2 n) time.

Proof. Applying Lemma 5.3.2 with t = O(log3 n/ 2) gives a graph with 0(

edges that is a 1 ± E/3-sparsifier. This graph can in turn be 1 ± e/3 sparsified in

(g log2 n) = O(m) time, by Theorem 5.2.2. l

5.4 Improved sparsification via graph decomposi-

tions

Theorem 5.3.3 reveals that the computation of the low-stretch tree of the input graph

is the final bottleneck on our way to getting the faster algorithms. In order to solve

this problem, we no longer compute a low-stretch spanning tree for the entire graph.

Instead, we decompose the graph into subgraphs for which we can trivially find low-

stretch spanning trees and we sparsify each subgraph separately. The decomposition

is based on the following simple fact about low diameter graphs:

Lemma 5.4.1. Given an unweighted graph with n vertices, m edges, and diameter

O(log n), finding a breadth-first search (BFS) tree in O(m) time gives low stretch

spanning tree with average stretch 0(log n).

Proof. It takes 0(m) time to construct the BFS tree. Suppose that i is the vertex we

start at. Because the graph has diameter O(log n), each vertex j will be at a distance

of O(log n) from i, and by properties of BFS trees, there will be a path of length

0(log n) to i using tree edges. From here, it is clear that the endpoints of any edge in

G can be connected by a path of length 0(log n) in the tree, hence the claim about

stretch follows. L

65

We can now apply low diameter decomposition to extend this to arbitrary undi-

rected graphs losing an extra factor of log log n. The variant of low diameter decom-

position that we use can be best described using the following lemma (see, e.g., [72,

Lemma 4]).

Lemma 5.4.2. Given an undirected, unweighted graph with n vertices and m edges,

we can partition it into pieces of 0(log n) diameter so that at most m/2 edges are

between the pieces. This process can be performed in 0(m) time.

Applying this 0(log log n) times and sparsifying the edges between pieces each

time gives the claim for arbitrary unweighted graphs:

Theorem 5.4.3. Given an undirected, unweighted graph G with n vertices and m

edges such that m > Q(n log5 n), we can output a sparsifier H with 0(n log n/ 2)

edges in 09(m log m,2 n) time.
3n log

5
n

Proof. We create G1 ,... G, where I = 4loglogn as follows. Given G1 ,..., G, we

partition E(G) \ E(G1) .. .\ E(G) into low diameter pieces using Lemma 5.4.2 and let

Gj4 1 be edges with both endpoints in the same piece that's not in some Gj with j < i.

Applying guarantees of Lemma 5.4.2 inductively gives |E(Gj)j < 2- IE(G)l = 2-"m,

and specifically IE(Gi)I < "-±. Therefore G, can be sparsified to H via the original

Spielman-Srivastava sparsification algorithm algorithm in time 0(m).

We now turn our attention to G1 , . . . , Gji_. If a particular Gi contains fewer than

0 (m/ log 2 n) edges, it can be left unsparsified (such Gi will contribute a sufficiently

small number of edges, and we will take care of this at the end). Otherwise, since a

low-stretch tree can be obtained trivially, we can sparsify it by means of Lemma 5.3.2.

Concretely, by letting t = log 3 n/c 2 and using the same 13 as in the proof of that

Lemma, we get graphs H1 ,..., H1 i (the 1 e-sparsifiers of the corresponding Gj)

such that

(1 - e)Gi - Hi I (1+ e)G,

in total time 0(mlog m,2 n). Letting H = H + E> l Hi gives a sparsifier with
n Iog5 n

0(,,) edges, which can in turn be sparsified in 0(m) time to generate H with

0(n log n/C2) edges. l

66

For weighted graphs, with polynomially bounded edge weights, we partition edges

by weight into buckets and sparsify each subgraph. More concretely, let G, be the

subgraph of G consisting of edges whose weights are in the interval [(1 + E)omin, (1 +

E)i+±Wmin], with the weight of each edge rounded down to (1 + E)2wmin. (Here, Wmin is

the minimum weight of an edge in the graph.) Since the edge weights are assumed to

be polynomially bounded, we have only 0(log n/E) of the Gi. Furthermore, note that

ZGi i G - (1 +E)ZGi.

Since each Gi is a multiple of an unweighted graph, we can sparsify it down to a

graph di of 0(mE/ log3 n) edges using the techniques above. Summing up all the di

gives us a graph with 0(m/ log 2 n) edges, which we can sparsify using the Spielman-

Srivastava algorithm in 0(m) time. This gives us a 1 ± O(E) approximation.

5.5 Getting over the Johnson-Lindenstrauss Bar-

rier

Thus far, we have made substantial progress on improving the running time of the

spectral sparsification algorithm, and pushing it as far as we can towards linear time.

Unfortunately, because of the constraints of Section 5.3, our best running time guar-

antee holds only for m > nl+r for a small constant r. We would like to strengthen

our result, and eliminate this constraint to the greatest extent possible. In particular,

we will be happy if we can get an algorithm with 0(m) running time in the regime

m > n logo(i) n.

It turns out that we can do this, but we need to set aside our modifications of the

Johnson-Lindenstrauss step, and do something completely different.

We consider an unweighted graph G. Assume that a low-stretch tree of G is given

(or computable in 0(m) time; this happens if G is of O(log n) diameter).

Let us first construct an incremental sparsifier H of G with 0(m/ log n) edges.

We have G -< H 0 0(log 3 n)G. Then, we can construct a sparsifier K of H that gives

a constant relative condition number and that has O(n log n) edges. After scaling

67

weights of edges in K by constant factors as necessary, we have G -< K -< O(log3 n)G.

Furthermore, since K has O(n log n) edges, it has a spanning T tree with total

stretch stT(K) = O(n log 2 n) by Theorem 4.1.2.

Let {we}eEK represent the weights of the edges of K. For vertices i and j, let P,

be the path between them in T. Define the pseudo-stretch between i and j through

T as follows:

pstTi, j) > -1 (5.1)

This definition is very similar to that of the stretch, except it is missing a term

for the weight of the edge between i and j. Indeed, (i, j) might not be an edge of K,

so it would not make sense to have a weight.

It is the case that pstT(i,j) ;> R K ()

This, together with the fact that O(log 3 n)RK (G j) > RG(i, j) means that

O(log 3 n) pstT(ij) > RG iaj)

Therefore, as in Proposition 3.3.4 we can sample edges e of G with probability pro-

portional to se = O(log3 n) pstr(e), where, if e = (i,j) we let pstT(e) := pstT(i, j). To

figure out the number of samples we need to take, we sum these quantities over all

the edges e of G. Note that EeG pstT(e) is equal to Tr(L'LG) by the same argument

used to prove Proposition 4.1.1.

Indeed,

pstT(e) = RT (e)
eEG ecG

= >bi L4be
eEG

= Tr(L+bebT)
eEG

= Tr(L+LG)

The equation in the first line follows because pstT(e) is just the effective resistance

in T between the endpoints of e, being the sum of resistivities. The last line follows

68

because LG = eEG bebT, where we use the fact that G is an unweighted graph.

Now, by Proposition 2.1.5 the quantity Tr(L+LG) is at most Tr(L+LK) since

G - K, and therefore is less than or equal to O(n log 2 n). Therefore, the sum of the

Se is O(log 5 n), which means that we need to take O(n log6 n/c 2) samples in order to

get a 1 ± e sparsifier with high probability.

Theorem 5.5.1. There is an algorithm running in time O(m) that, given a graph G

with Q(n log3 n) edges and its low-stretch spanning tree produces a 1 ± E sparsifier H

of G with O(n log 6 n/c 2) edges.

Proof. We have proved everything except the running time claim. To see that, note

that the incremental sparsifier can be constructed in O(m) time, and the running

times of the other operations are at most 0(m). l

We can extend this to weighted case, as well as to the case where we do not have a

handy low stretch spanning tree, using the graph decomposition and weight bucketing

tricks of Section 5.4. We do not include the full details here, but refer the reader to

our paper [391, where we further refine this technique.

5.6 Applications

5.6.1 Linear system solving

The O(m) algorithm for graph sparsification immediately allows us to use the output

as a preconditioner for solving linear systems. Specifically, if G is a graph and we

want to solve linear systems of the form LGX = b, then we construct a sparsifier H

of G in O(m) time as above. We can then use LH as a preconditioner for LG with

constant relative condition number. While LG is not invertible, the system will have

a solution provided b E ker(LG)'; for G connected, this just means that the sum of

the entries of b is 0.

Consider the preconditioned system L4LGX = Lb.2 Then, since the condition

number of L4LG is constant, we need only take constantly many iterations. In each

2 Technically, this is not quite the system we need to consider, since we must make the appropriate

69

iteration, we need to multiply LG by a vector (O(m) time), and then apply L4

to the result, which we do by solving a linear system in LH to constant precision.

By considering the solver as an efficiently-computable linear operator, we see that

this procedure is equivalent to applying an operator Lf instead of L', where the

relative condition number of LH and LH is constant, and hence L§LG has constant

condition number. Since H has 0 (n log n) edges, approximately solving equations in

LH, or equivalently, evaluating the map 14, takes O(n log 2 n) time. Therefore, taking

log(1/6) many iterations of this gives O(m+n log 2 n) log(1/6) = O(m log(1/6)) time.

It follows that the total amount of time to solve, including the construction of the

preconditioner, is O(mlog(1/6)), as desired.

It is also worth noting that even our simpler O(m log n) running time sparsification

algorithm gives a moderate running time advantage for solving linear systems. Con-

structing the sparsifier with O(n log n) edges takes O(m log n) time. Then, solving

the preconditioned system as before takes 0(m + n log 2 n) log(1/6) time. Assuming

that nlog2 n < m, we see that the total running time is 0(mlogrn + mlog(1/6)),

rather than 0(m log n log(1/6)), and thus the method gives a slight running time ad-

vantage. This advantage is especially visible when 6 is small (e.g. inverse polynomial

in n), where it effectively shaves a 0(log n) factor from the running time.

5.6.2 Approximate Fiedler vectors

We now show how we can use our techniques to give the fastest known algorithm for

computing approximate Fiedler vectors.

As before, let G be a connected graph with Laplacian LG, and let A2 be the second

lowest eigenvalue of LG. Then

A2 mi T LGV

vCker(LG)L V TV

An approximate Fiedler vector is a vector in ker(LG)' that gets a value for the

matrix symmetric and positive definite. Instead, when solving the system Ax = b with preconditioner
B, we actually solve the system (B- 1/ 2AB 1 / 2)B1/ 2x = B- 1/ 2b for B1 / 2 x. However, for purposes
of exposition, we will ignore those issues.

70

quadratic form that is close to A2. More formally:

Definition 5.6.1. Let G be a graph, and let A2 be the second eigenvalue. Then, a

vector v E ker(LG)' is an c-approximate Fiedler vector if VTLGv/vTV (+ E)A2-

Approximate Fiedler vectors play an important role in numerous algorithms. For

example, graph partitioning by Fiedler vectors works if we supply an approximate

one instead, which is what is done in practice.

There is a very natural algorithm based on the power method for producing ap-

proximate Fiedler vectors. Notice that A- 1 is the biggest eigenvalue of L+. Further,

writing a vector x E ker(LG)' in the eigenbasis for LG, e.g. X = x2 u2 + + -nU

we see that

(L+)'x =A--'x 2u 2 + - - A -- xnU,

so the first term in the sum will dominate.

The procedure is further analyzed by Spielman and Teng, and algorithmically, it

is run by using the solver to simulate multiplication by L+.

Their result, [70, Theorem 6.2], depends on the speed of the linear system solver,

which they do not explicitly give. Using the running time of [42], we can recast it as:

Theorem 5.6.2. There is an algorithm that, on input a graph G, an approximation

guarantee 6, and a positive constant p, computes an approximate Fiedler vector of G

with probability 1 - 1/p. The running time of the algorithm is

(9(m log 2 nlog(1/p) log(1/c)/c).

For the running time claim, the algorithm calls the solver O(log n log(1/p)/C) times

and solves to precision c.

In our algorithm, we first obtain a i±c sparsifier of G. Notice that an c-approximate

Fiedler vector of H will give an 0(c)-approximate Fiedler vector of G. We will then

find an approximate Fiedler vector, using Spielman and Teng's method.

Interestingly, it will be fast enough to first compute the sparsifier, and then run

the approximate Fiedler vector procedure on it. Even our O(m log n) sparsification

71

algorithm gives an improved running time for the computation. For concreteness, the

running time when using our O(rn log n) sparsification algorithm before computing

the approximate Fiedler vector is

O(m log n + n log 5 nlog(1/p) log(1/c)/E 3).

The first part of the sum is to compute the

compute an approximate Fiedler vector of the

is an improvement over the original algorithm

course, using the more advanced O(m) running

we introduced earlier can give us an even faster

sparsifier, and the second part is to

O(n log3 n/c 2)-edge sparsifier. This

as long as m > O(n log3 n/c 2). Of

time methods for sparsification that

algorithms for this problem.

72

Chapter 6

Spectral sparsification in the

semi-streaming setting

As we noted in the introduction, spectral sparsification produces a sparse approxima-

tion of a graph, which we can then use to say useful things about the original graph.

However, being able to manipulate the original dense graph in order to construct the

sparsifier in the first place is perhaps an unreasonable assumption. We would like to

reduce the space requirement of the Spielman-Srivastava procedure, and in particu-

lar give an algorithm that works in the semi-streaming setting. In this setting, the

amount of space we get is 0(n), which is comparable to the size of the final output.

We think of receiving the graph as a stream of edges: at each step, we get to see an

edge of the graph.

Our work gives a conceptually simple algorithm for producing a sparsifier, which

works in the semi-streaming setting and takes only one pass over the edges of G. The

latter statement means that once we see an edge and decide what to do with it, we

never need to see it again.

In our analysis, we will consider a slightly more general setting, where we start

with a graph G and its sparsifier H, and, as we keep adding edges to G, we want

to maintain a 1 ± e approximation to the current graph. (Setting the initial graphs

G and H to be empty graphs on the vertex set V, we get the original problem of

sparsification in the semi-streaming setting). It is not hard to see that as we add

73

edges to G, by adding in those same edges to H, we get the desired approximation

of G. Unfortunately, as we keep doing this, our sparsifier will contain increasingly

many edges and may eventually become too large. Thus we will need to resample, to

produce a sparsifier of smaller size. We show how to periodically do this resampling

very fast, leading to amortized poly-logarithmic update time per edge added to G.

More importantly, the resampling requires us to know only H and the additional

edges, without having to know all of G'. The resampling algorithm relies on two main

insights:

1. As we add new edges to G to produce a graph G', the effective resistances of

the edges of G do not increase, and thus, neither does their probability of being

selected for a sparsifier. Thus, if we can compute their new probabilities, we can

rejection sample the edges in H and also appropriately sample the new edges to

produce edges selected with the probability distributions from G', and hence a

sparsifier of G'. Thus, we need not consider all the probabilities in G', but only

those of edges in H and the added edges.

2. Since H with the new edges well-approximates G', we can use it to quickly

estimate the effective resistances for the edges we need; this estimate turns out

to be good enough.

On a high level, the key idea of our construction is that the original sparsifier already

contains a great deal of information, which we can reuse to save time instead of

building a sparsifier from scratch.

The problem of updating a sparsifier of a growing graph was what originally

brought us to this field. We asked whether it would be possible for the update to take

time that is nearly linear in the number of edges we add, rather than the total number

of edges in the graph. The latter running time could be achieved by sparsifying the

updated graph from scratch, and is thus not algorithmically interesting. The fact that

our algorithm was in fact very space efficient was a nice side effect, and an important

one, as we later realized.

74

Related work

The problem of graph sparsification in the semi-streaming setting was introduced by

Ahn and Guha [5], and it was then further studied by Goel, Kapralov, and Khanna

[29] (the latter of which is concurrent to and independent of the present paper).

Ahn and Guha constructed combinatorial sparsifiers in the semi-streaming model.

However, while the space complexity of their algorithm was 0(n), the running time

was O(mn), which is often too slow when the graphs are large. This is remedied by

the present work, as well as by Goel, Kapralov, and Khanna, who obtain results that

are similar to ours when one aims to construct combinatorial sparsifiers.

