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Abstract

In this thesis, we present three different randomized algorithms that help to solve
matrices, compute low rank approximations and perform the Fast Fourier Transform.

Matrix probing and its conditioning

When a matrix A with n columns is known to be well approximated by a linear
combination of basis matrices By,..., B,, we can apply A to a random vector and
solve a linear system to recover this linear combination. The same technique can
be used to obtain an approximation to A1. A basic question is whether this linear
system is well-conditioned. This is important for two reasons: a well-conditioned
system means (1) we can invert it and (2) the error in the reconstruction can be
controlled. In this paper, we show that if the Gram matrix of the B;’s is sufficiently
well-conditioned and each B; has a high numerical rank, then n o< plog® n will ensure
that the linear system is well-conditioned with high probability. Our main application
is probing linear operators with smooth pseudodifferential symbols such as the wave
equation Hessian in seismic imaging. We also demonstrate numerically that matrix
probing can produce good preconditioners for inverting elliptic operators in variable
media.

Skeleton decompositions in sublinear time

A skeleton decomposition of a matrix A is any factorization of the form A.cZAg.
where A.c comprises columns of A, and Ag comprises rows of A. In this paper,
we investigate the conditions under which random sampling of C' and R results in
accurate skeleton decompositions. When the singular vectors (or more generally the
generating vectors) are incoherent, we show that a simple algorithm returns an ac-
curate skeleton in sublinear O(£%) time from ¢ ~ klogn rows and columns drawn
uniformly at random, with an approximation error of the form O(%0x) where oy is
the k-th singular value of A. We discuss the crucial role that regularization plays in
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forming the middle matrix U as a pseudo-inverse of the restriction Agre of A to rows
in R and columns in C. The proof methods enable the analysis of two alternative
sublinear-time algorithms, based on the rank-revealing QR decomposition, which al-
low us to tighten the number of rows and/or columns sampled to k& with an error
bound proportional to .

Sparse Fourier transform using the matrix pencil method

One of the major applications of the FFT is to compress frequency-sparse signals. Yet,
FFT algorithms do not leverage on this sparsity. Say we want to perform the Fourier
transform on z € CV to obtain some # which is known to be S-sparse with some
additive noise. Even when S is small, FFT still takes O(N log N) time. In contrast,
SFT (sparse Fourier transform) algorithms aim to run in 5(5) time ignoring log
factors. Unfortunately, SFT algorithms are not widely used because they are faster
than the FFT only when S <« N. We hope to address this deficiency. In this
work, we present the fastest known robust O(S)-time algorithm which can run up to
20 times faster than the current state-of-the-art algorithm AAFFT. The major new
ingredient is a mode collision detector using the matrix pencil method. This enables
us to do away with a time-consuming coeflicient estimation loop, use a cheaper filter
and take fewer samples of z. We also speed up a crucial basic operation of many
SFT algorithms by halving the number of trigonometric computations. Our theory
is however not complete. First, we prove that the collision detector works for a few
classes of random signals. Second, we idealize the behavior of the collision detector
and show that with good probability, our algorithm runs in O(-‘:; log? -IS! log N) time
and outputs a O(S)-sparse 2 such that ||#' — £||* < (1+¢) ||Z, — £||* where £, is the
best exact S-sparse approximation of Z.

Thesis Supervisor: Laurent Demanet
Title: Assistant Professor
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Chapter 1

Overview

This dissertation consists of three main parts. In this chapter, we briefly describe
what each of the three parts is about. Note that in each part, a different notation

may be set up.

1.1 Matrix probing and its conditioning

Matrix probing is a simple idea that can be used for preconditioning and system
identification. Let A be a large n X » matrix with not much information. Let p be
a small positive integer. Suppose we know that A ~ Z?=1 ¢;B; for some predefined
Bj’s. Let ¢ = (ci,...,¢p)T be the vector of coefficients. The idea of matrix probing
is to recover ¢ by applying A to random vectors. Let u be a random Gaussian vector.

Compute v = Au. Observe that
Lc ~ v where L = (Byu, ..., Byu).

The linear system is then solved to find ¢. Our work addresses the following question:
to recover ¢ accurately, what assumptions do we need and how big does n have to be
relative to p?

Let {-,-) be the Frobenius inner product. Our theory says that if each B; is

well-conditioned and act in a different way in the sense that (B;, B;) ~ d;;, then
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n 2 p ensures that with high probability, L is well-conditioned and we can recover ¢
accurately and stably. For more details, see Theorem 2.1.3.
Matrix probing can be used to approximately invert a matrix. The idea is to

apply A~! to v = Au where u is a random Gaussian vector. The steps are:

1) Generate one random Gaussian vector u. Compute v = Au.

2) Compute Byv,...,B,v and form L = (Byv, ..., Byv).

3) Solve Le = u to estimate the coefficients ¢;’s.

In our applications, we considered structured matrices A for which a good choice
is to take the B;’s to be elementary pseudodifferential symbols. More on pseudodif-
ferential symbols can be found in Section 2.3. If matrix-vector multiplications take
O(n) time for our structured matrix A, then matrix probing takes only O(np?) time.
This is comparable with multigrid methods which we find more restrictive. We find
it intriguing that A~! can be well-approximated merely by applying A to one random
vector.

A major application is inverting the wave equation Hessian in seismic imaging
[23]. Consider the least squares problem min, ||b — Az]|2 where b is data, A is the
linearized forward operator and z is the model. A popular method to solve this is
the Newton method. It converges in very few iterations, but requires us to compute
(A*A)™!, the inverse of the Hessian. Our numerical experiments indicate that matrix

probing can produce a high quality approximation of (A*A)~1.

1.2 Sublinear randomized algorithms for skeleton de-

compositions

We are interested in fast algorithms that produce low rank decompositions given
partial information of a matrix. Unlike matrix completion [13], we do not perform
any optimization. The algorithms we consider use only numerical linear algebra and

run in sublinear time, i.e., o(n?) time if the matrix is of size n. Our work has many
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applications. For example, it can be used to compute low rank approximations of
Green’s functions of many PDEs used in Boundary Integral Equation methods.

Let A be a n x n matrix. We seek to compute matriz skeletons [35] that approx-
imate A. Matrix skeletons take the form of CUR where C is a column subset of A
and R is a row subset of A. This representation is especially space-saving if we have
a closed form or compressed representation of A. Suppose A is approximately rank
k. Let £ > klogn. We considered the following O(¢3) time algorithm which returns
a rank ¢ matrix skeleton. The pseudocode is on the left, while the Matlab code is on

the right.

1) Uniformly sample £ rows of A to form R. | r=randperm(n,#); % R=A(r,:);
2) Uniformly sample £ columns of A to form | c=randperm(n,?); % C=A(:,c);
C.

3) Let Z € C?¢ be the intersection of C, R. | z=A(z,c);

4) Let Z’ be Z with singular values less than | U=pinv(Z,delta);
d removed. Let U = Z't, ie., U is the
thresholded pseudoinverse of Z.

5) Return implicitly the matrix skeleton | (Return r,c,U)

CUR.

The above algorithm works well in practice and is very simple compared to meth-
ods such as Adaptive Cross Approximation [5]. We like to understand when the above
algorithm works well.

Suppose A ~ XBY™* where X,Y are n x k matrices with orthonormal columns
and B is not necessarily diagonal. Like in matrix completion, assume that X,Y
are incoherent. This means all the entries of X,Y are of magnitude O(n~'/?). 1t is
instructive to consider ¥ = (I’“(;"’), which is not incoherent. In this case, C ~ 0 with
high probability and the above algorithm fails. For uniform sampling to work, the
incoherence assumption on X,Y seems to be necessary.

Here is what our main result or Theorem 3.1.2 says. Let £ = ||A ~ X BY™*|| where

-] is the operator norm. Suppose X,Y are incoherent, ¢ 2 klogn and the above
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algorithm is run with ¢ ~ ¢, then with high probability the algorithm will return a
skeleton decomposition CU R satisfying

IA—~ CUR| < ne/e.

Our numerical experiments in Section 3.4 show that the operator norm error can
blow up as & — 0, suggesting that the thresholding in Step 4 is indeed necessary.
We also considered the following 5(nk2)1 time algorithm. Its main advantage is that

only k columns are selected instead of £ 2 klogn.

1) Uniformly sample p rows of A to form K. | r=randperm(n,p); R=A(r,:);
2) Run RRQR [36] on R to select k columns. | c=rrqr(R,k); C=A(:,c);

3) Let Z € CP** be the intersection of C, R. | z=A(x,c);

4) Let U = Z*. No thresholding is needed. | U=pinv(2);

5) Return the matrix skeleton CUR.

In Step 2, we use the Rank Reveal QR or Interpolative Decomposition [17, 36] to
deterministically select k£ columns of R. Using the same proof framework, we show
that under similar assumptions on A as before, i.e., A~ XBY* ¢ = ||[A - XBY*|,
¢ 2 klogn, X is incoherent, then the above algorithm will with high probability
return a skeleton decomposition CUR satisfying |A — CUR|| < ne. For more details,
see Theorem 3.3.2.

1.3 Sparse Fourier transform using the matrix pencil

method

Frequency-sparse signals are abundant in our world. A natural question to ask is:
if the signal is frequency-sparse, can we find its Fourier coefficients faster than the
FFT? To be concrete, if the signal is of size N and has S large Fourier coefficients,

can we find these coefficients in 5(5‘ ) time instead of O(N log N) time?

10(-) is the O(-) notation with log factors dropped.
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In 2002, Gilbert, Indyk et al. [33, 32] provided an algorithm which runs in
O(Slog® N) time for some ¢ > 2. Although its running time is near-optimal in theory,
it is not very useful in practice. The reason is that we need S to be much smaller
than N for it to be faster than FFT. Recently, Hassanieh, Indyk et al. [41] proposed
a new algorithm sFFT1.0 which is significantly faster in practice. For N = 2% it
is able to beat FFT for S < 10002. The caveat is that its running time is O(vVNS)
which does not scale well with N.

Our contribution is the design of the fastest known robust 5(3 )-time sparse Fourier
transform (SFT) algorithm. As of now, it is at least 5 times faster than AAFFT even
when it is using conservative parameters that favor robustness to noise. For more,
see Figure 4-1 and the numerical experiments in Section 4.6.1. Our main idea is to
combine the matrix pencil method [45], a well-established spectral estimation tool,
with sFFT3.0 [40], a fast but nonrobust SFT algorithm. By analyzing the spectral
properties of matrices formed from translates of a signal, we are able to detect “mode
collision” and speed up the estimation of coeflicients. To understand how this works,
we need a review of sFFT3.0. Here are its main steps.

1. Let 2 € CV be our signal and £ be its Fourier transform. Bin the modes by

i
B

0,1) where B is the number of bins. Obtain a Yy € C?Z such that
[0,1)

convolving Z with a smoothed boxcar filter of width ~ < in the frequency space

Yz)bf_\: Z Iy forany b=0,...,B— 1.

k in bin b
By “k in bin b", we mean that |[kB/N| = b or equivalently, 2 < & < &1,
2. Let 27 be x translated. Apply the previous step to 27 and obtain Y, € CB. As

Z7 is £ modulated,

V) ~ Z £,e*™*/N for any b=0,...,B — 1.
kinbin b

2We compile sFFT1.0 and sFFT2.0 using the same compiler flags as FFTW which include -03
and -mtune=native. The latter turns on hardware optimization which is likely to be unfavorable to
SFT algorithms. The hardware optimization however does not seem to affect the comparison with
FFTW on the FFTW_MEASURE option.
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3. Fix a bin b. Suppose there is only one mode kq in this bin. Then Y? ~
Zr,e?™*07/N We call kg an isolated mode. Estimate kg as 2% arg’—}:;; and £, as

v,

4. By making B 2 S, we expect a constant proportion of the modes to be isolated
and found. Let 2’ be z with its modes randomly and implicitly shufled. Repeat

the above steps on z'.

The number of modes left to be found decay geometrically and only O(log S) repeti-
tions are needed.

When there is noise, Step 3 does not work and we have to identify kg bit by bit.
The idea of finding the index of an isolated mode in a multiscale fashion is not new.
What is new here is a mode collision mechanism based on the matrix pencil method
[45]. Fix a bin b. Define X € CN by X, = Y? =3, .., ZxeZ* /N Apply the
matrix pencil method to X to try to find the modes in bin &. This involves forming

a J x J Toeplitz matrix (cf. (4.7))

Xy X5 ... X—J-I—l
A l X, Xo X_J+2
J . . . .
Xy Xj_9 ... Xo

Let p? = |A|% - ||A)° = Zjﬂ 03(A) where 0;(A) is the j-th largest singular value of
A and ||-|| ¢ is the Frobenius norm. The idea is that if there are more than one mode
in this bin, then it is likely that u is much bigger than what we expect from noise. In
other words, if p is small, then we are confident that we have an isolated mode and
will estimate the coefficient £, using (Y;)}i<s—1. Existing iterative SFT algorithms
have to run a separate loop to estimate these coeflicients. This loop requires more
bins than is optimal, a more expensive filter for binning, additional random shuffles,
which amount to more signal samples and a slower algorithm.

In Section 4.3, we assume that the modes landing in a bin are fully randomly

shuffled, and show that for some common cases, y is unlikely to be small when there
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is more than one heavy mode in the bin. One example is that the total energy of the
heavy modes in the bin is sufficiently large relative to the heaviest mode in the bin.
In Theorem 4.1.3, we idealize the effectiveness of the collision detector and show that
with good probability, our algorithm will terminate in O(g log N log® %) time with
a 1 + € relative #?-error in the estimation of Z, where %, is the best exact S-sparse
approximation of Z. We argue informally at the beginning of Section 4.5 that our

algorithm must run in Q(£ log N log? %) time.

17



18



Chapter 2

Matrix probing and its conditioning

2.1 Introduction

The earliest randomized algorithms include Monte Carlo integration and Monte Carlo
Markov chains [2]. These are standard techniques in numerical computing with
widespread applications from physics, econometrics to machine learning. However,
they are often seen as the methods of last resort, because they are easy to implement
but produce solutions of uncertain accuracy.

In the last few decades, a new breed of randomized algorithms has been developed
by the computer science community. These algorithms remain easy to implement,
and in addition, have failure probabilities that are provably negligible. In other
words, we have rigorous theory to ensure that thése algorithms perform consistently
well. Moreover, their time complexity can be as good as the most sophisticated
deterministic algorithms, e.g., Karp-Rabin’s pattern matching algorithm [49] and
Karger’s min-cut algorithm [48].

In recent years, equally attractive randomized algorithms are being developed in
the numerical community. For example, in compressed sensing [15], we can recover
sparse vectors with random measurement matrices and ¢! minimization. Another
interesting example is that we can build a good low rank approximation of a matrix
by applying it to random vectors [39].

Our work carries a similar flavor: often, the matrix A can be approximated as
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a linear combination of a small number of matrices and the idea is to obtain these
coefficients by applying A to a random vector or just a few of them. We call this
“forward matrix probing.” What is even more interesting is that we can also probe
for A=! by applying A to a random vector. We call this “backward matrix probing”

for a reason‘that will be clear in Section 2.1.5.

Due to approximation errors, the output of “backward probing” denoted as C, is
only an approximate inverse. Nevertheless, as we will see in Section 2.4, C' serves very
well as a preconditioner for inverting A, and we believe that its performance could
match that of multigrid methods for elliptic operators in smooth media.

We like to add that the idea of “matrix probing” is not new. For example, Chan
[19, 18] et. al. use the technique to approximate A with a sparse matrix. Another
example is the work by Pfander et. al. [60] where the same idea is used in a way
typical in compressed sensing. In the next section, we will see that their set-up is

fundamentally different from ours.

2.1.1 Forward matrix probing

Let B = {Bs,..., By} where each B; € C™" is called a basis matrix. Note that B
is specified in advance. Let u be a Gaussian or a Rademacher sequence, that is each
component of u is independent and is either a standard normal variable or &1 with
equal probability.

Define the matrix L € C™*? such that its j-th column is Bju. Let A € C™*" be

the matrix we want to probe and suppose A lies in the span of B. Say

P
A= Zc,»Bi for some ¢y,...,c, € C.

i=1
Observe that Au = Y %_ ¢;(B;u) = Le. Given the vector Au, we can obtain the
coefficient vector ¢ = (cy,...,¢,)T by solving the linear system
Lc = Au. (2.1)

20



In practice, A is not exactly in the span of a small B and (2.1) has to be solved
in a least squares sense, that is ¢ = L™ (Au) where L' is the pseudoinverse of L.

We will assume that p < n. Otherwise there are more unknowns than equations
and there is no unique solution if there is any. This differs from the set-up in [60]

where n >> p but A is assumed to be a sparse linear combination of By, ..., B,.

2.1.2 Conditioning of L

Whether (2.1) can be solved accurately depends on cond(L), the condition number
of L. This is the ratio between the largest and the smallest singular values of L and

can be understood as how different L can stretch or shrink a vector.

Intuitively, whether cond(L) is small depends on the following two properties of

B.

1. The B;’s “act differently” in the sense that (B;, Bx) ~ d;; for any 1 < j, k < p.!

2. Bach B; has a high rank so that Byu,..., Byu € C" exist in a high dimensional

space.

When B possesses these two properties and p is sufficiently small compared to
n, 1t makes sense that L’s columns, Byu,..., Byu, are likely to be independent, thus
guaranteeing that L is invertible, at least.

We now make the above two properties more precise. Let
M=L'LeCP?and N=EM. (2.2)

Clearly, cond(M) = cond(L)%. If E M is ill-conditioned, there is little chance that

M or L is well-conditioned. This can be related to Property 1 by observing that

Njk = IEMjk = tr(Bj*Bk) = <Bj, Bk> . (2.3)

!Note that (-,-) is the Frobenius inner product and §;; is the Kronecker delta.
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If (B;, Bx) ~ dj, then the Gram matrix N is approximately the identity matrix
which is well-conditioned. Hence, a more quantitative way of putting Property 1 is

that we have control over k(B) defined as follows.

Definition 2.1.1. Let B = {B,...,B,} be a set of matrices. Define its condition

number k(B) as the condition number of the matrizc N € CP*P where Ny, = (B;, By).

On the other hand, Property 2 can be made precise by saying that we have control

over A(B) as defined below.
Definition 2.1.2. Let A € C™*™. Define its weak condition number® as

e
MA) = AT

Let B be a set of matrices. Define its (uniform) weak condition number as

A(B) = max A(A).

We justify the nomenclature as follows. Suppose A € C™**" has condition num-
ber k, then ||A||% = 3%, 0% > no2,, > n|A|?/k* Taking square root, we ob-
tain A(A) < k. In other words, any well-conditioned matrix is also weakly well-
conditioned. And like the usual condition number, A(A) > 1 because we always have
1Al < nt/2 | A].

The numerical rank of a matrix A is ||A]|% / | A||* = nA(A)~2, thus having a small
A(A) is the same as having a high numerical rank. We also want to caution the reader
that A(B) is defined very differently from x(B) and is not a weaker version of x(B).

Using classical concentration inequalties, it was shown [23] that when A(B) and
k(B) are fixed, p = O(n'/?)3 will ensure that L is well-conditioned with high proba-
bility.

Here we establish a stronger result, namely that p = O(n) suffices. The implication

is that we can expect to recover O(n) instead of O(n'/?) coefficients. The exact

2Throughout the chapter, ||-|| and [|-||  denote the spectral and Frobenius norms respectively.
3Note that O(n) denotes O(nlog®n) for some ¢ > 0. In other words, ignore log factors.
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statement is presented below.

Theorem 2.1.3 (Main result). Let C1,Cs > 0 be numbers given by Remark A.1.8 in
the Appendiz A.1. Let B = {B,..., By} where each B; € C™*". Define L € C**P

such that its j-th column is Bju where u is either a Gaussian or Rademacher sequence.

Let M = L*L, N =EM k = k(B) and X\ = A(B). Suppose
n > p(CrMlogn)? for some C > 1.

Then

t||N t
P (HM —N| > lﬁ—J> < 2C,pn'~* where o = e—gl.

The number C) is small. C; may be large but it poscs no problem because n™*
decays very fast with larger n and C. With t = 1/2, we deduce that with high
probability,

cond(M) <2k + 1.

In general, we let 0 < ¢ < 1 and for the probability bound to be useful, we need
a > 2, which implies C' > 2eC} > 1. Therefore the assumption that C > 1 in the
theorem can be considered redundant.

We remark that Rauhut and Tropp have a new result (a Bernstein-like tail bound)
that may be used to refine the theorem. This will be briefly discussed in Section 2.4.1
where we conduct a numerical experiment.

Note that when u is a Gaussian sequence, M resembles a Wishart matrix for which
the distribution of the smallest eigenvalue is well-studied [27]. However, each row of
L is not independent, so results from random matrix theory cannot be used in this
way.

An intermediate result in the proof of Theorem 2.1.3 is the following. It conveys

the essence of Theorem 2.1.3 and may be easier to remember.

Theorem 2.1.4. Assume the same set-up as in Theorem 2.1.3. Suppose n = O(p).
Then

E||M — N|| < C(logn) ||N|| (p/n)*2\ for some C > 0.
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A numerical experiment in Section 2.4.1 suggests that the relationship between p
and n is not tight in the log factor. Our experiment show that for E ||M — N|| /|| N||
to vanish as p — 0o, n just needs to increase faster than plog(np), whereas Theorem
2.1.4 requires n to grow faster than plog®n.

Next, we see that when L is well-conditioned, the error in the reconstruction is

also small.

Proposition 2.1.5. Assume the same set-up as in Theorem 2.1.3. Suppose A =
Y _1d;B; + E where |E|| < ¢ and assume whp,

|M—-N| <— tIN] Jor some 0 <t < 1.
K

Let ¢ = L Au be the recovered coefficients. Then whyp,

so(a(;2)")

If € = o(p~/?), then the proposition guarantees that the overall error goes to zero

A-— Zc,

as p — oo. Of course, a larger n and more computational effort are required.

2.1.3 Multiple probes

Fix n and suppose p > n. L is not going to be well-conditioned or even invertible.
One way around this is to probe A with multiple random vectors uy,...,u, € C* at
one go, that is to solve

L'c= Alu,
where the j-th column of L’ and A'u are respectively

B U1 A'u,]_
: and :
Bju, Au,g
For this to make sense, A’ = I, ® A where I, is the identity matrix of size g. Also

24



define B} = I, ® B; and treat the above as probing A’ assuming that it lies in the
span of B’ = {Bj,...,B,}.

Regarding the conditioning of L', we can apply Theorem 2.1.3 to A’ and B’. It
is an easy exercise (cf. Proposition A.3.1) to see that the condition numbers are
unchanged, that is x(B) = k(B’) and A(B) = A(B'). Applying Theorem 2.1.3 to A’
and B', we deduce that cond(L) < 2k + 1 with high probability provided that

ng x p(kAlogn)?.

Remember that A has only mn degrees of freedom; while we can increase ¢ as much
as we like to improve the conditioning of L, the problem set-up does not allow p > mn
coefficients. In general, when A has rank 7, its degrees of freedom is a(m + n — #)

by considering its SVD.

2.1.4 When to probe

Matrix probing is an especially useful technique when the following holds.

1. We know that the probed matrix A can be approximated by a small number
of basis matrices that are specified in advance. This holds for operators with

smooth pseudodifferential symbols, which will be studied in Section 2.3.

2. Each matrix B; can be applied to a vector in O(max(m,n)) time using only

O(max(m,n)) memory.

The second condition confers two benefits. First, the coefficients ¢ can be recov-
ered fast, assuming that u and Au are already provided. This is because L can be
computed in O(max(m, n)p) time and (2.1) can be solved in O(mp® + p®) time by QR
factorization or other methods. In the case where increasing m,n does not require
a bigger B to approximate A, p can be treated as a constant and the recovery of ¢
takes only O(max(m,n)) time.

Second, given the coefficient vector ¢, A can be applied to any vector v by summing

over Byv’s in O(max(m,n)p) time . This speeds up iterative methods such as GMRES
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Require: A*™ ~ >  ¢,B;.
procedure BACKWARDPROBING(A, By, ..., By)

Generate u ~ N(0,1)" iid.
Compute v = Au.
Filter away u’s components in null(4). Call this .
Compute L by setting its j-column to B;v.
Solve for c the system Lc = 4 in a least squares sense.
return c

end procedure

Figure 2-1: Backward matrix probing.

and Arnoldi.

2.1.5 Backward matrix probing

A compelling application of matrix probing is computing the pseudoinverse A¥ of a
matrix A € C™*" when A% is known to be well-approximated in the space of some
B = {By,...,B,}. This time, we probe A* by applying it to a random vector v = Au
where u is a Gaussian or Rademacher sequence that we generate.

Like in Section 2.1.1, define L € C"*? such that its j-th column is Bjv = B;Au.
Suppose A* = >_F_ ¢;B; for some ci,...,¢, € C. Then the coefficient vector ¢ can
be obtained by solving

Lec= Aty = A' Au. (2.4)

The right hand side is u projected onto null(A)* where null(A) is the nullspace of
A. When A is invertible, AT Au is simply u. We call this “backward matrix probing”
because the generated random vector u appears on the opposite side of the matrix
being probed in (2.4). The equation suggests a framework for probing A* as shown
in Figure 2-1.

In order to perform the filtering in Step 3 efficiently, prior knowledge of A may
be needed. For example, if A is the Laplacian with periodic boundary conditions,
its nullspace is the set of constant functions and Step 3 amounts to subtracting the

mean from u. A more involved example can be found in [23]. In this work, we invert
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the wave equation Hessian, and Step 3 entails building an illumination mask. Further
comments on [23] are located in Section 2.4.5.

For the conditioning of L, we may apply Theorem 2.1.3 with B replaced with
B := {B1A4,...,B,A} since the j-th column of L is now B;Au. Of course, k(B4)
and A(B4) can be very different from «(B) and A(B); in fact, £(B4) and A(B,) seem
much harder to control because it depends on A. Fortunately, as we shall see in
Section 2.3.5, knowing the “order” of A™ as a pseudodifferential operator helps in
keeping these condition numbers small.

When A has a high dimensional nullspace but has comparable nonzero-singula,r
values, A(B4) may be much larger than is necessary. By a change of basis, we can

obtain the following tighter result.

Corollary 2.1.6. Let C'1, Cy > 0 be numbers given by Remark A.1.8 in the Appendiz
Al Let A€ C™", i = rank(A) and By = {B14, ..., B,A} where each B; € C™™.
Define L € C™*? such that its j-th column is B;Au where u ~ N(0,1)" 4id. Let
M=L*L, N=EM, k= r(By) and A = (°/n)"/?X(B,4). Suppose

7 > p(CrAlog i) for some C > 1.