However, the graphs that we produce obey the strictly stronger constraints im-

posed by spectral sparsification. To our knowledge, ours is the first work to do this

in the semi-streaming setting.

Furthermore, we believe that our algorithm is conceptually cleaner and simpler

than that of [29], and our techniques are quite different from theirs. The algorithm set

forth by Goel et al. inherently requires a logarithmic number of passes through the

data, and they maintain a multi-level collection of graphs and partitions of graphs.

Then, using an ingenious construction and careful analysis, they find a way to im-

plement this in a single pass. This results in a graph that has logarithmically more

edges than necessary, which they then clean up at the end.

Our algorithm, on the other hand, operates inherently in a single pass. We simply

add edges to our graph until it becomes large. When this occurs, we replace our graph

with a sparser version still preserving the approximation guarantee and continue. By

taking advantage of the stronger notion of sparsification that we are employing, and

properly sparsifying and analyzing the probabilities, we are able to show that this

simple algorithm produces the desired sparsifiers while requiring a poly-logarithmic

amount of amortized work per edge and maintaining at all times a graph with O(n/E2)

edges.

The algorithm we propose is, however, several log factors slower than that of [29].

In addition, like the algorithm of Spielman and Srivastava, it is not completely self-

75

contained, as it crucially relies on the (non-elementary) fast solvers for symmetric

diagonally dominant linear systems (e.g. [42]).

6.1 Notation and conventions

Before proceeding, we make a few remarks about notation. Let G be a graph with

n vertices. Let F be another graph on the same vertex set as G. Then, G + F is the

graph given by adding the weights of the edges of F to the corresponding edges of G.

In this chapter, for the most part G and F will be unweighted graphs, and F will

be edge-disjoint from G. In this case, G + F represents the graph we get when we add

the edges of F to G. The definition agrees with the previous one if we regard missing

edges as having a weight of 0, and those that are in the graph as having a weight of

1.

For an edge e not in G, we denote G + e the graph obtained by adding e to G.

As noted before, the notation O(-) hides factors of logM n.

6.2 The update algorithm

We are now ready to present the main part of our work, where we show how to

continually maintain a sparsifier of a growing graph. Throughout, for notational

convenience, we will consider the setting of adding new edges to an unweighted graph

G without adding new vertices. It is straightforward to generalize to the case where

we add vertices, or where the graph is weighted and we may increase the weights of

existing edges as well as add new ones, provided that the weights are polynomially

bounded.

6.2.1 Setup

Initially, we assume that we are given access to the exact effective resistances when

we need them to sample. We will later relax this requirement.

76

Suppose that G is a graph on n vertices and H is a 1 ± E sparsifier of G generated

by Algorithm 2. For conceptual convenience, we assume that if the sampling process

of Algorithm 2 adds several copies of a given edge into H, it adds them as parallel

edges; we will sometimes refer to edges of H as samples, as they are indeed random

samples output by the algorithm. The number of samples we put into H is tightly

concentrated around N.

Let c be an edge not in G; then it is clear that H + e is a 1 ± c sparsifier of G + e.

Indeed, we have

LG+e = LG+ beb , L H+e=L H beb

whence the desired statement follows.

As we add edges to G, we can add those same edges to H, until the sparsifier gets

too large, forcing us to resample. In this work, we say that this happens when it is

of size CN for some constant C that we can choose at will.

We will formalize this situation as follows. Let G = (V, E) be a graph, and let H

be its 1 ± e sparsifier with around N edges. Let F represent the added edges (i.e., it

is a graph on V with edges exactly those that are added to G) such that H + F has

CN edges. (Note that H + F is a 1 ± c sparsifier of G' := G + F.)

Because H + F is large, we want to construct a sparsifier H' of G' such that H' has

around N edges (i.e. we want to reduce the size of the sparsifier of G' by some constant

factor). We call this procedure resparsification. We would like this resparsification

to take much less time than it would take to sample from scratch, namely O(m/ 2).

Sparsifying G' from scratch gives us an average update time of O(m/n) per operation,

which is 6(n) when G' is dense. We want a 0(1) amortized time instead. The key

insight is to use the information already contained in H, which will allow us to sample

edges from the correct distribution in time O(n/e2), leading to the desired bound.

The main observation is that when we add a new edge to G, the effective resistances

of the other edges cannot increase, as we proved in Proposition 2.5.3. Thus, since

effective resistances are given by evaluating the quadratic form defined by Laplacian

pseudoinverses at particular vectors, we see that indeed they cannot increase.

77

Further, the sum of the effective resistances of all of the edges cannot decrease. (If

adding the edge reduces the number of connected components, this quantity increases,

otherwise it stays the same.) Thus, the probabilities of choosing the edges in the

sparsification procedure cannot increase.

In what follows, we let Re = RG(e) and R' = RG'(e) for notational simplicity.

Let pe (resp. p') be the probabilities of selecting that edge (i.e. pe = Re/ Z:fc Rf,

and p' = R'/ fEG, R'j). We will denote the collections of the pe and p' by p and p'

respectively.

The prior observations make it easy to sample according to the probabilities p'

only having to consider edges in H and F! Indeed, we can run Algorithm 2 on F

to get proper samples of those edges. As for edges of G, for each sample e in H,

with probability p'/Pe we add it into H with weight 1/(Np'), with N being the

number of iterations in the inner loop of Algorithm 2. To see that this gives the

correct distribution (over all the randomness of the algorithm, including that used

to generate H) we note that when considering a copy of an edge e that is in H, we

know that it was placed into H with probability pe at one iteration of the inner loop.

Now, instead of thinking about generating H and then generating H', we can imagine

a two-step process that decides whether to include a given edge of G in H and H'.

When considering an edge e of G at a given iteration, we:

1. Accept and add it in to H with probability p,.

2. If we accepted in Step 1, we add it to H' with probability p'/pe

This process adds edge e to H' with probability exactly p'.

The algorithm presented above basically implements this process for all edges of

G. Notice that it only considers edges of H. This is because we need not worry about

edges outside of H, since they were already rejected in Step 1, and thus, are irrelevant

at Step 2.

This is an overview of the algorithm, if we have access to the true probabilities p

and p'. The details are given as Algorithm 3.

78

Algorithm 3 Resparsification (knowing the correct probabilities)

Input: H, F
Output: H', a 1 ± e sparsifier of G' with O(n log 2 n/c 2) edges with high probability,

1: for all edges e of H do
2: Keep e with probability p'/Pe and add it to H' with weight 1/(p'N).
3: end for
4: % The next loop runs Algorithm 2 on F
5: for all edges e of F do
6: for i from 1 to N do %Do this loop implicitly
7: With probability p' put e into H' with weight 1/(p'N)
8: end for

9: end for
10: return H'

Proposition 6.2.1. Algorithm 3 produces a 1 +e sparsifier H' of G' with high prob-

ability (over all the randomness used so far, including the randomness used to sample

H). The number of edges in this H' is tightly concentrated around N. Furthermore,

the running time of this algorithm is O(N).

Proof. The claims about the sparsifier quality and size are true because the algorithm

is simulating a sampling process from the proper probability distribution on edges of

G'.

To see the running time claim, we note that since H has O(N) edges, rejection sam-

pling them takes O(N) time. Furthermore, the second part of the algorithm, where

we properly sample edges of F, will give us at most O(N) samples with high prob-

ability, and since F consists of O(N) edges, the analysis preceding Proposition 3.4.1

shows that this can be done in O(N) time with high probability.

El

Thus, to complete our construction, we will need a quick way of estimating the

Re and R', and from them the p, and p'.

6.2.2 Estimating effective resistances

Unfortunately, we are not able to exactly compute the effective resistances (and hence

selection probabilities) quickly enough, so we will have to estimate them. As we have

79

discussed, it is enough to provide estimates of the probabilities that are within a

constant factor of the true quantities and this is what we will do.

The best known result for estimating effective resistances is given by the following

theorem:

Theorem 6.2.2. There is an algorithm that, given a graph G with m edges, with

high probability outputs an estimate of the effective resistance along all edges of G to

within a constant factor. The algorithm runs in O(m log 2 n(log log n)3) time.

This theorem follows by the analysis in [69]. The crucial step is computing an

O(log n) x n matrix ZG such that (with high probability) for any vertices i and j, the

quantity ||ZGX, - ZGXj 2 is within a [1/a, a] factor of the true effective resistance in

G between i and j for some fixed small a > 1. (We say that ZG encodes the effective

resistances between vertices in G to within a [1/a, a] factor.) Recall from before that

the bottleneck involves approximately solving O(log n) linear systems in LG, each of

which takes O(m log n(log log n)3) time, using the recent result of Koutis, Miller, and

Peng [42]. Recall further that by a result of Koutis, Levin, and Peng [40] running

the solver to get a constant error guarantee (rather than the inverse polynomial one

required by Spielman and Srivastava) is enough to provide the desired estimate of

the effective resistances. An inverse polynomial error guarantee would require an

extra O(log n) factor in the running time. Once the ZG matrix is computed, it takes

O(m log n) time to calculate the effective resistances along all edges of G.

For our purposes, we need to estimate the effective resistances in G' of all edges

in H + F, of which there are O(n/e 2), and we need to do this in O(n/e2) time. Now,

because H + F is a 1 ± e approximation of G', the effective resistance in H + F

between any two vertices is very close to the effective resistance in G' between those

same vertices. Thus, to give a good estimate of the effective resistances of all edges

in H and F in G' we can compute their effective resistances in H + F. By the above

theorem, this takes time O(n/e 2), since H + F has O(n/e2) edges. In particular, we

compute a matrix ZH+F such that ZH+r encodes the effective resistances in H + F

between all pairs of vertices to within a [1/a, a] factor, and use it to evaluate the

80

estimated effective resistances along edges of H and F. Note, however, that if running

time were not an issue, we could in principle use ZH+r to estimate the effective

resistance in G' between any pair of vertices. With high probability, the result would

be within a [1/(a(1 + E)), a/(1 - c)] factor of the true values.

6.2.3 Putting it all together

Now we are ready to show the final algorithm. Before we do, however, it will be

convenient to have a few definitions.

Definition 6.2.3. Given a graph G, with true edge probabilities p {Pe}eeG, and

given a constant a > 1, we say that a collection of probabilities P = {Pe}eEG is a-good

with respect to G if for all e E G it is the case that

(l/a) pe Pe < ape.

Definition 6.2.4. With notation as in the above lemma, we say that a graph H is

a-good with respect to G if it is generated by Algorithm 2 applied to G, with selection

probabilities j5 for some a-good J6.

We know that there exists a small a > 1 such that, given any graph G and a

1 ± c sparsifier H, we can use H to compute probabilities j5 that are a-good for

G. Specifically, we do this by first computing a matrix ZH encoding the effective

resistances in H between vertices to within a good approximation factor, and then

noticing that the effective resistances in G will also be well-approximated, since H

is a sparsifier. This gives us estimates of the probabilities that are within a [1/a, a]

factor of the true quantities, for a small fixed a > 1. In what follows, we will focus

on this a. For the purposes of the algorithm, we will use ZH to only compute the

probabilities of edges we need. In the analysis, however, it will be useful to think

about the probabilities of all the edges.

So, let G be a graph and H be a-good with respect to G for a as above. Then,

it is a 1 ± E sparsifier of G with high probability. Further H has O(N) edges with

81

Table 6.1: Notation used in description and analysis of resparsification algorithm
G The original graph
H Sparsifier of G, generated using Algorithm 2 and probabilities 15
F Edges added to G
G' G + F, the new graph
Re True effective resistance along edge e in G
Re Estimate of effective resistance along edge e in G

' True effective resistance along edge e in G'
R'1 Estimate of effective resistance along edge e in G'-e

pe Re/(n - 1), the true probability of selecting edge e when sparsifying G
Pe Re/(n - 1), an estimate to this probability
p' R'/(n - 1), the true probability of selecting edge e when sparsifying G'

R'/(n - 1), an estimate to this probability

high probability. Let the P, be the estimates of the probabilities of edges in G, which

were used to generate H. As before, F will represent the new edges (of which there

are 0(N) = O(n log2 r/6 2)), and G' := G+ F. Denote by P' the probabilities of edges

in G', computed using H + F, as described previously; they are a-good for G' with

high probability.

We have summarized the relevant notation in Table 6.1.

Consider Algorithm 4. For conceptual convenience, we will assume that we input

the probabilities P, used to generate H, and we will output the probabilities used to

generate H' so that they are available in the next resparsification step.

It is not hard to see that this algorithm simulates the random process for sparsify-

ing G' using Algorithm 2. (Again, we reuse the randomness used to generate H.) The

procedure is almost identical to the one in Algorithm 3, with two changes. Firstly,

we now sample with probabilities that are not exactly the true ones, but are good

approximations. Secondly, we perform the modification in Step 4.

We remark that we need Step 4 since approximation errors might cause the es-

timate of the probability of an edge to go up after we have added F, even though

the true probabilities should go down. For rejection sampling to simulate the proper

probability distributions, the probabilities have to be non-increasing. If it is the case

that P, < P', then we can sample e for H' with probability at most Pe, which is what

our algorithm does. We show that the change does not in fact hurt our construction.

82

Algorithm 4 Resparsification
Input: H, F, as well as the P, for every edge e E H.
Output: H', a 1 ± e sparsifier of G' with O(n log 2 n/c 2) edges with high probability,

as well as P'3 for every edge e E H'.
1: Estimate the effective resistances in G' of all the edges of H + F.
2: For e c H + F, let p'= = R'/(n - 1) %Good approximation to true pe
3: for each edge e of H do
4: P' <- min(e, P')

5: end for
6: for all edges e of H do
7: Keep e with probability b'/pe and add it to H' with weight 1/(P'5N).
8: end for
9: for all edges e of F do

10: for i from 1 to N do %Do this loop implicitly
11: With probability j', put e into H' with weight 1/(P'3N)
12: end for
13: end for
14: return H' and the P'5 for e E H'.

Lemma 6.2.5. Let f) and J6' be collections of probabilities that are a-good for G and

G' respectively, and denote by p and p' the collection of true probabilities of edges of

G and G'. Then, for all e E G, it is the case that min(Pe, e) p'e/a.

Proof. Indeed, suppose pe and p' are the true probabilities of e in G and G' respec-

tively, and assume that Pe pe/a and P'i > p'a for some a. As we noted previously,

because effective resistances cannot increase as we add edges to a graph, we must

have pe > p', hence e > pe/a > p'/a, and hence min(&e,P'i) is at least as big as

p'/a. The desired claim follows. - L

We can conclude that if the hypotheses of the lemma hold, the collection of prob-

abilities J', after the modification in Step 4 of the algorithm, is a-good for G'. Algo-

rithmically, we only do the modification for edges of H, and only have access to edges

in H and F. For the purpose of analysis we can think of modifying the probabilities

of all edges in G (only the edges of H matter for the purposes of the algorithm,

however).

Now, fix oz as in the text following Definition 6.2.4. We will show that if Al-

gorithm 4 gets as input a graph that is a-good with respect to G it will produce,

83

with high probability, a graph that is a-good for G'. Therefore, the property of being

a-good for the current graph is an invariant of the resparsification procedure.

Theorem 6.2.6. Let notation be as above, and consider running Algorithm 4 on input

H and F. Suppose that H is a-good with respect to G. Then, with high probability,

the graph H' output by Algorithm 4 is a-good with respect to G'.

Proof. Since H is a-good with respect to G, with high probability it is a 1 ±e sparsifier

of G. In this case, H + F is a 1 ± E sparsifier of G', and thus we can use it to give

estimates of effective resistances and hence probabilities f)' that are a-good for G'. (For

the algorithm, we only need to compute the probabilities for edges in H and F; the

matrix ZH+r does, however, encode good estimates of all the effective resistances, and

hence probabilities.) For each e E H, the algorithm replaces P'3 by min(pe, P'), which

still gives us a collection of a-good probabilities for G', by the above lemma. Then,

the rejection sampling step effectively samples edges of G with these probabilities J5'.

This gives us an a-good graph H'. l

Finally, consider running the full update algorithm, where we add edges to the

original graph and its sparsifier, and resparsify every O(N) steps. Let G and G'

be the graphs at consecutive resparsification steps. If H is a-good for G, then the

previous theorem tells us that with high probability, resparsifying G' will give us an

a-good graph H' and associated probabilities j5'. Moreover, with high probability, H'

will have O(N) edges. Provided H' is a-good (which happens overwhelmingly often),

we will be able to continue the procedure. We can union bound the probability of

failure over all the resparsification steps to see that with high probability, at all times

we maintain a sparsifier of the subgraph received thus far. By another union bound

argument, we see that with high probability all our sparsifiers have O(N) edges.