Then

P (“M - N| > M) < (2Cop)At ™™ where a = ﬁ
K eCy

/2| B A|

Notice that 72 = rank(A) has taken the role of n, and our X is now max; <<, TBAl.
- 3 F

which ignores the n — 7 zero singular values of each B;A and can be much smaller

than A(Ba)-

2.2 Proofs

2.2.1 Proof of Theorem 2.1.3

Our proof is decoupled into two components: one linear algebraic and one probabilis-

tic. The plan is to collect all the results that are linear algebraic, deterministic in
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nature, then appeal to a probabilistic result developed in the Appendix A.1.

To facilitate the exposition, we use a diflerent notation for this section. We use
lower case letters as superscripts that run from 1 to p and Greek symbols as subscripts
that run from 1 to n or m. For example, the set of basis matrices is now B =
{BY,...,BP}.

Our linear algebraic results concern the following variables.

1. Let 7% = B7"B* ¢ C™" and Ty, € CP*? such that the (4, k)-th entry of Ty, is
the (£,7)-th entry of T7%.

2. Let Q = 3, cenen ToyTen-
3. Let §=37_ BB € C™™,
4. Let F and G be block matrices (T¢y)i1<¢n<n and (T3 )1<¢m<n TeSpectively.

The reason for introducing T is that M can be written as a quadratic form in T,

with input u:

M= Z ’Uf’unTgn.

1<gm<n
Since u¢ has unit variance and zero mean, N =EM = E?:l Tee.
Probabilistic inequalties applied to M will involve T¢,, which must be related to
B. The connection between these n by n matrices and p by p matrices lies in the

identity
m
jk _ N pi gk
Ty = > BlBt, (2:5)
¢=1
The linear algebraic results are contained in the following propositions.

Proposition 2.2.1. For any 1 < §,n < n, Ty = Tp.. Hence, Tge, N are all Herms-

tian. Moreover, they are positive semidefinite.

Proof. Showing that Tg, = T, is straightforward from (2.5). We now check that
Ty is positive semidefinite. Let v € CP. By (2.5), v*Tgev = 3, zjkE”kB_égB(Ifg =
2 |2 v* B 2> 0. It follows that N = > ¢ Tee is also positive semidefinite. O
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Proposition 2.2.2. @ = tr(B7*SB*) and Q = 3°, ¢ <, Ten T3,

Proof. By (2.5), Q% = 3, (T4, T%) = 3, tr(B""B'B"" B*). The summation and
trace commute to give us the first identity. Similarly, the (4, k)-th entry of an TenTs,
is 3o, (T*, T = 3, tr(B" B¥*BI* B'). Cycle the terms in the trace to obtain Q7. O

Proposition 2.2.3. Let u € C? be a unit vector. Define U = > h_, u*B* € C™",
Then U7 < |IN]).

Proof. |U|% = tr(U*U) = tr(_jn uwiuk Bi* B¥). The sum and trace commute and due
0 (23), 10l = L wiukN7* < |N]. O

Proposition 2.2.4. ||Q| < IS N]-

Proof. @ is Hermitian, so ||Q| = max,u*Qu where u € CP has unit norm. Now
let » be an arbitrary unit vector and define U = >_7_, u*B*. By Proposition 2.2.2,
urQu = ijmqujk = tr(3_j wukBI*SB*) = tr(U*SU). Since S is positive defi-
nite, it follows from “||AB||r < ||A| | Bl|z” that v*Qu = ||Sl/2UH§, < ISV % By
Proposition 2.2.3, u*Qu < ||S|| || V|- O
Proposition 2.2.5. For any 1 < j < p, |B7|| < An~Y2|N|*2. It follows that
QN = || ey TenTgy | < pX2 VI /.

Proof. We begin by noting that | N| > max; |N%| = max, (B, BY) = max; | B’||~.
From Definition 2.1.2, |BY|| < M2 ||Bi|, < A Y2||N|*? for any 1 < j < p,
which is our first inequality. It follows that ||S|| < >7%_, || B/ I < pA? | N| /n. Apply

Propositions 2.2.4 and 2.2.2 to obtain the second inequality. O
Proposition 2.2.6. F,G are Hermitian, and max(||F||, |G|) < X2 ||N| (p/n).

Proof. That F,G are Hermitian follow from Proposition 2.2.1. Define F' = (T7%)
another block matrix. Since reindexing the rows and columns of F’ does not change

its norm, ||F'| = || F’||. By Proposition 2.2.5,
2 & 2 2 12 2
1P < 0T < DO IBP BT < A NI (o/n)2.
k=1 k=1
The same argument works for G. O
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We now combine the above linear algebraic results with a probabilistic result in
Appendix A.1. Prepare to apply Proposition A.1.7 with A;; replaced with T¢,. Note
that R = Zgn Tey T3, = @ by Proposition 2.2.2. Bound o using Propositions 2.2.5
and 2.2.6:

o = Crmax(||Q|"*, | RV, I1F], G
< C; | N|| max((p/n)2A, (p/n)A?)
< C1|IN| (p/n)Y/2A.

The last step goes through because our assumption on n guarantees that (p/n)/2\ <

1. Finally, apply Proposition A.1.7 with ¢t ||N|| /x = eocu. The proof is complete.

2.2.2 Sketch of the proof for Theorem 2.1.4

Follow the proof of Proposition A.1.7. Letting s = log n, we obtain

E|M - N| < (E|M - N|I*)/*
< Cy(2Cymp) /s max(|Q|1*2, | RIY2, | FIl, IG1)
< C(logn) | N|| (p/n)A.

2.2.3 Proof of Proposition 2.1.5

Recall that A is approximately the linear combination »F_, &/ B?, while 3 ¥_, ¢/ B’ is
the recovered linear combination. We shall first show that the recovered coefficients

¢ is close to d:

ld—c|| = HL“"Au - c“
= ||L* (Le + Eu) - ¢
= |27 B

<elol () -
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Let v be a unit n-vector. Let L’ be a n x p matrix such that its j-th column is Biv.

Now,
D
Av—> By = (L'd+Ev) — L'c=Ev+ L'(d—c).
j=1

Combining the two equations, we have

A—ic’Bj

i=1

« 1/2
<eellL|| flul (m) : (2.6)

With overwhelming probability, ||u]] = O(y/n). The only term left that needs to
be bounded is ||L/||]. This turns out to be easy because |Bi|| < An~1/2||N|[*/? by
Proposition 2.2.5 and ||I/||* < 2 | Biv||* < A2||N|| p/n. Substitute this into (2.6)
to finish the proof.

2.2.4 Proof of Corollary 2.1.6

Let 4 ~ N(0,1)" iid. Say A has a singular value decomposition EAF* where A is
diagonal. Do a change of basis by letting v’ = F*u ~ N(0,1)" iid, B} = F*B;E and
A = {BA,..., B A}. (2.1) is reduced to L'c = Au’ where the j-th column of L' is
BiAu'.
Since Frobenius inner products, || and ||-]| are all preserved under unitary
transformations, it is clear that x(B}) = x(Ba) and A(B}) = A(B4). Essentially, for

our purpose here, we may pretend that A = A.

Let 7 = rank(A). If A has a large nullspace, i.e., i < min(m,n), then BjA has
n — 7 columns of zeros and many components of u’ are never transmitted to the B}’s
anyway. We may therefore truncate the length of ' to 7, let Bj € C™" be BiA
with its columns of zeros chopped away and apply Theorem 2.1.3 with B replaced
with B:= {B,,...,B,}. Observe that x(B) = x(B}), whercas A(B) = (7/n)/2A(B))
because ”BJ“F = HB}AHF and ”BJH = ||B;A|| but B; has # instead of n columns.

The proof is complete.

31



2.3 Probing operators with smooth symbols

2.3.1 Basics and assumptions

We begin by defining what a pseudodifferential symbol is.

Definition 2.3.1. Every linear operator A is associated with a pseudodifferential

symbol a(z, &) such that for any u: R? - R,
Aule) = [ mEnala, (e (27)
£eR?

where @ is the Fourier transform of u, that is 4(§) = [ _p.u(z)e ™ *dz.

r€R4

We refrain from calling A a “pseudodifferential operator” at this point because
its symbol has to satisfy some additional constraints that will be covered in Section
2.3.5. What is worth noting here is the Schwartz kernel theorem which shows that
every linear operator A : S(RY) — S'(R?Y) has a symbol representation as in (2.7)
and in that integral, a(z,£) € &'(R? x RY) acts as a distribution. Recall that S is
the Schwartz space and &' is its dual or the space of tempered distributions. The
interested reader may refer to [28] or [70] for a deeper discourse.

The term “pseudodifferential” arises from the fact that differential operators have
very simple symbols. For example, the Laplacian has the symbol a(z, £) = —4n? ||¢ 112

Another example is
Au(z) = u(x) — V - a(z)ablau(z) for some a(z) € CH(R?).

Its symbol is
d

a(z,£) = 1+ a(z)(dn |€]*) — Y (2nit)0s, (). (2.8)

k=1
Clearly, if the media a(z) is smooth, so is the symbol a(z,£) smooth in both = and
&, an important property which will be used in Section 2.3.3.
For practical reasons, we make the following assumptions about « : R — R on

which symbols are applied.
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1. u is periodic with period 1, so only £ € Z? will be considered in the Fourier

domain.

2. u is bandlimited, say 4 is supported on = := [~&;,&]¢ C Z%. Any summation

over the Fourier domain is by default over =.4

3. a(z,&) and u(z) are only evaluated at z € X C [0, 1}¢ which are points uniformly

spaced apart. Any summation over z is by default over X.

Subsequently, (2.7) reduces to a discrete and finite form:

Au(z) =" e oz, £)a(E). (2.9)
ez
We like to call a(z,£) a “discrete symbol.” Some tools are already available for

manipulating such symbols [24].

2.3.2 User friendly representations of symbols

Given a linear operator A, it is useful to relate its symbol a(z, £) to its matrix repre-
sentation in the Fourier basis. This helps us understand the symbol as a matrix and
also exposes easy ways of computing the symbols of A~%, A* and AB using standard
linear algebra software.

By a matrix representation (A,) in Fourier basis, we mean of course that ;ﬁ(n) =
Zg Aneti(€) for any 1. We also introduce a more compact form of the symbol:
a(4,€) = [ a(z,)e®%dz. The next few results are pedagogical and listed for

future reference.

Proposition 2.3.2. Let A be a linear operator with symbol a(z,£). Let (Ane) and
a(j,&) be as defined above. Then

Ao = [ al@, %, a(z,) = o Y e
‘ n

4To have an even number of points per dimension, one can use = = [~&j, & — 1]¢ for example.
We leave this generalization to the reader and continue to assume £ € [—&, &)¢.
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AnE = &(77 - g? g)a d(.77 6) = Aj+€,€'
Proof. Let n =& + j and apply the definitions. O

Proposition 2.3.3 (Trace). Let A be a linear operator with symbol a(z,£). Then

() =340,6 =3 / oz, £)dz.
£ £ 7T

Proposition 2.3.4 (Adjoint). Let A and C = A* be linear operators with symbols
a(2,€),0(z, ). Then

é(j, &) =a(—j4,5 +&); c(z,8) = Z /a(y,n)ezm'("_g)(m_y)dy.

7 Yy

Proposition 2.3.5 (Composition). Let A,B and C = AB be linear operators with
symbols a(z,&),b(z, &), c(z,&). Then

&(j,8) = > _al +£ - ¢,Ob(¢ — &,8);
¢

c(a,8) = 3 [ @9 Daa, by, )y
¢ Y

We leave it to the reader to verify the above results.

2.3.3 Symbol expansions

The idea is that when a linear operator A has a smooth symbol a(z,£), only a few
basis functions are needed to approximate a, and correspondingly only a small B
is needed to represent A. This is not new, see for example [24]. In this paper, we

consider the separable expansion
a(z,§) = chkej(x)gk(é-)'
ik

This is the same as expanding A as ij ¢c;jkBjr where the symbol for By is

e;(z)ge(§). With an abuse of notation, let By also denote its matrix representa-
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procedure APPLYSYMBOL(u(x)) > Apply the symbol e;(z)gx(€) to u(z)
Perform FFT on u to obtain @(£).
Multiply %(£) by gk(€) elementwise.
Perform IFFT on the previous result, obtaining ). €277 gy (£)a(§).
Multiply the previous result by e;(z) elementwise.

end procedure

Figure 2-2: Apply elementary symbol to u(z).

tion in Fourier basis. Given our assumption that £ € [—£p, &)?, we have By, € C™*"

where n = (2§, + 1)%. As its symbol is separable, B;; can be factorized as
Bjy, = F diag(e;(z)) F " diag(gx(£)) (2.10)

where JF is the unitary Fourier matrix. An alternative way of viewing B, is that
it takes its input @(£), multiply by gx(§) and convolve it with é;(n), the Fourier
transform of e;(x). There is also an obvious algorithm to apply Bjx to u(z) in O(n)
time as outlined in Figure 2-2. As mentioned in Section 2.1.4, this speeds up the
recovery of the coefficients ¢ and makes matrix probing a cheap operation.

Recall that for L to be well-conditioned with high probability, we need to check
whether N, as defined in (2.3), is well-conditioned, or in a rough sense whether

(Bj, Bg) ~ 6;3. For separable symbols, this inner product is easy to compute.

Proposition 2.3.6. Let By, By € C™" be matriz representations (in Fourier ba-

sis) of linear operators with symbols e;(x)gx(§) and ejr(z)gr(€). Then

(Bijk, Bine) = (€5, €50} {Gk, Gr)

where (ej,ey) = L3 ei(xi)ey(z;) and z1,...,z, are points in [0,1])% uniformly

spaced, and (gr, gr') = 3¢ 9r(§)gk(£)-

Proof. Apply Propositions 2.3.3, 2.3.4 and 2.3.5 with the symbols in the a(n, £) form.
O

To compute A(B) as in Definition 2.1.2, we examine the spectrum of Bj; for every
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7, k. A simple and relevant result is as follows.

Proposition 2.3.7. Assume the same set-up as in Proposition 2.3.6. Then
Umin(Bjk) 2 mjn lej (.’L‘)I ngin lgk(€)|’ Umax(Bjk) < mf,X |6_7(117)| méax ng(g)l

Proof. In (2.10), F diag(e’(z))F ! has singular values |ej(z)| as z varies over X,

defined at the end of Section 2.3.1. The result follows from the min-max theorem. [J

As an example, suppose a(z, §) is smooth and periodic in both z and . It is well-
known that a Fourier series is good expansion scheme because the smoother a(z, £)
is as a periodic function in z, the faster its Fourier coeflicients decay, and less is lost

when we truncate the Fourier series. Hence, we pick®
ej(x) = 9T gi(€) = 87RO, (2.11)

where (£) = (€ + &)/(2& + 1) maps £ into [0, 1]°.

Due to Proposition 2.3.6, N = E M is a multiple of the identity matrix and x(B) =
1 where B = {Bj;}. It is also immediate from Proposition 2.3.7 that A(B;;) =1 for
every j,k, and A(B) = 1. The optimal condition numbers of this B make it suitable

for matrix probing.

2.3.4 Chebyshev expansion of symbols

The symbols of differential operators are polynomials in £ and nonperiodic. When
probing these operators, a Chebyshev expansion in £ is in principle favored over a
Fourier expansion, which may suffer from the Gibbs phenomenon. However, as we
shall see, k(B) grows with p and can lead to ill-conditioning.

For simplicity, assume that the symbol is periodic in z and that e;(z) = €*™=.
Applying Proposition 2.3.2, we see that Bj; is a matrix with a displaced diagonal and
its singular values are (gx(£))ecz. (Recall that we denote the matrix representation

(in Fourier basis) of Bjj as Bj; as well.)

5 Actually, exp(2mik&y/ (260 + 1)) does not vary with £, and we can use ¢(£) = £/(26 + 1).

36



Let Ty be the k-th Chebyshev polynomial. In 1D, we can pick

ge(&) = Ti(€/&) for k=1,...,K. (2.12)

Define | Tx||, = (f1=_1 Ty (2)?dz)"/?. By approximating sums with integrals, \(B;;,) ~

1/2
V2Tl = (gﬁij) . Notice that there is no (1 — z?)~1/2 weight factor in the def-

inition of ||Ty||, because e;(z)T,(£) is treated as a pseudodifferential symbol and has
to be evaluated on the uniform grid. In practice, this approximation becomes very
accurate with larger n and we see no need to be rigorous here. As k increases, A(Bjx)

approaches v/2. More importantly, A(Bjk) < A(Bj1) for any j,k, so

AB) = V3.

Applying the same technique to approximate the sum (g, gx), we find that
(g, gir) < (1= (k+k)*) 4+ (1 - (k—Kk')?)~! when k+ k' is even, and zero otherwise.
We then compute N = E M for various K and plot x(B) versus K, the number of
Chebyshev polynomials. As shown in Figure 2-3(a), x(B) ~ 1.3K. This means that
if we expect to recover p = O(n) coefficients, we must keep K fixed. Otherwise, if

p = K?, only p = O(n!/?) are guaranteed to be recovered by Theorem 2.1.3.

In 2D, a plausible expansion is
(&) = €T (p(Jl€]])) for 1 < by < K (2.13)

where k = (ky, k2) and o(r) = (V2r/&) — 1 maps ||£]| into [—1,1]. We call this the

“Chebyshev on a disk” expansion.

~1/2
The quantity A(Bjx) is approximately 2 ( /. ! L Te(¥(z,y))%dz dy) where

z=-1Jy=-1
Y(z,y) = (222 + 2y%)/2 — 1. The integral is evaluated numerically and appears to
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Figure 2-3: Let K be the number of Chebyshev polynomials used in the expansion
of the symbol, see (2.12) and (2.13). Observe that in 1D, x(B) = O(K) while in 2D,
k(B) = O(K?®). These condition numbers mean that we cannot expect to retrieve

p = O(n) parameters unless K is fixed and independent of p,n.

converge® to v/2 for large k. Also, k; = 1 again produces the worst A(B;x) and

A(B) < 2437

As for k(B), observe that when ki # ki, {gkk,, 9k;k'2> = #1 due to symmetry®,
whereas when k; = kf, the inner product is proportional to n and is much larger.
As a result, the gi’s with different k;’s hardly interact and in studying x(B), one
may assume that k; = k] = 0. To improve k(B), we can normalize gi such that the

diagonal entries of N are all ones, that is g,.(£) = gx(€)/ llgx(©)]l-

6This is because when we truncate the disk of radius £yv/2 to a square of length 2£0, most is lost
along the vertical axis and away from the diagonals. However, for large k, T} oscillates very much
and the truncation does not matter. If we pretend that the square is a disk, then we are back in the
1D case where the answer approaches v/2 for large k.

"The exact value is 2(4 — $v/2sinh~1(1))71/2,

8The £ and —£ terms cancel each other. Only £ = 0 contributes to the sum.
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This yields another set of basis matrices B’. Figure 2-3(b) reveals that
k(B) = O(K?) and k(B') ~ k(B).

The latter can be explained as follows: we saw earlier that (B, Bjx) converges as
ko increases, so the diagonal entries of N are about the same and the normalization

is only a minor correction.

If a(z, £) is expanded using the same number of basis functions in each direction of

/4 then Theorem 2.1.3 suggests that only p = O(nzf %) coefficients

rzand,ie, K =p
can be recovered.
To recap, for both 1D and 2D, A(B) is a small number but «(B) increases with K.
Fortunately, if we know that the operator being probed is a second order derivative
for example, we can fix K = 2.
Numerically, we have observed that the Chebyshev expansion can produce dra-

matically better results than the Fourier expansion of the symbol. More details can

be found in Section 2.4.3.

2.3.5 Order of an operator

In standard texts, A is said to be a pseudodifferential operator of order w if its symbol
a(z,£) is in C°(R? x R?) and for any multi-indices a, 3, there exists a constant C,g

such that

|0g08a(z,£)| < Caplé]“ 1 for all £, where [£] =1+ ||¢].

Letting a = 8 = 0, we see that such operators have symbols that grow or decay
as (1 + ||&])*. As an example, the Laplacian is of order 2. The factor 1 prevents [¢]
from blowing up when £ = 0. There is nothing special about it and if we take extra

care when evaluating the symbol at £ = 0, we can use

€] = llgll-
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For forward matrix probing, if it is known a priori that a(z, £) behaves like [£]",
it makes sense to expand a(z,£)[£]™™ instead. Another way of viewing this is that
the symbol of the operator B, is modified from e;(z)gx(£) to e;(x)gx(€)[€]¥ to suit
A better.

For backward matrix probing, if A is of order z, then A~! is of order —z and we
should replace the symbol of Bj; with e;(z)gx(€)[€]™™. We believe that this small
correction has an impact on the accuracy of matrix probing, as well as the condition
numbers «(B4) and A(By).

Recall that an element of B4 is B;xA. If A is of order w and Bjy is of order 0, then
BjrA is of order w and A(Bj;A) will grow with n*, which will adversely affect the
conditioning of matrix probing. However, by multiplying the symbol of Bj; by [{] 7%,
we can expect BjrA to be order 0 and that A(B;rA) is independent of the size of the
problem n. The argument is heuristical but we will support it with some numerical

evidence in Section 2.4.3.

2.4 Numerical examples

We carry out four different experiments. The first experiment suggests that Theorem
2.1.4 is not tight. The second experiment presents the output of backward probing in
a visual way. In the third experiment, we explore the limitations of backward probing
and also tests the Chebyshev expansion of symbols. The last experiment involves the

forward probing of the foveation operator, which is related to human vision.

2.4.1 1D statistical study

We are interested in whether the probability bound in Theorem 2.1.3 is tight with
respect to p and n, but as the tail probabilities are small and hard to estimate, we opt
to study the first moment instead. In particular, if Theorem 2.1.4 captures exactly
the dependence of E | M — N|| /|| N|| on p and n, then we would need n to grow faster
than plog®n for E |M — N| /||N|| to vanish, assuming A(B) is fixed.

For simplicity, we use the Fourier expansion of the symbol in 1D so that A(B) =-
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Figure 2-4: Consider the Fourier expansion of the symbol. J is the number of basis
functions in z and £, so p = J°. Let n = plog® p. Figure (a) shows that the estimated
E||M — N| /||N| decays for ¢ > 1.1 which suggests that Theorem 2.1.4 is not tight.
In Figure (b), we estimate P (|M — N| /||N| > t) by sampling |M — N| /|| N|| 10°
times. The tail probability appears to be subgaussian for small ¢ and subexponential
for larger t.

k(B) = 1. Let J be the number of basis functions in both z and £ and p = J2. Figure
2-4(a) suggests that E||M — N||/||N|| decays to zero when n = plog°p and ¢ > 1.
It follows from the previous paragraph that Theorem 2.1.4 cannot be tight.

Nevertheless, Theorem 2.1.4 is optimal in the following sense. Imagine a more

general bound

|M — N P\#
E——m < (log"n) (=) f : 14
R (log®n) (n) or some a, 3 >0 (2.14)
In Figure 2-5(a), we see that for various values of p/n, a = 1 since the graphs are
linear. On the other hand, if we fix p and vary n, the log-log graph of Figure 2-5(b)
shows that 8 = 1/2. Therefore, any bound in the form of (2.14) is no better than

Theorem 2.1.4.

Next, we fix p = 25,n = 51 and sample |M — N|| /|| N|| many times to esti-
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Figure 2-5: Consider bounding E ||[M — N||/||N| by (log®n)(p/n)?. There is little
loss in replacing logn with logp in the simulation. In Figure (a), the estimated

E||M — N| /|IN| depends linearly on logp, so @ > 1. In Figure (b), we fix p and
find that for large n, 8 = 1/2. The conclusion is that the bound in Theorem 2.1.4

has the best a, .
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mate the tail probabilities. In Figure 2-4(b), we see that the tail probability of
P(||M — N||/|IN|| > t) decays as exp(—c,t) when ¢t is big, and as exp(—c,t?) when ¢
is small, for some positive numbers ¢, ¢;. This behavior may be explained by Rauhut

and Tropp’s yet published result.

2.4.2 Elliptic equation in 1D

We find it instructive to consider a 1D example of matrix probing because it is easy

to visualize the symbol a(z, £). Consider the operator

d
Au(z) = —Ea(a:) dz;frx) where a(z) = 1+ 0.4 cos(4nz) + 0.2cos(6rz).  (2.15)

Note that we use periodic boundaries and A is positive semidefinite with a one

dimensional nullspace consisting of constant functions.

We probe for A according to Figure 2-1 and the Fourier expansion of its symbol
or (2.11). Since A is of order 2, we premultiply gi(£) by [£]~? as explained in Section
2.3.5.

In the experiment, n = 201 and there are two other parameters J, K which are

the number of e;’s and gx’s used in (2.11). To be clear, —% < j< % and

K-1 K1
-5 <k S
Let C be the output of matrix probing. In Figure 2-6(b), we see that J = K =5
is not enough to represent A* properly. This is expected because our media a(z) has
a bandwidth of 7. We expect J = K = 13 to do better, but the much larger p leads
to overfitting and a poor result, as is evident from the wobbles in the symbol of C in

Figure 2-6(c). Probing with four random vectors, we obtain a much better result as

shown in Figure 2-6(d).
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Figure 2-6: Let A be the 1D elliptic operator in (2.15) and A" be its pseudoinverse.
Let C be the output of backward matrix probing with the following parameters: q is
the number of random vectors applied to A*; J, K are the number of e;’s and gi’s
used to expand the symbol of A" in (2.11). Figure (a) is the symbol of A*. Figure
(b) is the symbol of C with J = K = 5. It lacks the sharp features of Figure (a)
because B is too small to represent At well. With J = K = 13, probing with only
one random vector leads to ill-conditioning and an inaccurate result in Figure (b). In
Figure (c), four random vectors are used and a much better result is obtained. Note
that the symbols are multipled by [£]? for better visual contrast.



2.4.3 Elliptic in 2D

In this section, we extend the previous set-up to 2D and address a different set of
questions. Consider the operator A defined as
Au(z) = =V - a(z)Vu(z) where a(z) = % + cos®(myx, ) sin®(ryzs). (2.16)

The positive value T is called the contrast while the positive integer  is the
roughness of the media, since the bandwidth of a(z) is 2y + 1. Again, we assume
periodic boundary conditions such that A’s nullspace is exactly the set of constant
functions.

Let C be the output of the backward probing of A. As we shall see, the quality
of C drops as we increase the contrast T or the roughness ~.