To compute the running time, we note that estimating the relevant effective re-

sistances takes O(n/e 2) times since H + F has O(N) edges with high probability. We

only need to compute O(n/e 2) effective resistances (since we do this only for edges in

H and those in F). Determining the probabilities and sampling also takes O(n/e 2)

84

time. We resparsify every O(n/e2) steps, so we conclude that the update procedure

takes 6(1) steps per added edge.

By keeping careful track of the running times of the construction, we can prove:

Theorem 6.2.7. Our update algorithm takes O(log2 n(log log n) 3) operations per

added edge.

Proof. The bottleneck of the algorithms is estimating the effective resistances. This

takes O(n log4 n(log log n)3/E 2) time for a graph with O(n log 2 n/C2) edges. Since we

resparsify after adding O(n log 2 r/ E2) edges, the amortized cost is O(log 2 n (log log in) 3)

per added edge. E

6.2.4 Error-forgetfulness of the construction

Before concluding this section, we note one interesting property of our construction in

Algorithm 4. Using H and H + F, which are approximations to G and G' respectively,

we obtain estimates on effective resistances, which are slightly worse than those we

would get had we used the full graphs G and G' (but allow us to do the computation

much faster). Despite the approximations that we make, by resparsifying using our

algorithm we once again obtain a high-quality sparsifier (with high probability), al-

lowing us to make the approximation all over. In other words, because we take enough

samples, and do so intelligently, the errors we make in approximating the effective

resistances do not propagate; the procedure has no memory for the approximations

we made in the past.

Compare this to a more naive approach to the problem of resparsifying. If we

have G, G', H and H + F, defined as before, it is tempting to use Algorithm 1 or

Algorithm 2 to sparsify H+F directly to a smaller graph. Unfortunately, the resulting

graph H is a 1 ± c approximation of H + F, which is a 1 ± e approximation of G', so

H is only guaranteed to be a (1 ± e) 2 1 2E sparsifier of G'. In other words, the

error propagates.

85

6.2.5 Straightforward generalizations

It is easy to generalize the above construction to the following cases. First, the

construction goes through almost directly for the case of weighted graphs, where we

are allowed to add weighted edges. For example, the probability of selecting an edge

becomes the weight of that edge times its effective resistance. The weights with which

we add sampled edges depend on their weights in G, so in order to do this properly,

we should store the weights of the edges in the current sparsifier.

We can also consider operations where we increase the weight of an edge e of G

by some amount w. In this case, we imagine adding an edge parallel to e and with

weight w to G, and proceed as before (we add e' with weight w to H, and resparsify

after some number of steps). The reason for considering parallel edges here is that

while increasing the weight of an edge decreases the probabilities of other edges, it

may increase the probability of that edge, which our construction would not be able

to handle. If we instead add an independent copy of the edge, all the arguments go

through.

Secondly, we can envision adding vertices as well as edges to G. Adding a vertex

and connecting it by an edge to some existing vertex does not affect the effective

resistances of the other edges, and it does not increase the number of connected

components in the graph. Hence, once again, the probability of existing edges can

only decrease, and we can use the same arguments. Here, by adding vertices, we

increase the number of times we need to sample in the inner loop of Algorithm 2 in

order to get a 1 ± c approximation guarantee. If we have an upper bound on the

number of vertices we will end up with, we can ensure that we take enough samples

from the outset.

6.2.6 The semi-streaming setting

The update algorithm described above goes through almost unchanged in the semi-

streaming case (where we start with the empty graph). After adding the first CN

edges (where N = O(n log 2 r/6 2)), we use Algorithm 4 (with H set to the empty

86

graph and F set to the current graph), giving us a 1 ± E approximation to the current

graph, containing around N edges in expectation. The number of edges is in fact

tightly concentrated around this expectation, and is almost certainly O(N). Then we

continue as before, adding edges and resparsifying when needed.

For our algorithm to be valid in the semi-streaming model, we only need to prove

that it requires O(n/E2) work space. But this is immediate, since, with high proba-

bility, we will only deal with graphs of O(n/C2) edges throughout the run.

If we would like to end up with a sparsifier containing 0(n log n/C2) edges, we

can run Algorithm 1 on the output, which will change the final error guarantee from

1 ± 6 to (1 ± c)2. This one-time amplification in error should be acceptable for most

applications. If we need to end up with a 1 ± c sparsifier, we just change the error

requirement of our procedures to give us 1 t 6/3 sparsifiers at intermediate steps,

and find a 1 ± 6/3 sparsifier of the output (using Algorithm 1); this increases space

requirements by a constant factor.

6.3 Conclusions and future work

We have presented an algorithm for maintaining a sparsifier of a growing graph, such

that the average time is 0(1) for each added edge. The main idea is a resampling

procedure that uses information in the existing sparsifier to construct a new one

very quickly. Our construction is robust and holds relatively unchanged for several

natural variants. An interesting question left open by our work is whether similar

results could be obtained in a dynamic model that permits the removal of edges as

well. While this is a somewhat unnatural notion in the semi-streaming setting, it is a

very reasonable goal in the dynamic setting where one aims to maintain a sparsifier

for a graph that is changing over time.

In fact, recently Goel, Kapralov, and Post [30] and independently Ahn, Guha, and

McGregor [4, 6] proposed an update algorithm for combinatorial sparsification in the

dynamic setting, with edge deletions allowed. It would be interesting to see if similar

ideas apply in the case of spectral sparsification.

87

Part II

Population Genetics

88

Chapter 7

Introduction

The recent explosion in the availability of genetic data has led to significant advances

in understanding human history. These advances have, in addition, benefited from

emerging algorithmic and statistical techniques that have made it possible to effi-

ciently analyze the deluge of genetic information. Yet, despite recent developments,

much computational work remains to be done.

In this part of the dissertation, we study a fundamental question in population

genetics: how are the various human populations interrelated, and, in particular, what

is the history of mixture between them? Using a simple model for admixture and

a novel algorithm we are able to deduce numerous plausible admixture scenarios, in

many cases gaining new insights into human history, or reproducing recent discoveries.

Our algorithm, MixMapper, is principled and efficient, and can be applied in various

settings.

Specifically, MixMapper is a fast method for constructing phylogenetic trees in-

cluding admixture events using single nucleotide polymorphism (SNP) genotype data.

The MixMapper algorithm determines the best-fit positions of individual admixed

populations relative to an initial pure tree. Said another way, if we have a number of

populations whose relationship is modeled well by a pure phylogenetic tree (without

admixture) and a new population, we try to determine a likely admixture scenario

among tree populations that produced the new population.

Mathematically, our approach is based on previously developed theoretical rela-

89

tionships between allele frequency ("f-") statistics under an instantaneous admixture

model. MixMapper makes use of certain structural features of these statistics to op-

timize the admixture parameters and provides estimates of statistical uncertainty.

Finally, the results can be expressed using a new method to convert all genetic dis-

tances to absolute drift length units. We apply the method to recently published data

from a SNP array designed especially for use in population genetics studies, with a

simple ascertainment scheme that eliminates bias in the estimation of allele frequency

changes and heterozygosity in modern and ancestral populations. In all, we obtain

confident results for 33 HGDP populations, 22 of them admixed. Notably, we confirm

a robust signal of ancient admixture in all surveyed European populations, involving

a proportion of 20-45% Siberian or Central Asian ancestry, and fit six populations as

second-order admixtures using an admixed European group as one ancestor. Overall,

MixMapper can help shed light on fine-scale aspects of population relationships and-

is a useful tool for future investigations into human demographic history.

Bibliographic notes

The work in this part of the thesis is largely from an upcoming paper [49]. I would like

to thank Nick Patterson for introducing us to the topic, and the rest of my co-authors

for a stimulating research experience.

90

Chapter 8

Background on population genetics

8.1 Genetic drift

Consider a population of N individuals. Let us focus on a particular genetic locus.

A locus could be a gene, or, in the case of single-nucleotide polymorphism (SNP)

data, a particular nucleotide in the genome. Since each individual has 2 copies of

each chromosome, there are 2N copies of the locus in the population.

Suppose that in the population there are two possible alleles at the locus, one of

which is (arbitrarily) assigned to be the "standard" allele, while the other allele is the

"variant" allele. Suppose that the standard allele has frequency p over the 2N copies

of the locus.

We consider a very simplistic synchronous model of reproduction. The population

is composed of N individuals, and the standard allele has a certain frequency p. At

the next time step, N children are born through a random mating process, at which

point all the parents die. This leaves a population of N individuals, and we are

interested in the standard allele frequency in this new population (and, by extension,

how it changes throughout generations).

If N is large (and effectively infinite), then the frequencies of the alleles stay

roughly constant, and moreover, the frequencies of homozygous and heterozygous

individuals will settle at constant values; these values are given by the Hardy- Weinberg

equilibrium. However, stochastic effects can cause the frequencies to change, and this

91

phenomenon becomes more visible as population size decreases. The process is known

as genetic drift.

Genetic drift tends to push populations to be homozygous. Note that in the

absence of new mutations, once a population becomes homozygous at a locus it stays

that way.

To model genetic drift, one often uses the Wright-Fisher process. In this process,

we have 2N alleles of two potential variants. At each generation, we choose 2N alleles

with replacement from the previous set. This is a crude model of what happens in

genetic drift, and bears little relation to the biology of reproduction. Nevertheless,

its mathematical properties encompass the dynamics of genetic drift fairly well.

As before, suppose we have two possible variants and let p be the frequency of the

standard allele at a given time step. Then, by considering the Wright-Fisher process,

it is not hard to see that at the next time step, the frequency will be p', a random

quantity whose mean is p and whose variance is p(l - p)/(2N).

As we mentioned, over time genetic drift reduces a population's heterozygocity.

Mathematically, suppose that the heterozygocity at some generation is Ho. Then,

it is not hard to show that the expected heterozygocity after after n generations of

genetic drift via the Wright-Fisher process is Ho(1 - 1/(2N))n.

Throughout this discussion, a key assumption we make is neutrality: we posit

that neither one of the two genetic variants at each locus offers a selective advantage

over the other one. Of course, in many cases this assumption is demonstratively

false: the introduction of a new mutation is often deleterious, though occasionally it

confers a selective advantage. Nevertheless, the neutrality assumption is a good first

approximation, especially if we deal with non-gene regions, as we primarily do in this

work. Additionally, given the large number of sites we consider, it is a reasonable

assumption that neutrality holds "on average," and even if the assumption is violated

at some sites, the signal of selection will be washed out overall.

- For more information on genetic drift, the reader can consult any standard text

on population genetics, e.g. [28].

92

D

A B C

Figure 8-1: An example phyologenetic tree

8.2 Phylogenetic trees

Phylogenetic trees are simple models of the relationships between populations. Con-

sider the tree in Figure 8-1. The model here is that there is a root population R that

splits into two non-interacting branches. The branches then undergo independent

genetic drift, potentially with different population sizes (so one of the branches can

undergo significantly more drift in this model). After some amount of drift, the pop-

ulation D in the left-hand branch splits further, and produces populations A and B

by independent genetic drift. The right-hand branch at R produces population C at

the end of genetic drift. We assume that A, B, and C are the present-day populations

and we are able to get genetic data from them. However, we have no direct access to

genetic data of the non-leaf populations.

8.3 Admixture graphs

Phylogenetic trees are useful models, but they do not capture the complex mixing

that can occur between populations even after a split. A simple and useful model for

93

Figure 8-2: An illustration of a simple admixture tree. In this case, C' is produced by
a point admixture process (dashed line) from A' and B' with admixture proportions
a and 1 - a respectively. Then, C is produced via a genetic drift process from C'.

R

A" B"

C'

A' a 1-~~ B'

A B
C

that is the point-admixture process [63, 59].

Suppose we have populations A and B, which have standard allele frequencies

PA and PB respectively. A point admixture process creates a population C whose

standard allele frequency is aPA + (1 - a)pB. This models an instantaneous, one-time

mixture, where C inherits a of its genome from A and 1 - a from B.

One typical example of an admixture graph we will consider is given in Figure 8-

2. In this figure, the dotted lines connect the locations where admixture events take

place. Importantly, populations A' and B', and not A and B, are the ones that

undergo the admixture event.

94

8.4 Going to multiple loci

Thus far, we have been talking about genetic drift and admixture for a single locus. Of

course, the genome consists of many loci. In this work, we will study single-nucleotide

polymorphism (SNP) data. In other words, we have a set of genetic locations where

every human has one of two possible nucleotides (i.e. we are dealing with bi-allelic

SNPs). We will consider each SNP location as a separate locus, and, in our data,

we have hundreds of thousands of loci to consider. As before we model the loci as

following independent drift processes. If we have loci L1 and L2 , we will assume that

the frequencies of the standard allele at each one evolve via independent genetic drift

(though with the same population size). This is a reasonable assumption, as long

as the loci are far enough apart for recombination to have destroyed the effects of

linkage disequilibrium.

For populations A and B and locus i, define p' (resp. p') to be the frequency

of the standard allele at position i in population A (resp. B). We will omit the

superscripts i when the locus is clear from context.

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

Chapter 9

Methods

We are now ready to present our techniques for inferring admixture history using

SNP data. We should, however, say a few words about the dataset we use. This

dataset is based on samples from the Human Genetic Diversity Project (HGDP),

which genotyped about 1000 individuals from various human populations. Such geno-

typing is often done on SNP arrays that choose SNPs by some complicated criterion,

for example, their possible association with disease. Thus, there is a potential for

ascertainment bias, which could affect the results.

To overcome the effects of ascertainment bias, we base our work on a new dataset

where the HGDP samples were re-genotyped using an array whose SNPs are carefully

selected for population genetics applications [51].

Following a more detailed description of this dataset, we proceed to overview the

theoretical underpinnings of the MixMapper algorithm.

9.1 Dataset

We used SNP data from 934 HGDP samples [65, 47], which were re-genotyped on the

new Affymetrix Axiom Human Origins Array [51, 50, 36]. In particular, we computed

statistics based on Panel 4 from the array, which consists of 163,313 SNPs ascertained

as heterozygous in the complete genome sequence of a San individual. As pointed

out in [51], this SNP panel attempts to overcome problems with ascertainment bias

97

3-

15

2.5 -

10

- Z, 0 5

1.5 A
0

. 40 0.02 0.04

- - Genicn-coding

- - Coding
05

0- 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Allele frequency

Figure 9-1: Comparison of allele frequency spectra within and outside gene
regions. We divided the Panel 4 (San-ascertained) SNPs into three groups: those
outside gene regions (101,944), those within gene regions but not in exons (58,110),
and those within coding regions (3259). Allele frequency spectra restricted to each
group are shown for the Yoruba population. Reduced heterozygosity within exon
regions is evident, which suggests selection is occurring. (Inset) We observe the same
effect in the genic, non-coding spectrum; it is less noticeable but can be seen at the
edge of the spectrum.

that come up when using SNP arrays designed for applications in medical genetics.

We excluded 61,369 SNPs that are annotated as falling between the transcription

start site and end site of a gene in the UCSC Genome Browser database [26]. Most of

the excluded SNPs are not within actual exons, but we found that frequency spectra

at these "gene region" loci were slightly shifted toward fixed classes relative to other

SNPs, indicative of the action of natural selection (Figure 9-1). Since we assume

neutrality in all of our analyses, we chose to remove these SNPs. Our final total

of 101,944 SNPs is not as large as in some previous studies, but we feel that the

value we gain from precision of ascertainment more than offsets any marginal gains

in statistical power from raw numbers.

98

I

9.2 The f-statistics and population admixture

Here we include derivations of the genetic distance equations solved by MixMapper

to determine the optimal placement of admixed populations. These results were first

presented in [63, 59], and we reproduce them here for completeness, with slightly

different emphasis and notation. We also describe in the final paragraph how the

structure of the equations leads to a particular form of the system for a full admixture

tree.

Our basic quantity of interest is the second f-statistic, f2, as defined in [63], which

is the squared allele frequency difference between two populations at a biallelic SNP.