Fix n = 1012 and expand the symbol using (2.11). Let J = K be the number
of basis functions used to expand the symbol in each of its four dimensions, that is
p=J

In Figure 2-7(b), we see that between J = 2y — 1 and J = 2y + 1, the bandwidth
of the media, there is a marked improvement in the preconditioner, as measured by
the ratio cond(C A)/cond(A).°

On the other hand, Figure 2-7(a) shows that as the contrast increases, the pre-
conditioner C' degrades in performance, but the improvement between J = 2y — 1
and 2v + 1 becomes more pronounced.

The error bars in Figure 2-7 are not error margins but & where 62 is the unbiased
estimator of the variance. They indicate that cond(C A)/cond(A) is tightly concen-
trated around its mean, provided J is not too much larger than is necessary. For
instance, for v = 1, J = 3 already works well but pushing to J = 9 leads to greater
uncertainty.

Next, we consider forward probing of A using the “Chebyshev on a disk” expansion

or (2.13). Let m be the order correction, that is we multiply gr(£) by [£]™ = [|€]|™.

9Since A has one zero singular value, cond(A) actually refers to the ratio between its largest
singular value and its second smallest singular value. The same applies to C'A.
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Figure 2-7: Let A be the operator defined in (2.16) and C be the output of backward
probing. In Figure (b), we fix T = 10* and find that as J goes from 2y — 1 to
2+ + 1, the bandwidth of the media, the quality of the preconditioner C' improves by
a factor between 10%5 and 10. In Figure (a), we fix v = 2 and find that increasing the
contrast worsens cond(C A)/ cond(A). Nevertheless, the improvement between J = 3
and J = 5 becomes more distinct. The error bars correspond to & where 62 is the

estimated variance. They indicate that C'is not just good on average, but good with
high probability.
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Figure 2-8: Consider the backward probing of A in (2.16), a pseudodifferential oepra-
tor of order 2. Perform order correction by multiplying gx(£) by [£]? in the expansion
of the symbol. See Section 2.3.5. Observe that at ¢ = —2, the condition numbers
A(B4) and k(B4) are minimized and hardly grow with z.

Let C be the output of the probing and K be the number of Chebyshev polynomials

used.

Fixn =55 T=10,y=2and J =5 Form =0 and K = 3, i.e., no order
correction and using up to quadratic polynomials in £, we obtain a relative error
|C — A|l/ ||A]| that is less than 107*%. On the other hand, using Fourier expansion,
with K = 5 in the sense that —-55_—1 < ki, ke < %, the relative error is on the
order of 107!, The point is that in this case, A has an exact “Chebyshev on a disk”
representation and probing using the correct B enables us to retrieve the coeflicients

with negligible errors.

Finally, we consider backward probing with the Chebyshev expansion. We use
J=5,y=2and T = 10. Figure 2-8 shows that when m = —2, the condition numbers
A(B4) and k(Ba) are minimized and hardly increases with n. This emphasizes the

importance of knowing the order of the operator being probed.

47



2.4.4 Foveation

In this section, we forward-probe for the foveation operator, a space-variant imaging
operator [20], which is particularly interesting as a model for human vision. Formally,
we may treat the foveation operator A as a Gaussian blur with a width or standard

deviation that varies over space, that is

2
Au(z) = /R? K(z,y)u(y)dy where K(z,y) = mexp (%) , (2.17)
where w(z) is the width function which returns only positive real numbers.

The resolution of the output image is highest at the point where w(z) is minimal.
Call this point zy. It is the point of fixation, corresponding to the center of the fovea.
For our experiment, the width function takes the form of w(z) = (a ||z — 20| +8)2.
Our images are 201 x 201 and treated as functions on the unit square. We choose
zo = (0.5,0.5) and «, 8 > 0 such that w(zg) = 0.003 and w(1,1) = 0.012.

The symbol of A is a(z,£) = exp(—2n?w(z)? [|£]|°), and we choose to use a
Fourier series or (2.11) for expanding it. Let C' be the output of matrix prob-
ing and z be a standard test image. Figure 2-9(c) shows that the relative £? er-
ror ||Cz — Azl|,2 / | Az|| o decreases exponentially as p increases. In general, forward
probing yields great results like this because we know its symbol well and can choose

an appropriate B.

2.4.5 Inverting the wave equation Hessian

In seismology, it is common to recover the model parameters m, which describe the
subsurface, by minimizing the least squares misfit between the observed data and
F(m) where F, the forward model, predicts data from m.

Methods to solve this problem can be broadly categorized into two classes: steepest
descent or Newton’s method. The former takes more iterations to converge but each
iteration is computationally cheaper. The latter requires the inversion of the Hessian

of the objective function, but achieves quadratic convergence near the optimal point.
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Relative I? error
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J=K
Figure 2-9: Let A be the foveation operator in (2.17) and C be the output of the
forward probing of A. Figure (a) is the test image z. Figure (b) is C'z and it shows

that C behaves like the foveation operator as expected. Figure (c) shows that the

relative ¢? error (see text) decreases exponentially with the number of parameters
= J*.
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In another paper, we use matrix probing to precondition the inversion of the
Hessian. Removing the nullspace component from the noise vector is more tricky (see
Algorithm 2-1) and involves checking whether “a curvelet is visible to any receiver”

via raytracing. For details on this more elaborate application, please refer to [23].

2.5 Conclusion and future work

When a matrix A with n columns belongs to a specified p-dimensional subspace, say
A =3""  ¢;B;, we can probe it with a few random vectors to recover the coefficient
vector c.

Let ¢ be the number of random vectors used,  be the condition number of the
Gram matrix of Bi,...,B, and A be the “weak condition number” of each B; (cf.
Definition 2.1.2) which is related to the numerical rank. From Theorem 2.1.3 and
Section 2.1.3, we learn that when ng o< p(kAlogn)?, then the linear system that has
to be solved to recover ¢ (cf. (2.1)) will be well-conditioned with high probability.
Consequently, the reconstruction error is small by Proposition 2.1.5.

The same technique can be used to compute an approximate A}, or a precondi-
tioner for inverting A. In [23], we used it to invert the wave equation Hessian — here
we demonstrate that it can also be used to invert elliptic operators in smooth media
(cf. Sections 2.4.2 and 2.4.3).

Some possible future work include the following.

1. Extend the work of Pfander, Rauhut et. al. [60, 59, 61]. These papers are
concerned with sparse signal recovery. They consider the special case where
B contains n? matrices each representing a time-frequency shift, but A is an
unknown linear combination of only p of them. The task is to identify these
p matrices and the associated coefficients by applying A to noise vectors. Our
proofs may be used to establish similar recovery results for a more general B.
However, note that in [59], Pfander and Rauhut show that n o< plogn suflices,

whereas our main result requires an additional log factor.

50



2. Build a framework for probing f(A) interpreted as a Cauchy integral

FA) = 3 § HDET - 4) s

where T is a closed curve enclosing the eigenvalues of A. For more on approxi-

mating matrix functions, see [38, 42].

3. Consider expansion schemes for symbols that highly oscillate or have singulari-

ties that are well-understood.

We conclude the chapter by outlining how better constants (see Remark A.1.3)
can be obtained for the Gaussian case. At the start of the proof of Proposition
A.1.7, we can split (E |M — N||*)"/* into two parts (]E ”219#9 u;u;A;j s)l/s and
(EXm, (u? ~ l)Az-,-Hs)l/ °. For the first part, decouple using Theorem A.1.1 with

Cy = 1, then apply Theorem A.1.5. For the second part, note that every u? — 1 is
symmetrically distributed and has zero mean. Thus, we can introduce Rademacher
variables, condition on the Gaussians, apply Theorem A.1.4, and pull out the term
(E max; [u? — 1°) e Although this log factor is in practice smaller than the constants

we have, we prefer to avoid it by decoupling the Gaussian sum right away using [3].
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Chapter 3

Sublinear randomized algorithms for

skeleton decompositions

3.1 Introduction

3.1.1 Skeleton decompositions

This piece of work is concerned with the decomposition known as the matrix skeleton,
pseudo-skeleton [35], or CUR factorization [54, 26].

Throughout this chapter, we adopt the following Matlab-friendly notation. Let
R,C be index sets. Given A € C™*", let A.c denote the restriction of A to columns
indexed by C, and Ap. denote the restriction of A to rows indexed by R. A skeleton

decomposition of A is any factorization of the form
A.cZ Ap. for some Z € CF*¥,

In general, storing a rank-k approximation of A takes up O((m + n)k) space. For
skeletons however, only the middle factor Z and the two index sets C and R need to
be stored, if we assume that A’s entries can be sampled on-demand by an external
function. Hence specifying the skeleton decomposition of A only requires O(k?) space.

In addition, row and columns from the original matrix may carry more physical
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significance than their linear combinations.

There are important examples where the full matrix itself is not low rank but can
be partitioned into blocks each of which has low numerical rank. One example is
the Green’s function of elliptic operators with mild regularity conditions [7]. Another
example is the amplitude factor in certain Fourier integral operators and wave prop-
agators [16, 25]. Algorithms that compute good skeleton representationé can be used

to manipulate such matrices.

3.1.2 Overview

Our work mostly treats the case of skeleton decompositions with C and R drawn
uniformly at random. Denote by Agrc the restriction of A to rows in R and columns
in C: we compute the middle matrix Z as the pseudoinverse of Arc with some amount
of regularization. Algorithm 1 below details the form of this regularization.

Throughout the chapter, we use the letter k to denote the baseline small dimension
of the factorization: it is either exactly therank of A, or, more generally, it is the index
of the singular value o} that governs the approximation error of the skeleton decom-
position. The small dimension of the skeleton decomposition may or may not be k:
for instance, Algorithm 1 requires a small oversampling since £ = O(k log max(m, n)).
Later, we consider two algorithms where { is exactly k.

The situation in which Algorithm 1 works is when A is a priori known to have a
factorization of the form ~ X;A;,Y;* where X;,Y] have k£ orthonormal columns, and
these columns are sncoherent, or spread, in the sense that their uniform norm is about
as small as their normalization allows. In this scenario, our main result in Theorem

3.1.2 states that that the output of Algorithm 1 obeys
mn)1/?
4~ A024n] =0 (14 - Xiaurs 15—

with high probability, for some adequate choice of the regularization parameter 4.
The drawback of Algorithm 1 is that it requires to set an appropriate regularization

parameter in advance. Unfortunately, there is no known way of estimating it fast,
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Algorithm 1. 6(k3)—time algorithm where O is the O notation with log factors
dropped.

Input: A matrix A € C™*™ that is approximately rank k, and user-defined
parameters £ = O(k) and 4.
Output: Column index set C of size £, row index set R of size £, center matrix

of a matrix skeleton Z. Implicitly, we have the matrix skeleton A.cZ Ap..
Steps:

1. Let C be a random index set of size £ chosen uniformly from {1,...,n}.
Implicitly, we have A.c.

2. Let R be a random index set of size ¢ chosen uniformly from {1,...,m}.
Implicitly, we have Apg..

3. Sample Agc, the intersection of A.c and Ap..

4. Compute the thin SVD of Agc as U1 E1V}* + U3,V where £, 5, are
diagonal, ¥, contains singular values > § and X, contains singular
values < 4.

5. Compute Z = V,Z1U;.

Matlab code:
function [C,Z,R]=skeletoni(A,l,delta)

C=randperm(n,l); R=randperm(m,1); Z=pinv(A(R,C),delta);
end
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and this regularization step cannot be skipped. In Section 3.4.1, we illustrate with
a numerical example that without the regularization, the error in the operator norm
can blow up in a way predicted by our main result or Theorem 3.1.2.

Finally, we use our proof framework to establish error estimates for two other
algorithms. The goal of these algorithms is to further reduce the small dimension
of the skeleton decomposition to exactly & (instead of £ = O(k log max(m,n))), with
oy, still providing control over the approximation error. The proposed methods still
run in sublinear-time complexity; they use well-known strong rank-revealing QR fac-
torizations applied after some amount of pruning via uniform random sampling of
rows and columns. This combination of existing ideas is an important part of the
discussion of how skeleton factorizations can be computed reliably without visiting

all the elements of the original matrix.

3.1.3 Related work

The idea of uniformly sampling rows and columns to build a matrix skeleton is not
new. In particular, for the case where A is symmetric, this technique is known as
the Nystrom method!. The skeleton used is A;CAZCAC;, which is symmetric, and
the error in the operator norm was recently analyzed by Talwalkar [71] and Gittens
[34]. Both papers make the assumption that X;,Y; are incoherent. Gittens obtained
relative error bounds that are similar to ours.

Nonetheless, our results are more general. They apply to nonsymmetric matrices
that are low rank in a broader sense. Specifically, when we write A ~ X3 A11Y)", A1 is
not necessarily diagonal and X7, Y; are not necessarily the singular vectors of A. This
relaxes the incoherence requirement on X, Y;. Furthermore, in the physical sciences,
it is not uncommon to work with linear operators that are known a priori to be almost
(but not fully) diagonalized by the Fourier basis or related bases in harmonic analysis.
These bases are often incoherent. One example is an integral operator with a smooth

kernel. See Section 3.4 for more details.

1Tn machine learning, the Nystrom method can be used to approximate kernel matrices of support
vector machines, or the Laplacian of affinity graphs, for instance.
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A factorization that is closely related to matrix skeletons is the interpolative de-
composition [21], also called the column subset selection problem [30] or a Rank Re-
vealing QR (RRQR) [17, 36]. An interpolative decomposition of A is the factorization
A.cD for some D. It is relevant to our work because algorithms that compute inter-
polative decompositions can be used to compute matrix skeletons [51]. Algorithms 2

and 3, discussed below, require the computation of interpolative decompositions.

One of the earliest theoretical results concerning matrix skeletons is due to Gor-
einov et al. [35]. In that paper, it is shown that for any A € C™*" there exists a
skeleton A.cZAp. such that in the operator norm, |A — A.cZAg.|| = O(Vk(vVm +
v/n)or11(A)). Although the proof is constructive, it requires computing the SVD‘ of
A, which takes much more time and space than the algorithms considered in this
work. A useful idea in [35] for selecting C' and R is to maximize the volume or de-
terminant of submatrices. This idea may date back to interpolating projections [63]
and the proof of Auerbach’s theorem [68].

A popular method of computing matrix skeletons is cross-approximation. The
idea is to iteratively select good rows and columns based on the residual matrix. As
processing the entire residual matrix is not practical, there are faster variants that
operate on only a small part of the residual, e.g., Adaptive Cross Approximation [5, 6]
and Incomplete Cross Approximation [75]. The algorithms considered in this work
are non-iterative, arguably easier to implement and analyze, yet possibly less efficient

for some applications.

In this work, we compute a matrix skeleton by randomly sampling rows and
columns of A. This idea dates back at least to the work of Frieze, Kannan and Vem-
pala [30]. One way of sampling rows and columns of A is called “subspace sampling”
[54, 26] by Drineas et al. If we assume that the top k singular vectors of A are inco-
herent, then a result due to Rudelson, Vershynin [66] implies that uniform sampling
of rows and columns, a special case of “subspace sampling”, will produce a good skele-
ton representation A.c(A%AAL)Ap.. However, it is not clear how the middle matrix

AL AA}, can be computed in sublinear time.

In the main algorithm analyzed in this work, we uniformly sample rows and
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columns to produce a skeleton of the form A.cAcAR:, not A:C(AngA};:)AR;. One
major difference is that the skeleton A.cA%-Ag: can be computed in O(k®) time?.
Note that the matrix skeleton output by our algorithms is represented by the index
sets R, C and matrix Z, not Ag., A.c.

Finally, let us mention that the term “skeleton” may refer to other factorizations.
Instead of A ~ Ac.ZA.p, we can have A ~ Zy AgcZ, where Z1, Z, are arbitrary mx k
and k x n matrices [21]. As O(mk + nk) space is needed to store Z1, Z2, this repre-
sentation does not seem as appealing in memory-critical situations where Ac.Z A.g is.
Nevertheless, it is numerically more stable and has found several applications [43].

Alternatively, when A = M BN where M, B, N are n X n matrices, we can ap-
proximate M as M.cP, N as DNp., where M¢ has k columns of M and Npg has k
rows of N. Thus, A ~ Mc(PBD)Np, effectively replacing B with the k x k matrix
B := PBD. Bremer calls B a skeleton and uses it to approximate scattering matrices

[11].

3.1.4 Notations

The matrices we consider take the form

A A Y*
A=(xy x| " " (Yl) (3.1)
Ay Axn 2

where X = (X; X;) and Y = (Y7 Y2) are unitary matrices, with columns being
“spread”, and the blocks Aq2, Ay and Ay, are in some sense small. By “spread”, we

mean O(1)-coherent.

Definition 3.1.1. Let X € C™** be a matriz with k orthonormal columns. Denote

X || o = maxij | Xi;]. We say X is p-coherent if | X|| ,, < (p/n)2.

This notion is well-known in compressed sensing [14] and matrix completion [13,

57).

2Note that O is the O notation with log factors dropped.
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0 Alg .
Formally, let Ay := , and consider that

A21 A22

ek = ||Ag| is small. (3.2)

That means A can be represented using only O(k?) data if we allow an & error in the
operator norm. Note that € is equivalent to max(|| X3 A|, | AYz||) up to constants.
To prevent clutter, we have suppressed the dependence on k& from the definitions of
X1,Y1, A1, Ays ete.

If (3.1) is the SVD of A, then ¢x = og1(A). It is good to keep this example in
mind as it simplifies many formulas that we see later.

An alternative to ¢ is

e =D (Bl (3.3)

=1 j=1
In other words, &}, is the £! norm of Ay reshaped into a vector. We know e < e <
mneg. The reason for introducing ¢}, is that it is common for (Ay);; to decay rapidly
such that £, <« mne;. For such scenarios, the error guarantee of Algorithm 1 is much

stronger in terms of €}, than in terms of ¢; as we will see in the next section.

3.1.5 Main result

Random subsets of rows and columns are only representative of the subspaces of the
matrix A under the incoherence assumption mentioned earlier, otherwise Algorithm
1 may fail. For example, if A = X;A4;;Y]" and X; = (I“(;““), then Ap. is going to be
zero most of the time, and so is A.,cZAp.. Hence, it makes sense that we want X .
to be “as nonsingular as possible” so that little information is lost. In particular, it
is well-known that if X;,Y; are 5(1)-coherent, i.e., spread, then sampling ¢ = 5(19)

rows will lead to X g, Y1 c. being well-conditioned?.

SAssume ¢ = O(k). Then |||, = O(n='/2) is a sufficient condition for Y1 c. to be well-
conditioned with high probability. This condition can be relaxed in at least two ways. First, all we
need is that for each row ¢, (3, |(Y1):;1%)Y/2 < (uk/n)1/2. This would allow a few entries of each

row of Y] to be bigger than O(n"1/2). Second, we can allow a few rows of Y to violate the previous
condition [4].

99



Here is our main result. It is proved in Section 3.2.

Theorem 3.1.2. Let A be given by (8.1) for some k > 0. Assumem > n and X,,11
are p-coherent where 1 = 6(1) with respect to m,n. Recall the definitions of e, €}, in

3.2) and (3.8). Let £ > 10uklogm and A = o) - Then with probability at least
¢

1 — 4km=2, Algorithm 1 returns a skeleton that satisfies
|A = AcZAR] = O(AS + Aex + €20/6). (3.4)

If furthermore the entire X and Y are p-coherent, then with probability at least 1 —
1

4dm=-,
|A — AcZAgr] = O\ + €} + €42 /(7). (3.5)
The right hand sides of (3.4) and (3.5) can be minimized with respect to §. For
(3.4), pick d = O(eg) so that

|A — AcZAg.|| = O(ex)) = O(ex(mn) /2 /8). (3.6)

For (3.5), pick § = ©(¢g},/A) so that
|A = AcZAg.| = O(g}). (3.7)
Here are some possible scenarios where €} = o(exA) and (3.7) is strictly stronger

than (3.6):

e The entries of Ay, decay exponentially or there are only O(1) nonzero entries as

: .
m,n increases. Then €}, = O(ex).

e Say n = m and (3.1) is the SVD of A. Suppose the singular values decay as
m~Y2, Then £, = O(gym'/?).

One important question remains: how can we guess £, in order to then chose §7
Unfortunately, we are not aware of any 5(’63) algorithm that can accurately estimate

. Here is one possible heuristic for choosing § for the case where (3.1) is the SVD.
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Imagine Apc ~ X1 rA1Yc.- As we will see, the singular values of X1 p., Y] . are
likely to be on the order of (¢/m)"/?, (¢/n)1/2. Therefore, it is not unreasonable to
view € = 0k 1(A) >~ Aogy1(ARge).

Another approach is to begin with a big 4, run the 5(k3) algorithm, check
|A— A.cZAg.|, divide § by two and repeat the whole process until the error does
not improve. However, calculating ||A — A.cZ Ag.|| is expensive and other tricks are
needed. This seems to be an open problem.

The 5(163) algorithm is among the fastest algorithms for computing skeleton rep-
resentations that one can expect to have. With more work, can the accuracy be
improved? In Section 3.3, we sketch two such algorithms. These two algorithms have
for the most part been analyzed in previous work: though their ability to perform
in sublinear-time complexity was not explicitly stated in those references, this fact
should not come as a surprise. The first algorithm samples £ ~ k log m rows, columns,
then reduce it to exactly k rows, columns using the a rank-revealing QR decomposi-
tion (RRQR), with an operator norm error of O(ex(mk)*/?). It is similar to what is
done in [9]. In the second algorithm, we uniformly sample £ ~ k log m rows to get Ag.,
then run RRQR on Apg. to select k columns of A. The overall error is O(e,(mn)'/?).
This is similar to the algorithm proposed by Tygert, Rokhlin et al. [51, 77].

Using the proof framework in Section 3.2, we will derive error estimates for the
above two algorithms. As mentioned earlier these error guarantees are not new, but
(i) they concern provable sublinear-time complexity algorithms, (ii) they work for
a more general model (3.1), and (iii) our proofs are also motivated differently. In

Section 3.3.3, we compare these three algorithms.

3.1.6 More on incoherence

If either X or Y is not 6(1)-coherent, we can use the idea of a randomized Fourier
transform [1] to impose incoherence. The idea is to multiply them on the left by
the unitary Fourier matrix with randomly rescaled columns. This has the effect
of “blending up” the rows of X,Y — at the possible cost of requiring linear-time

complexity. The following is a standard result that can be proved using Hoeffding’s
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inequality.

Proposition 3.1.3. Let X € C™** with orthonormal columns. Let D = diag(dy, ..., d,)
wheredy, . . .,d, are independent random variables such that Ed; = 0 and |d;| = 1. Let
F be the unitary Fourier matriz and u = alogn for some a > 0. Define U := FDX.
Then U < (u/n)Y? with probability at least 1 — 2(nk)n=2*

max -

In other words, no matter what X is, U = FDX would be O(1)-coherent with
high probability. Hence, we can write a wrapper around Algorithm 1. Call this
Algorithm 1’. Let F € C**™ and F' € C™*™ be unitary Fourier transforms.

1. Let B := F'DyADF* where D, D, are diagonal matrices with independent
entries that are +1 with equal probability.

2. Feed B to the 5(’63) algorithm and obtain B ~ B.oZ Bp..
3. It follows that A ~ (AD1F§.)Z(Fr.DrA).

The output (AD,F}.)Z(Fr.D2A) is not a matrix skeleton, but the amount of space
needed is O(n) + O(k?) which is still better than O(nk). Note that we are not storing
ADy F(. just as we do not store A.c in Algorithm 1. Let T4 be the cost of matrix-
vector multiplication of A. See that Algorithm 1’ runs in 5(TAk + mk + k3) time.
The most expensive step is computing Brc and it can be carried out as follows.
Compute D, (F*S¢) in O(nk) time. Multiply the result by A on the left in 5(TA k)
time. Multiply the result by Ds on the left in 5(mk) time. Multiply the result by F’
on the left in O(mk) time using FFT. Multiply the result by ST on the left in O(k?)

time.

3.2 Error estimates for O(k3) algorithm

3.2.1 Notation

Sc,Sr € R™* are both column selector matrices. They are column subsets of per-

mutation matrices. The subscripts “R :” and “: C” denote a row subset and a column
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subset respectively, e.g., Ap. = S5A and A.c = AS¢, while Agc is a row and column
subset of A. Transposes and pseudoinverses are taken after the subscripts, e.g., A%,

means (Agr.)*.

3.2.2 Two principles

Our proofs are built on two principles. The first principle is due to Rudelson [66] in

1999. Intuitively, it says the following.

Let Y be a n x k matrix with orthonormal columns. Let Y. be a random

row subset of Y. Suppose Y is p-coherent with p = 5(1), and |C| = £ 2 uk.

Then with high probability, (%)/?Y¢. is like an isometry.

To be precise, we quote [73, Lemma 3.4]. Note that their M is our pk.

Theorem 3.2.1. Let Y € C"* with orthonormal columns. Suppose Y is u-coherent
and £ > akp for some a > 0. Let Yo. be a random £-row subset of Y. FEach row of

Y. is sampled independently, uniformly. Then

=

P(||Y5t|| > ﬁ) < k((l_e—d)l_&)a for any § € [0, 1)

and

(140)¢ e “ ,
N4/ e — >0
P (”YC” 2 - <k 15077 foranyd >0

To be concrete, if § = 0.57 and §' = 0.709 and £ > 10kulogn, then
P (||Yg:]| < 1.53(n/€)** and ||Yo.| < 1.31(¢/n)Y?) > 1 — 2kn~2. (3.8)

We will use (3.8) later. Let us proceed to the second principle, which says

Let C be an arbitrary index set. If ||A.c|| is small , then ||A] is also small,

provided that we have control over || AYz|| and || Yie. “ for some unitary matrix

Y1 Yo).
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The roadmap is as follows. If we ignore the regularization step, then what we
want to show is that A ~ A:CAECA r:- But when we take row and column restrictions
on both sides, we have trivially Agrc = ApcAf-Arc. Hence, we desire a mechanism
to go backwards, that is to infer that “E .= A — A;CAECAR: is small” from “Fgc is

small.” We begin by inferring that “F is small” from “FE.c is small”.