That is, at SNP locus i, we define

f2(A, B) := (PA - PB)2

where PA is the frequency of the standard allele in population A and PB is the fre-

quency of the allele in population B. This is the same as Nei's minimum genetic

distance DAB for the case of a biallelic locus [57]. As in [63], we define the unbiased

estimator f'(A, B), which is a function of finite population samples:

2 P A(1 -PA) _PB(1 -B)
f2'A,) (A -PB nA - I nB - I

where, for each of A and B, P is the the empirical allele frequency and n is the total

number of sampled alleles.

We can also think of f2(A, B) itself as the outcome of a random process of genetic

history. In this context, we define

F'(A, B) E= E((PA - PB)2)

the expectation of (PA - PB)2 as a function of population parameters. So, for exam-

ple, if B is descended from A via one generation of Wright-Fisher genetic drift in a

population of size N, then F2(A, B) = PA(1 - PA)/2N.

99

While f2(A, B) is unbiased, its variance may be large, so in practice, we use the

statistic
m

f2 (A, B) : - (A, B),

i.e., the average of f2(A, B) over a set of m SNPs. Note that F2(A, B) is not the same

for different loci, meaning f 2 (A, B) will depend on the choice of SNPs. However,

we do know that f2 (A, B) is an unbiased estimator of the true average f 2 (A, B) of

f2(A, B) over the set of SNPs.

The utility of the f2 statistic is due largely to the relative ease of deriving equa-

tions for its expectation between populations on an admixture tree. The following

derivations are borrowed from [63]. We assume throughout that all SNPs are neutral,

biallelic, and autosomal, and that divergence times are short enough that there are

no further mutations at the selected SNPs. We consider the tree shown in Figure 9-2,

consisting of unadmixed populations A and B with common ancestor P; an admixed

population C, descended from a mixture of A' and B' to form C'; and the common

ancestors A" and B" of A and A' and B and B', respectively. Our admixture model

is of a one-time exchange of genetic material: two parent populations mix to form

a single descendant population whose allele frequencies are a linear combination of

those in the parents with coefficients a and 1 - a. This is of course a very rough ap-

proximation to true mixture events, but we feel that it is flexible enough to serve as a

reasonable first-order model, along the lines of the common assumption of a constant

migration rate for a certain period of time. Most importantly, the point admixture

assumption allows us to derive simple formulas for f2 statistics.

As above, let the frequency of a SNP i in population X be px. Then, for example,

E(f2(A, B)) = E((pA - PB)2)

= E((pA - pp+pp - pB) 2)

= E((PA - pp) 2) + E((pp - PB)2) + 2E((pA - pp)(pp - PB))

= E(f2(A, P)) + E(f2(B, P)),

100

P

X/ Y/

r s

A" B"

a b

a C' 1-a

C

A C B

Figure 9-2: Schematic of part of an admixture tree. Population C is derived
from an admixture of populations A' and B' with proportion a coming from A'. The
f2 distances from C to the present-day populations A, B, X, Y give four relations from
which we are able to infer four parameters: the mixture fraction a, the locations of
the split points A" and B" (i.e. r and s), and the combined drift a 2a + (1 - a)2b + c.

101

since the genetic drifts PA - pp and pp - PB are uncorrelated and have expectation

0. We can decompose these terms further:

E(ft(A, P)) = E((PA -Pp) 2)

= E((pA - PA" + PA" - PP)2)

= E((pA - PA,)2) + E((pA" - pP)2) + 2E((pA - PA") (PA" - pP))

- E(f2(A, A")) + E(f2(A", P)).

Here, again, E(PA - PA") = E(pA" - pp) 0, but PA - PA" and PA" - pp are

not independent; for. example, if PA" - pP = -pp, i.e. PA" = 0, then necessarily

PA - PA" = 0. However, PA - PA" and PA" pp are independent conditional on a

single value of PA", meaning the conditional expectation of (PA - PA") (PA" - pp) is 0.

By the double expectation theorem,

E((pA - PAI)(PA" - pp)) = E(E((pA - PA")(PA" - PP)IPA,)) = E(E(0)) = 0.

From E(f2(A, P)) = E(f2(A, A")) + E(f2(A", P)), we can take the average over a set

of SNPs to yield, in the notation from above,

F2(A, P) = F2 (A, A") + F2(A", P).

We have thus shown that f2 distances are additive along an unadmixed-drift tree.

This property is fundamental for our theoretical results and is also essential for finding

admixtures, since, as we will see, additivity does not hold for admixed populations.

Given a set of populations with allele frequencies at a set of SNPs, we can use

the estimator 12 to compute f2 distances between each pair. These distances should

be additive if the populations are related as a true tree. Thus, it is natural to build

a phylogeny using neighbor-joining [66], yielding a fully parameterized tree with all

branch lengths inferred. However, in practice, the tree will not exactly be additive,

and we may wish to try fitting some population C as an admixture. To do so, we

102

would have to specify six parameters: the locations on the tree of A" and B"; the

branch lengths f2 (A", A'), f2 (B", B'), and f 2(C', C); and the mixture fraction a. In

the notation of Figure 9-2, these are the variables r, s, a, b, c, and a.

In order to fit C onto an unadmixed tree (that is, solve for the six mixture pa-

rameters), we use the equations for the expectations F 2 (M, C) of the f2 distances

between C and each other population M in the tree. Referring to Figure 9-2, with

the point admixture model, the allele frequency in C' is pc' = a PA' - (1 - a) PB'-

So, for a single locus, using additivity,

E(f (A, C)) = E((pA - pc) 2)

= E((pA - PAI - PAI - Pc' + Pc' - Pc)2)

= E((pA - PAI" 2)+ E((PA"1 - a PAI - (1 - a) pB'2)+ E((pc' -Pc) 2)

= E(fl(A, A")) + a 2 E(f2(A", A')) .+ (1 - a) 2E(f2(A", B')) + E(f2(C', C)).

Averaging over SNPs, and replacing E(f 2 (A, C)) by the estimator f 2(A, C), this be-

comes

f 2(A, C)

--- f 2 (A, C) - F2 (A, X')

- F2(A, X') - r + a2a + (1 - a)2 (r + F2(X', Y') + s + b) + c

- (a2 - 2a)r + (1 - a)2s + a2a + (1- a)2b + c +

(1 - a)2 F2 (X', Y').

The quantities F 2(X', Y') and F2(A, X') are constants that can be read off of the

neighbor-joining tree. Similarly, we have

f 2(B, C) - F2 (B, Y') +a2r (a2 - 1)s + a 2 a + (1 - a)2 b + c + a2 F2(X', Y').

103

For the outgroups X and Y, we have

f 2(X, C) = a2 (c + a + r + F2(X, X')) + (1 - a)2 (c + b + s + F2 (X', Y') + F2 (X, X')) +

2a(1 - a) (c + F2 (X, X'))

= a 2r + (1-a) 2 s + a 2a + (l - a) 2 b + c + (- a)2 F2 (X', Y') + F2 (X, X')

and

f 2(Y, C) = a 2r + (1 - a)2 s + a2a + (1 - a)2b + c + a2 F2 (X', Y') + F2 (Y, Y'). (9.1)

Assuming additivity within the neighbor-joining tree, any population descended

from A" will give the same equation (the first type), as will any population descended

from B" (the second type), and any outgroup (the third type, up to a constant and a

coefficient of a). Thus, no matter how many populations there are in the unadmixed

tree-and assuming there are at least two outgroups X and Y such that the points X'

and Y' are distinct-the system of equations consisting of E(f 2 (P, C)) for all P will

contain precisely enough information to solve for a, r, s, and the linear combination

a 2a+ (1- a)2b+c. We also note the useful fact that for a fixed value of a, the system

is linear in the remaining variables.

This allows us to make predictions for the most likely location of the admixture

event. First, if we assume that the admixture takes place off two fixed branches, we

can use the equations above to solve for the quantities discussed above, and then

consider the norm of the residuals. For a fixed a, the system is an overdetermined

linear system, and we solve it by least squares. We then optimize for a and consider

the residual norm.

The predicted branches are those where the residual norm for the above process

is smallest.

104

Prase 1: Pure tree construction Phase 2: Admixture fitting

Figure 9-3: MixMapper workflow. MixMapper takes as input an array of SNP
calls annotated with the population to which each individual belongs. The method
then proceeds in two phases, first building a tree of (approximately) unadmixed pop-
ulations and then attempting to fit the remaining populations as admixtures. In the
first phase, MixMapper produces a ranking of possible unadmixed trees in order of
deviation from f2-additivity; based on this list, the user selects a tree to use as a
scaffold. In the second phase, MixMapper tries to fit each remaining population as
a simple two-way mixture between branches of the chosen unadmixed tree. Based
on the results, the user can ask MixMapper to perform further fitting of populations
as mixtures involving admixed populations. In each case MixMapper produces an
ensemble of predictions via bootstrap resampling, enabling confidence estimation for
inferred results.

9.3 The MixMapper Algorithm

We give an illustration of our workflow in Figure 9-3. The entire pipeline for con-

structing the history for a set of populations is as follows:

1. Creating a pure tree with a subset of these populations. The details of

this procedure are given in Section 10.1.

2. Fitting the other populations as admixtures coming from populations

in the tree. We do this using the linear algebraic approach described in the

previous sections.

3. Assessing significance. The results of the fitting step depend on the choice

of SNPs as well as the individuals making up the HGDP populations. We

would like to produce estimates for the variation in our parameters, as well

as confidence intervals. To that end, we use bootstrapping. We repeat the

fitting step with 500 bootstrapped replicates. In each bootstrap sample, we

105

choose both SNPs and individuals in populations with replacement, such that

the total number of SNPs and individuals is the same as in the original dataset.

The details of this procedure are below. We note that we are able to do this

efficiently because our method runs so fast. The ability to quickly do this

statistical analysis reemphasizes the benefits of our techniques.

9.4 Bootstrapping procedure

In order to measure the statistical significance of our parameter estimates, we com-

puted bootstrap confidence intervals for the inferred branch lengths and mixture

fractions [22, 23]. Under our model, we identified two primary sources of statistical

error: the randomness of the drift process at each of a finite number of SNPs, and

the random choice of individuals to represent each population. Our bootstrap pro-

cedure was designed to account for both of these simultaneously. First, we divided

the genome into 50 evenly-sized blocks, with the premise that this scale should easily

be larger than that of linkage disequilibrium among our SNPs. Then, for each of

500 replicates, we resampled the data set by (a) selecting 50 of these SNP blocks at

random with replacement; and (b) for each population group, selecting a random set

of individuals with replacement, preserving the number of individuals in the group.

For each replicate, we recalculated all pairwise f2 distances and present-day het-

erozygosity values using the resampled SNPs and individuals (adjusting the bias-

correction terms to account for the repetition of individuals) and then constructed

the admixture tree of interest. Even though the mixture parameters we estimate

(branch lengths and mixture fractions) depend in very complicated ways on many

different random variables, we can directly apply the nonparametric bootstrap to ob-

tain confidence intervals [23]. For simplicity, we used percentile bootstrap; thus, our

95% confidence intervals indicate 2.5 and 97.5 percentiles of the distribution of each

parameter among the replicate trees.

Computationally, we parallelized MixMapper's mixture-fitting over the bootstrap

replicates using MATLAB's Parallel Computing Toolbox.

106

9.5 Heterozygocity and drift length

One disadvantage to building trees with f2 statistics is that the values are not in

easily interpretable units. For a single locus, the f2 statistic measures the squared

allele frequency change between two populations. However, in practice, one needs to

compute an average f2 value over many loci. Since the amount of drift per generation

is proportional to p(l -p), the expected frequency change in a given time interval will

be different for loci with different initial frequencies. This means that the estimator

f2 depends on the distribution of frequencies of the SNPs used to calculate it. For

example, within an f 2-based phylogeny, the lengths of non-adjacent edges are not

directly comparable.

In order to make use of the properties of f2 statistics for admixture tree building

and still be able to present our final trees in more directly meaningful units, we will

show now how f2 distances can be converted into absolute drift lengths. Again, we

consider a biallelic, neutral SNP in two populations, with no further mutations, under

a Wright-Fisher model of genetic drift.

Suppose populations A and B are descended independently from a population P,

and we have an allele with frequency p in P, PA p + a in A, and PB = p + b in B.

The (true) heterozygosities at this locus are h = 2p(l - p), h' = 2pA(1 - PA), and

2pB(1 - PB). As above, we write h' for the unbiased single-locus estimator

2nAP(1- PA)
hA nA -1

hA for the multi-locus average of h', and H for the expectation of h' under the

Wright-Fisher model (and similarly for B and P).

Say A has experienced tA generations of drift with effective population size NA

since the split from P, and B has experienced tB generations of drift with effective

population size NB. Then it is well known that HN = h'(1 - DA), where DA

107

1 - (1 - 1/(2NA))tA, and H = h'(1 - DB). We also have

H = E(2(p+a)(1-p-a))

= E(h' -2ap+2a-2ap-2a2)

= hp - 2E(a2)

= h' - 2F2(A, P),

so 2F2(A, P) h' DA. Likewise, 2F2(B, P) = h'DB and 2F2(A, B) h' (DA + DB)-

Finally,

H + HB+ 2F2(A, B) = h'(1 - DA)+ hi (1 - DB)+ h'4DA+ DB) = 2h.

This equation is essentially equivalent to one in [57], although Nei interprets his

version as a way to calculate the expected present-day heterozygosity rather than

estimate the ancestral heterozygosity. To our knowledge, the equation has not been

applied in the past for this second purpose.

In terms of allele frequencies, the form of h' turns out to be very simple:

h1= PA +PB - 2 PAPB = PA(I -PB) +PB(-PA),

which is the probability that two alleles, one sampled from A and one from B, are

different by state. We can see, therefore, that this probability remains constant in

expectation after any amount of drift in A and B. This fact is easily proved directly:

E(PA + PB - 2PAPB) = 2p - 2P2 = h1,

where we use the independence of drift in A and B.

Let h4 := (h + h+ 2f2(A, B))/2, and let hp denote the true average het-

erozygosity in P over an entire set of SNPs. Since h' is an unbiased estimator of

(h' + 14 + 2f2(A, B))/2, its expectation under the Wright-Fisher model is h1. So,

the average hp of 14 over a set of SNPs is an unbiased (and potentially low-variance)

108

estimator of hp. If we have already constructed a phylogenetic tree using pairwise f2

statistics, we can use the inferred branch length f 2 (A, P) from a present-day popula-

tion A to an ancestor P in order to estimate hp more directly as hp = hA ±2f2 (A, P).

This allows us, for example, to estimate heterozygosities at intermediate points along

branches or in the ancestors of present-day admixed populations.

The statistic hp is interesting in its own right, as it gives an unbiased estimate of

the heterozygosity in the common ancestor of any pair of populations (for a certain

subset of the genome). For our purposes, though, it is most useful because we can

form the quotient

2 f 2 (A, P)
dA := -

hp

where the f2 statistic is inferred from a tree. This statistic dA is not exactly unbiased,

but by the law of large numbers, if we use many SNPs, its expectation is very nearly

E(2f 2 (A, P)) hpDA
E(dA) r-_ E-p - hp DA,

E(hp) h

where we use the fact that DA is the same for all loci. Thus d is a simple, direct, nearly

unbiased moment estimator for the drift length between a population and one of its

ancestors. This allows us to convert branch lengths from f2 distances into absolute

drift lengths, one branch at a time, by inferring ancestral heterozygosities and then

dividing.

An alternative definition of dA would be 1 - hA/hP, which also has expectation

(roughly) DA. In most cases, we prefer to use the definition in the previous paragraph,

which allows us to leverage the greater robustness of the f2 statistics, especially when

taken from a multi-population tree.

We note that this estimate of drift lengths is similar in spirit to the widely-

used statistic FST. For example, under proper conditions, the expectation of FST

among populations that have diverged under pure drift is also 1 - (1 - 1/(2Ne))' [57].

When FST is calculated for two populations at a biallelic locus using the formula

(HD - HS))/HD, where IID is the probability two alleles from different populations

109

are different by state and rIs is the (average) probability two alleles from the same

population are different by state (as in [63] or the measure G's in [57]), then this FST

is exactly half of our d. As a general rule, drift lengths d are approximately twice as

large as values of FST reported elsewhere.