Lemma 3.2.2. Let A€ C™" and Y = (Y7 Y2) € C¥" be a unitary matriz such
that Y; has k columns. Select £ > k rows of Y to form Yy c. = SLY, € C**. Assume

Yic. has full column rank. Then
Proof. Note that Y"0.Y7'¢. = Ixxk. Now,

1Al < [AY: ] + |AYz|
= || AN Y0 Y| + [ AT
< |ANYSo|l ||Vl + 1AYa |
< |I(A - AYY3)Soll |[Yie | + [ AYe]

< Vol [Yie + [A¥¥so] [V + A

a

Lemma 3.2.2 can be extended in two obvious ways. First, we can deduce that “A
is small if Ag. is small.” Second, we can deduce that “A is small if Ag¢ is small.” This
is what the next lemma establishes. (Although its form looks unduly complicated,

control over all the terms is in fine necessary.)

Lemma 3.2.3. Let A€ C™" and X = (X; X)) e C™*™ and Y = (7 Ya) €
C™*™ be unitary matrices such that X,,Y; each has k columns. Select £ > k rows

and columns indezed by R, C respectively. Assume X1 g., Y1 c. have full column rank.

Then
A < || XF Rl 1 AR + [| X5 5| 1 X2,m: X5 All + |1 X5 A
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and

Al < HXlJfR:“ HY1+C” | Arcl +
X Rl Y76 || X e X5 AV Y| +
X5 r || Yo || | X0 X AY2 Y5 || +
1X Rl 1Yo
1% R} 1 X0, R X7 AYz | +

Xo X5 A2 Y5 || +
Yo X3 AYiY7 G| +

| X3 AYz||.

Proof. The top inequality is obtained by applying Lemma 3.2.2 to A*. The proof of

the bottom inequality is similar to the proof of Lemma 3.2.2. For completeness,

Al < IXTAN [ + | XTAYz | + | X3 AYL ]| + (| X5 AY||
= || XX R X]ANY 0 Y4,

|+
“Xil:R:XI,R:XfAY}H + ”X;AYIYﬁC:YJa

| + 1 X3 A%
< |IXT R ISR X XG A2Y So |

*ot
Y.I,C:

|+
X2 R 10, X7 AYa | + | XGAVY ||| Y& + 1X5 AY|

= [ X{ R Vil 1SE(A - X X3ANYY - Xi X7 AY,YS ~ Xo X3 AY,Y5)Sc || +
| X5 [ 1%, X7 AYa | + [V | || X3 AV VoG [| + 11X AYz |-

Split up the term ||SE(A — XoX3AV1Y) — X1 X} AY,Yy — X, X3AY,Y3)Sc|| by the

triangle inequality and we are done. a

We conclude this section with a useful corollary. It says that if PA.c is a good
low rank approximation of A.¢ for some P € C™*™, then PA may also be a good low

rank approximation of A.

Corollary 3.2.4. Let A € C™" and P € C™™, LetY = (Y1 Ya) be a unitary

matriz such that Yy has k columns. Let Yic. = SLY; € C¥* where £ > k. Assume
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Yi.c: has full column rank. Let I € C™ ™ be the identity. Then
|A = PA| < ||Vl 1Ae — PAcl + ||[Yi|| I = Pl ||AYzY5c|| + I — Pl | AYz].
In particular, if P is the orthogonal projection A,cAL,, then

14— AcAGA| < [[Yic | |4¥aYsel| + [ AY2] (3.9)

Proof. To get the first inequality, apply Lemma 3.2.2 to A — PA. The second in-
equality is immediate from the first inequality since ”A:C — A;CA:EA;C|| =0. (]

For the special case where X, Y are singular vectors of A, (3.9) can be proved using
the fact that |4 — AcALA|| = minp |A - AcD|| and choosing an appropriate D.
See Boutsidis et al. [9].

Note that (3.9) can be strengthened to ||A — A;CA:*'CAH2 < ||AY; 2":C:Y1TC;H2 +
| AY||?, by modifying the first step of the proof of Lemma 3.2.2 from || A| < ||AY: ||+
|AYz|| to [|A]* < ||AY1|® + ||AYz2|®>. A similar result for the case where X,Y are
singular vectors can be found in Halko et al. [39]. The originality of our results is

that they hold for a more general model (3.1).

3.2.3 Proof of Theorem 3.1.2

The proof is split into two main parts. The first part is probabilistic. We will apply
the first principle to control the largest and smallest singular values of Y ¢., X1 r. and
other similar quantities. The second part, mainly linear algebra, uses these bounds

on Y; ¢. and X; g. to help control the error ||A - A:CB}'CAR;”.

Probabilistic part

Let Ax = ()2 and Ay = (%)!/2. To prove the first part of Theorem 3.1.2, i.e., (3.4),
we apply Theorem 3.2.1. From (3.8) it is clear that the assumptions of Theorem 3.1.2
guarantee that [¥;.c:] = OO, [¥iic) = OOW), IX1al = O0R), [ Xin] =
O(Ax) hold simultaneously with probablllty at least 1 — 4km™2 |
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For the second part of Theorem 3.1.2, i.e., (3.5), we need to refine (3.1) as fol-
lows. Let X = (Xl,,..,frm/k]) and Y = (ﬁa---;?[n/k]) where )Afl,...,)?[m/k]_l
and )71, ey ?fn/kPl has k columns, and Xffﬂ/’ﬂ’?fn/k] have < k columns. Note that
)?1 = X1, ;'1 =Y, Zn = A1y where X1,Y;, Ay; are defined in (3.1). Rewrite (3.1) as

o~

Xu .. Zl,['n/k] le*
A=(X1,...,X|'m/k'|) . (3.10)

Atmmia -+ Apm/rl /8 Yk

By applying Theorem 3.2.1 to every )?,-, )73 and doing a union bound, we see that
with probability at least 1 — 4m™, we will have [|Y;c.[| = O(\?), ||Yie]| = O0w),
1 X1l = O(AXY), || Xiz]| = O(Ax) for all 4, 5.

Deterministic part: Introducing B, an auxillary matrix

Recall that in Algorithm 1, we compute the SVD of Agc as U1 E,V)* + U X,V and

invert only U2, V}* to get the center matrix Z.

Define B € C™*" such that Bpe = U1V} and all other entries of B are the
same as A’s. In other wrods, define £ € C™*" such that Ere = —U,LVy and all
other entries of E are zeros, then let B= A+ E.

The skeleton returned is Ac. Bj;Ar.. By construction

?

|A- Bl <& |Bioll <67

Our objective is to bound || A — A¢BficAg||, but it is ||B — B.cBfiBri| that
we have control over by the second principle. Recall that Bre = BreBhoBre

is to be lifted to B ~ B;CBECBR: by Lemma 3.2.3. Thus, we shall first relate
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[|A — AcBhoA R'-H to quantities involving only B by a perturbation argument.

|4 — AcBjcAr|| <I|A— B| +||B — BcBieBr| +
|BeBteBr - AcBicBall + |AcBicBr — AcBicAn|
<6 +||B — B.cBjioBr|| +
I(B = A)Scll || BioBr|| + | A.cBrel| [|S& (B - A)]
<6 +||B — BB Br| +
5| BteBall + (|BoBicll + | AcBic ~ BoBicl)s
<6+ ||B — BB Br|| +
§||BioBr|| + 8||BeBicl|| + (A - B)Sc|| 6716
<26+ ||B — B.cB}cBr|| + 6 || BicBr| + 6 ||BcBhe| (3.11)

Deterministic part: Bounds on || B};-Bg.|| and ”B:CBECH

It remains to bound HB - B:CB;CBR;H, ||B;;CBR:|[, and “B;CB;;CH. In this subsec-
tion, we obtain bounds for the last two quantities. By the second principle, we do not
expect HB;;CBR:'” to be much bigger than ”B};CBRCH < 1. Specifically, by Lemma
3.2.2, we have

IBieBall <Yl 1BioBacl + Vil |BicBa¥a¥io + | BicBrv)
<5l + ¥l 1Bl 1 Br — An)¥a¥io | + | An¥atic])+
| Bic|| (I(Br: — Ar)Yzll + | ArYal|)
<Yl + ¥l 8726 + lArYa¥i ) + 6726 + AR el
<12V + Yo 67 [4nTa¥io | + 67 1ARYal.

By the first principle, the following holds with high probability:

| BicBr:|| = Oy + Avé 7' || ArY2Y5c|| + 67 |ArYal)). (3.12)
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The same argument works for “B;cBgc I With high probability,

|BeBfic| = 000 + Ax67! | Xo X5 Ac] + 67 | X5Ac]) (3.13)

Deterministic part: Bounding ||B — B.c B}, Br||

Bounding the third quantity requires more work, but the basic ideas are the same.
Recall that the second principle suggests that || B — B:CBECB R || cannot be too much
bigger than ||BRC — BreBfioBre || = 0. Applying Lemma 3.2.3 with B— B.c B}, Bhr.
in the role of A yields

1B = BoBacBrl| < || Xial [Yiic|| | X2p-X3(B — BoBheBr)YiYic +
1XE Rl ¥l | Xa,m X3 (B = BioBre Br)YaYiicl| +
IXTR ] Yoe (| Xom X3 (B = BoBioBr)YaYsc|| +
1% ol 10~ X7 (B — B.c Bieo Br)Ya| +
il [ X3(B = BeBreBr)YiYic| +

(B - B:CBRCBR: sz“
which is in turn bounded by

Xl 1Yl 1Yaell (1 Xem X3 Bl + |1 Xo2. X3 Bell || Bi: BR:||>+

(s Hlpavet [ IIXwX*BYzYz*cII+I|X2RX*BCII5IIIBRYzYz*o D+

X R Yl [ 1 X0 R (| BY Y || + || BrY2 Y,

| X Rl 1 X1 m: M (1 BYz || + || Be B || | Br:Yell)+
Yy IY1c:l (1X3 Bl + || B Br:|| 1 X3 Bcll)+
I X5BYz |l + | X3 Bcll 6 || BrYal-

In the expression above, we have paired || X g.| with HXfR [| and ||Y7,¢.|| with H e ||

because the first principle implies that their products are O(1) with high probability.
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This implies that HB — B¢ BioB R=H is less than a constant times

Ax (| X2, X3 B|| + || X2, X3 Be| || Biie Br:|| )+

A (|BY:2Y 6| + (| BrY> Yz || [ B Bre )+
/\X)\Y(HX;R:X;BYzYz*,C:H + | Xo,r X3 Bl 67 ||BR:Y2Y2TC:“)+
| BY: || + || B.c B | Br:Yall +

1% Bl + || B Br || 1 X5 Bl +

|X5B.cl 67! | BrYall-

We have dropped || X;BYa|| because it is dominated by || X3B]||. Equations (3.13)
and (3.12) can be used to control ||B.cBjc|| and ||BcBr:||. Before doing so, we
want to replace B with A in all the other terms. This will introduce some extra
&’s. For example, || Xor X5B|| < | XopX5B — Xo p X5 A| + | Xor X5A| < 6 +
| X2,rX3A|. Doing the same for other terms, we have that ||B — B.cBficBr|| is
with high probability less than a constant times

Ax (8 + | X2, r X5 All + (6 + | X2,0. X5 Acl) || Bie Bri||)+
Ay (8 + || AVaY5c || + (6 + [|ArY2Y50 ) || BeBrel )+
AxXy (6 + || Xo,p X5 AYo Y0 || + [ X p X5 Al +
|ArYaY5c || + 1 Xom X5 Acl| 67" || AR Yo Yo || )+

5+ | AYz| + (6 + || Ar-Yal)) | BoBhe| +

§+ 1 X5 A + (6 + 1 X5 Acl) || Bhe Br|| +

6+ 15 Acll + 1 ArYall + 1 X5 A 07 | AR Yzl -

Several terms can be simplified by noting that § < Axd < AxAyd and | X5A.c|| <
| X3A|. We shall also use the estimates on || B.cBj|| and ||BicBr:||, from (3.13)
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and (3.12). This leads to

Ax(|Xo,p X5 Al + (6 + | Xor X5 Acl) Ay + Avd 7 || ArYaYo ol + 67 [ArY2]))+
/\Y(“AYZY;C:” + (6 + ”AR:Y2Y2T0;H)(/\X + A | X r X5 Aol + 071 |1 X5 Acl))+
AxAy (6 + || Xom X5 AY2Y o || + 1 X2,m X5 Ac) +

|ArY2Ysc || + 1 Xon X5 Acl| 67 || AR Yo Yo | )+

|AYz] + (6 + [[ArYal)Ax + Ax07! [ Xor X5 Al + 671 | X5 Acll)+

1Al + (0 + 11 X5 Ac )y + Avd ™ |ArYaYse || + 071 | ARYa )+

X3 Al 67" | ArYall -

Collect the terms by their Ax, Ay factors and drop the smaller terms to obtain that

with high probability,

|B — B.oBjieBr|| = OOx (| X2 n X3 Al + | AR Yz + 67 | X p. X5 Al | AR Yo )+
Ay (A2 Y5 | + 1X5 Al + 67 [ ARYaYse || 1X3 Acll)+
AxAv (6 + | Xo r X5 Acl + | ArY2Yoc|| +
5 | X, r X5 Ac|l || ARY2 Y50 || + || Xor X5 AY2 Y50 )+
1K Al + | AYz] + 671 | X5 Ac]l | ArYz])- (3.14)

Deterministic part: conclusion of the proof

We now have control over all three terms || B — B:CBECBR:“ , ||B§CBR:H , ||B;CB§C||.
Substitute (3.12), (3.13), (3.14) into (3.11). As the right hand side of (3.14) dominates
0 multiplied by the right hand side of (3.12), (3.13), we conclude that with high
probability, ||A — A:CBECAR:H is also bounded by the right hand side of (3.14).

To obtain the basic bound, (3.4), we note that all the “normed terms” on the right
hand side of (3.14), e.g., ||AR;Y2Y2’fCH and || X;A||, are bounded by e,. It follows that
with high probability, ||A — A;CBECAR:” = O(AxAy (6 + ¢+ 671e?)).

To obtain the other bound, (3.5), we need to bound each “normed term” of (3.14)
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differently. Recall (3.10). Consider || X2 r.X5A.c||. We have

An Av2,[n/k'| i;lfc; \
XorX3Ac = Xom,. .. s X[m/k1,R:) : ‘ : :

Am/ir - Afm/kLIn/k] Yi e )

In Section 3.2.3, we show that with high probability, ‘

Xiﬁ:” = O(/\}l) and H?}’C:’ =
O(M\y!) for all 4,7. Recall the definition of &), in (3.3). It follows that with high
probability,

[m/k] [n/k]

| X2,r- X3 Al < ; ; “Xi,R:‘l ' Ay

[Vic| = 230k

Apply the same argument to other terms on the right hand side of (3.14), e.g.,
| X2, r X3 A Y5 || = O(AX'AF'e)) and | X3Ac| = O(Ay'e,) with high probabil-
ity. Mnemonically, a R in the subscript leads to a A" and a C in the subscript leads
to a Ay

Recall that ||A;CB§CAR;|| is bounded by the right hand side of (3.14). Upon
simplifying, we obtain that ||A - A;CB};CAR;“ = O(AxAyd + €, + AxAyd1el?), ie.,
(3.5). The proof is complete.

3.3 Alternative sublinear-time algorithms

3.3.1 Second algorithm

In Algorithm 2, uniform random sampling first helps to trim down A to two factors
Ac and A}, with |C| = |R| = £ = O(k), then rank-revealing QR decompositions
(RRQR) are used on A, and A}, to further reduce the small dimension to exactly k.

For dense matrices, the most expensive step in Algorithm 2 is the multiplication of
A by A}, However, for structured matrices, the most expensive steps of Algorithm 2

are likely to be the RRQR factorization of A.c and A}, and the inversion of A.cv, Ag.,
which all take O(mk?) time. The overall running time is O(T4k) + O(mk?), where
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Algorithm 2. O(T4k) + O(mk?)-time algorithm
Input: A matrix A € C™*" that is approximately rank &, and user-defined

parameter ¢ = O(k). Assume m > n.

Output: Column index set C of size k, row index set R’ of size k, cen-
ter matrix of a matrix skeleton Z. Implicitly, we have the matrix skeleton
AcZAp..

Steps:

1. Let C be arandom index set of size £ chosen uniformly from {1,...,n}.
Explicitly form A.c.

2. Let R be arandom index set of size £ chosen uniformly from {1,...,m}.
Explicitly form Ag..

3. Run RRQR on A to select k£ columns of A.». Denote the result as
A.cr where C' C C indexes the k selected columns of A. This takes
O(mk?) time and O(mk) space.

4. Run RRQR on A}, to select k rows of Ap.. Denote the result as Ag.
where R’ C R indexes the k selected rows of A. This takes O(nk?) time
and O(nk) space.

5. Compute Z = A7, (AAL,). This takes O(Tsk +mk?) time and O(mk)
space, where T} is the time needed to apply A to a vector.

Matlab code:

function [Cp,Z,Rpl=skeleton2(A,1)
C=randperm(n,1l); ind=rrqr(A(:,C),k); Cp=C{(ind);
R=randperm(m,1); ind=rrqr(A(R,:)’,k); Rp=R(ind);
Z=pinv(A(:,Cp))*(A*pinv(A(Rp,:)));

end

73




T4 is the cost of a matrix-vector multiplication.

Note that in the Matlab code, the call rrqr(A,k) is assumed to return an index
set of size k specifying the selected columns. One can use Algorithm 782 [8] or its

Matlab port [69].

It can be easily shown [29] that once A, Ap. are fixed, the choice of Z =

A}, AA},. is optimal in the Frobenius norm (not operator norm), that is
Z = argyecext |A — AcWAR:|p-

Unsurprisingly, the error estimate is better than in Theorem 3.1.2.

Theorem 3.3.1. Let A be given by (3.1) for some k > 0. Assumem > n and X1,Y1
are p-coherent where p = 5(1) with respect to m,n. Recall the definition of €, in
(8.2). Let £ > 10uklogm. With probability at least 1 — 4km™2, Algorithm 2 returns

a skeleton that satisfies

IA — Ac ZAp:| = Oex(mk)'/?).

Proof. Let P = A AL, € C™™. RRQR [36] selects k columns from A.c such that
”A:C - PAC” S f(k7e)0k+l(A:C) S f(k,€)0k+1(A) S f(k7€)5k’

where f(k,£) := /1 + 2k(£ — k). We have used the fact that

An A A
ok11(A) = 0k1 <o (A12> < &k
Ay Ax 2

See interlacing theorems in [44].

Recall from (3.8) that ||Y;'.|| = O((n/£)*/?) with probability at least 1 — 2km~>.
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Apply Corollary 3.2.4 to obtain that with high probability

|A— PA|| < O(\y) ||Ac — PAc|| + O(\y)er + ex
= O(ex(n/0) /2 £ (k, £)) = O(ex(nk)"/?).

Let P’ = A}, Ap.. By the same argument, |A — AP'|| = O(ex(mk)*/?) with the same

failure probability. Combine both estimates. With probability at least 1 — 4km 2,

|A— Ao AL AAL AR = [|A - PAP|
< ||[A - PA|| +||PA— PAP'|
< [|A—PA| +|A— AP|
= O(ex(mk)*/?).

g

Many algorithms that use the skeleton A.c(ALAA})AR., e.g., in [54], seek to
select columns indexed by C such that ||A — A;CA;'E,A“ is small. Here, we further
select k out of £ = O(k) columns, which is also suggested in [9]. Their estimate on
the error in the operator norm is O(k log"? k)ex + O(k3/*log* k)||A — Ay||r where
Ay is the optimal rank k& approximation to A. In general, |4 — A could be as

large as (n — k)'/2¢,,, which makes our bound better by a factor of k1/4. Nevertheless,

we make the extra assumption that X;,Y) are incoherent.

3.3.2 Third algorithm

Consider the case where only X, is 5(1)-coherent. See Algorithm 3. It computes a
skeleton with O(k) rows and k columns in O(nk*+k3) time. Intuitively, the algorithm
works as follows. We want to select £ columns of A but running RRQR on A is too
expensive. Instead, we randomly choose 5(k) rows to form Apg., and select our k
columns using the much smaller matrix Ag.. This works because X; is assumed to

be 5(1)-coherent and choosing almost any 5(19) rows will give us a good sketch of A.
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Algorithm 3. O(nk?)-time algorithm
Input: A matrix A € C™*" that is approximately rank k, and user-defined

parameter ¢ = O(k).

Output: Column index set C” of size k, row index set R of size ¢, center matrix
of a matrix skeleton Z. Implicitly, we have the matrix skeleton A..rZ Apg..
Steps:

1. Let R be arandom index set of size £ chosen uniformly from {1,...,m}.
Explicitly form Ap..

2. Run RRQR on Apr. and obtain a column index set C’. Note that
Ap. ~ Apc/(A}oAr) where Ape contains k columns of Ap.. This
takes O(nk?) time and O(nk) space.

3. Compute Z = A}.. This takes O(k®) time and O(k?) space.

Matlab code:
function [Cp,Z,R]=skeleton3(A,1l)

R=randperm(m,1); Cp=rrqr(A(R,:),k); Z=pinv(A(R,Cp));
end
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Theorem 3.3.2. Let A be given by (3.1) for some k > 0. Assume m > n and X,
18 p-coherent where p = 5(1) with respect to m,n. (Y1 needs not be incoherent.)
Recall the definition of e, in (3.2). Let £ > 10uklogm. Then, with probability at

least 1 — 2km ™2, Algorithm 3 returns a skeleton that satisfies
|A — Ac'ZAg:|| = O(ex(mn)/?).

Proof. We perform RRQR on Ap. to obtain Ap, ~ Apc/D where D = A}, Ag. and
C' indexes the selected k columns. We want to use the second principle to “undo the
row restriction” and infer that A ~ A/ D, the output of Algorithm 3. The details are

as follows.

Strong RRQR [36] guarantees that

AR — Arcr D|| < 0r11(Ar:)f(k,n) < 0p1(A) f(k, 1) < exf(k,n)
and
| D] < f(k,n)

where f(k,n) = /1 + 2k(n — k). Prepare to apply a transposed version of Corollary
3.24, i.e.,

4 = AP < X2 14n — AP+ Xin | IT = PY 1 Xom XSAI+T - PY IX;A]

(3.15)
Let P = S¢rD, so that |P|| < |[D| < f(k,n). Note that AP = Ao Ak Ar. By
(3.8), with probability at least 1 — 2km™2, || X{ 5| = O((m/€)*/?). By (3.15),

A — AP|| < O(Ax) [|Ar. — Arer D] + O(Ax)(1 + || Pl))ex + (1 + || P]})ex
= O(exf(k,n)(m/0)Y?) = O(ex(mn)V?).

O

If X is not incoherent and we fix it by multiplying on the left by a randomized
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Fourier matrix FD (cf. Section 3.1.6), then we arrive at the algorithm in [51]. The
linear algebraic part of their proof combined with the first principle will lead to similar
bounds. What we have done here is to split the proof into three simple parts: (1)
show that X 1 := FDX| is incoherent, (2) use the first principle to show that X LR 18

“sufficiently nonsingular”, (3) apply the second principle.

3.3.3 Comparison of three algorithms

Here is a summary of the three algorithms studied in this chapter. Assume m > n.
Recall that A ~ X;A;1Y;". For Algorithm 1 and Algorithm 2, assume that X,,Y; are

both incoherent. For Algorithm 3, assume that X; is incoherent.

Upper bound
No. of | No. of

on error in the | Running time Memory
rows columns
operator norm
Alg. 1 | £=0(k) | £=0(k) | 022y | O O(k?)
Alg. 2 |k k | O(ex(mk)Y?) | O(Tuk) +O(mk?) | O(mk)
Alg. 3 | O(k) k O(ex(mn)?) | O(nk?) O(nk)

Recall that T4 is the cost of applying A to a vector. If T4 = O(nk) and m = O(n),
then the running time of Algorithm 2 and Algorithm 3 are comparable and we would
recommend using Algorithm 2 because it has a better error guarantee.

Otherwise, if T4 is on the order of mn, then Algorithm 2 is much slower than
Algorithm 1 and Algorithm 3, and is not recommended. Compared to Algorithm 3,
and in that scenario, Algorithm 1 is much faster and has better error guarantees, so
we view it as the better choice. The advantages of Algorithm 3 are that it selects
exactly k& columns and does not require Y; to be incoherent.

If we cannot afford using O(mk) memory or having a running time that scales
with m,n, then Algorithm 1 is the only possible choice here. Although Theorem
3.1.2 suggests that the error for Algorithm 1 grows with (mn)!/2, we believe that in

practice, the error usually increases with mY/2. See Section 3.4 for some numerical
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results.
Finally, we remind the reader that these recommendations are made based on

error guarantees which are not always tight.

3.4 Examples

3.4.1 First toy example: convolution

This first example shows that in Algorithm 1, it is crucial to regularize when inverting
Aprc because otherwise, the error in the operator norm can blow up. In fact, even
when A is positive definite and we pick C = R as in the work of Gittens [34], we
encounter the same need to regularize. The reason is that due to numerical errors,
Apc tends to be ill-conditioned when Agc has more rows and columns than the rank
of A. In other words, numerical errors introduce spurious small but nonzero singular
values in Apc and inverting the components corresponding to these small singular
values leads to large errors.

The experiment is set up as follows. Let A = XX X* € C™" where X is the
unitary Fourier matrix and ¥ is a diagonal matrix of singular values. Note that every
entry of X is of magnitude n7'/2 and X is 1-coherent. Fix n = 301, £ = 100 and
k = 10,30,50. Pick € = ey = 041 = ... = 0, = 10715, Pick the largest k singular
values to be logarithmically spaced between 1 and . Note that A is Hermitian and
positive definite. In each random trial, we randomly shuffle the singular values, pick ¢
random rows and columns and measure ||A — A.cZAg.||- The only parameters being
varied are k and 6. Note that although R # C in this experiment, similar results are
obtained when R = C.

From (3.4) in Theorem 3.1.2, we expect that when variables such as n,m, ¢, k are

fixed,
log [|A — A.cZAR:|| ~ log(6 " (ex + 6)%) = —log § + 2log(e, + 9). (3.16)

Consider a plot of ||A — A.cZ Ag.|| versus § on a log-log scale. According to the above
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Figure 3-1: Loglog plot of the empirical mean of the error in operator norm by the
O(k?) algorithm versus §, a regularization parameter. This relationship between the
error and & agrees with Theorem 3.1.2. See (3.16). More importantly, the error blows
up for small §, which implies that the regularization step should not be omitted.

equation, when § < &y, the first term dominates and we expect to see a line of slope
—1, and when & > &, log(ex + &) ~ logé and we expect to see a line of slope +1.
Indeed, when we plot the experimental results in Figure 3-1, we see a right-angled
V-curve.

The point here is that the error in the operator norm can blow up as § — 0.