110

Chapter 10

Results

10.1 Constructing the pure tree

Our first step in applying MixMapper was to determine a set of populations to use

in the unadmixed tree. As has been noted previously [59], most of the 53 HGDP

groups exhibit signs of admixture (from the 3-population test), despite the design

of the HGDP favoring isolated populations. Thus, computing f3 statistics for all

triples of populations and removing populations with negative values (indicative of

recent admixture) left only 20 that are potentially unadmixed. Furthermore, most

subsets including even half of those 20 populations exhibited significant divergence

from f 2-additivity, which should hold in the case of pure drift [59].

Upon ranking subsets by additivity, we noticed that there is a substantial penalty

(indicating admixture) for any combination of populations including Europeans along

with representatives of at least three other continents. Consequently, the putatively

unadmixed tree we selected excluded Europeans, consisting instead of the following

10 populations: Dai, Japanese, Karitiana, Lahu, Mandenka, Naxi, Papuan, Surul, Yi,

and Yoruba. Five are from East Asia, two are from Africa, two are from the Americas,

and one is from Oceania. These form one of the most additive 10-population subsets

representing at least four of the five major continental groups (Africa, Americas, Asia,

Europe, Oceania) in the HGDP data set.

The largest absolute error between an f2 distance on this tree and the correspond-

111

ing value from the data is 0.00112 ± 0.00032 s.d. (estimated using our bootstrap pro-

cedure). While this is a statistically significant deviation from unadmixed drift, it

is quite small when compared to other combinations of populations, and given the

simplifying assumptions of our model, exact additivity is not to be expected. We

also checked that none of the 10 populations can be fit in a reasonable way as an

admixture on a tree built with the other nine.

Finally, after choosing the unadmixed tree, we re-optimized its branch lengths to

minimize the sum of squared errors of all pairwise f2 distances. This resulted in only

minor changes from the neighbor-joining tree.

10.2 Case study: The genetic history of European

populations

One particularly notable application of our methods is in determining a likely genetic

history of Europeans. Among the HGDP populations, the European populations are

Adygei, Basque, French, Italian, Orcadian, Russian, Sardinian, and Tuscan.

A preliminary analysis using f3 statistics suggests that Basque and Sardinian may

be best modeled as pure (i.e. non-admixed) populations (data not shown). However,

using MixMapper, we are able to see a robust signal of admixture in all European

HGDP populations. This admixture involves ancestors of the South Americans as

well as an ancient population, which we interpret as ancestral Western Eurasians.

We interpret this admixture as a sign of gene flow from ancient Siberians (who are

ancestors of the South Americans). This was originally noticed by Patterson et al.

[59], and our findings give another line of evidence for their discovery.

The results are given in Table 10.1 and illustrated in Figure 10-2. Note that we

report the results for 500 bootstrap repetitions, where we sample both the potential

SNPs, as well as the individuals from the populations. They are qualitatively similar

for all the European populations. We see evidence of ancient admixture between

ancestral Eurasians and Siberians, with roughly similar mixture proportions. Notice

112

Table 10.1: Mixture parameters for Europeans.
AdmixedPop # rep a BranchiLoc (AncNEur) Branch2Loc (AncWEur) MixedDrift
Adygei 500 0.254-0.461 0.033-0.078 / 0.195 0.140-0.174 / 0.231 0.077-0.092
Basque 464 0.160-0.385 0.053-0.143 / 0.196 0.149-0.180 / 0.231 0.105-0.121
French 491 0.184-0.386 0.054-0.130 / 0.195 0.149-0.177 / 0.231 0.089-0.104
Italian 497 0.210-0.415 0.043-0.108 / 0.195 0.137-0.173 / 0.231 0.092-0.109
Orcadian 442 0.156-0.350 0.068-0.164 / 0.195 0.161-0.185 / 0.231 0.096-0.113
Russian 500 0.278-0.486 0.045-0.091 / 0.195 0.146-0.181 / 0.231 0.079-0.095
Sardinian 480 0.150-0.350 0.045-0.121 / 0.195 0.146-0.176 / 0.231 0.107-0.123
Tuscan 489 0.179-0.431 0.039-0.118 / 0.195 0.137-0.177 / 0.231 0.088-0.110

Mixture parameters from MixMapper for modern-day European populations
(cf. [59]). All eight are nearly unanimously optimized as a mixture between
populations related to the "Ancient Northern Eurasian" and "Ancestral Western
Eurasian" branches in the pure tree (see Figure 10-2A). BranchlLoc and
Branch2Loc are the points at which the mixing populations split from these
branches; a is the proportion of ancestry from the Northern Eurasian side;
MixedDrift is the sum of drift lengths o~a 2+ (1 - a) 2 b + c; and # rep is the number
of bootstrap replicates (out of 500) placing the mixture between these two branches.
All ranges shown are 95% bootstrap confidence intervals. See Figure 10-1A for an
illustration of the parameters.

also the slightly higher "Mixed Drift" for the Basque and Sardinian populations,

consistent with their being small, geographically-isolated populations. This could be

the reason that the populations look pure when considering f3 tests. Indeed, as was

shown by Reich et al. (mathematical appendix to [63]) large post-mixture drift can

wash out the f3 signal.

10.3 Discussion

We have presented MixMapper, a flexible and robust computational tool for inferring

admixture trees from large-scale SNP frequency data. The method can be applied to

any number of populations and can fit simple and second-order admixtures at any

points within an initial unmixed tree. Unlike previous procedures, only the lists of

unadmixed and admixed populations need to be supplied by hand: all of the topo-

logical relationships within the resulting admixture tree are inferred automatically.

We also take advantage of a new SNP data set based on an unbiased ascertainment

113

A Branch 1 Loc (Pre-Split / Total)

00 AdmixedPop

41 . (u -Parentl + f -Parent2)

MixedDrift = f3a2 pVb i-c

Branch2Loc
(Pre-Split / Total)

B

MixedDriftlA F AdmixedPopl

MixedDrift2

AdmixedPop2

Branch3Loc
(Pre-Split / Total)

Figure 10-1: Schematic of mixture parameters reported in tables. (A) A
simple two-way admixture. MixMapper infers four parameters when fitting a given
population as an admixture. It finds the optimal pair of branches between which to
place the admixture and reports the following: BranchiLoc and Branch2Loc are the
points at which the mixing populations split from these branches; a is the propor-
tion of ancestry from Branchi and 3 = 1 - a is the proportion from Branch2; and
MixedDrift is the linear combination of drift lengths a 2 a + 32b + c. (B) A mixture
of mixtures: here AdmixedPop2 is modeled as an admixture between AdmixedPopl
and Branch3. There are now four additional parameters; three are analogous to the
above, namely, Branch3Loc, a 2, and MixedDrift2. The remaining degree of freedom
is the position of the split along the AdmixedPopl branch, which divides MixedDrift
into MixedDrift1A and FinalDrift1B.

114

A0.195 Ancient Northern 0.07 Surui
Eurasian

E r s n K a ritia n a

a = 25%

East Asian

b - 0. 12?
Ancient Western
Eurasian 0.16

0.231

Mandenka

Yoruba

A Sardinian
c ~ 0.05?

- = 75%

U2a+P
2b+c = 0.12

Papuan

U.1

Drift length (~2FT)

Figure 10-2: Detail of inferred European admixture. (A) Detail of the inferred
ancestral admixture for Sardinians. One mixing population splits from the pure tree
along the common ancestor branch of Americans ("Ancient Northern Eurasian") and
the other along the common ancestor branch of all non-Africans ("Ancient Western
Eurasian"). Median parameter values are shown; 95% bootstrap confidence intervals
can be found in Table 10.1. The branch lengths a, b, and c are confounded, so we show
a plausible combination. (B) As in [59], we interpret the inferred admixture as having
occurred between ancient populations living in Siberia and in Europe, respectively.
Colored arrows correspond to labeled branches in (A).

115

B

scheme, which allows us to perform computations using additive f 2 distance units and

then convert to readily interpretable absolute drift lengths. Solving the full system of

f2 equations with many free parameters can perhaps create a danger of overfitting,

but as discussed in more detail in Chapter 9, we use several criteria, most notably

bootstrap confidence intervals, to help avoid this problem and generally corroborate

the reliability of our results.

We chose to implement MixMapper with trees of intermediate size. Our preferred

unadmixed tree contained 10 populations, which is small enough to be reasonably free

of complications but large enough to give good coverage of most areas of the world.

The program can also be applied at a rougher level with a more global starting tree,

requiring virtually no manual intervention, or in more precise, fine-scale applications,

if an unadmixed tree consisting of a small set of carefully chosen populations is used.

Using MixMapper, we constructed an admixture tree containing 30 HGDP popula-

tions: 10 unmixed, 14 as two-way admixtures, and 6 as mixtures of mixtures. Perhaps

the most notable result within the tree is that all European populations we tested are

optimally represented as mixtures between a population related to the common ances-

tor of Americans and a population related to the common ancestor of all non-African

populations in our unadmixed tree, confirming an admixture signal first reported

by [59]. Our interpretation is that most if not all modern Europeans are descended

from at least one large-scale ancient admixture event involving, in some combination:

at least one population of Mesolithic European hunter-gatherers; Neolithic farmers,

originally from the Near East; and/or further migrations from northern or Central

Asia. Either the first or second of these could be related to the "ancient western

Eurasian" branch in Figure 10-2, and either the first or third could be related to the

"ancient northern Eurasian" branch. While the admixture signal is quite strong, we

are unable to pinpoint the sources more closely using these populations; in particular,

none of these putative ancestral groups have any direct descendants in our data set,

and hence this scenario involves substantial drift (branches a and b in Figure 10-2A)

between the split points of the parent populations from the unadmixed tree and the

mixture event itself. Present-day Europeans differ in the amount of drift they have

116

experienced since the admixture and in the proportions of the ancestry components

they have inherited, but their overall profiles are similar.

In all, we believe that methods such as MixMapper, and the dataset on which it is

based, will prove useful in population genetics studies. We should note, however, that

in certain applications, full genome sequences are beginning to replace more limited

genotype data sets such as ours. Still we believe that our methods and SNP-based

inference more generally will remain valuable in the future. Despite the increasing

feasibility of sequencing, it is still much easier and less expensive to genotype samples

using a SNP array, and with over 100,000 loci, the data used in this study provide

substantial statistical power. Additionally, sequencing technology is currently more

error-prone, which can lead to biases in allele frequency-based statistics [62]: for exam-

ple, rare alleles can be difficult to distinguish from incorrect base calls, meaning that

error correction will tend to flatten empirical frequency spectra. Thus, MixMapper

should continue to contribute to an important niche of population history inference

methods based on SNP allele frequency data.

117

Part III

RNA secondary structure design

118

Chapter 11

Introduction

The design of RNA sequences with specific folding properties is a critical problem in

synthetic biology. Solving this problem is an important first step in controlling bio-

molecular systems, which can have profound biomedical implications; indeed, it has

already proven useful in modifying HIV-1 replication mechanisms [55], reprogramming

cellular behavior [16], and designing logic circuits [35].

Here, we aim to design RNA sequences that fold into specific secondary struc-

tures. (This problem is also known as inverse folding.) Even in this case, efficient

computational formulations remain difficult, with no exact solutions known. Instead,

the solutions available today rely on local search strategies and heuristics. Indeed, the

computational difficulty of the RNA design problem was proven by M. Schnall-Levin

et al. [67].

One of the first and most widely known programs for the RNA inverse folding

problem is RNAinverse [33]. The search starts with a seed sequence specified by the

user. At each step thereafter, RNAinverse compares the minimum free energy (MFE)

structure of the current sequence (i.e. the structure computed from a structure pre-

diction algorithm) with the target structure to determine the mutations to perform;

it attempts to traverse the mutational landscape in the direction that improves the

current MFE structure's similarity to the target.

Better RNA design tools have been subsequently developed. To our knowledge,

the best programs currently available are INFO-RNA [13], RNA-SSD [9, 3] and NUPACK

119

[79]. Other programs such as rnaDesign [17] or RNAexinv [10] also have demonstrated

improvement over RNAinverse. Conceptually however, all current approaches rely on

the same principle, which can be delineated in two steps: (i) selection of a seed, and

(ii) a (stochastic) local search that aims to mutate the seed to fit the target structure.

The traditional single-sequence iterative-improvement approach is simple and com-

putationally fast: at each point only the next possible point mutations need to be

computed and evaluated for fitness so that the best one can be chosen. However, the

sequences generated by this approach suffer from several shortcomings. Firstly, due

to the presence of energy barriers in the mutational landscape, some good sequences

(in terms of structure fit and energetic properties) might be difficult to reach from a

given seed. Even worse, sometimes arbitrary initial choices made by such methods

can irrevocably bias a search to produce ineffectual designs. For example, since it is

easy to grow existing stem structures by single-point sequence mutations, the search

can initially take off in the direction of "improving" the structural fit by growing

stems, only to falter when other structural elements and rearrangements require mul-

tiple point mutations. Finally, constraining the search to directions that improve the

structural fitness function in the initial phases of the search runs counter to biological

reality because it rewards mutations that bring the structure "closer" to the desired

shape but do not directly improve function (e.g., the binding affinity for some ligand).

In this paper, we present RNA-ensign, a novel and complementary approach to the

RNA design problem that uses global sampling of an energetic ensemble model of the

RNA mutation landscape. More precisely, starting from a random seed sequence, our

scheme computes the Boltzmann distribution of all k-mutants of the seed and samples

from these ensemble sequences [75]. RNA-ensign starts by looking at all samples with

one mutation (i.e. k = 1) and increments this number k until it finds a mutant whose

MFE structure matches the design target's secondary structure. Unlike the classical

RNA design schemes, this approach largely decouples the forces controlling the search

in the mutational landscape from the stopping criterion.

We analyze design choices and show that, compared to local searches, our global

sampling approach has advantages. While the importance of the choice of seed is

120

widely acknowledged, to our knowledge, very few exhaustive studies allow for the

precise quantification of its importance given here. We also present an analysis of

the strengths and weaknesses of the novel global sampling approach introduced here.

While it generates more thermodynamically stable sequences at a high success rate,

it is computationally more expensive than local search approaches. Nonetheless,

our current implementation can be run on structures with sizes up to 200bp, and

thus reaches the current limit of accuracy for base pairing predictions with a nearest

neighbor energy models [43, 21].

This study aims to provide a complete comparison of our ensemble-based en-

ergy optimization approach with the classical path-directed searches. We compare

RNA-ensign with RNAinverse, NUPACK, and, when possible, RNA-SSD and INFO-RNA.

Nevertheless, RNAinverse must be seen as the most fair and instructive comparison

as it is the only path-directed algorithm that decouples the initialization (i.e. the

seed) from the optimization strategy and that uses the same stopping criterion as

RNA-ensign.

We show that our global search approach has several attractive features: it is

successful significantly more often, and produces sequences that attain the desired

structure with higher probability and lower entropy, than those output by classical

local search methods such as RNAinverse. Importantly, these results are achieved

regardless of the choice of seed or target structure and require few mutations. Our

results are in agreement with seminal studies on RNA sequence-structure maps [68,

64], which showed that neutral networks of low-structured RNA secondary structures

are fragmented and thus can be hard to reach with local search approaches. Since our

ensemble-based strategy does not rely on the existence of paths in the evolutionary

landscape, it can circumvent these difficulties and offer a reasonable alternative for

designing RNA sequences for the most challenging target structures.

Bibliographic note

This part of the thesis is closely based on our paper [45].

121

THIS PAGE INTENTIONALLY LEFT BLANK

122

Chapter 12

Materials and Methods

12.1 Overview of algorithm

12.1.1 The low-energy ensemble of a structure.

Let S* be a fixed target structure of length n. The low-energy ensemble of S* consists

of sequences w that can fold to S* with each such sequence being assigned a certain

probability. The probability of a sequence w is proportional to eE/RT, where E is

the energy of w when folding to S*. Here, R is the gas constant, and T is the absolute

temperature. The constant of proportionality is the sum of the above quantities over

all sequences that can fold to S*.

Using our RNAmutants algorithm [75, 76], we can sample, in polynomial time and

space, sequences from the low-energy ensemble of a given S* (a brute force approach

would result in an exponential time algorithm). This is done by setting S* as a

structural constraint when invoking the program.

In this paper, we will in fact be concerned with the low-energy ensemble of S*

around a certain seed sequence ao (which we will also call the mutant ensemble).

This involves sampling k-mutants of ao (i.e., sequences differing from ao in exactly k

places) with probabilities proportional to the quantities above (we get the constant

of proportionality by summing only over k-mutants).

The samples from the low-energy ensemble around a given seed will be our can-

123

didate sequences in the design algorithm.

12.1.2 Sampling from a structure's sequence ensemble.

To motivate our ensemble-based design approach, we first examine how our sequence

search technique (ensemble sampling) differs from sequences sampled uniformly at

random from those sequences that can fold to our structure. To this end, we randomly

select two RNA secondary structures (of 47 and 61 nucleotides) from the RNA STRAND

database [8], and sample one hundred k-mutants of a random seed (i.e., differing

from the seed by k point mutations) for each structure, both (a) uniformly from all

k-mutants that can fold to the target structure, and (b) with weight corresponding

to the probability of the sequence in the ensemble of k-mutants folding to the given

structure. We then compute the probability that each sequence folds into the target

structure in the sequence's Boltzmann ensemble.

Figure 12-1 shows the probability of the structure in the ensemble of each sampled

sequence, organized by the distance from the seed (i.e., the number of point muta-

tions). We clearly see that sequences generated from the low-energy ensemble occur

with much higher probabilities than those generated uniformly at random. Further,

by allowing for a higher distance from the seed, we increase the probabilities of the

energy-favorable samples in a dramatic fashion. While this is certainly not surpris-

ing, it helps give motivation for our approach: it is reasonable to expect that in a

significant portion of samples, the desired structure will be the most probable one,

and thus, we will find a sequence designing it by looking at enough samples.

We note that whether a structure has a high probability in a Boltzmann ensemble

of a sequence is a different criterion from it being the MFE structure for that sequence,

since a sequence can have multiple sub-optimal structures with similar folding energies

and thus probabilities. Ideally, we would like both to be the case. Therefore, in this

study we also investigate the impact of our techniques on the base pairing entropy of

the designed sequences.

124

* * non-uniform (MFE) & & Uniform (MFE)
- - non-uniform + + Uniform

n.

0
S..

6
4 0

*: ' 4"ri

+* *00 * 4 '0
.54 . £ :" "@* *

--. ~;.+, * I. *** . .

AU JU W13

Number of mutations

0
S

S
0 *

-

0

so 60

Figure 12-1: A scatter plot of the target structure probabilities on samples versus
number of mutations from the seed. The "non-uniform" sequences (circles) are gen-
erated from the low-energy ensemble, while the "uniform" sequences (triangles and
crosses) are generated uniformly at random from all k-mutants consistent with the
structures. The sequences satisfying the MFE criterion are indicated with a large cir-
cle (non-uniform) and a triangle (uniform). In both cases, we sampled 100 k-mutants
for each k.

125

1.

0.8

0.6

0.4v

.U

to
0

.0
0.21

0

12.1.3 Design algorithm

We now describe a design algorithm for a target structure S* consisting of n nu-

cleotides starting from a seed sequence w. It is a stochastic search that takes advan-

tage of the structure constraint option in RNAmutants.

The stochastic algorithm proceeds by sampling one thousand k-point mutants of

w (fork =1,2, ... , n) from the low-energy ensemble of S*. Then, for each k in turn,

we examine the samples one by one, and see if each achieves S* as its MFE structure.

If for a given k there are samples that achieve S* as the MFE structure, we return the

one for which S* has highest probability. If we have not found a sequence with the

desired properties, we report failure. In this way, we try to find a sequence achieving

the MFE criterion, and which is also close to w.

We note that in our algorithms, the requirement that S* be achieved as an MFE

structure is fairly arbitrary, but also quite natural since the MFE structure is the

highest-probability structure. In particular, this criterion has the strong advantage

of unifying the stopping criteria for the two primary methods evaluated in this paper

(RNA-ensign and RNAinverse). It also enables us to generate solutions with few

mutations of the seed that are good candidates for mutagenesis and synthetic biology

experiments. It is worth noting that the -Fp option of RNAinverse, which optimizes

the Boltzmann probability of the target structure, tends to produce better sequences

(at least in terms of probability of the target structure), but this is achieved by

optimizing sequences that already satisfy the MFE criterion and that are farther

from the seed.

Our approach selects k-point mutants of w optimizing the energy of the target

structure. We hope that in this way it also optimizes its probability in the Boltzmann

ensemble, until it emerges as the structure with highest probability. Of course, if the

energies of other structures are also reduced substantially, this may not be the case

(the probability of the target may not increase). However, it is reasonable to believe

that in many cases it will, and as our results show, our method succeeds reasonably

often.

126

12.2 Software selection

We aim to compare the advantages of local versus global search techniques for RNA

secondary structure design. In addition, we also wish to evaluate the influence of the

seed and target structure selection on the performance of each methodology. Thus,

the programs used in this benchmark must (i) allow us to use any arbitrary seed

sequence, and (ii) use the same stopping criteria (i.e. we stop once we have found a

sequence that achieves the target structure as its MFE structure).

Under these constraints, only RNAinverse satisfies all our criteria. For the sake

of completeness, we also provide the results achieved by NUPACK (the latter does not

use the same stopping criteria), RNA-SSD and INFO-RNA (these two programs do not

use the same stopping criterion and fully integrate the choice of the seed in their

methodology). Nonetheless, to avoid any confusion, we will intentionally discuss the

performance of these programs separately.

We remark that currently RNAmutants, which we use in RNA-ensign, does not

handle dangling end energies. The RNAinverse and NUPACK programs allow us to

disable the dangling end contribution and thus to match our energy model. On the

other hand, RNA-SSD and INFO-RNA do not allow this, and we use their default energy

function to compute the MFE energy structures and their probabilities. A somewhat

unfortunate consequence is that given a sequence the MFE structure assessed by the

energy functions used by RNA-ensign, RNAinverse, and NUPACK on the one hand and

RNA-SSD and INFO-RNA on the other may be different. However, we do not expect

this to significantly bias our analysis and conclusions.

12.3 Dataset of random target structures and seed

sequences

We created a random test set of artificial target secondary structures and seed se-

quences of size 30nt, 40nt, 50nt, and 60nt. In order to perform a rational random

generation of realistic secondary structures, we used the weighted context-free gram-

127

mars introduced by A. Denise et al. [18]. This formalism associates weights to terminal

symbols in a context-free grammar, and the weight of a word is obtained multiplica-

tively. This induces a Boltzmann-like distribution on each subset of words of fixed

size generated by the grammar. Efficient random generation algorithms, in quadratic

time and memory, based on the so-called recursive method [78], can then be used

to draw words from the weighted distribution [18]. It is worth noting that any two

structures having the same distribution are being assigned equal probabilities in the

weighted distribution, so that the uniform distribution is a special case (unit weights)

of the weighted one. The addition of weights shifts the expectations of the numbers of

occurrences, allowing one to gain control in a flexible manner (each structure remains

possible) over the average profile of sampled words.

We modeled secondary structures using a grammar, independently found by M. Nebel

[56] and Y. Ponty [60], that uses distinct terminal symbols to mark each occurrence

of structural features (bulges, helices, internal loops, ...) and their content, allow-

ing one to adjust their average lengths. We focused on a subset of features that

is most essential to the overall topology of secondary structures: number of paired

bases, number of helices, number of multiloops and number of bases appearing in

multiloops. We analyzed this set of features on a set of native secondary structures

from D. Mathews et al. [53] through systematic annotation. We used our optimizer

GrgFreqs [18] to compute a set of weights such that the expected values for the fea-

tures among sampled structures matches that of native structures. Finally, we used

GenRGenS [61] to draw structures from the weighted ensemble.

We chose sets of seed sequences that evaluate the effects of the guanine/cytosine

(GC) and purine (AG) contents. To this end, for each structure, and for each pair (x, y),

where both x and y come from {10%, 20%,..., 90%}, we generated seeds with C+G

content of x and A+G content of y. For each structure and each such (x, y) (of which

there are 81 choices) we generated 20 seeds, for a total of 1620 seeds per structure.

We then used the sample sequences as seeds for our design algorithm, as well as for

RNAinverse.

128

12.4 Dataset of known secondary structures

We built a complementary dataset of known secondary structures. We extracted all

secondary structures without pseudo-knots with size up to 100 bases from the RNA

STRAND database [8]. This resulted in a set of 396 targets with many similar structures.

We clustered these structures into 50 classes using a single linkage method with the full

tree edit distance implemented in RNAdistance [33]. This combination of clustering

method, distance and cluster separation produced the best results we have been able

to obtain. The final dataset contains 50 sequences of sizes ranging from 22 to 100

nucleotides and is available at http: //csb. cs. mcgill. ca/RNAensign.

12.5 Structure and sequence analysis

12.5.1 Characterizing sequences.

First, we characterized the sequences (seeds and designed sequences) by their C+G

content, as well as their purine (A+G) content. Since the thermodynamically advan-

tageous effect of base-pair stacking in RNA helices is more pronounced with C=G

base pairs, sequences with higher stem C+G content tend to be more stable, and we

reasoned that naturally arising structures with higher contiguity would also tend to

have higher C+G content. Purine content, on the other hand, is a proxy for how many

base-pairing opportunities the sequence provides: since a purine cannot base-pair

with itself, very low and high A+G content means that relatively few base-pair com-

binations are possible and, compared with medium-A+G content sequences, relatively

few structures can be formed.

12.5.2 Characterizing structures.

We tested the performance of our algorithm based on inherent thermodynamic sta-

bility offered by the target's structural motifs (i.e., stability of the structure without

explicit reference to a sequence attaining the structure). Numerous motifs affect sta-

bility, and we selected one natural feature to study, namely the fraction of stacking

129

base pairs. Base pair stacking stabilizes the structure, and so our measure is a natural

proxy of inherent stability.

12.5.3 Evaluation of performance

We use several metrics to estimate quality of a solution and the performance of the

algorithms. We estimate the fitness of a sequence w for a target secondary structure

T using (i) the Boltzmann probability of the target structure for the sequence defined

and (ii) the normalized Shannon entropy of the base pairing probabilities [25]. The

former assesses the likelihood of the target on the sequence, while low entropy values

ensure that there are few competing structures in the energy landscape.

We also report the success rate and the number of mutations between the seed

and the solution. The latter criterion is often important in synthetic biology studies

[52, 48, 16], where one often wants to change a molecule's folding properties while

perturbing the biological system as little as possible.

12.5.4 The challenges of fair comparison

One thing that we should note is that it is extremely difficult to get a fair comparison

between various design methodologies, since the programs often have different goals.

Even when comparing algorithms with similar objectives, e.g. finding a sequence

satisfying the MFE criterion for a target structure and which is close to the seed, the

methods have different tradeoffs of various desired properties, such as running time.

In our study, we put great effort into making our comparisons as complete and fair

as possible, as we will see below. For example, we notice that RNA-ensign produces

sequences with greater stability than those obtained by other methods, but the other

methods are significantly faster. As a result, we compare the results of RNA-ensign to

the best results of repeated runs of the other methods, where the number of repetitions

is chosen so that the total time is comparable to the running time of RNA-ensign.

Additionally, there are numerous instances where we modify RNA-ensign to make it

better conform to the objectives of other programs. By doing a careful study, we

130

hope to present as fair a comparison as possible, given the substantial limitations.

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

Chapter 13

Results and Discussion

We compare RNA-ensign with existing approaches and show that our method offers

better success rates and more stable structures, regardless of the choice of the seed

or target structure. In our experiments, only NUPACK outperforms our method on

the specific criterion of the target structure stability. However, we show that by

relaxing the stopping criterion used in RNA-ensign we can, in turn, achieve more

stable structures than NUPACK.

13.1 Influence of the seed

Here we provide the first quantitative analysis of the influence of the nucleotide com-

position of the seed on the search algorithm's performance, as well as their impact on

designed sequences. The x and y axis of the heat maps represent the A+G content and

C+G content of the seeds. As mentioned earlier, we will discuss NUPACK separately as,

unlike RNA-ensign and RNAinverse, it does not stop its optimization once the MFE

criterion is achieved.

13.1.1 Impact on success rate

We start our analysis by looking at the success ratio of each program (i.e., the number

of seeds producing sequences that fold into the target structure). We show our results

133

in the first row of Figure 13-1. Here, we observe a striking difference between the two

methods. RNA-ensign clearly outperforms RNAinverse in all cases. While the success

rates of RNAinverse vary between 0.4 and 0.8, the latter in rare cases (low C+G content

and extreme values of the A+G content), RNA-ensign uniformly achieves a success

rate of 0.9. The most significant difference occurs for seeds with high C+G content

and medium A+G content. In this region of the sequence composition landscape,

RNAinverse performs poorly (below 0.5) while RNA-ensign achieves a success rate

of 0.9. It turns out that this region also corresponds to the seeds requiring more

mutations to produce a sequence achieving the target structure (see Figure 13-1(g)).

This insight could suggest that, particularly from these seeds but most likely for the

others as well, RNA-ensign explores a different region of the mutational landscape,

one that is more prone to contain sequences that fold into the desired structure. This

exploration of a diverse mutational landscape is one motivation for using our method.

Compared to RNAinverse, NUPACK performs relatively well and does not seem

significantly affected by the nucleotide composition of the seed. However, its perfor-

mance (NUPACK exhibits a success rate oscillating between 0.7 and 0.8) remains lower

than that obtained by RNA-ensign.

13.1.2 Impact on target probability.

We observe here that the choice of seed affects the quality and behavior of the design

methods. First, we investigate if this choice has an influence on the thermodynami-

cal stability of the target Structure for the designed sequences (for our purposes, its

"quality"). Our results, shown in the second row of Figure 13-1, demonstrate that the

sequences designed with RNA-ensign are more stable (ensemble folding probabilities

ranging from a 0.4 to % 0.7) than those obtained with RNAinverse (ensemble proba-

bilities between - 0.3 and r 0.5). NUPACK appears to produce more stable structures

(probabilities varying between - 0.7 and - 0.8) and seems less dependent on the

seed. However as we will see, these results come with drawbacks.

The A+G content of the seeds has a strong influence on the quality of the designed

sequences produced by RNA-ensign (see Figure 13-1(d)): medium A+G content val-

134

Success Rate

0.80 0.88 .50
85 5 85
7 .075 0.80 7 0.80

6.72 65 0.72 0.72
5 55 55 30 4 0.64 0.64

045 045 W45
+ 53 0.56 + 0.56U

3
5 U+ 3 35

25 0.48 25 0.45 25 .4

0.0 0.40

55 is 25 35 45 55 5 75 05 as 55 15 25 s 5 S n5 75 A5 95 5
5 15 25 35 Is 55 ns 75 as 95A+G content A+G Content A+G content

(a) RNA-ensign (b) RNAinverse (c) NUPACK

Target probability

955" 95
0.78 0.78 0.78

0.72 0.72 0.72
75 75

0.66 0.66 0.6
v56

88 0.60 88 0.60555 55
o 00.54 0.54 U 0.54

+ 0.45 + 0.48 +35 0.48

25 0.42 25 0.42 25 0.42

5 .36 15 0.36 15 0.36

' 15 Os 35 45 55 65 75 85 95 0.30 55 15 Os 35 45 55 65 75 88 -9 0.30 5 1 Os 35 45 35 78 7 5 95~ .3A+G content A+G content A+G content

(d) RNA-ensign (e) RNAinverse (f) NUPACK

Distance from seed

95 95 95
24 24 24

7S 22 22 22

6 20 ' 20

55 is is 55 is0o 0
45 26 4! 1 45 16

S14 3! 14 U 35
25 Os Os

12 12 12

10 20 10
5 1 25 35 4 5 05 75 65 95 5 15 25 3S 5 SS t55 75 85 05 5 15 25 35 45 55 75 85 5A+G content A+G content A+G Content

(g) RNA-ensign (h) RNAinverse (i) NUPACK

RNA-ensign and RNAinverse (same stopping criterion)

Figure 13-1: Evaluation of the influence of the nucleotide composition of the seeds on
RNA-ensign (first column), RNAinverse (second column), and NUPACK (third column).
The x and y axis represent respectively the A+G content and C+G content of the
sequences. The first row shows the success rates of each method; the second row
shows the probability of the target structure for the designed sequences; the third
row reports the Hamming distance (i.e., number of mutations) between the seed and
the designed sequence.