A curious feature of Figure 3-1 is that the error curves resemble staircases. As we
decrease k, the number of distinct error levels seems to decrease proportionally. A
possible explanation for this behavior is that the top singular vectors of A.c match
those of A, and as § increases from o;(A) to 0;_1(A) for some small ¢, smaller com-

ponents will not be inverted and the error is all on the order of o;(A).

3.4.2 Second toy example

For the second experiment, we consider A = X3Y™ where X,Y are unitary Fourier

matrices with randomly permuted columns and ¥ is the diagonal matrix of singular
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Figure 3-2: The above is a loglog plot of the empirical mean of the error in operator
norm versus n, the size of square matrix A. Fix £k = 10, £ = 40 and A = XXY*
where X, Y are unitary Fourier matrices with randomly permuted columns and X is
the diagonal matrix of singular values. The top k singular values are set to 1 and
the others are set to e = 107%. When we run Algorithm 1 with § = ¢,e/\/n,€/n,
the expected errors seem to grow with n%%° n%% n%6° respectively. For Algorithm 2
and 3, the expected errors seem to grow with n%52, n%4 respectively. The errorbars
correspond to % of the standard deviations obtained empirically. Observe that the
error in Algorithm 3 fluctuates much more than Algorithm 1 with § =€,/ /n.

values. Fix k = 10, £ = 40. The singular values are set such that the largest k singular
values are all 1 and the other singular values are all £ = 107%. We consider all three
algorithms. For Algorithm 1, we set § in three different ways: § = ¢, § = ¢/y/n and
d =¢/n.

We plot the error ||A — A.cZAg| versus n in Figure 3-2. The numerical results
show that if we pick § = ¢/y/n for Algorithm 1, then the estimated mean error is
almost the same as that of Algorithm 2 — they both scale with n%®!, with k, £ fixed.
On the other hand, if we pick § = ¢ as suggested by (3.4) of Theorem 3.1.2, the

expected error seems to grow with n%5°

which is slightly worse than Algorithm 2 but
much better than described in (3.6).
The expected error of Algorithm 3 seems to grow with n%®4® which is the best

in this experiment. However, its error is not as concentrated around the mean as
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Algorithm 2 and Algorithm 1 with § = ¢,¢//n.

3.4.3 Smooth kernel

Consider a 1D integral operator with a kernel K that is analytic on [—1, 1]?. Define A
as (A)iy; = cK(i,y;) where the nodes zi,...,2, and y1,. .., yn are uniformly spaced
in [—1,1]. First, suppose K = 3 ;. Ti(z)T5(y) + 10*T1o(2)Tho(y) + 107°N
where T;(z) is the ¢-th Chebyshev polynomial and N is the random Gaussian matrix,
i.e., noise. The coefficients c¢;;’s are chosen such that || A|| ~ 1. Pick n =m = 10° and
slowly increase ¢, the number of rows and columns sampled by the 5(1:3) algorithm.
As shown in Figure 3-3, the skeleton representation A.cZAg. converges rapidly to A
as we increase £.

Next, consider K (z,y) = cexp(zy). Let n = 900 and pick ¢ to normalize ||A| = 1.
We then plot the empirical mean of the error of the 5(k3) algorithm against £ on the
left of Figure 3-4. Notice that the error decreases exponentially with £.

To understand what is happening, imagine that the grid is infinitely fine. Let
©1, @2, .. . be Legendre polynomials. Recall that these polynomials are orthogonal on
[—1,1]. Define the matrices X,Y as (X);; = y;(z;) and (Y);; = ¢;(y:). Assume the
@;’s are scaled such that X,Y are unitary. It is well-known that if we expand K in
terms of Chebyshev polynomials or Legendre polynomials [10] or prolate spheroidal
wave functions [78], the expansion coeflicients will decay exponentially. This means
that the entries of X*AY should decay exponentially away from the topleft corner
and ¢}, = O(ex) (cf. (3.2) and (3.3)). We confirm this by plotting &, €}, versus k on
the right of Figure 3-4. The actual X,Y used to obtain this plot are obtained by
evaluating the Legendre polynomials on the uniform grid and orthonormalizing. It
can be verified that the entries of X,Y are of magnitude O((k/n)'/2) which implies
a coherence u ~ k, independent of n. The implication is that the algorithm will
continue to perform well as n increases.

As ¢ increases, we can apply Theorem 3.1.2 with a larger k. Since €, €}, decrease
exponentially, the error should also decrease exponentially. However, as k increases

beyond ~ 15, €, stagnates and nothing can be gained from increasing £. In general,
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Figure 3-3: A is the smooth kernel K(z,y) where K is the sum of 62 low degree
Chebyshev polynomials evaluated on a 10% x 10 uniform grid. The topleft figure is
A while the other figures show that the more intricate features of A start to appear
as we increase £ from 12 to 18 to 24. Recall that we sample ¢ rows and £ columns in

the O(k®) algorithm.
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Figure 3-4: A is the smooth kernel K(z,y) = exp(—zy) sampled on a uniform
grid. The graph on the left shows that the error of the 5(k3) algorithm decreases
exponentially with £, the number of sampled rows and columns. The figure on the
right shows that if we expand A in terms of Legendre polynomials, the coefficients

(and therefore ey, €},) decay exponentially. See (3.1), (3.2) and (3.3) for the definitions
of e and &}.
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as €, decreases, we should pick a smaller §. But when k& 2 15, choosing a smaller §
does not help and may lead to worse results due to the instability of pseudoinverses.
This is evident from Figure 3-4.

A recent paper by Platte et al. [62] states that we cannot have an exponential
decrease of the error without a condition number that grows exponentially. In our
case, the random selection of columns and rows correspond to selecting interpola-
tion points randomly, and & serves as a regularization parameter of the interpolation
method. Due to the regularization, we can only expect an exponential decrease of

the error up to a limit dependent on 4.

3.4.4 Fourier integral operators

In [16], Candes et al. consider how to efficiently apply 2D Fourier integral operators

of the form

Li(z) = /ﬁ a(z, £)> 0 f(¢)de

where f(£) is the Fourier transform of f, a(z,€) is a smooth amplitude function and
® is a smooth phase function that is homogeneous, i.e., ®(z, Af) = A®(z, &) for any
A > 0. Say there are N? points in the space domain and also the frequency domain.

The main idea is to split the frequency domain into v'N wedges, perform a Taylor
expansion of ®(z, -) about €| ; where j indexes a wedge, and observe that the residual
phase ®;(z,§) := ®(z,&) — O(z, €] é]) -£ is nonoscillatory. Hence, the matrix Ag{) =
exp(27mi®;(z5,&:)) can be approximated by a low rank matrix, i.e., exp(2mi®;(z,£))
can be written as 7, fy(2)g(£) where r, the separation rank, is independent of N.
By switching order of summations, the authors arrive at O(N*%) algorithms for both
the preprocessing and the evaluation steps. See [16] for further details.

What we are concerned here is the approximate factorization of A%, This is a N2
by N matrix since there are N? points in the space domain and N?/v/N points in

one wedge in the frequency domain. In [16], a slightly different algorithm is proposed.

1. Uniformly and randomly select £ rows and columns to form Ag. and A.c.
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2. Perform SVD on A.c. Say A.c = Uy AV + Ua AoV, where U,V are unitary and

|Az|| <4, a user specified parameter.
3. Return the low rank representation UlUf rAr.

In the words of the authors, “this randomized approach works well in practice although
we are not able to offer a rigorous proof of its accuracy, and expect one to be non-
trivial” [16].

We are now in a position to explain why this randomized approach works well.
Consider equations (3.1) and (3.2). Let B be a perturbation of A such that Bg =

U; AV} and ||A — B| < 4. Since A is invertible, the output can be rewritten as
UUj»Ap. = BcBhoAr..
By following the proof of Theorem 3.1.2, we see that
|4~ BoBicAn] = O(|B - BoBigBal)

and that all the estimates in Theorem 3.1.2 must continue to hold.

The analysis presented here therefore answers the questions posed in [16]. We
believe that the assumption of incoherence of the generating vectors is precisely the
right framework to express the error guarantees of the skeleton in such situations.

An important subclass of Fourier integral operators is pseudodifferential opera-
tors. These are linear operators with pseudodifferential symbols that obey certain
smoothness conditions [70]. In Discrete Symbol Calculus [24], a similar randomized
algorithm is used to derive low rank factorizations of such smooth symbols. It is likely
that the method works well here in the same way as it works well for a smooth kernel

as discussed in the previous section.
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Chapter 4

Sparse Fourier transform using the

matrix pencil method

4.1 Introduction

Frequency-sparse signals are ubiquitous. We are interested in computing the dis-
crete Fourier transform (DFT) of such signals much faster than using standard FFT

algorithms.

Before we proceed, we establish some notation for the rest of the paper. For any
positive integer T, let [T] = {0,1,...,T—1}. If Tis odd, let [T] = {-5%,..., T }.
Let |-|| be the £ norm, ||l be the 7 norm and o;(-) be the j-th largest singular
value. The overline denotes complex conjugation or set complement. When a set is
used as a subscript of a vector, we refer to the vector restricted to coordinates indexed
by the set. Let O (-) be the O (-) notation with log factors dropped. For any b > 0,
let a%b denote a mod b with the result being in [0,b). Define dist : R xR — [0, 3] as

the wraparound distance in [0,1), i.e., dist(§1,&2) = mingez |k + & — &ol-

Let N be a large prime®. Given the signal z € CV, we want to compute its DFT

1Our algorithm MPFFT works even when N is not prime. However, we would have to be more
careful when analyzing the random shuffling of modes in Proposition 4.5.5. We envision that the
overall running time will be worsened by a factor of N/p(N) = O (loglog N} where @(N) is the
Euler totient function, as suggested by [41, Lemma 3.6].
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# € CVN. They are related by

Fp = % tE[ZN] 7, e—2m’kt/N; T, = lg[;v] Fr eQm’kt/N'
Assume that Z is S-sparse with some additive noise. Traditional FFT algorithms can
compute £ in O (N log N) time. However, since there are only (g) possible solutions,
the ideal algorithm should run in O (log, (g)) = O (Slog N) time, which is much
superior to O (N log N).

Some existing sparse Fourier transform (SFT) algorithms already achieve a run-
ning time of O (S). We believe the fastest implemented and published robust O (S)-
time SFT algorithm is currently the AAFFT (Ann Arbor FFT) [47]. In this paper,
we present a robust O (S)-time SFT algorithm called MPFFT (Matrix Pencil FFT)
that runs many times faster than AAFFT. The major new ingredient is a mode col-
lision detector based on the matriz pencil method. This mechanism enables us to use
fewer samples of the input signal.

To facilitate the discussion and the analysis of MPFFT, we assume that every

heavy mode of z stands out against the noise in the following sense:

Assumption 4.1.1. For any 0 < p < 1, define the set of p-heavy modes as
Ao(@) = {k € [N]: & > 1 - p}.

Assume that there exists a 0 < p < 1 such that |A,(z)] < S and me < 1.

We emphasize that MPFFT does work for a wide variety of inputs as demonstrated
numerically in Section 4.6. We impose the above assumption on z so that we can
provide a formal analysis of MPFFT in Section 4.5. Throughout the paper, p should
be regarded as very small, and for clarity, we will often drop p from the discussion.
For example, we may write A, as A and refer to p-heavy modes as heavy modes.
Modes not in A,(z) are referred to as nonheavy modes of z.

Assumption 4.1.1 can be interpreted as follows. Suppose we have an underlying

signal X that is exactly S-sparse in frequency space. Assume by rescaling that its
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nonzero Fourier coefficients have magnitude at least 1. In our notation, |[Ag(X)| = S

and ”XA

o X)I 0. Sample X in time to obtain z. This introduces errors that can

be modelled as Gaussian random variables, i.e., for some o < 1,
— Xt ~ N(0,0'2).

Note that % — X; ~ N(0,0%/N) and IEH:E—XH = o Let p = Hx—

o

is well-known that with high probability, HCL‘ -X H = O(0o) and p = ( )

1. Observe that A,(z) = A¢(X) and the noise energy is bounded as ”mA @

.12
2 kg Ao(X) ’mk - Xkl
Assumption 4.1.1.

i-X ” = O (0?) < 1. We have verified that z satisfies

In previous work on SFT, almost all numerical examples use an input signal that
satisfies Assumption 4.1.1. It is unfortunate that even for this simple test case,
existing SFT algorithms seem hardly more appealing than FFTW [31], the fastest
implementation of standard FFT algorithms. The problem is that large constants are
hidden in their O (S) running time and for a fixed N, most existing SFT algorithms
are faster than FFTW only when S <« N. Otherwise, they face other major problems
that are summarized in Figure 4-1.

Our algorithm MPFFT is presented in two forms. The first form requires Assump-
tion 4.1.1 and is analyzed in this paper. The second form is implemented and seems
to work well without Assumption 4.1.1. The numerical results in Section 4.6 show
that the second form of MPFFT runs much faster than AAFFT and we encourage

the reader to try out the publicly available code.

4.1.1 Review of sFFT3.0

Our algorithm MPFFT is an extension of sSFFT3.0 [40]. To understand the improve-
ments we have made to sFFT3.0, it is imperative to understand how sFFT3.0 works.
The goal of this section is to introduce the reader to the main ideas of sSFFT3.0. We
begin by listing its pseudocode in Figure 4-2.

First and foremost, sFFT3.0 is an iterative algorithm. At the beginning of it-
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Faster
Method when What are the issues? What is appealing?
S <?
Requires S to be too small Fastest published
AAFFT0.9 | =~ 150 relative to N O (S)-time algorithm.
Runni time scales with Faster than FFTW
sFFT1.0 ~ 1000 1/2 ng o > v over a respectable
N-+/% which is nonoptimal.
range of S.

Running time scales with Faster than FFTW
sFFT2.0 ~ 1200 1/3 g M . over a respectable
N'/° which is nonoptimal.

range of S.
Nonheavy modes remain in
the solution, leading to a
final error that is not ac-
SFFT3.0 ~ 95000 ceptable. N?nrobyst ’F)e- Simple, elegant, very
cause mode identification | fast.
fails when there is too much
noise. See Section 4.1.2 for
more.
fcly to e mmuch faster thag | OfeF new insights on
sFEFT4.0 Unknown| AAFFT. See Section 4.1.2 the.analysm of SFT al-
gorithms.
for more.

Figure 4-1: List of some SFT algorithms. The second column shows the range of S
where the SFT algorithm is faster than FFTW for a fixed N = 2%2. The values for
sFFT1.0, sFFT2.0 are derived from our own numerical tests (cf. Section 4.6.1) and
differ from [41]. We believe the reason is that in our tests, FF'TW is compiled with
hardware acceleration on the same machine as it is run. The value for AAFFT is

obtained from [47]. The value for sFFT3.0 is obtained from [41].
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eration 7, our approximate of £ is 2", and we strive to recover at least a constant
proportion of the heavy modes of the residual signal 2" = z — 2”. We claim that with
good probability, this objective is achieved in each iteration, such that the number
of heavy modes left decays exponentially and the total running time is dominated by

the running time of the first iteration, which is O (S'log N).

sFFT3.0 and many other SFT algorithms rely on a basic but important operation
called “binning”. This is also the most computationally expensive step of these SFT
algorithms. As sFFT3.0 bins only two signals in each outer iteration, which is much
fewer than AAFFT or sFFT4.0, it is not surprising that sFFT3.0 runs much faster

in comparison.

Binning is carried out on the signal y, which is the residual signal z” randomly

transformed such that

Yy = Z'Zt+7€27riﬂt/N; @‘P(k) — :%ze2m'7k/N (41)
where p(k) = ak + B is a random permutation with «, 3 uniformly chosen from
[N]\{0} and [N] respectively. Binning of y requires only samples of y,% which can
be obtained as samples of 2", 2" by (4.1). This means that the random transform of

z" into y is 4mplicit and we do not compute or store y or ¢ in full.

Think of the spectrum of y as being supported on the grid [N]/N C [0,1). Split
[0,1) evenly into B, intervals [-l—g:, b—];’;l). We say mode k, lands in bin b if p(k.)/N €
[Bir, b;—rl). Define h : [N] — [B,] as h(k) = {ﬁ(—’%J. Observe that h(k) is the bin that
mode k lands in. When we bin signal y, we produce B, bin coefficients which ideally

satisfies the following: for b € [B,],
o= ) Gem= . dpetN.
keh—1(b) keh—1(b)

In reality, (4.2) is not correct because realizing it is computationally infeasible. In-
stead, (4.2) is only approximately realized in O ( f—: log 3 + |supp 2T|) time where k., §

controls the quality of the approximation. More details on binning is found in Section
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procedure SFFT3(x € CV,S)

2«0

forr < 0,1,...,R—1=0/(logS) do > Start of an outer iteration
Let p(k) = ak + 8 be uniformly chosen permutation of [V]
Let 4 be uniformly chosen from [N] > Gy = Sper™ RN
B, + Baj >0<ag<1,B=0(S)
Kp < Ka, >ag < a, <1
H + {0,1} > d = O(log N)

Y’ + BinInTime(z,a, 8,7, H, B:,9, k)
Y” + BinInFrequency(%",a, 8,7, H, Br,9, k)
Y«Y =Y > Obtain B, sub-signals Y
for b € [B,] such that |[Y}| > 1/2 do > Do not process every bin
Identify one mode kg using {Y?: 7 € H}:
£o + arg(Y?/Yy)
ko < round (%50)
Estimate §i, as §y, Y7
ks 90‘1 (kO)
Update our solution by 27! « 2 + g e
end for
end for
return 2
end procedure

—2mivk. /N

R

Figure 4-2: sFFT3.0 [40] runs in O (SlogN)-time. It is fast in theory and in prac-
tice, but faces two limitations as described in Section 4.1.2. Firstly, mode collision
can create modes whose coefficients are of magnitude between 0 and 1/2. These spu-
rious modes are unlikely to be found in subsequent iterations. Secondly, the mode
identification is very unstable to noise. The parameters k,, ¢ controls how well (4.2)
is approximated and will be covered later in Section 4.4.
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4.4. Nevertheless, to simplify the explanation of sFFT3.0, we shall assume (4.2) holds
exactly for the rest of Section 4.1.1.

Translation in time corresponds to modulation in frequency. Thus, the binning
of signal 4™, which is y translated by 7, yields another set of B, bin coefficients: for

b€ [B,],

Yrb — Z g;(k) — Z @¢(k)GQWi<P(k)T/N — ize2wi7k/Ne21rigo(k)T/N. (42)
keh=1(b) keh=1(b) keh=1(b)

Treat Y as the 7-th time-sample of a signal Y € CV where Y? is the transformed
signal y with frequency components outside [%, -‘*%1) zeroed out. We like to call Y® a
sub-signal. To reiterate, the set of bin coeflicients {YTb :be By, T € ’H} are simply

the B, sub-signals sampled at H.

We say mode k, of signal x is isolated if its bin contains no heavy modes other
than k., i.e., (h~1(h(k,)) N A(z))\{k.} = ¢. The objective of binning is to identify
isolated heavy modes. Suppose bin b contains an isolated heavy mode and there is
no noise, i.e., |zg|| = 0. Say h~1(b) = {k.} and ¢(k,) = ko. Then our sub-signal Y*
is a pure sinusoid: for any 7 € [N], YP = {,,e2™®" where £ = ko/N. 1t is easy to

decipher a pure sinusoid. Observe that kg, Ji, can be obtained as
by b N . b
&o = arg(Yy'/Yy); ko = round 580 )5 Uk =Yo (4.3)
Finally, undo the random transformation to obtain k, and Zj, as in Figure 4-2.

Next, consider why the number of heavy modes decays exponentially with good
probability. Our argument differs slightly from [40]’s. Suppose we are at the beginning
of iteration r. Let A" = A(z") be the set of heavy modes in the residual 2”. Assume
for now that [A"] < S, := Saf for some 0 < ag < 1. Instead of letting B, be
proportional to S, like in [40], we let B, = Ba’; decay exponentially slower than S,.

Fix a heavy mode k,. By Markov’s inequality, the probability that k. is not isolated
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is bounded by %’% < £(as/ap)". By Markov’s inequality,

25
P (no. of heavy modes not isolated > % [AT|) < a—(as/aB)r.
S

Assuming no noise and that our bin coeflicients are ideal and satisfy (4.2), we see
that an isolated heavy mode will be identified and eliminated in the residual, while a
non-isolated heavy mode will at worst create a new heavy mode in the next iteration.
Hence, with probability at least 1 — (i—SB(as /aB)", the number of heavy modes in the
iteration r + 1 does not exceed 2(agS,/2) = asS, = S,+1. By union bound over all

iterations,

25 1
asB1—ag/ap’

r 25 .
P(|A"| > S, for some r) < aS—B;(aS/aB) =

Pick ap = 3/4, as = ap/2, and B = 245/ap = 325 and conclude that with proba-
bility at least 2/3, the number of heavy modes in 2™ decay exponentially with r and

is bounded by S, = Saf}.

In practice, the bin coeflicients are not ideal. Let k, be an isolated heavy mode
and b = h(k,). First, £z, may be highly attenuated before it is added to its sub-signal
Y?. Second, heavy modes landing outside bin b can contribute to the sub-signal Y
and act as noise. Both of these imperfections of (4.2) can make the recovery of k, by
(4.3) unstable. Nonetheless, these problems can be mitigated with a proper choice of
0, k. There are however two other problems of sSFFT3.0 that are more serious and

they are the focus of the next section.

4.1.2 Two limitations of sFFT3.0

The first limitation of sFFT3.0 is that its mode identification step is nonrobust. Fix
a heavy mode k.. Let b = h(k,) and A" = A(z"). Continuing from (4.2), let the

perturbation in Y;? due to nonheavy modes be AY} := 37,z 1) Efe2™ /N g2mikr/N,
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Taking expectation with respect to the random permutation ¢ and integer -y, we have

2/B, (4.4)

E*E” IAYTbI2 =B ) |&%f= Z |2: P BY Lien-10y < || 8%
keATNh—1(b) keA”

Suppose mode k, is isolated. Note that the perturbation in arg Y,* due to the perturba-
tion in Y% is O (|AYf| /|, |) =0 (lAYTbI). For the rounding in (4.3) to correct AY?
so that we can recover mode ko = ¢(k,), we need AY,? = O (1/N) for each 7 =0, 1.
Now (4.4) suggests that to have a good chance of identifying the heavy modes, we
need B, = Q (N 2 2). Unless = O (1/N), we will need B, to grow with
= Q0 (N~1/2), we will need
B, = Q(N), which means that sFFT3.0 runs in O (Nlog N) time and is no faster

ok o
I

ol ol
5

a power of N which is undesirable. For example, if ||:2£—,,

than FFT even in theory.

The way to fix this is to identify ko bit by bit. This idea is not new and has been
employed in AAFFT, sFFT4.0, etc. In AAFFT, we identify the least significant bit
of kg, implicitly bitshift kg to the right and repeat. In sFFT4.0, we identify groups of
bits at a time, starting from the most significant bits instead. We will use a simplified
version of the mode identification procedure in sFFT4.0. The details are postponed

to Section 4.2.3.

The second limitation of sSFFT3.0 is that when two or more heavy modes land in a
bin, i.e., mode collision, they may cancel one another partially and create a mode with
coefficient 1/4 for instance. Such a mode will remain in the residual signal because
sFFT3.0 processes a bin b only if IYS’I > 1/2, and whenever this mode is isolated
in a bin, its bin coefficient Y will have magnitude < 1/2. We call such nonheavy

unidentifiable modes ghost modes.

It is tempting to fix this problem by reducing the threshold value 1/2 to a small
value pu,.. As far as we are concerned, this modification alone does not solve the
problem. The inherent difficulty is that if u, is too small, then too many bins with
no heavy modes will be processed and too many spurious modes will be created. On
the other hand, if y, is too big, we run into the same problem of ghost modes having

too much energy.
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Require: Chance of getting a good estimate must exceed 1/2
procedure COEFFICIENTESTIMATIONLOOP(z € CV, 2, B, L)
R, + O(log B), number of random shuflles
Create a table A of size |£]| x R,
fori+0,1,...,R.—1do
Let (k) = ak + B be uniformly chosen permutation of [N]
Let « be uniformly chosen from [N] B> Jo(k) = Tre
H « {0}
Y’ + BinInTime(z,q, 8,7, H, B,§, k)
Y” « BinInFrequency(%",a,S,v,H, B,d, k)
Y«Y -Y"
for j=0,...,|]|—1do
ko < o(k.) where k, is the j-th mode in £
b a2 ]
Aj,z' — Yz)b€~27ri'yk,,/N
end for
end for
Create a list D of size |L]
for j=0,...,||—1do
D; + median {4;; : i € [R]}
end for
return D
end procedure

2nivk/N

Figure 4-3: Coeflicient estimation loop used in AAFFT and sFFT4.0 requires us to
bin the residual signal O (log B) times, which is computationally very expensive.
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SEFT algorithms such as AAFFT, sFFT4.0 fix this problem by processing all bins,
adding up to B, modes to a temporary list £ and using a separate coefficient esti-
mation loop to estimate the coeflicients of all modes in £ to the desired accuracy.
After that, the largest O (S,) coeflicients are kept. See Figure 4-3. We think that

this coefficient estimation loop should not be used for the following reasons.

Firstly, if k, is an isolated heavy mode, then the bin coefficient Y used for mode
identification is most likely a good estimate of Up(k,)- 1t seems unnecessary to estimate
its coeflicient in a separate loop. The difficulty lies in distinguishing between a bin

with an isolated mode and a bin with more than one heavy mode.

Secondly, binning is an eztremely costly operation and the running time of many
SFT algorithms is very much determined by the number of times binning is performed.
As the coeflicient estimation loop requires us to bin the residual signal O(log B,) more

times in iteration 7, it will slow down the SFT algorithm considerably.

Thirdly, for the coeflicient estimation loop to work, B, has to be relatively large
compared to S,, which is not optimal. Taking the median of estimates only works if
the probability that we get a good estimate of a mode coefficient per random shuffle
happens with sufficiently high probability, say at least a 3/4 chance. That means the
chance of mode collision has to be less than 1/4 and we need B, = 4S,. However, the
optimal B, is S, not 4S5, by the following heuristic argument. In practice, the modes
of y appear to be fully randomly shuffled, and the chance that a mode is isolated is
(1 - 1/B,)*~1 ~ ¢=5/Br_ Suppose we fix B, = CpuS, for some Cpy > 1. Suppose
e—5r/Br — o=1/C

mul of the heavy modes in z" is removed in iteration r. Then the total

time taken by binning is proportional to

oo o>
Y B, =) B(l-eYom) = SCuuet/Cm, (4.5)
r=0 r=0

The above is minimized when Cpy = 1, and whenever we use a larger C,,y, our

algorithm will be slowed down by roughly a factor of Cppy. That is not all. The
chance that a mode cannot be recovered because it lands too far away from the

center of its bin [40] is &,. For the median-taking to work, we need s, < 1/4. The
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time taken by binning' scales with 1/, which further slows down the algorithm by a
factor of 4.