135

ues produce sequences with lower ensemble probabilities, while extreme ranges of the

A+G content give highly thermodynamically stable sequences. This is likely a conse-

quence of combinatorics: extreme ends of the A+G content spectrum mean combina-

torially fewer opportunities for base pairing, and therefore fewer possible structures

for each sequence. Because there are fewer possible structures, a "good" structure

will comprise a much higher percentage of the folding ensemble. This gradient is less

pronounced with sequences generated by RNAinverse, which do not reach the same

level of thermodynamic stability even for extreme A+G content values. Moreover, the

distribution for RNAinverse follows a slightly different pattern, where the least stable

sequences lie along the diagonal of equal A+G and C+G content.

The impact of the nucleotide composition of the seed on the base pair entropy

is similar to what has been observed with the target probability. Overall, NUPACK

shows better performance (i.e. lower entropy), and extreme A+G contents tend to

significantly reduce the entropy values of RNA-ensign and RNAinverse solutions (see

supplementary material in [45]).

13.1.3 Impact on distance between seed and solution.

Our next experiments, shown in the third row of Figure 13-1, illustrate how the choice

of seed influences the number of mutations performed to reach a solution (i.e., the de-

signed sequence) under each search method. Overall, both methods perform similarly

with an average number of mutations (over all sequence sizes) of approximately 10.

The exception is the region of high C+G content and medium A+G content, which, on

average, requires almost 15 mutations with RNA-ensign and 12-13 with RNAinverse.

This may be because higher C+G content means that triple hydrogen C-G bonds lead

to lower folding energies and "democratize" the folding ensemble by more effectively

competing against folding energies of loop structures; in a more diverse ensemble,

RNA-ensign is less likely to sample a favorable structure and must move on to a

higher mutation distance. RNAinverse, which is much less demanding when it comes

to the energetic properties of the designed sequence (see Figure 13-1(e)), settles for

a less stable structure at a lower mutation distance; thus the high-C+G content effect,

136

though visible, is much less dramatic.

It is worth noting that NUPACK disadvantageously requires almost twice as many

mutations as RNA-ensign and RNAinverse. This is most likely a consequence of

the different stopping criterion and a necessity to achieve the highly stable sequences

observed in Figure 13-1(f). As we will see below, because NUPACK produces a sequence

vastly different from the seed, the nucleotide composition of the solutions will also be

affected.

13.1.4 Nucleotide composition of designed sequences.

Finally, we complete this analysis by looking at the nucleotide composition of the

designed sequences. We refer to [45, Figure 2(j-1)]. The sequences generated by

RNA-ensign and RNAinverse appear to have similar A+G contents. Both methods

have a slight bias toward well-balanced Purine compositions. However, their influence

on the C+G content differs. While RNAinverse has a tendency to produce sequences

with low C+G content (to approximately 35%), RNA-ensign tends to increase this

value (approximately 60%). Nevertheless, in both cases, the influence of the method

on the nucleotide composition seems minor.

In contrast, NUPACK has a stronger influence on the final nucleotide composition.

Indeed, the method has a clear tendency to generate sequences with a C+G content

between 45% and 65%. It follows that the choice of the seed cannot be reliably used

to control the nucleotide composition of the designed sequences and that NUPACK

provides less diverse solutions.

13.2 Influence of the target structure

We now discuss the effect of the target structure on the performance of the various

methods. In particular, we focus on the stability of the designed sequence on the

structures, as well as the success rates. Since this benchmark does not depend on

the seed but only on the target structure, we also include RNA-SSD and INFO-RNA in

this test. However, their results should be discussed with caution, since the results of

137

RNAinverse and RNA-ensign are averaged over all seeds while RNA-SSD and INFO-RNA

automatically select favorable seed sequences.

We characterize the target structures by the percentage of stacking pairs they

contain. This is a natural measure in our context since the energy calculation of the

nearest-neighbor energy model we use [53] is based on the energetic contribution of

the stacking of base pairs. We can also characterize secondary structures by other

local motifs such as hairpins, bulges, internal loops and multiloops. However, in this

study these parameters did not exhibit clear correlations (data not shown).

13.2.1 Impact on success rate.

The most significant discrepancy between the performances of all methods with re-

spect to the target structures relates to the success rates. We show in Figure 13-2(a)

how the percentage of stacks in the target structure correlates with the ratio of suc-

cessful designs. Remarkably, RNA-ensign clearly outperforms RNAinverse for target

structures with a low percentage of stacking pairs. This observation is important

because these structures can be quite irregular (i.e., including bulges, internal loops

and/or multiloops) and are precisely those that are most difficult to design. Even

for targets with only 20% stacking base pairs, RNA-ensign is able to reach a success

rate of 0.9. In contrast, RNAinverse requires targets with at least 50% of base pairs

stacking to reach the same success rate.

This phenomenon reemphasizes the benefits of an ensemble approach to capture

compensatory and epistasis effects in the mutational landscape. Indeed, the design of

RNA secondary structures with few stacking pairs can only be achieved by combining

several mutations with sometimes contradictory effects [15]. We know from previous

studies that the neutral network of these structures is highly fragmented [68, 64] and

difficult to reach with a search guided by phenotype (i.e. MFE structure). Further-

more, the performance of RNA-SSD and INFO-RNA suggests that local search heuristics

are subject to optimization and thus could benefit from the results reported in this

study.

This experiment (i.e. Figure 13-2) also shows the tremendous progress achieved by

138

RNA-ensign *-x INFO-RNA -- NUPACK RNA-ensign *-x INFO-RNA NUPACK - RNA-ensign -x INFO-RNA .-. NUPACK
RNAinverse + -. RNA-SSD . RNAInverse RNA-SSD RNAinverse -*.RNA-SSD

1.. 21 ." .
0. 0115

(a) Success rate (b) Target probability (c) Base pair entropy

Figure 13-2: Evaluation of the influence of (random) target structures. The x-axis

represents the percentage of stacks in the target structure. In figure (a), we show
how this parameter impacts the success rates of the programs. In the figure (b), we
depict the probability of the target structure for the designed sequence. In figure (c),
we show the influence on the base pairing entropy.

the path-directed approaches since RNAinverse. Indeed, RNA-SSD and INFO-RNA both

perform very well on unstructured RNA targets and their success rates even exceed

that of RNA-ensign. Noticeably, NUPACK does not offer the same level of perfor-

mance, although it still does reasonably well (approximately 80% while RNA-ensign,

INFO-RNA and RNA-SSD easily reach 95%).

13.2.2 Impact on target probability and base pair entropy.

In Figure 13-2(b), we show how the stability of the target structures on designed

sequences correlates with the percentage of stacks. For all methods except NUPACK,

we observe a linear correlation with a similar slopes (above 20% of stacks). This

indicates that the quality of the designed sequences is dependent of the number of

stacks in the target structure, and that all methods scale similarly. However, we

also observe that RNA-ensign outperforms RNAinverse, RNA-SSD and INFO-RNA by

a constant factor (i.e., higher affine constant). It follows that the gain obtained by

RNA-ensign versus these programs is independent of the target structure.

It is worth noting that INFO-RNA and RNA-SSD have only slightly better perfor-

mance than RNAinverse in this regard (in contrast RNA-ensign clearly outperforms

the latter). However as we have seen earlier, the main benefits of INFO-RNA and

RNA-SSD reside in their success rates. Interestingly, NUPACK exhibits a different be-

139

havior than other methods. Despite a lower success rate, the sequences produced are

significantly more stable than those obtained with other software, and the quality of

the structures does not seem to affect its performance.

Similarly, Figure 13-2(c) shows that RNA-ensign returns sequences with better

(i.e. lower) base pair entropy values than RNAinverse, RNA-SSD and INFO-RNA. It

also shows that NUPACK clearly outperforms all other software for this test.

13.3 Alternate stopping criterion

As we have remarked, NUPACK often produces sequences with higher target structure

probabilities, at the expense of lower success rates and finding designed sequences

that are farther away from the seed. These differences are primarily due to the use

of a different stopping criterion. We decided to investigate this case and changed our

stopping criterion. Rather than stop the search once we have found a sample that

achieves the MFE criterion, we considered 1000 samples for all possible numbers of

mutation (i.e. 1 up to the length of the seed), and selected the sample achieving the

MFE criterion that satisfied some other desirable property. More specifically, we im-

plemented two variants. The first one (called RNA-ensign-P) selects the mutant with

the highest Boltzmann probability of attaining the target structure, and the second

one (called RNA-ensign-S) selects the mutant with the lowest entropy. Similarly, we

note that using the "-Fp" option, RNAinverse can also return the highest probability

sequence found during a local search. It is worth noting that, in both of these algo-

rithms, we are not concerned with finding a designed sequence that is close to the

seed.

We tested all these variants, as well as the standard RNA-ensign, RNAinverse and

NUPACK algorithms on the RNA STRAND dataset. For each target structure, we used 10

random seeds.

Figure 13-3(a) shows the Boltzmann probability of the solution vs. the number

of stacks in the secondary structure target. It reveals that RNAinverse-Fp followed

by RNA-ensign-P and RNA-ensign-S outperform other methods. RNAinverse-Fp

140

g -P s44 g-S FP re Fp . 4NAeigns -S R In;-s Fp RNAw:4i44 N. R
4

4nes F.s-5 *- . , rse Fp

Fiur 134,4q-3: Comparison4, of thePACprobab0il~. 4iy444 -oNpmze RN-.sg with4.- *.N4444NUPACKad

the rga rT

-- y s r t t fd s o

IL 4 4 4 4 1430 1 so G 0 N0'L 30 40 50 W4 702 a4 so 60 70 sopercentage of stacking pairs percentage of stacking pairs percentage of stacking pairs

(a) (b) (C)

Figure 13-3: Comparison of the probability-optimized RNA-ensign with NUPACK and
the original version of RNA-ensign. This benchmark has been realized on 100 sec-
ondary structure targets of length 60 with 10 random seeds for each target. The
x-axis represents the number of stacks in the target structure. In figure (a), the y-
axis represents the probability of the target structure on the sequence. In figure (b),
the y-axis indicates the entropy of the solutions using a log-scale. In figure (c), the
y-axis reports the number of mutations between the seed and the solution.

outperforms RNA-ensign for target structures with 35 to 55% of stacks. In fact,
these targets are characterized by long bulges and internal loops. All methods but

RNAinverse-Fp are affected to various degrees by this phenomenon. The impact of

stacking pairs on the entropy is shown in Figure 13-3(b). Here, RNA-ensign-S and

RNA-ensign-P globally outperform all other methods. Only RNAinverse-Fp manages

to match the performance of RNA-ensign-P and RNA-ensign-S above 50% of stacks.

RNA-ensign-P and RNA-ensign-S remain better for the most difficult cases. Notice-

ably, NUPACK behaves differently from the probability and entropy optimized variants

of RNA-ensign and RNAinverse. Higher percentages of stacking pairs (above 60%)

seem to significantly reduce the entropy of the solutions returned by RNA-ensign-

P, RNA-ensign-S and RNAinverse-Fp, while NUPACK scales like the MFE variants of

RNA-ensign and RNAinverse. Unsurprisingly, the numbers of mutations required

by the optimized variants of RNA-ensign and RNAinverse increase significantly and

exceed the values required by NUPACK (See Figure 13-3(c)).

141

13.4 Running time and multiple runs

For molecules of 40nt, our design method took about a minute per structure/seed

input to complete on a 3.33 GHz CPU; for 60nt molecules, runtime grew to ca. 20

minutes and used 300 MB of memory. We investigated the runtime and compared the

performance of RNA-ensign to other local search approaches of the first generation

(RNAinverse) and second generation (NUPACK). In particular, we ran RNAinverse

10000 times and NUPACK 100 times on the RNA-STRAND dataset using random

seeds (C+G content and A+G content of 50%). These settings enabled us to have

comparable runtimes. For each experiment, we computed the Boltzmann probability

of the target structure and the base pair entropy of the best solution found over

all runs, and reported the total running time. Our results are shown in Table 13.1.

We split our dataset in 3 categories based on the length of the structure (small: 40

nucleotides or fewer; medium: between 41 and 80 nucleotides; large: 81 nucleotides

or more).

On small targets, our data show that with a similar amount of time the global

search approach outperforms the local search method RNAinverse, while the results

are reversed on medium size targets. Nonetheless, for the longest structures it appears

that RNA-ensign tends to produce better solutions than RNAinverse. To understand

this, we note that small targets are single stem structures that can be easily stabilized

by improving stacking energies-a strategy matching the principles of our objective

function. When the structures grow and become more sophisticated (i.e. with multi-

loops), local search methods apply efficient heuristics to accommodate the presence

of complex motifs. This strategy could eventually increase the folding energy of the

mutants and therefore is not captured by RNA-ensign. However, on longer targets (80

nucleotides or more), heuristics become less efficient in handling the combinatorial

explosion of the number of candidate sequences. As a consequence, these heuris-

tics have more chances to drive the mutants to sub-optimal regions of the sequence

landscape. On the other hand, a global search approach becomes more competitive

because searches distant from the seed are not influenced by potentially misleading in-

142

Length Probability Entropy Time (sec.)
A B C D A B C D A B C D

0-40 0.69 0.65 0.60 0.97 0.056 0.051 0.065 0.003 62 28 61 27
41-80 0.35 0.21 0.53 0.89 0.148 0.157 0.100 0.008 1883 742 711 8973
81+ 0.40 0.30 0.29 0.93 0.062 0.147 0.125 0.006 9332 2434 1269 2920

Table 13.1: Comparison of RNA-ensign (column A) with multiple runs of RNAinverse
(C) and NUPACK (D). We ran RNAinverse 10000 times and NUPACK 100 times on the
RNA-STRAND dataset using random seeds (C+G content and A+G content of 50%) and
reported the Boltzmann probability of the target structure and the base pair entropy
of the best solution found over all runs. The total running time is indicated in seconds
in the last columns. We also included the performance achieved by RNA-ensign with
a number of mutations bounded by 50% of the number of nucleotides (B).

termediate choices. In all cases, it is worth noting that NUPACK, with improved search

heuristics and stopping criteria, offers excellent performance with multiple runs. This

suggests that second generation methods of global search approaches could drastically

improve as well.

We completed this study by running a version of RNA-ensign with a number

of mutations bounded by 50% of the number of nucleotides. With a minor loss

of performance that does not alter the overall trends discussed above, this variant

drastically improves the running time of RNA-ensign. To this, we must add that once

the partition function has been calculated with RNAmutants, the cost for sampling new

structures is cheap (i.e., O(n 2) in the worst case with the current implementation).

Thus, the size of the search that has been heuristically fixed at 1000 samples in

this work, can be easily increased to improve RNA-ensign performance with minimal

changes to the running time.

143

THIS PAGE INTENTIONALLY LEFT BLANK

144

Chapter 14

Discussion

In this work, we have demonstrated that ensemble-based approaches provide a good

alternative to stochastic local search methods for the RNA secondary structure design

problem. Our results suggest that our techniques have the potential to improve

several aspects of classical path-directed methods. In particular, we have shown that

our strategy is efficient on target structures with few stacking base pairs and the

influence of the choice of the seed on the success rate is minimal. Our methodology

also appears to produce more stable sequences and has a limited impact on the final

nucleotide composition.

In a sense, our approach is a dual to McCaskill's classical algorithm for RNA

folding [54].. That algorithm can efficiently sample possible secondary structures for a

given sequence with the correct Boltzmann probabilities (roughly, those where lower

energy structures are more likely). In this way, it allows us to see what structures

the sequence is likely to fold into. In our approach, we reverse this logic, and try to

find sequences for which a given (fixed) structure has a favorable energy. We do this

using a dynamic programming approach similar to the one used by McCaskill. The

most general RNAmutants program is in a very real sense a substantial generalization

of McCaskill's algorithm [75], and our particular application presented here is one

consequence of this generalization.

It is worth noting that NUPACK appears to produce more stable sequences than

other implementations of the local search approach. But these benefits come with

145

noticeable disadvantages: the designed sequences are uniformly far from the seed in

terms of Hamming distance and the final nucleotide composition has a strong bias.

Consequently, in their framework the seeds cannot be used to control characteristics

of the designed sequences such as the C+G content or to reengineer molecular systems

with tight constraints on sequence deviation.

We also show that the stability of the target structure for sequences designed with

RNA-ensign can still be improved. We relaxed the stopping criterion and demon-

strated that, at the price of increased sequence deviations, our strategy can produce

more stable structures than NUPACK and match the performance of the probability op-

timized variant of RNAinverse. Nonetheless, since the computational complexity of

our method is bounded by the number of mutations it performs, this variant may be

restricted to the design of small RNA elements such as those used in [58, 20, 52]. More

importantly, beyond a strict numerical comparison, this result shows that RNA-ensign

offers new perspectives for improved RNA secondary structure design algorithms.

Our results can also be compared to those obtained by R. Dirks et al. [19], who

reported that a local search approach to design using only an energy-based optimiza-

tion approach performs poorly. In contrast, our data suggest that an ensemble-based

approach implementing similar objective functions should reverse this finding.

Due to its current time and memory requirements, thus far, our method is limited

to the design of small RNAs (150 nucleotides or less). This limitation does not strike

us as a major drawback since the sizes of most of the structural RNAs we aim to

design fall below this limit. In the future, we envision hybrid approaches that will

take advantage of both strategies, the classical local search methodology for its.speed

and versatility, and our ensemble-based approach for its capacity to generate high

quality sequences even on hard instances of the problem.

Finally, our ensemble-based method could also benefit from recent RNAmutants

developments [77] that enable us to explore specific regions of the mutational land-

scape. These techniques could be applied to account for external constraints on the

sequence composition (e.g. AT-rich thermophiles), improving the potential of our

designed sequences to be active within realistic cellular contexts.

146

An implementation of the method and its variants described in this paper is

publicly available at: http: //csb. cs. mcgill. ca/RNAmutants.

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

Bibliography

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning
trees. CoRR, abs/0808.2017, 2008.

[2] Dimitris Achlioptas. Database-friendly random projections. In PODS '01:
Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 274-281, New York, NY, USA, 2001.
ACM.

[3] Rosalia Aguirre-Hernandez, Holger H Hoos, and Anne Condon. Computational
RNA secondary structure design: empirical complexity and improved methods.
BMC Bioinformatics, 8:34, 2007.

[4] K.J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear mea-
surements. In Proceedings of the Twenty-Third Annual A CM-SIAM Symposium
on Discrete Algorithms, pages 459-467. SIAM, 2012.

[5] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming
model. In Proceedings of the 36th International Colloquium on Automata, Lan-
guages and Programming: Part II, ICALP '09, pages 328-338, Berlin, Heidelberg,
2009. Springer-Verlag.

[6] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: spar-
sification, spanners, and subgraphs. In Proceedings of the 31st symposium on
Principles of Database Systems, PODS '12, pages 5-14, New York, NY, USA,
2012. ACM.

[7] David J Aldous. A random walk construction of uniform spanning trees and
uniform labelled trees. SIAM Journal on Discrete Mathematics, 3:450-465, 1990.

[8] Mirela Andronescu, Vera Bereg, Holger H Hoos, and Anne Condon. RNA
STRAND: the RNA secondary structure and statistical analysis database. BMC
Bioinformatics, 9:340, 2008.

[9] Mirela Andronescu, Anthony P Fejes, Frank Hutter, Holger H Hoos, and Anne
Condon. A new algorithm for RNA secondary structure design. J Mol Biol,
336(3):607-24, Feb 2004.

149

[10] Assaf Avihoo, Alexander Churkin, and Danny Barash. Rnaexinv: An extended
inverse RNA folding from shape and physical attributes to sequences. BMC
Bioinformatics, 12(1):319, Aug 2011.

[11] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan
sparsifiers. In STOC '09: Proceedings of the 41st Annual ACM symposium on
Theory of Computing, pages 255-262, New York, NY, USA, 2009. ACM.

[12] Andras A. Benczdir and David R. Karger. Approximating s-t minimum cuts in
O(n 2) time. In Proceedings of the Twenty-Eighth Annual ACM symposium on
Theory of Computing, STOC '96, pages 47-55, New York, NY, USA, 1996. ACM.

[13] Anke Busch and Rolf Backofen. INFO-RNA-a fast approach to inverse RNA
folding. Bioinformatics, 22(15):1823-31, Aug 2006.

[14] P. Christiano, J.A. Kelner, A. Madry, D.A. Spielman, and S.H. Teng. Electrical
flows, laplacian systems, and faster approximation of maximum flow in undi-
rected graphs. In Proceedings of the 43rd annual ACM symposium on Theory of
computing, pages 273-282. ACM, 2011.

[15] Matthew C Cowperthwaite and Lauren Ancel Meyers. How mutational networks
shape evolution: Lessons from RNA models. Annual Review Ecology Evolution
and Systematics, 2007.

[16] Stephanie J Culler, Kevin G Hoff, and Christina D Smolke. Reprogramming cel-
lular behavior with RNA controllers responsive to endogenous proteins. Science,
330(6008):1251-5, Nov 2010.

[17] Denny C. Dai, Herbert H. Tsang, and Kay C. Wiese. rnaDesign: Local search
for RNA secondary structure design. In IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB), 2009.

[18] Alain Denise, Yann Ponty, and Michel Termier. Controlled non uniform random
generation of decomposable structures. Journal of Theoretical Computer Science
(TCS), 411(40-42):3527-3552, 2010. 68R05;68R15.

[19] Robert M Dirks, Milo Lin, Erik Winfree, and Niles A Pierce. Paradigms for
computational nucleic acid design. Nucleic Acids Res, 32(4):1392-403, 2004.

[20] Neil Dixon, John N Duncan, Torsten Geerlings, Mark S Dunstan, John E G Mc-
Carthy, David Leys, and Jason Micklefield. Reengineering orthogonally selective
riboswitches. Proc Natl Acad Sci U S A, 107(7):2830-5, Feb 2010.

[21] Kishore J Doshi, Jamie J Cannone, Christian W Cobaugh, and Robin R Gutell.
Evaluation of the suitability of free-energy minimization using nearest-neighbor
energy parameters for rna secondary structure prediction. BMC Bioinformatics,
5:105, Aug 2004.

150

[22] B. Efron. Bootstrap methods: another look at the jackknife. Annals of Statistics,
7(1):1-26, 1979.

[23] B. Efron and R. Tibshirani. Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy. Statistical Science, 1:54-75,
1986.

[24] Josep Fabrega. Random walks on graphs. Available at
www. lirmm. fr/~sau/JCALM/Josep. pdf.

[25] Eva Freyhult, Paul P Gardner, and Vincent Moulton. A comparison of RNA
folding measures. BMC Bioinformatics, 6:241, 2005.

[26] P.A. Fujita, B. Rhead, A.S. Zweig, A.S. Hinrichs, D. Karolchik, M.S. Cline,
M. Goldman, G.P. Barber, H. Clawson, A. Coelho, et al. The UCSC Genome
Browser database: update 2011. Nucleic Acids Research, 39(suppl 1):D876-
D882, 2011.

[27] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Pan-
igrahi. A general framework for graph sparsification. In STOC '11: Proceedings
of the 43rd ACM Symposium on Theory of Computing, pages 71-80, 2011.

[28] J.H. Gillespie. Population genetics: a concise guide. Johns Hopkins University
Press, 2004.

[29] A. Goel, M. Kapralov, and S. Khanna. Graph sparsification via refinement
sampling. arXiv: 1004.4915 [cs.DS].

[30] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the
streaming model with edge deletions. CoRR, abs/1203.4900, 2012.

[31] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338-355, May 1984.

[32] Nicholas Harvey. Lecture 11 notes for C&O 750: Ran-
domized algorithms (Waterloo, Winter 2011). Available at
http://www.math.uwaterloo. ca/-harvey/W1.

[33] I. L. Hofacker, W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker, and P. Schus-
ter. Fast folding and comparison of RNA secondary structures. Monatshefte fur
Chemie, 125:167-188, 1994.

[34] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC '98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 604-613, 1998.

[35] Farren J Isaacs, Daniel J Dwyer, and James J Collins. RNA synthetic biology.
Nat Biotechnol, 24(5):545-54, May 2006.

151

[36] A. Keinan, J.C. Mullikin, N. Patterson, and D. Reich. Measurement of the human
allele frequency spectrum demonstrates greater genetic drift in East Asians than
in Europeans. Nature Genetics, 39(10):1251-1255, 2007.

[37] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming
setting. In Thomas Schwentick and Christoph Diirr, editors, STA CS, volume 9
of LIPIcs, pages 440-451. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

[38] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving SDD systems in nearly-linear time.
CoRR, abs/1301.6628, 2013.

[39] loannis Koutis, Alex Levin, and Richard Peng. Faster spectral sparsification and
numerical algorithms for SDD matrices. arXiv: 1209.5821v1 [cs.DS].

[40] loannis Koutis, Alex Levin, and Richard Peng. Improved spectral sparsification
and numerical algorithms for SDD matrices. In Proceedings of the 29th Inter-
naational Symposium on Theoretical Aspects of Computer Science, STACS '12,
pages 266-277.

[41] loannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for
solving SDD systems. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, FOCS '10, 2010.

[42] loannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n solver for
SDD linear systems. In Proceedings of the 52nd Annual IEEE Symposium on
Foundations of Computer Science, FOCS '11, 2011.

[43] Sita J Lange, Daniel Maticzka, Mathias M6hl, Joshua N Gagnon, Chris M Brown,
and Rolf Backofen. Global or local? predicting secondary structure and accessi-
bility in mRNAs. Nucleic Acids Res, Feb 2012.

[44] Gregory F. Lawler and Lester N. Coyle. Lectures on contemporary probability,
volume 2 of Student Mathematical Library. American Mathematical Society,
Providence, RI, 1999.

[45] A. Levin, M. Lis, Y. Ponty, C.W. O'Donnell, S. Devadas, B. Berger, and J. Wald-
ispiihl. A global sampling approach to designing and reengineering RNA sec-
ondary structures. Nucleic Acids Research, 2012.

[46] Alex Levin. Some variants on spectral sparsification. Unpublished manuscript.

[47] J.Z. Li, D.M. Absher, H. Tang, A.M. Southwick, A.M. Casto, S. Ramachandran,
H.M. Cann, G.S. Barsh, M. Feldman, L.L. Cavalli-Sforza, et al. Worldwide
human relationships inferred from genome-wide patterns of variation. Science,
319(5866):1100-1104, 2008.

152

[48] Joe C Liang, Ryan J Bloom, and Christina D Smolke. Engineering biological
systems with synthetic RNA molecules. Mol Cell, 43(6):915-26, Sep 2011.

[49] Mark Lipson, Po-Ru Loh, Alex Levin, David Reich, Nick Patterson, and Bonnie
Berger. Efficient moment-based inference of admixture parameters and sources
of gene flow.

[50] Y. Lu, T. Genschoreck, S. Mallick, A. Ollmann, N. Patterson, Y. Zhan, T. Web-
ster, and D. Reich. A SNP array for human population genetics studies. 2011.
Presented at the 12th International Congress of Human Genetics/61st Annual
Meeting of The American Society of Human Genetics, October 12, 2011, Mon-
treal, Canada.

[51] Yontao Lu, Nick Patterson, Yiping Zhan, Swapan Mallick, and David Reich.
Technical design document for a SNP array that is optimized for population ge-
netics, 2011.

[52] Julius B Lucks, Lei Qi, Vivek K Mutalik, Denise Wang, and Adam P Arkin. Ver-
satile RNA-sensing transcriptional regulators for engineering genetic networks.
Proc Natl Acad Sci U S A, 108(21):8617-22, May 2011.

[53] D H Mathews, J Sabina, M Zuker, and D H Turner. Expanded sequence de-
pendence of thermodynamic parameters improves prediction of RNA secondary
structure. J Mol Biol, 288(5):911-40, May 1999.

[54] J. S. McCaskill. The equilibrium partition function and base pair binding prob-
abilities for RNA secondary structure. Biopolymers, 29:1105-1119, 1990.

[55] Alessandro Michienzi, Shirley Li, John A Zaia, and John J Rossi. A nucle-
olar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci U S A,
99(22):14047-52, Oct 2002.

[56] M.E. Nebel. Identifying good predictions of RNA secondary structure. In Pacific
Symposium on Biocomputing, volume 9, pages 423-434, 2004.

[57] M. Nei. Molecular Evolutionary Genetics. Columbia University Press, 1987.

[58] Yoko Nomura and Yohei Yokobayashi. Reengineering a natural riboswitch by
dual genetic selection. J Am Chem Soc, 129(45):13814-5, Nov 2007.

[59] N.J. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Gen-
schoreck, T. Webster, and D. Reich. Ancient admixture in human history. Ge-
netics, 2012.

[60] Y. Ponty. Etudes combinatoire et generation alhatoire des structures secondaires
d'ARN. Master's thesis, Universit6 Paris Sud, 2003. Memoire de DEA.

[61] Yann Ponty, Michel Termier, and Alain Denise. Genrgens: software for gener-
ating random genomic sequences and structures. Bioinformatics, 22(12):1534-
1535, Jun 2006.

153

[62] J.E. Pool, I. Hellmann, J.D. Jensen, and R. Nielsen. Population genetic inference
from genomic sequence variation. Genome research, 20(3):291-300, 2010.

[63] D. Reich, K. Thangaraj, N. Patterson, A.L. Price, and L. Singh. Reconstructing
Indian population history. Nature, 461(7263):489-494, 2009.

[64] C Reidys, P F Stadler, and P Schuster. Generic properties of combinatory maps:
neutral networks of RNA secondary structures. Bull Math Biol, 59(2):339-397,
Mar 1997.

[65] N.A. Rosenberg, J.K. Pritchard, J.L. Weber, H.M. Cann, K.K. Kidd, L.A. Zhiv-
otovsky, and M.W. Feldman. Genetic structure of human populations. Science,
298(5602):2381-2385, 2002.

[66] N. Saitou and M. Nei. The neighbor-joining method: a new method for re-
constructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425,
1987.

[67] Michael Schnall-Levin, Leonid Chindelevitch, and Bonnie Berger. Inverting the
Viterbi algorithm: an abstract framework for structure design. In William W.
Cohen, Andrew McCallum, and Sam T. Roweis, editors, ICML, volume 307 of
ACM International Conference Proceeding Series, pages 904-911. ACM, 2008.

[68] P Schuster, W Fontana, P F Stadler, and I L Hofacker. From sequences to
shapes and back: a case study in RNA secondary structures. Proc Biol Sci,
255(1344):279-284, Mar 1994.

[69] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective
resistances. In Proceedings of the 40th Annual ACM symposium on Theory of
Computing, STOC '08, pages 563-568, New York, NY, USA, 2008. ACM.

[70] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Pro-
ceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing,
STOC '04, pages 81-90, New York, NY, USA, 2004. ACM.

[71] Nikhil Srivastava. Spectral sparsification and restricted invertibility.

[72] Luca Trevisan. Approximation algorithms for unique games. In FOCS '05:
Proceedings of the 46th IEEE Symposium on Foundations of Computer Science,
pages 5-34, 2005.

[73] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript.

[74] Roman Vershynin. A note on sums of independent random matrices after
Ahlswede-Winter.

154

[75] Jerome Waldispiihl, Srinivas Devadas, Bonnie Berger, and Peter Clote. Effi-
cient algorithms for probing the RNA mutation landscape. PLoS Comput Biol,
4(8):e1000124, 2008.

[76] Jerome Waldispiihl, Srinivas Devadas, Bonnie Berger, and Peter Clote. RNA-
mutants: a web server to explore the mutational landscape of RNA secondary
structures. Nucleic Acids Res, 37(Web Server issue):W281-6, Jul 2009.

[77] Jer6me Waldispilhl and Yann Ponty. An unbiased adaptive sampling algorithm
for the exploration of RNA mutational landscapes under evolutionary pressure.
In RECOMB, pages 501-515, 2011.

[78] H. S. Wilf. A unified setting for sequencing, ranking, and selection algorithms
for combinatorial objects. Advances in Mathematics, 24:281-291, 1977.

[79] Joseph N Zadeh, Brian R Wolfe, and Niles A Pierce. Nucleic acid sequence design
via efficient ensemble defect optimization. J Comput Chem, 32(3):439-52, Feb
2011.

155