Lastly, out of B, bins where B, is unreasonably large compared to S,, at most
S, of them contain useful information. It is wasteful to process every single bin,
estimate the coefficients of up to B, modes in the list £ and then discard most of
these coefficients at the end of the iteration.

In the next section, we present our algorithm MPFFT and describe how it fixes

the second limitation of sFFT3.0 in a more eflicient way.

4.1.3 MPFFT and main results

See Figure 4-4 for the pseudocode of MPFFT. Compare MPFFT with sFFT3.0 in
Figure 4-2. The main difference is that in each bin b, we run the “multiscale matrix
pencil method” on the sub-signal Y? and skip to the next bin if the subroutine returns
& lmax that is too large. This is the mode collision test. The basic idea is that if
there is more than one heavy mode in the bin, then g, is unlikely to be small and
we will not attempt to recover any mode in the bin. In this way, we avoid creating
ghost modes and overcome the second limitation of sFFT3.0 without resorting to the
costly coefficient estimation loop in AAFFT.

The matrix pencil method [45] is a classical method for spectral estimation in
signal processing. Given a signal X’ = X +AX where X; = 3° () c,€™% and AX;
is noise, the matrix pencil method aims to recover the frequencies £,’s and the coeffi-
cients ¢,’s from 2J—1 samples (X);1<y-1 with J > Q+1. We do not apply the matrix
pencil method to the input signal z € C¥ with Q = S because too many samples or
a large J will be needed to resolve the frequencies to a precision of 1/N. This will
be elaborated in Section 4.2.3. Instead, the matrix pencil method is applied to a few
frequency-dilated copies of the sub-signal Y® with Q = 1 so as to recover the permuted
mode location kg = @(k,). More precisely, from MatrixPencilMultiscale in Figure
4-6, we see that in MPFFT, the matrix pencil method is applied to (ijle Br)|j|5 J-1
for some £ to recover the £-th group of M bits of the frequency ﬁ’]%%1 where M is an

input parameter to MPFFT. For example, if £ = 3 and M = 2, then the matrix pencil
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procedure MPFFT(z € CV, S, J, M, €, ¢)
2«0
po <0
forr+—0,1,...,R—1=0(logS) do
Let o(k) = ak + 8 be uniformly chosen permutation of [N]

Let v be uniformly chosen from [N] T e2mivk/N
B, « B(r + 1)720+?) where p = 0.01
S, + Se™ "

Ky < wk(r 4+ 1)"0+2)
L, « [logyu(N/B,)| +1=0 (4 log &)
H«— {§2M*B, : |j| < J -1, € [L,]}
Y’ + BinInTime(z,«, 3,7, H, B, 0, k,)
Y” + BinInFrequency(:" a, 3,7, H, B, 9, k.)
Y«Y -Y" > Obtain B, sub-signals Y
for b € [B,] such that |Y¢| > 1 - p, — 24/,€,/B, do

Identify one mode ky using {Y? : 7 € H}:

(€0, ftmax) ¢ MatrixPencilMultiscale(L,,J, M, (Y} i< I-1,6€(Lr])

J2M[Br
ko + round (N (%))

if p2,, > Cupfrér/Br where Cy, is defined in (4.6) then mp
continue to next bin
if | % ~ H2| > Lz then
continue to next bin
Estimate i, as f, + Yo
k. + ™ (ko)
Update our solution by 25! «+ 2] + g e
end for
Pr+1 < Pr + 4\/ f'rgr/Br
gr+1 A 87.(1 + 4err/Br)
end for
return 2

end procedure

—2mivk. /N

R

Figure 4-4: First form of MPFFT is analyzed in Section 4.5.
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method is used to recover the 7-th and 8-th most significant bits of EQIVBT-%I.

The user needs to supply € as an upper bound on the energy of the nonheavy
modes in z, i.e., £ > ||#x]|>. The parameter ¢ is a precision parameter and MPFFT
aims to return a 2% such that ||2% — 53“2 < (1+¢€)&. Numerical experiments suggest
that MPFFT runs in O (S) time, but developing a rigorous proof is tricky for a few
reasons.

Firstly, without using the coefficient estimation loop in Figure 4-3 to boost the
success probability of estimating a mode coefficient well, we cannot use a union bound
to say that up to B, modes are estimated well, which is a crucial step in the analysis
of sFFT4.0 and AAFFT. In practice, the mode collision detector serves a similar
purpose: it ensures that for all bins, we will not make too much error in the estimation
of any mode coeflicient.

Secondly, despite the usefulness of the mode collision detector in practice, provid-
ing theoretical guarantees of its effectiveness seems difficult unless some assumptions
are made about the signal model. In Section 4.3, we assume that the frequencies &;’s
are independently and uniformly distributed and establish some lower bounds on fiyax-
This assumption seems reasonable for the randomly shuffled modes in the context of
MPFFT, but it unfortunately does not hold formally. The reason is that noise in the
second iteration can arise from errors in the first iteration — even if noise in the first
iteration is Gaussian, it is no longer Gaussian in subsequent iterations — and the
random shuffling of these subdominant modes is only pairwise independent, not fully
independent.

To bypass these technical difficulties so that we can provide a formal analysis of

MPFFT, we make the following assumption about the matrix pencil method:

Assumption 4.1.2. There erists a 0 < Cy,, < 1 such that the following holds. Let
X; = Ese[p] cse?™3% where |cp| > ... > |cp-1|. When MatrixPencil in Figure 4-5

is run on (X})j1<s—1 with Q =1, it will return a p that satisfies
2 P-1

p2 2 Crmy + Cmp Z ICSI2 : (4.6)
s=1

P-1
P2
s=1

100



The above assumption is motivated by some theoretical results in Section 4.3 on
the matrix pencil method, which will be briefly discussed after we present the main
result. In addition to Assumption 4.1.2, we also assume that the perturbation in the
single frequency obtained by the matrix pencil method due to noise can be obtained
by first order approximation. This is Assumption 4.2.2. It has an impact in the
proof of the main result only when the perturbation in the input to the matrix pencil
method due to noise is small, which means that first order perturbation theory is
well-justified. More on Assumption 4.2.2 can be found at the end of Section 4.5.1.

Now, we are ready to present the main result about MPFFT.

Theorem 4.1.3 (Main result). Assume ||#4]|°> < € and for some ¢ > 0, Slog®S =
O(N). Let 0 < ¢ < 1. Suppose § = N~®W is sufficiently small as required by
Lemma 4.5.1. Suppose €,€ are small such that (¢£)Y/? < %W where p = 0.01.
Pick f = ©(log &), k = ©(1/M) and B = ©(Zlog &) such that B > &2&_ Under
Assumption 4.1.2 and Assumption 4.2.2, we have that with probability at least

/3, N N
1—0|€lgs+ 1 (22M85 log2(1+”)+2.5') log & N 2M Jog X log S

logX ' M J2S M MN ’
MPFFT in Figure 4-4 runs in

NESLAT%
O(Mglog S’(J +logN))

time and outputs a 2% such that ||2F — :%H2 < (1+4¢)€ and |supp 27| = O(S).

Typically, we pick a small M such that N > 2™ and the &Ofﬁvlﬂs- term in the
failure probability is negligible. Moreover, J is usually very small such that the bound
on the running time reads as O (35 log® £ log N). Note that p can be arbitrarily close
to 0 but this will increase the constants in the bounds on the running time and failure
probability. The proof of Theorem 4.1.3 can be found in Section 4.5.

Now, let us motivate Assumption 4.1.2 by giving an overview of the results in

Section 4.3. Assume that the &’s in Assumption 4.1.2 are independently, uniformly
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chosen from [0, 1). Refer to & as the dominant mode and 35" |¢,|? as the subdom-

inant energy. Proposition 4.3.1 states that it is unlikely that g is much bigger than
P-1
Zszl Cs

large.

2
+Ef;11 |es|?, so the right hand side of (4.6) is at the least not unreasonably

Theorem 4.3.3 says that if the total energy is comparable to ]cg|2, which is inspired
by the case where there are several heavy modes in the bin with roughly the same
magnitude, then with high probability, 42 > Ese[P] les|?. A similar result is Corollary
4.3.7. It says that if the subdominant energy is comparable to |cll2, which is inspired
by the case where there is an isolated heavy mode in the bin with nonheavy modes
Ple| 4 S0 el

Theorem 4.3.9 is of a different nature compared to Theorem 4.3.3 and Corollary
4.3.7. Tt says that if there are T heavy modes in the bin and 72 < J, then u? > T —1

of roughly the same magnitude, then p* > lz

Cs

with good probability. While this lower bound is weaker than Zf;ll |es|?, it hints at
why the collision detector is good at detecting the presence of a few heavy modes. The
T = 2 case is especially important because it is the most common case encountered
by MPFFT as mentioned in Section 4.3.5. For this case, Proposition 4.3.10 tells us
that for some scale level ¢, the p? returned by the matrix pencil method on the input

(ngMeBr)lj]SJ_l must be 2 |¢| (1 - 21\;—;1) Note that this is a deterministic result.

4.2 Matrix pencil method

We first present the matrix pencil method [45, 46], then use it to identify just one
mode. Then we discuss in Section 4.3 how to detect whether the subdominant modes

are too energetic.

4.2.1 Introduction

Suppose we have a signal with @ modes, i.e., X; = 37 (5 cqwj Where w, = €*™ and
&, €[0,1). This is an undamped signal as |w,| = 1. Let J > @ + 1. Our objective
is to recover the frequencies o, ..., {p—1 and the coeflicients ¢, ..., co-1 from 2J — 1

noisy measurements X' = (X’_(J_l), ..., X5_1)T where each X} = X; + AX; and AX;
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is a random perturbation. Define the Toeplitz matrix on X as

Xo X X ... Xy
X X X1 ... X_
TX — _1_ 1 0 1 J+2
J . . . . .
Xi-1 Xj2 Xj3 ... X

The 1/J normalization factor is non-standard. We use it out of convenience in Section

4.3, a major part of the paper. Consider the matrices A’, A, AA € C’/*/:
A =TX;, A=TX; AA=T(AX). (4.7)

Let A; be A with the rightmost column removed and A, be A with the leftmost
column removed. Let A(As, A1) be the set of generalized eigenvalues of Ay — AA;. It

is equal to A(AT A,), the set of nonzero® ordinary eigenvalues of Al A,.

For any T, denote v;(£) = (1,e*%, ..., e (/~"UOT  Define Uy € CT*@ as

Ur = (vr (&%), - .-, vr(éo-1)) - (4.8)

Note that Ur’s columns are in general not orthogonal. Let C' = diag(c,)eeiq- Ob-
serve that rank(A) = @ and A has a Vandermonde decomposition. We can write
A = 3U;CU;3, A = JU;CUs_y, Ay = 1U,C diag(w)*U3_;. This suggests that
range(A;) = range(A;) and range(A}) = range(A}). Furthermore, the generalized
eigenvalues of A; — AA; are exactly the w,’s we seek, conjugated, i.e., m =

{wo,...,wo-1} because A, — AA; has a nullspace whenever A\ = @, for some g:
1
A2 - /\Al = jU]C(dlag(W)* — )\I)U‘;__l

Once w is found, we can solve a Vandermonde system to find the coeflicients ¢y, . . . ,cg_1.
Now, consider the noisy version of A, i.e., A’. Let A} be A’ with the rightmost

column removed and Aj be A’ with the leftmost column removed. Let A(A5, A)) =

2Af A2 contains @ nonzero eigenvalues and J — 1 — Q zero eigenvalues.
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procedure MATRIXPENCIL(J, @, (X})jj1<r-1)
Form the matrix A" = T(X})}1<s-1 € C7*J according to (4.7)
Compute the SVD of A’
12 S o od(A) = | A)F - A > Used for collision detection
Let V € C/*@ be the top Q right singular vectors of A’
Let V; € CU-UXE be V with its bottom row removed
Let V, € CU-UXQ be V with its top row removed
W A(Vo, ) = AV Va)
Obtain @ frequencies by &, <+ > argw), for g € [Q)]
return (§,...,£,_1)T, 0 >0
end procedure

Figure 4-5: Matrix pencil method.

{wh, ..., wp_1} be the generalized eigenvalues of Aj — AA7. Let Aw, = wy — w,.
The hope is that Aw is small and we can estimate the frequencies &g,...,{p-1 by
computing A(A45, A]). In Section 4.2.2, we will bound Aw in terms of AX to first

order accuracy.

One way to obtain A(A5, A)) is to first compute the pseudoinverse (A7)" and then
the ordinary eigenvalues of (A})TA5. The problem is that due to the perturbation
AX, A is very likely to have rank > ). To avoid inverting the components cor-
responding to these small spurious singular values, we truncate A’ to rank ) using
SVD, obtain A, A} as column subsets of the truncated A’, and then compute the

eigenvalues of (A])TAj.

Suppose the SVD of the truncated A’ is VEV* where © € R?XQ V e C/xQ,
Let V] be V with the bottom row removed and V; be V with the top row removed.
Then A(A5, A7) = A((A1)T43) = A(VTTV5) = AV V) = A(ViTVe) = A(Ve, V).

Hence, it suffices to compute A(V5, V]) and there is no need to compute A, AS. See

MatrixPencil in Figure 4-5 for the pseudocode.

In MatrixPencil in Figure 4-5, we compute the quantity p? = E;=Q 1 0o (A).
This will be used in MPFFT to decide whether there is too much noise energy in the

bin. We will discuss its role in mode collision detection in Section 4.3.
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4.2.2 Identifying one mode and first order perturbations

For the rest of Section 4.2, we focus on the case where there is only one mode, i.e.,
Q=1

In our algorithm MPFFT, we apply the matrix pencil method to detect one mode
in each sub-signal. Fortunately, it is much easier to study the perturbation in w due
to the perturbation in X for the case where there is only one mode. The bounds we
present here can be obtained by adapting the arguments from [45]. The difference
is that they take samples Xo,..., X271 whereas we take X_(;_yy,...,X;_1. This
seems like a trivial change as we can always modulate the coefficients ¢,, but it turns
out that our proof looks simpler. In particular, the variable I in (4.10) takes a much

simpler form than its counterpart in [45].

Proposition 4.2.1. Let X} = cowl) + AX; where wy = €™ and & € [0,1). Run
MatrixPencil in Figure 4-5 with Q =1 on (X;))jj<s-1 which returns &. Let A§y =
& — &. To first order,

laX?

A&l? < .
T IS TH Ay

Assumption 4.2.2. In this paper, the entries of AX are very small and it is reason-
able to assume that A&y is indeed bounded by WTM%L;TV even though the inequality

is only first order accurate.

See the end of Section 4.5.1 for a more detailed justification of Assumption 4.2.2.

Let us proceed with the proof of Proposition 4.2.1.

Proof of Proposition 4.2:1. Recall this fact about first order perturbations in gener-
alized eigenvalues. Suppose (A; — AA;)v = 0 and u*(A; — AA;) = 0. Then to first

order,

u* (AAQ - /\AAl)’U
AN = . .
A A 4.9)

In our case, A = g, u = U; = v, (&) defined in (4.8), v = U;_; = v;_1(&) and
u*A1v = co(J —1). Observe that (AA; — AA A )v is linear in Az. Let D; € R7*(7-1)
such that its j-th diagonal is 1. For example, the topleft 3 x 3 corners of Dy, D_; are
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010 0 00

0 01}, 1 0 0 | respectively. With some algebra, we find that
0 00 010
1
(AAz — MAA)v = jF(AX) where T' = —AD;_; + A™72D,. (4.10)

By (4.9) and (4.10), we know A\ = mUjP(AX)' Thus,

1 1
Awgl® = U TAXNAXYTTU; < AXIPITIE TS

Apply the fact that ||T|| < | Dyl + |Das-i|| < 2 and |U,||> = J. Note that to first
order, |A&] = 5= |Awp). O

If AX is random while ¢y, & are fixed, then the proof from Proposition 4.2.1 also
implies that E |A§0|2 < 1%%, which is a tighter result than Proposition 4.2.1.
However, in MPFFT, the entries of AX are highly correlated and we do not lose
much when we bound |[E(AX)(AX)*|| by EJAX|?.

In our application, the frequency &, lies on a grid and by rounding off to the
nearest grid point, there is a chance of obtaining the exact &. If we do obtain the
correct & and estimate the coeflicient ¢y as ¢ = ﬁ Zre% X!wgy", then the estimation

error can be bounded as follows.

Proposition 4.2.3. Let X} = cowd + AX; where wy = €2 and &, € [0,1). Assume
the same set-up as Proposition 4.2.1. Suppose we sample the signal at a set of points

‘H and estimate ¢y as ¢y = ﬁzreu X!w3™. Then |¢) — co|* < 7 IHI Sren 10X

Proof. Let F = diag(w§)ren and z = (1,...,1)T € C**1, Then

—e = HIZAX,% | T F(AX).

TEH

Therefore, |cj — cof* = ar [FTF(AX)(AX) Frz| < ﬁ,nzu”HFnzquu? Apply
the fact that ||z||* = |#] and ||F|| = 1 and we are done. O
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The above proof also implies the tighter bound E |¢j — ¢o|* < ﬁ IE(AX)(AX)*.

4.2.3 Multiscale matrix pencil method

Suppose our signal is X! = X, +AX, where X, = cpe?™™*/N and ko, € [N] is what we
want to recover exactly. Suppose the frequency space [0, 1) is split into B bins and k,
is in bin b, i.e., %Q € [Z,%!). Define & = (@NE) %1 = “Ll?vm' Apply MatrixPencil
in Figure 4-5 with Q = 1 to (X/g));<s—1 and obtain £ as an estimate of &. Since

ko = %(b + &), we shall estimate kg as
/ N !
ky = round E(b +&) ) € [N]. (4.11)

Unfortunately, this method is unstable for large N. This is related to the first

limitation of SFFT3.0 in Section 4.1.2. The reason is that Proposition 4.2.1 suggests

£ AX
TJ3/2 "

that Ay may be on the order o For the rounding in (4.11) to correct this
2/3
perturbation, we need A&, < %. This means we need J = (N—“%X—“) which

grows too fast with V.

It is not surprising that a direct application of the matrix pencil method does
not work well. If we can only access the first few time samples, there is no hope of
distinguishing between two pure sinusoids with very close frequencies. Say A&y = %.
Then for any small j, |e?9(€0+Ab) _ g2miso| = |2 5in(27(A&)7/2)| =~ 27 (A&)j which
is very small. But if we can skip the earlier samples and jump to 7 ~ Klgo = %, then

|2sin(2m(A&)7/2)| ~ 2 and we would have noticed the difference between a signal
with frequency & and a signal with frequency & + A&.

In our application, we do have access to any time samples. Exploit this by un-
covering § M bits at a time for some small M > 1. For example, if M = 1, we will
be solving a low resolution problem of whether 2°%,, 2'¢y, 22, ... is in [0, ) or [£,1).
Consequently, we can tolerate much larger errors in estimating 2°¢;, 21&;, 22¢, and so

on.
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Suppose & = 0.dod; . .. in base 2M where each d, € [2¥]. Define

M M
£5=(2W50)%1=(’“02 B) o1 — (a2 B)%N

7 =N - 0.dedeyq ... in base oM.

As dg = [£§2M ], we shall run MatrixPencil in Figure 4-5 on (Xjyem p))j1<s—1 Which
returns &¢ as an estimate of £§, and then estimate dp as dj, = |£{f2™]. Notice that
to get the less significant bits of £, we sample X much further in time as an earlier
paragraph suggested.

Next, consider how to calculate & if we manage to compute dy,...,dr_;. Let
€L =0.dy...dp_1 and €g = & + 27 M Recall that & = 0.dp...dp1dy ... € [€1,&R).
If 27IM <« %, or equivalently, LM > log, %, then there is at most one integer k'
such that k' € [£(b+£L), (b + £r)), and it must be that &’ = ko. This implies that
whenever we correctly identify the first L digits of & in base 2 and LM > log, %,
we will be able to obtain kg as [X(b+&)] = | X(b+&Rr)].

Here is another way to estimate ko which we find more intuitive. Let & = (&1 +
£r) be an estimate of &. Since &g — &1, = 27M and & € [£1, €r), we have |£]) — &o] <
2~ LM-1 5—%. Consequently, ky can be recovered by the rounding in (4.11).

Refer to Figure 4-6 for the pseudocode. Notice that the algorithm does not require
knowledge of N or B and can be applied to any discrete signal with a dominant
frequency £, € R. It returns &) as an estimate of & and if our parameters are
reasonably chosen, we can expect to recover the first LM bits of £. We leave it to
the caller to estimate ko from & using (4.11). Note that we use integer arithmetic as
much as possible to avoid floating point errors. Finally, the quantity u?2,, is used to
determine if there is too much noise in the signal and will be analyzed in Section 4.3.

The point of finding § M bits at a time for a small M is that we can tolerate a
larger A& for each £ € [L]. For example, if M = 1 and £§ = £, then d} = L(&E+A¢El)-2]
is equal to the correct d, for any |A§g| < min{%,é— — %} = % Let us formalize this

argument.

Proposition 4.2.4. Suppose & is uniformly distributed in [0,1). Let X = X;+AX;

where X; = coe?™% and AX; is random and not necessarily independent from &.
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procedure MATRIXPENCILMULTISCALE(L, J, M, (X J'-zeM)ljls J-1,6€[L))

s <0
for each scale level ¢ € [L] do
(€%, pe) + MatrixPencil(J, 1, (X pem ))ji<s-1) > dy = |£f2M ]
s+ s2M 4 |gloM | > s is an integer
end for
&+ 27IM-1(25 4 1) b2 Mg = ¢ =0.d)...d}_, in base 2M
Hmax $— MaXge(r] He
return g(l)a Hmax > g(,) = %(GL + fR)

end procedure

Figure 4-6: Multiscale matrix pencil method.

Run MatrixPencilMultiscale in Figure -6 on (X, )jji<s-16c[r] which returns an

estimate £. Suppose & = 0.dg...dp_y in base 2M. Then P (|&) — &| < 27PM~1) <
1/3

3. 22M/3 ZKG[L] (IE |A£g|2) . By Proposition 4.2.1 and Assumption 4.2.2,

P (16— &ol <27 271) <3.22M3 %"

o\ 2 lel” J(T - 12

2\ 1/3
(lelsJ—1E|AXJ‘2‘M| )
o\ 1/2
Note that Proposition 4.2.4 is not useful if (]E|A§g| ) > 37%/22-M for any
¢ e [L].

Proof of Proposition 4.2.4. It suffices to bound P (d), # d, for some ¢ € [L]). Fix a
¢ € [L]. Note that & is also uniformly distributed in [0,1). Let 0 < # < 2-M-1,
Split [0,1) into 2™ parts. Define the “decision edges” as ITII = [2M]/2M. Suppose
|Ag§| < 6. Then as long as & is more than # away from all the decision edges,
i.e., mingen dist(&5,m) > 6, dg will be identified correctly as |£¢2M|. For example, if
M =1, we can obtain the correct d, whenever £ ¢ [0,0] U [ — 6,3 + 6] U [1 - 6,1].
Hence, by union bound and Markov’s inequality,
E |Ag|’

P(d, # d) < 241+19 + =01

1/3
Pick 6 = 2-M/3(E | Agt[*)/? to obtain P (d) # dg) < 3 - 22M/3 (IE |A§g|2) . Union
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bound over all £ € [L] to complete the proof. O

Suppose we fix J and the desired accuracy, i.e., fix LM, the number of bits of &
we want. Then we should pick M = 1 to minimize the chance of failure according to
Proposition 4.2.4. However, if AX is very small, then Proposition 4.2.4 says that the
failure probability can be acceptable even if we choose a larger M. The advantage of
a larger M is that L can be smaller (since LM is fixed) and the number of samples,
Ninm = |[{j2# :j| < J — 1,£ € [L]}| can be smaller. In MPFFT, taking a sample
of our sub-signal corresponds to one expensive binning operation, so choosing a larger
M can speed up MPFFT significantly.

Nevertheless, for maximum robustness, we recommend choosing M = 1. For this
case, instead of computing & = 2—17; argwy when running MatrixPencil in Figure 4-5,

it suffices to check if Im(wg) > 0. In addition, if J is even, then
NJ,l =J(L+1)—-1;, Nji1=Nji+2 (4.12)

This suggests that we should always pick an odd J because for two extra samples, J
can be incremented which implies a better error bound by Proposition 4.2.4 and also a
better collision detector as we will see in Section 4.6.2. In our numerical experiments
(cf. Section 4.6.1), however, MPFFT seems to be just as robust when J =2 as J = 3.

Finally, if the Fourier coefficients of X' are all real, then A is a Hermitian matrix

and the number of samples needed Ns can be halved because X} = X" ..

4.3 Collision detector

Let us return to studying MatrixPencil in Figure 4-5 with ¢ = 1. Consider the
following probability model for the noisy signal X’. Fix P coefficients c¢y,...,cp—1
such that |eg| > ... > |cp_1]|. Our true signal is X; = ce® % and & is referred to as
the dominant mode. Our noise vector AX is composed of P — 1 subdominant modes,

ie, AX; = 3Pt ce?™%. Assume the £,’s to be independently and uniformly chosen

from [0,1). The results of this section also hold if the frequencies lie on a grid, i.e.,
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& = ks/N with k, independently, uniformly chosen from [/N]. Be warned that these
results cannot be applied directly in MPFFT because these modes can be thought of
as being fully randomly shuffied whereas in MPFFT, the random shuffling of modes

is only pairwise independent.

Let v, = 71_7v 7(&). Note that A = cyugv] and AA = Zs—'l csvsvs. In MPFFT,
we stop processing a bin if u? exceeds a certain threshold. This is our mode collision
test. The problem of false negatives, i.e., not rejecting a bin when we should, is tricky.

Let us first deal with the problem of false positives. For any vector u, let

wlul (1-3)

Proposition 4.3.1. Assume that X, = cs€2™3¢s where each &, is indepen-
p i s€[P] P

Rlu] =

Z Uj

dently, uniformly chosen from [0,1). Run MatrixPencil in Figure 4-5 on (XDi<r-1

which returns some p. Then

P (}Lz 2 tR[(Cl, . ,Cp_l)]) S 1/t

Proposition 4.3.1 suggests that if R[(cy,...,cp_1)] is small, then it is unlikely that
p? is large and the bin is rejected by the collision test. To prove Proposition 4.3.1,

we compute some basic quantities that will be useful later as well.

Lemma 4.3.2. For any s € [P], Ev,v} = I/J where I is the identity. Let K C |P]

be an index set. Then

2

= R[(CS)SEK]‘

12361{ Cs[ E

E Z CsUsV)

scK

E CsVsU,

scK

Proof. We leave it to the reader to verify that Ev,w} = I/J. Now, EY, c,u,v} =
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Y s Buvl = —Z—jﬁf. On the other hand,

E

E CsUsU,

8

=Etr ( Zcrvr Z CsUsU, ))

= Z |es|? tr(E vyvlv,v?) + Z csCr tr(E vsviv,u))
s r#8

_Z[csl tr(Evv}) + Y ey tr(I/J?)

r#£s

- Sl + Yews
s rbs
’ 1 2 1
7+;|Cs| (1—'7> .

O

Proof of Proposition 4.3.1. Recall that A’ = A + AA where A has rank one. Write

<~

J
y? = Zaj(A' <Y (05(A) - 0;(A) < |AA|E (4.13)

Jj=1

The second inequality is due to Wielandt-Hoffman. By Lemma 4.3.2, E ||AAH; =
R[(ci,--.,cp_1)]. The result follows from Markov’s inequality. a

Now, consider false negatives. The claim is that if u? is small, then most likely,
will be both
small. In the context of MPFFT, X’ is the sub-signal of a bin dilated in frequency

the noise energy 7 P 1es)* and the sum of the coefficients lZs—l Cs

by a factor of 2¢™ B,.. If the noise energy in the bin is small, then our dominant mode

must be isolated and if ‘E _; Cs| is small, then the coefficient estimation error must

be small. This will be useful in Section 4.5 where MPFFT is analyzed.

For the rest of Section 4.3, we establish the claim or weaker form of the claim
for some special cases, e.g., multiple heavy modes of roughly the same magnitude, or
one heavy mode with many smaller modes of roughly the same magnitude. Lastly,

Section 4.6.2 contains some supporting numerical evidence.
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4.3.1 Total energy comparable to energy of dominant mode

The first result pertains to the case where there is substantial amount of subdominant

energy relative to our dominant mode, i.e.,

D lesl* 2 leof* .

s€[P]

Theorem 4.3.3. Without loss of generality, assume that |cg] = 1. Let a = ZSE[P] Cs
and B2 = ||c|i* > 1 where ¢ = (cq,...,cp_1)T. Assume that X = Pperp) Cs7™ 0%
where each & is independently, uniformly chosen from [0,1). Let A’ = TX' as in
(4.7). For any 0 < t < E‘IB;W and 0 < u < Cﬁ-ﬁJ—z, we have with probability at least
1—C2e7t —2Je®,

2
2 1 Cst 2C%u
12_ I2>|a| o 2 _____3_—5- . .
AT = 141> 5 (15 ) + 8 (1-5 - 75 - (414)

The constants Cy, Cs, Cs, Cs, Cg are defined in Lemma 4.3.5 and Corollary A.2.2.

For the bound on the failure probability C2e~*+2Je~* to be nontrivial, £, u cannot
be too small. For example, u has to be Q (log J). But for the lower bound in (4.14) to
be useful, J has to be sufficiently large relative to ¢,u . Recall our assumption about
2. Tt has to be comparable to J for the proof to go through. Therefore, the theorem
is applicable only for a sufficiently large J and a sufficiently large 3? relative to J.

Now, let us prove Theorem 4.3.3. The idea is to use concentration inequalities to
control [|4’]|% — E||4'|[% and |A’ —E A'||. First, we check that ||E 4’||* and E ||A"||%

lof?

are sufficiently far apart. The gap between them is 2-(1 — ) + 8%(1 — 1).

Later, we also need the second and fourth moments of |v}v;|.

Lemma 4.3.4. Let r,s € [P] such that r # s. Then

14 2J2

* 1 *
E |vr”s|2 =7 E|v}v,|* = 33

Proof. Note that v, are random vectors in isotropic position [56, 66] because for all

u € C7, Eu*v)® = u*(Bv,v*)u = |Jul|* /J. Let u = v, which is independent of v, to
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obtain the second moment of |v}v,].

For the fourth moment, we condition on v, and take expectation over v;. Let
B, = diag(v,)*. Write [v'v,|* = |(Byv,)"(Bws)|* = |2*v|* where v/, = B,v, and
z=(1,...,1)T/V/J. Observe that conditioned on v, v/, has the same distribution as
vs, 50 E [urvs|* = E|2*v,|*. Take expectation over v, to undo the conditioning and
obtain E|vtv,|* = E|z*v,|*. The latter can be evaluated directly. Let §(z) = 1 if

z = 0, zero otherwise.

4

* 1 ' —27ij.
Elzvq|=ﬁ/€ 26295 d¢

=0 |jel]

1
_ A 2milis—iatia 3% gg

T Je=0 5, s lommen
=}1z > S(h—da+iz—da).
J1,52:93,34€[J]
We want to count the total number of 4-tuples (41, jo,j3,js) C [J]* such that j; —
jo+js—Js = 0. If jy — jo = k for some —(J — 1) < k < J — 1, then there are
— |k| pairs of (js3, j4) such that j3 — j; = —k. Deduce that the total number of such
4-tuples is Zg:iu y(J = k)2 = J2+ 235500 T — k = $(1 +2J%). It follows that

Elz*vs| = 51(1 +2J%) = &3 m

Next, we bound the deviation of ||A’||% from its mean using moments. Let E,, X
denote (E |X|™)Y™ for any real random variable X. We will use standard techniques
such as symmetrization, decoupling and Khintchine inequalities. Let X denote an

independent copy of random variable X.

Lemma 4.3.5. Let Cy =4, C; =12. For anyt > 0,

, eCiB?,  eCY?B _
P(|||A'||‘;-E||A||§,) > Jj/z t+ J11/4 2 4 eCH? | < C2e7t.

Let Cy = 3¢C. If0 <t < Jl,z,thenP(|||A'uF—1EuA'||F|>t§§§;) < Cet.

Proof. Let D,, = 0101/ ™. Let ¢,y = ¢, if 7 # s and zero otherwise, i.e., it is
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diagonal-free. Now,

En (141} ~E|41}) =En Y e (|”?~‘”8|2 B %)

r,s€[P]
< DmBEm Y creeefs [0}0,° by [22, Theorem 3.5.3]
7,S€[P]
1/2
< D,mE,, Z lers|? JuXvs | by [22, Theorem 3.2.2]
r,8€[P]
1/2
< Dpm (Em Y lensl* lvsl* | (4.15)
7,8€[P}]

The randomization step between the first and second line is justified by the fact that
the sum 37 ip crs(Joru ) — %) is centered and degenerate of order 1 [22, Chapter
3]. This means that for any r # s, when we fix v,, we have Ec.s(|v*v,|* — 3 =0,

due to Lemma 4.3.4.

Next, we bound E., 37, ip |ersl? [020,)? in the same way as in [67]. Let g =

2 * 4 2 2 4 2 4
EZ'I’,SE[P] |CTSI Ivrvsl . By Lemma 4347 9= Zr,se[P] IC"’SI %]— < ”C” %3‘]_ < @

Furthermore,

E=FEn| Y leul*[vpv.*— g
r,s3€[P]

< DmEm Y lenl® €5 [v75,[* by [22, Theorem 3.5.3]
r,s€[P]
1/2

< Dpm | E, Z lers)? o2 by [22, Theorem 3.2.2]
r,s€[P]
1/2

< Dpm | Ep, Z |Crs|2 I"’:'Z}c{l4
r,3€[P]

< Dpym(E + g)l/g.

The sum Ep, 3, 1 lers]? (Jurvs|* — %Jrz) is also centered and degenerate of order

1 by Lemma 4.3.4. This justifies the randomization in the second line. We have
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obtained E < Dpm(E+g)Y2. 1t follows that E < $(D2,m?+ /D4 m* + 4DZm?g) <
D2m? + D,,mg"/? and

Dyym ”0”2 1+ D2m2.

. 4
- el
En Z lers|? |Utvs]* < g + Dpmg'/* + Dm* < 7 7172 m

7,5€[P]

3/2
Substitute this back into (4.15) to obtain E,, (HA'H% -E ||A’||§,) < D’"JT/ILCHZ 4 Dm Jmm”C“ +

2 3/2 e
D?m?2. Recall D,, = Clcl/’" Let A = Cf;”;;” +4 Jtla//:“ I C?t?. Let m = t. By

2 _ 12
Markov’s inequality, PP ( |||A’HF -E ||A'||i1| > eA) < (141 ~ElIA

By I ) <C2et. O

As for the deviation in the spectral norm, we use the Matrix Bernstein inequality

(58, 74].

Lemma 4.3.6. Let Cg be as defined in Corollary A.2.2. For any 0 <u < Cg%,
P{|A-EA| >Cs 2 P <2Je™
| ul/ J1/2 < 2Je™™.

Proof. Note that A’ —EA’' = Zse[P] cs(vsv) — %) Apply Theorem A.2.2 with Gy =
ce(vpvf — §), R=1and o? = (1 -9 < ‘92 |

Finally, we apply our bounds on [|A'—E A’|| and |||A’||i§’7 — ]E]lA’Hf,I to prove
Theorem 4.3.3.

Proof of Theorem 4.3.3. By Lemma 4.3.5 and Lemma 4.3.2, with probability at least
1— C2et, || A% > l-o‘Jﬁ +82(1-3) - c;?‘?;t. By Lemma 4.3.6 and Lemma 4.3.2,
with probability at least 1 —2Je™*, A7 < (lijl + %ul/z) Ial + —j—u Take

the difference between the two bounds and we are done. |

4.3.2 Subdominant energy comparable to energy of second

mode

Suppose Ef;ll les? 2 le;|? J. This models the case where there is an isolated heavy

mode and many small nonheavy modes of roughly the same magnitude in the sub-
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signal of a bin. Such nonheavy modes typically arise from coefficient estimation errors

made in previous iterations. As a simple consequence of Theorem 4.3.3, we have:

Corollary 4.3.7. Without loss of generality, assume that |c;| = 1. Let a = Ef;ll Cs

(which excludes co) and B2 = S5 1 e,|? > 1 (which excludes |cof?). Assume that
X = 3 eeip Cs€°™% where each &, is independently, uniformly chosen from [0,1).
Let A’ =TX' as in (4.7). For any 0 <t < clﬁsz and 0 <u < Cﬁé},

' ' o _é 2 | _l_gﬁ_llcgu
A = A > J(l S - ]

The constants C1,Cs, Cs,C5,Cg are defined in Lemma 4.3.5 and Corollary A.2.2.

Proof. As A’ — AA is rank one, we have E; 03 (A) > EJ _303(AA) > |AA|Z -

2 | AA||®. Compute a lower bound for | AA||, and an upper bound for ||AA|| Specif-
ically, apply the proof of Theorem 4.3.3 with X} replaced with AX; = S e etmists
and A replaced with AA to conclude that with probability at least 1 — Cze™t —2Je™ ¥,
|AA]% > J—ajﬁ + B8 (1-%) - %—*{—’%t and [|A4]? < 2'“' + —5ﬁ—u Take the difference

between the two bounds to complete the proof. a

4.3.3 Subdominant modes do not cancel one another

Suppose Zp_l les)? = |ey|® J like in the previous section. In addition, assume that

the subdominant modes do not cancel one another and satisfies Terl 'ZS _1 Cs

s

C1I L S P es)®. Then || A/ 2 — J|A')% = B2 according to Proposition 4.3.8 below.
It is a weaker result than Corollary 4.3.7 as it requires an additional assumption, but
its proof is much shorter and may be of interest to the reader. An example of such a

signal is ¢; = s~1/2 for s > 1. In this case, )5 ¢, = ©(PY/2) which is much bigger
than 771 |e,])? = ©(log P).

Proposition 4.3.8. Without loss of generality, assume that |c;] = 1. Let o =
Zf:ll ¢, and % = Zs_l les]? > 1. Assume that X; = 3 eeip) Cs€ €8 where each
&s is independently, uniformly chosen from [0,1). Let A" = TX' as in (4.7). As-

sume that for some k > 1, |a| > I{C5Cé/2ﬂ2. For any 0 < u < CG%E, we have with
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probability at least 1 — 2Je™™,

, J—2\ (i 2
A - 1T 2 (- 172 (15 )( Jl,f_fw) |

The constants Cs, Cg are defined in Corollary A.2.2.

Proof. Like in Lemma 4.3.6, apply matrix Bernstein or Theorem A.2.2 to AA and
deduce that with probability at least 1 — 2Je™, |AA -EAA| < %ul/ 2. Since
EAA = 2~ we have that for 1 < 3 < J,

lol _ G5B 12 o KCsCe*B” CsB 1po
J J1/2 - J J1/2

B (C"B _

o;(AA) > g2\ iz T

> (I{ 1)05
(4.16)
As A’ — AA is rank one, z;ﬂ o3(A) > Z;=3 o;(AA)%. Substitute in (4.16) to

complete the proof. O

4.3.4 A few heavy modes with little noise

In MPFFT, most of the time, very few heavy modes will land in the same bin. Let
T < J be a small integer, say T = 2 or T' = 3. In Theorem 4.3.9 below, we shall treat

the case where there are T heavy modes with little noise energy S5} |e |

Theorem 4.3.9. Let T < J. Without loss of generality, assume that |col > ... >
lor—a] = 1> ler| 2 ... = |epoa|. Assume that X = 37 o p cs€*™% where each &,
is independently, uniformly chosen from [0,1). Let A’ = T(X') as in (4.7). For any
t>0and 0 <u < T —1(1 —t), we have

P (”A'”; . ”A/H2 > (\/T_——T(l —f— u)2> T? + Rl(er, - .. ,Cp—l)].

= tJ u?

Before we prove Theorem 4.3.9, we remark that unlike Theorem 4.3.3, Theorem
4.3.9 works for an arbitrarily large |co|® relative to the energy of the subdominant

P-1,. 2 . S P-1
modes Y _, |cs|”. Also, in our application, ) . c;u,v; is due to nonheavy modes

and HES T CsUsUs

- is very small. Hence, Theorem 4.3.9 should be interpreted as
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P(lA% - |42 2T -6)?) S 5.

Proof of Theorem 4.3.9. Let W = (v, ...,vp_1) € C'*T. Write

0 VU1 ... UVpUT—1
* *
WW = I 4 ViU 0 .. ViUT_
’U}_l’vo 'v%__lv]_ v .. 0

By Lemma 4.3.4, E ”W*W —I|% = (T? - T)/J < T?/J. Therefore, for any t > 0,
P(WWW —I|>2t) < T If [WW—I| <t theno;(W)>VT—tfor1<j<T
and by [76], we have

Z o3 (W diag(cy, ..., or_1)W*) > ZUJH )oF i1 (diag(co, ..., cr_1)W*)

i=1

> 02 (W)ok_,,, (diag(co, ..., cr_1)) o2(W)

> (T - 1)(1—t)%

Let H = 300 ce?. By Lemma 4.3.2, E|H|% = R[(cr,...,cp_1)]. By
Markov, for any v > 0, P (J|H| > u) < R|(cr,-..,cp_1)]/u®. Conclude that with
52

probability at least 1 — % — 53, we have

- 1/2
1/2 T-1 .
(haiz = nar) " = (Zo;al (Wdlag@o,...,cT_l)wwH))

. 1/2 T_1 1/2
(Z 7j41 (W diag(co wCT—l)W*)) - (Z"?(H))
=1

Between the first line and second line, we applied Wielandt-Hoffman-Lidskii in the
following way. Let o(-) denote the vector of singular values of a given matrix. It is

known [50, 55] that for any matrices A, E, |o(A + E) — a(A)| is weakly majorized
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from below?® by o(E). Thus, for any 4, > ... > i, "; 0;.(A+ E) — 0;.(A) 2 <
Jj=1 i 7]

Z =107 o?(E), which implies by triangle inequality that

k 1/2 k 1/2 1/2
(Z oy (A+ E)) > (Z o7 (A)) - (Z a;(E))

4.3.5 Two heavy modes

The T = 2 case is especially important to MPFFT. The reason is that it is very
unlikely for more than a few heavy 'modes to land in a bin. Let S, be the number
of heavy modes in the residual signal and B, be the number of bins in iteration r.
Condition on a fixed heavy mode landing in a bin b. Let X be the number of other
heavy modes in bin b. In practice, the shuffling of the heavy modes appears to be
fully random such that X is a binomial random variable X ~ Bin(S, — 1,1/B,).
Hence, P(X =T —1) = (1 — ——)Sr_T = B, (1 - —;—T)ST (B, — 1)~T decreases
exponentially with 7. Clearly, the most common case that needs to be detected and
rejected by the collision detector is T = 2.

Fix the frequencies of the two heavy modes, &,&;. Let |co| > |e1] = 1 2> |e2| >

. > |ep-1| and H = Zs _ cse?™3%  Specialize the proof of Theorem 4.3.9 to T = 2.
Let W = (vo wv1). By applying Gershgorin to W*W, ao(W) > V1=l It
follows that

o2(A') 2 o2(W diag(co, c1)W™) — [ H||

21— |vgu| - |H].

Observe that if vy, v, are incoherent, i.e., [vjv| is small, then o2(A’) should be close
to 1 and the collision detector should detect that there are two heavy modes in the

bin. On the other hand, if &, &; are very close, then vy, v; will be coherent and the

3For more on the topic of majorization, see Marshall, Olkin and Arnold [55] or Horn and Johnson
[44].

120



collision detector may fail. Fortunately, when we try to identify the next group of M
bits of the dominant mode in MatrixPencilMultiscale in Figure 4-6, the distance
between the two frequencies of the signal supplied to MatrixPencil will be dilated
by 2™, and as we continue this dilation, this distance between the two frequencies

will become sufficiently large such that vy, v; become incoherent.

Proposition 4.3.10. Let M > 1. Let &,& € [0,1) where & # &. Let L >
log,um m. Let £ = £€,2M . Let vf = %v‘;(fﬁ) for s = 0,1. Then there exists
some £ € [L] such that

1 le* e’<2M+1'

dist(£f, &8 > SRR vy V1| < 57

For instance, for M = 1, we can expect o2(H) 2 1 — 55 for some ¢ € [L]. The

result is deterministic but is useful for only T' = 2 heavy modes.

Proof of Proposition 4.3.10. Without loss of generality, assume that & = 0 and &, =

diSt(&),gl) < '2—M1'_"_'I Let

lax = max{f : £f < 1}.

In other words, £ = €. + 1 is the first time 28 dist (&, &) exceeds or is equal to 1.

The hypothesis L > logyum guarantees that f{‘ > 1,80 lpax < L —1. Also,

1
dist(£o,271)

lnax = 1 because & < 2M;+1 and & < 1. To summarize, 1 < £, < L — 1. Observe

that .ff“‘“ is away from 0, i.e.,
ghmex > 9=M 5 (M 4 )71,

Otherwise, &f“‘““ < 1, which contradicts the maximality of £y.,. If £/™= is also
away from 1, ie., £ < 1 — 55—, then dist(g™, &™) > (2M + 1)7! as de-

sired. For the rest of the proof, suppose £ > 1 — (2M 4 1)~1. The claim is that

dist(gfmax?, ghmax 1) > si7- First, we see that £{»>' is away from O:

et > M (- @M+ )T =@ + 1)
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Second, we see that ff’““_l is away from 1: as M > 1,
gimar—l < 9 Mgtmax < 1/2 <1 - (2Y +1)7

We have shown the first inequality of Proposition 4.3.10. For the second inequality,
assume we have a ¢ such that ¢ := dist(¢§, &f) € [543, 3)- It follows that Ivg*vﬂ =

S—zlé(:';’ig)l <z >++. We have used the fact that sin(n¢) > 2¢ on [0, 3]. O

1
J

= 2Jg

4.4 Binning

Binning is the most costly operation in MPFFT. In this section, we explain how
binning is done, discuss how to speed up binning, and establish some elementary
lemmas which will be needed in Section 4.5. As hinted by (4.2 in Section 4.1, binning
is achieved by convolving our signal with a boxcar-like filter in frequency space. The
basic design of this filter is the same as in [40], but we make some small improvements.
Most notably, our analysis does not require N to be divisible by the number of bins
B, unlike Lemma 3.3 of [40] or Claim 3.7 of [41]. As a result, we do not need N to be
powers of 2 in order to have more choices for B,. In fact, we are allowed to work with

a prime N which simplifies slightly the analysis of the random shuffling of modes in
Section 4.5.

4.4.1 How binning works

Let B be the number of bins. For simplicity, assume that B is odd. For any odd T, let
[T] denote {—Z52,..., 551} Forany 0 < w < 3, let °(£) : [-3,3) — R be the indi-
cator function on [—-%, %], i.e., X¥(§) = 1if [£] < w/2, zero otherwise. Its semidiscrete
Fourier transform x* € RZ is the sinc function: ¥ = [~ 1{32 2 (€)e*m et de = Sm("t"’).
Suppose we want to bin a signal z € CV. Extend it to a X € CZ by X; = TN
The semidiscrete Fourier transform of X is a series of spikes supported on J—l, ie.,

X(6) = Tyeg Xee™t = S orer(Cpeqny Tnetm N ) 2mikt = 57 Bx(€ £ — £) where §

is the Dirac delta function.
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procedure BININTIME(z € CV,a,8,v,H, B, 6, k) b H={2MB:|j|<J—1,¢€ L]}
Compute W; by (4.17) for all t € [P] '
for 7 € H do
for t € [P] do
C— e2m’(At+;‘3(t+fr)/N)Wt where A = _% Doy = .'L'at+7€2m’8t/N
d 4 T(a(t4r)+7) %N DYy = Ytir
upopp — cd b uy = YT W,e2midt
end for
for t € [B] do
Ut 4= 2 jelp/B) WiB+t
end for
? 4 StandardFFT(v) > By = D5 V€2 B
Y < 9, for all b € |B]
end for
return Y
end procedure
procedure BININFREQUENCY(E € CV, o, 8,7, H, B, J, k) >
H={j2B:|j|<J-1,Le|L]}
Zero out Y € CB*I#
for k, € suppz do
ko < @(ki) where p(k) =ak +
b [RB] > b € [B] is the bin k, lands in
c Iy, Wg,ko where Wg,k is defined in (4.21)
for 7 € H do
Y}) . Y;b + ce21ri('yk./N+k:or/N)
end for
end for
return Y
end procedure

Figure 4-7: BinInTime runs in O (2log3) time. As for BinInFrequency, we use
the erf routine to approximate Wb,ko- In practice, it makes sense to assume that
erf takes O (1) time with respect to § because if § is too small, we will run into
floating point precision issues anyway. With this assumption, BinFrequency runs in
O (|supp Z|) time.
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We want to convolve X(£) with the rectangular window %*/2(£) and sample the
result X+%'/2(¢) at B uniformly spaced points in [0, 1). Each of the B samples will be
the sum of all the modes landing in a bin as desired. To implement the convolution in
frequency space, we will need to multiply X with x'/B. The problem is that the sinc
function x'/Z decays too slowly and we will need too many time samples of . The
solution is to smooth ¥*/B(£) by convolving it with a periodized Gaussian, so that in
the time domain, x'/? is multiplied by a Gaussian and will decay exponentially with

|t| and can be truncated with negligible loss of accuracy. Let us be more specific.

Let 0 < k < 1and § > 0. Let s = log 3. Let Iy = Ujezl€ +j — 522, € +j+ 3222
Define our window function W € CZ or W(¢) : [0,1) — R as

1-x/2 ~
W, =e /%0 B, W(E) = / e /%% dn where (4.17)

O'f\/ 2

o B 1 :2B\/205=O§_\/E
P = 4BV, 270y K K '

The parameters o;,0; are carefully chosen so that we apply the ideal amount of
smoothing to the boxcar filter. This will be made precise later. Note that W(¢) is
real-valued, infinitely differentiable and is periodic with period 1. Next, we verify

that W, and W (£) are indeed Fourier transform of each other.

Proposition 4.4.1.
1/2

W, = W(g)e%rigtdé-; W(f) — Z me—?mft.

-1/2 teZ

Proof. Let G, = e~t*/2 Its Fourier transform is the periodized Gaussian

é(f) — Z Gje—zm'gj

J€Z

1 27002 o L
— e~ /2af62mmd ) 6—2'“{_7
>(fusvm n

1 2 2
= e " /20'f é __&_] d
pyorll B > 8 )dn

€z
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By the convolution theorem, the Fourier transform of G'txtl/ 2B is

1-—5{2
2B ~ ~
G(§ = ¢)d¢ Dbecause G is even
1-x/2
2B

G Fo= [

1 1—&{2
2B 2 192
= e 77 " 8(n— €+ ¢ — f)dnd¢
1——n{2
- / P lecri ek g
OFV2T Gz I

1 2 15 2
= e /2% dn.
O'fv 27 ‘/IE 77

a

In the time domain, we truncate W € RZ to have support [P] where P is an odd
integer that is divisible by B. As we will see later in Section 4.4.3, the truncation

error will be O (8) if P is sufficiently large relative to oy:

P > 2+/2¢c500 + 1 = Q (Bcs/k) . (4.18)

Let F € RZ be the indicator on [P]. Its Fourier transform is F(¢) = 2P he

sin{n§) ?

periodic sinc function. Define our truncated window WeClor W: [0,1) > R as

~ = 1z | .
W, =WiFy; W(n) = / W(E)F(n — £)dE. (4.19)
~1/2
Multiply our signal X with W and obtain a P-vector u such that for ¢ € 7],
uyp = X;W,e¥™4t for some A to be decided later. Let @ be the unscaled DFT of u,
ie., i, = Ete[P] uge=2"/P  The following proposition says that 1, corresponds to a

bin with center JI’; - A.

Proposition 4.4.2. For any p € [P],



Proof. Recall that for any ¢, 2: = > .y Ze® /N and W, = | 172 W (€)e?etde.

—1/2
Thus,
,&p — Z xtWte27riAte—27r1'tp/P
te[P]
1/2
— Z Fp W &-) z e—21rzt(p/P k/N—A— §)d€
ke[N] Y12 te[P]
1/2
=) & W§)F(————A g)dg.
ke[N] -
From (4.19), we see that above integral is W(— -A-£). O

These bins overlap because their centers are 4 apart but their width is about &
We only want B of the P bins. In other words, we want to subsample @& € CF. This
corresponds to periodizing u to obtain a B-vector v in the time domain. Formally,

let v, = 3 i (py 5y WiB+t a0d B = 3 5 vie*™®/B be the unscaled DFT of v. Define

o =~ /b k o ~ (b k
Wb,sz(E—A—N)y Wb,k=W(§—A“ﬁ)- (4.20)

The following proposition says that @, corresponds to a bin with center % — A. By

setting A = —zL, the center of bin b will be the center of the interval [£ B , L], This

2B’

is convenient because the bin that a given mode k lands in will be simply I_%J
Proposition 4.4.3. For b € [B], 0 = lpp/p = Zke[N] :;;,ﬁb,,c.

Proof. Apply the Poisson summation formula and Proposition 4.4.2. We omit the
details. O

In MPFFT of Figure 4-4, the residual signal 2" = x — 2" is implicitly randomly
transformed before we bin it. As binning is a linear operation, it is carried out
separately on the transformed z and the transformed 27. To bin z, we follow the
aforementioned steps which are summarized in BinInTime of Figure 4-7, i.e., multiply

by Gaussian and sinc function on [P], periodize, perform B-point FFT.
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To bin 27, we apply Proposition 4.4.3 with Z being 2". As Wb,k is hard to compute,

we replace it with

b k 1

Wi, =W (_ A _) L) = Py (421
b,k B N (g) O'f\/é_’]; [é 77 ( )
where I = [£ — 1_2—';;/2,5 + 1—_2%/—2] Also, we incorporate the technique of updating

the bins instead of the signal from [40]. Specifically, given any nonzero mode k.
in z", we update only the b-th bin coefficient where b is the bin that k, lands in.
The pseudocode for binning Z” is found in BinInFrequency of Figure 4-7. To be
clear, during iteration r of MPFFT in Figure 4-4, Y? is equal to Y;?[[N]] where for any
K C [N,

Y,.b[K] — Z i,ke27ri('\/k+<p(k)1')/wa,‘p(k) _ Z ézeZWi(7k+<p(k)T)/N Wg"p(k) ) (422)
ke K keh—1(B)NK

In Proposition 4.4.9 of Section 4.4.3, we see that Wb,k, Wg,k, Wb,k are all close to one

another such that (4.22) is approximately

VK] = drem O e, . (4.23)
keK

We introduce a K C [N] because in Section 4.5, it is more convenient to bound
the contributions to Y;? by different subsets of [V], e.g., the nonheavy modes of z".
If K = {k,} is a singleton set, we abuse notation by denoting Y’[{k,}] as Y’[k.].
Similarly, denote }?rb[{k*}] as Y? (k4]

4.4.2 Faster binning

The speed bottleneck of MPFFT lies in binning. It is therefore worthwhile to optimize
the binning procedure as much as possible. Below, we list two changes that speed up

binning significantly in our implementation of MPFFT.

Firstly, in BinInTime of Figure 4-7, instead of running a single inner loop over
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procedure BININTIMEFAST(z € CV, 0, 8,7, H,B,d,k) b H={2MB:je[J],tc L]}
Compute W; by (4.17) for all ¢t € [P]

for e H do
for t € [P] do
¢ ¢ 2mAHAHD/NIWY, where A = —%
dy  T(a(t+r)+7)%N > yt}% = %(yt +ye); Y= %(yt — Y-t)
dy = T(_a(ttr)+y) %N byl =yl oy =R,
uﬁ%P — %c(dl + d2) > ’LL:Z — yf""vvte%riAt
Ulosp — :¢(dr — da) b ul =yl "W, e2riat
end for
for ¢t € [B] do
U X ietp/B Uip e
vy 4 ZjG[P/B] “JI'B+t
end for
% « StandardfFFT(v?®) > = Zte[B] yRe2rith/B
9! « StandardFFT(v') > Of = Yerm F 2mith/B

YRY + F for all b € [B]
Y/® + of for all b € [B]
end for
return Y2 Y/
end procedure
procedure BININFREQUENCYFAsT(Z € CV,a, 8,7, H, B, d) >
H={j2MB:jc|J],€[L]}
Zero out YR YT ¢ CExIH
for kg € supp & do
k1 < @(kg) where p(k) = ak + B

b BB > b € [B] is the bin kg lands in
C :&kOWg,kl e2mvko/N where Wé,k is defined in (4.21)
for r € H do

d — e2‘rrik11'/N

YEb YR 4 Re(c)d
Y12 Y14 4 Im(c)d
end for
end for
return Y& Y7
end procedure

Figure 4-8: Faster binning by splitting 4 into y® and y’ and halving the number
of trigonometric evaluations. We also recommend splitting the loop over [P] in
BinInTimeFast into three simpler loops as mentioned in the text.
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[P], it is surprisingly much better to run three simpler loops over [P]. In the first
loop, compute and store all the indices a(¢ +7) + 7 modulo N. In the second loop,
sample x at all the indices computed in the first loop. In the third loop, multiple by
the phase factor e {A+AE+T)/N) and W,. We believe by splitting into three loops, the

code becomes more cache-friendly and can be unrolled more by the compiler.

Secondly, the most expensive step within binning is the computation of phase
factors in BinInTime because evaluating sines and cosines is costly. It turns out that
we can halve the number of trigonometric computations by exploiting the symmetry of
‘H and splitting our transformed signal ¢ into two signals with real Fourier coeflicients.
Let =" be the residual signal. Here is the original schematic:

" 2P, y 2 Y for each b € [B,].
Recall that we sample Y?® at H = {j2M¢B, : |j| < J — 1,¢ € [L]}. The number of
phase factors that need to be computed is (2J — 1)L(P + |supp £7|). Consider the

following new schematic:
g" 280 R 1 P Y RE YIb for each b € [B,].

The signals y%, y' satisfy §7 = Re(f) and ¢} = Im(g;). Let Y®* YT? be sub-signals
obtained from binning y®, ¢! respectively. Since y®,y! as well as Y Y1t are even
in time domain, we only need to sample them at nonnegative 7’s. This essentially
halves the size of H. After sampling Y?®, Y/*® at nonnegative 7’s, we can rebuild
the original sub-signal Y° by Y? = YR 44V b if 1 > 0 and Y? = FRT’I’ + ZEE
if 7 < 0. In addition, observe that y%,y’ can be binned simultaneously using the
same phase factors. The number of phase factors computed is in fact reduced to
JLP + |supp 2"| (1 + JL), which is roughly half as before. The pseudocode is found
in Figure 4-8.
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4.4.3 Binning-related estimates

In this section, we derive some bounds that will be used in the analysis of MPFFT in
Section 4.5. The following fact about the normal distribution (cf. Proposition A.2.3)

is useful for the rest of the section. For any z > 0,
i 2 19,2 02 2 19,2
/ et < —e 7/, (4.24)
z z

Let ¢s = log } which is bounded by § when 0 < § < e™'/". The first result controls

the error made in frequency space when our window W is truncated to W.

Proposition 4.4.4 (Truncation in time). Let 0 < § < e”'/". Then

-] = s

ey

Proof. For any £, we have

WO - We)| < X W - W < S i

t€Z [t]>(P+1)/2
e t* /27

<

[t1=(P+1)/2
S ..________1_/ _t2/2‘7t dt

(P —1)/2 it=(P-1)/2

1 20?2
Ot __e~(P-D*/857  que to (4.24).

= T P-DRP-12

The result follows from (4.18) which guarantees that @Z > /2cs. O

Next, we have a simple lemma that will be used for the next few results. Let

Tow = {n: In| > 4_%}

2

Lemma 4.4.5. Suppose 0 < § < e Y™ Then [ Uf\l/—e_"

Proof By (4.24), |, Tout me_" */ 2"fd77 < mj;;% ~(x/4B)*/20} The latter is bounded
by (4.17) guarantees that "(/7 iB > 2c;. O

\/_
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The next result says that W(f) is very small when |£| > 5. This is to ensure

B
that heavy modes that land outside a bin b do not contribute much to the sub-signal

Y.

Proposition 4.4.6 (Outside bin). Let 0 < § < e/ and c; = log %. For any £ such
that 5= < |€] < %, we have W) <

Proof. Observe that for 53 < £ < < , we have I = Ujez[€+j — 1—2';/2’5,'_3 + ~/2] c

LIout. Thlslsbecauseforj—O §+_7— sz% 122/22Landfor]=——1,

E+37+ —2§L < —5 + ﬁL < —7p as B > 1. Apply Lemma 4.4.5 to complete the

proof. a

Define the passband and relaxed passband as

—K .
< , ' inf = :‘ |> win in .
P = { 2 |nl 55 }, P'[Cuin) {77 Wik| > Cos } for some 0 < Coin < 1/2

(4.25)

The next result says that W({) is very close to 1 when £ is in the passband P and
that P’[Cli,] contains {7 : || < } for any 6 < 1 — 2C,,;,. We use the passband
for analysis but in our implementation of MPFFT, we use the relaxed passband. The
reason is that for computational speed, we prefer using kK = 1, but when kK =1, P is

empty which means that we have to reject every mode.

Proposition 4.4.7 (Inside passband). Let 0 < § < e™¥/™. For any £ € P, W(¢) >

1— d. Forany|§[§1;g2,W(§)2%— L >1-2

\/_ -

Proof. Observe that for 0 < £ < 12"—;, we have I D [£ — 1;';/2,5 + "/2] »)

-5 1;';/ 2] O Ius. The last containment is because x < 1 implies Tﬂ > 5 It

12 /242 : A

af\1/2_w Jo€ " *1dn = 1 and Lemma 4.4.5 that W(¢) > \/7‘2_ 8.

Now, consider the second inequality of Proposition 4.4.7. When 0 < £ < 1—2-%3,
we have I§ 2 [g - 1_22/2a§ + L n/2] ) [0 K/2] 2 [ >4KB] ThUS, W(f) = %_

e_”2/2‘7?d77. Apply Lemma 4.4.5. O

L 1
2 Iout 0‘f\/27|‘

Next, we show that when [§| <
defined in (4.21).

zB’ then W’(£) is close to W (£), where W/(£) is
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Proposition 4.4.8 (Truncation in frequency). Let 0 < § < e™Y/™ and |¢] < §1§. Then
W(€) -W()| < A= <.

— /Tcs

Proof. Suppose 0 < ¢ < 55. Observe that I\I{ = Ujxolé +7 — Lr/2 4 it 1—_2',;&] -

2B 7
I,,;. This is because for j = 1, £ +j — 1_2';/2 >1- 1_2';/2 > f=as B > 1, and for
j=-LE+j+ S S -1+ S < —Fas B2l =

Combining the previous results, we can control how much (4.22) deviates from

(4.23) when we restrict the residual signal to some K C [N] in frequency space.

Proposition 4.4.9. Let K C [N]. Suppose we are in iteration r of MPFFT, and have
Just run BinInTime on x, BinInFrequency on 2" and obtained the bin coefficients Y .
YAK] - P2IK]| < 35 max(l2l, 171 If
YAK] - V2IK)| < 38max(|]., 177

Then for any b € [B,|, 7 € H, we have

K is a singleton set, then

Proof. Write

YAK] = VK] < D 1an] [Whot) ~ Wi

keK
+ > |52|)Wb,<p(k)"Wé,ga(k)‘+ > 15 Wk
ke Knh—1(b) keK\h—1(b)

Consider each of the three terms on the right hand side of the equation above. The
first term is bounded by ¢ ||Z||, by Proposition 4.4.4. The second term is bounded by
0 ||2%|l; by Proposition 4.4.8. The third term is bounded by § ||2%||, by Proposition
4.4.6. Therefore, |Y}[K] — Y?[K]| < 35 max(||Zk|l; , |12k |l,)- Trivially, |2, < |2,
25l < 127]l and if K is singleton, [2xll < [8le, 1250, < 127]... o

~ 2

The next result provides a bound on Eke[N] Wb,kl , the energy of the window.

This result will be used later to control the perturbation of bin coefficients giue

~

to nonheavy modes in a bin in Proposition 4.5.5. In practice, % Eke[N] Wb,k

. 2
fgl=0 ’W({ )I ~ ==, but for the analysis of MPFFT, we use the weaker bounds below.

Proposition 4.4.10 (Energy of window). Let 0 < § < e /™ and b € [B]. Then

. 12
Zke[N] 'Wb,k‘ < %'
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Proof. The idea is that W (£) is very small outside [~ =, =] and bounded by 1 inside

T 2B!'2B
[—511—;,%]. Let K = {k € [N] :dist(%a % —A) < %} Note that |K| < H;—ﬁj +1<
~ 2 R 2
% + 1. By Proposition 4.4.6, zkeK le,k1 + Zkg}( \Wb,k‘ < |K|+ (N — 1K|)52 <
|K|+ N&2 < (X +1)+ N&* < 3L -

For the analysis of MPFFT, we use a «, that decreases with r. Although this
simplifies our proofs, we do not recommend using a small k.. The reason is that in
practice, MPFFT performs just as stably even when &, = 1, and using a smaller «,
will slow down BinInTime and the overall algorithm significantly. We will revisit this

point in Section 4.6.

4.5 Analysis of MPFFT

4.5.1 Chance that a mode is identified and estimated well

Our analysis of MPFFT is adapted from [40]. The main difference is that we have to
do without guarantees related to the coefficient estimation loop.

Fix an iteration r and a heavy mode k. of the residual signal. Let ko = p(k.) and
b = h(k.). With an abuse of notation, let S =5,, B=B,, sk =k,, A= A", E =&,
f=frand L = L, just for Section 4.5.1. Here is the main result of Section 4.5.1.

Lemma 4.5.1. Assume |Z,| > 1/2, “:E%

| < €= N0, max(|iz]],, |2"]},) = N,
A < S and § = N~ is sufficiently small, e.g., 36 max(||Z|,, [|2"]l) < : % .
Run MPFFT in Figure 4-4. The probability that k, is identified and Iy, is estimated

with an additive error no greater than % s at least

28 (22M+55)1/3 8L 8 oML 41
Copf  f N

The ﬂﬁ—ﬂ term is due to the frequencies being discretized and is usually unim-

portant because N > 2M [ in practice.

Proof of Lemma 4.5.1. Recall (4.22) and that Y = Y*[[N]]. Write the sub-signal Y
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as Y = X 4- U and X = X + AX? and AX? = AXDP! + AXP2 where

Xt =YP[k,], (true signal)
AXEY = YP[(A\({k.})\h™*(b)], (heavy modes outside bin)
AXb2 =Y?[A], (nonheavy modes)

U = Y?[(A\{k,}) N 7' (b)]. (heavy modes in bin)

X? can be thought of as the true signal and it is contaminated by AX®. The signal
AX"%! is due to heavy modes landing outside bin b, while the signal AX%? is due to
nonheavy modes. On the other hand, U® is due to heavy modes landing in the bin.
We will see that with good probability, mode k, is isolated, which means that U? = 0

and MatrixPencilMultiscale is effectively run on X*.

Recall the definition of the passband in (4.25). Note that Hl/ 2 is the center of bin
b. Let §& = —9—%1 Recall that MatrixPencilMultiscale attempts to identify the
first LM bits of &. Let &§ = (£2¢M)%1. Let III = [2M]/2M be the “decision edges”.
Define the following bad events.

= {k, not isolated} = {lh—l(b)| 2 2} J

k ke b+1/2
&° = {NQ too near to bin edges, i.e., large offset} = {—]% + / & ’P}

EPH) = {50 within @ of decision edges} = {IIGII& dist(£5,7) < 0} ,
n

&M (t) = {perturbation in input to MatrixPencil at scale ¢ too large}

1

= 2J —1 Z IA _72‘3MB| 2te,
lilsJ-1

&A(t) = {perturbation in ||A| » at scale £ too large}
= {||T(AXJ'2WB)|J'|5J~1||; 2 t}

&F(t) = {estimation error too large} = {|AX8 |2 > t} .

We first bound the probability of each of the above bad events, then infer that if they
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all do not hold, then k, will be identified and estimated well.

Proposition 4.5.2 (No isolation). Given that |A] < S, we have P (&7) < 2S/B.

Proof. Condition on b = h(k,). For any mode &, we have

P (h(k) =b) < (WﬁJ + 1) <1/B+1/N.

Thus, the expected number of heavy modes landing in the same bin as k, is (|A| —

1)(1/B+1/N) < S/B+ S/N. Apply Markov’s inequality to complete the proof. [

Proposition 4.5.3 (Large offset). The chance that ko misses the passband region is

P(£°) < k+1/N.

Proof. Let k' = (k¢B)%N which has the same distribution as ky. By definition of
P in (4.25), P(6°) = P (lﬁﬁ - b+1/2[ > 1;"5) Observe that by taking modulo 1,

l%'\—,}?- (b+1 /2)[ (1 — k) is equivalent to |k— -1 /2| 2(1 — &). The probability
that this happens is bounded by % (I_I/—NJ + 1) <K+ 1/N. O

Proposition 4.5.4 (Near decision edges). For any £ € [L], P (&P(9)) < 2M+1g +
2M /N

Proof. The proof is very similar to the proof for the previous lemma. Let k' =
(ko2 B)%N. Instead of avoiding an interval of width &, we have to avoid 2™ in-
tervals of width 26. Therefore, the probability that £ is too close to any decision

edge is bounded by 2- ([1 |+ 1) < 2M+19 4 2M /N, Compare this with the proof
of Proposition 4.2.4 and see that we have an additional 2 /N term due to the dis-

cretization. O

The following is analogous to [41, Lemma 4.1]. Define
&, =6&/B + 528" max (|||, [127]l,)* (4.26)

Assume § = N-©1) jg sufficiently small such that £, < 8/B.
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Proposition 4.5.5. For any v € H, E |AX$|2 < &. Thus, for anyt > 0,

max (P (62(9) , P (6/1)) P (65(1)) < &/t

Proof. Condition on b = h(k,). Let K = AU K’ where K’ = (A\{k.})\h71(b).
Note that AX? = Y?[K] = (Y2[K] — Y?[K]) + Y?[A] + Y?[K"]. By Cauchy-Schwarz,
t [K]‘ < AE(Y (K]~ Y?[K])?*+4EY?[K")?+2E Y*[A]2. The first term is bounded
by 4(36 max(||£],,[12"]l;))* by Proposition 4.4.9. The second term is bounded by
4(6 ||2711,)? < 46%(2max(||Z], , ||2"]l,))? by Proposition 4.4.6. Bound the third term:

2

~, — |2 . - .
Y;-b[A]I = EPEY z i,ze%rz'yk/NWb’¢(k)e27rz7'go(k)/N
kel
R 2
—E° Y51 W] = D I8 E?

keA keA

=S e (5 3 Wl | <e6/m).

kel ke[N]

E*E”

. 2
W e (k) {

The last inequality is due to Proposition 4.4.10. Undo the conditioning by taking
expectation over b = h(k,). We have shown that E IAX$|2 < &, for any 7 € H.
Complete the proof by applying the linearity of expectation and Markov’s inequality.

a

Consider the chance that k, is identified. Recall the proof of Proposition 4.2.4.
Suppose &’ does not happen. Then MatrixPencilMultiscale is effectively run on
(XﬂeM B)lil<J-1,elz]- Think of (X " emp)ielN] as a single sinusoid perturbed by noise
and the single mode has coefficient ¢g = Y2[k.]. Suppose &° does not happen.

Write |co| > |~ _ ’Yob[k*] _ VB[,

. The first term is at least |2"|, (1 —J) by
Proposition 4.4.7 because k, lands in the passband. The second term is bounded by
36 max(||&]l. , [12"|l.) due to Proposition 4.4.9. Assume § = N~°®) is sufficiently

small such that 36 max(||Z ., |12"]l.) < &5 |a:k | and § <1 — = — 2. As a result,

100

leo| 2 |2, (1 = 8) — 36 max(|l2llo, , 12" llo0) 2 |&5.] (3/7). (4.27)
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AX
By Proposition 4.2.1, |A§g|2 < 2= 12"';" 1 i Xops| because J?JJ 11)2 <% asJ>2

By Proposition 4.5.5,

:i'k. 12 92)) < Lz

P(|ag] > 6) <P (£M(? T
ke

1/3
Recall that P (£P(6)) < 2M+19+2M /N by Proposition 4.5.4. Pick § = (—g—g>

J22M g7
k‘

and obtain

2M g

1/3
P (£P(0)) + P (&M (J? |24,1°6%)) < 3- (EF) +2M/N. (4.28)
km

To identify k., we also need to pass the collision test, i.e., we need p? < gﬂﬁ-f—‘? for
all £. By (4.13) in the proof of Proposition 4.3.1, u2 < “’][‘ 2£MB)|_7‘|SJ_1”F. Thus,

C’mpf

the chance that u2 exceeds is bounded by

¥ (‘g“A (Cmgfg)) Fo Ao (4.29)

When there is mode isolation, £ will be estimated as X'Be~2*7k-/N_ Control the

estimation error by

!B _—2mivk. /N T
X7e — I

IA

k. ©

*

X'B _ gr p2mivks /Nl

(A

Y7 [k.] — &7, €75 /N| 4+ |AX P
Yok — Y2[k.]

IA

(4.30)

Ar T ~7
+ Izk Whko — 2%

By Proposition 4.4.9, the first term on the right hand side of the equation above
is bounded by 3dmax(||Z||.,, |£7]l) < %\/% assuming that § = N~°W is suf-
ficiently small. By Proposition 4.4.7, the second term is bounded by lﬁ'i!é <
26 max(|| 2], 1127]) < 3 % assuming that § = N~®( is sufficiently small. Con-
clude that to estimate £} with an error less than 24/££, it suffices that &Z(££) does

137



not hold. By Proposition 4.5.5,

P (gE (%)) < i‘; < ;. (4.31)

We also need to ensure that we do not reject the bin containing &, because |Y0b|
is too small. Note that when é"E(%) does not hold, we have IYE)”I > |Y3’[k*]| - \/%.
Recall from (4.27) that

o . ar 1 /f€
ol = Y2 Tk1| 2 [47.] (1 — 8) — 36 mex(2 ], 1570) 2 (1~ )1~ 8) = 54/ 25
Assume § = N~°W is sufficiently small such that 26 < y/£. Hence, |co| > 1—p—\/%
and |YP| > 1-p— 2\/%. Indeed, in Figure 4-4, a bin is processed only if |Yy| >

£
1—p—24/£.
Complete the proof by doing a union bound over scale levels and over all the
bad events listed earlier. This involves summing (4.28), (4.29), (4.31) and applying
Proposition 4.5.2 and Proposition 4.5.3.

O

We end the section with a justification of Assumption 4.2.2. In the proof of Lemma
4.5.1, we argue that mode £k, is identified and well-estimated if a series of conditions
hold simultaneously. In particular, &/ and &7 (&fgjf—g) must not happen. This
guarantees that the perturbation in the matrix used by the matrix pencil method,
or AA in (4.7), is small. In other words, if the first order perturbation theory is
inaccurate and Assumption 4.2.2 is invalid because AA is too big, we would not

claim that k, is identified anyway.

4.5.2 Overall analysis of MPFFT

We now use the same notation as the rest of the paper, not Section 4.5.1. For example,
S is the nitial number of heavy modes and B is the initial number of bins.
Before we begin the proof of Theorem 4.1.3, we remark why we think that the

0 (S log N log? 1—;—) bound on the running time is tight. Consider the running time
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of the first iteration. According to Lemma 4.5.1, the chance of failure includes a
O (Lo/f) term which suggests that we need f = Q(Lo) = Q(log&). The total
error energy made in the first iteration is on the order of iéE which suggests that
we need B = ) (S log %) As we need to bin Ly = Q2 (log %) times and each bin-
ning takes Q) (B log %) = (S’ log ¥ < log N) time, the total time is expected to be
Q (S’ log N log? %) Now, let us proceed with the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. Let A" = A, (z") be the set of heavy modes at the start of

iteration 7. We say iteration j is successful is |A’*!| < |A|e™! and H T < &
Define &, as the event that iteration j is unsuccessful for some j =0,...,r — 1:
Y . 1 a1 2 .
= |A~’+ | > |A’|e_ or zijﬂ > &jyq for some j=0,...,7—1,.
Read &, as “iteration 0,...,r — 1 are all successful”. Observe that &, implies

|AJ] < Se™d = S; for j = 1,...,r. In particular, for R = |log S| +1 > log S, &z
implies that |[A%| < Se™® < 1, i.e, all heavy modes are found after R iterations.

Next, we establish a few intermediate results. Let p = 0.01.

Proposition 4.5.6. Suppose 0 < € < 1 and & holds. Then ”a%j\—er <E(l+e)<2€E.

Proof. Recall that B, = B(r +1)">% and f, = f(r + 1)}*? and % < 155 After R

iterations,
i%||2 <& < 5ﬁ (1 + 4];.283) < Eexp (i 41;;'53)
5=0 $ r=0 %
< £e18D < £(1 +¢).
The last inequality is because 0 < € < 1. 0O

This is a good time to check the growth of p.. We need p, to be bounded by > SO

that all heavy modes are sufficiently heavy and can be easily identified by the matrix
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pencil method. Note that R+ 1 < logS + 2 < 3log S assuming S > e. Note that

&, pr are predefined and independent of how well the algorithm performs.

5+1.5p g

Proposition 4.5.7. Let 0 < r < R. Suppose S > e and 4(68)1/2; < %

Then p, < 3

Proof. Expand our p, as follows:

—42\/fT<4\/_(f£)l/2Rzl(s+1)l5<l+P)

s=0 =0

\/_ 1/2 pRH1 L5(14m)
<4 S(1+9)g
(1005) /1 ‘ *

1/2 1
2.5+1.5p
< 42 (1005) (3log S)

2.5+ L.5p
log?®1% g 1
4 1/2_—_ < -y
(e€) 5 —2

O

A bin b is processed only if |Yb| >1—p.—2 M’- If the bin contains no heavy
modes, this is unlikely to happen.

Proposition 4.5.8. Consider iteration r where 0 < r < R — 1. Suppose &.. The
probability that some bin with no heavy modes landing in it is processed by MPFFT
is bounded by 64&.

Proof. By Proposition 4.5.7, 1 — p, — 2 % > 1= pry1 2 % Some bin with no
heavy modes is processed only if |AX B \ >1—p.—2 %%‘1 > -% for some b € [B,]. By
Proposition 4.5.5, E |AX B|2 < 8E,/B, for any b. The latter is bounded by 16£/B.
by Proposition 4.5.6. Apply Markov’s inequality and union bound over B, bins. O

Suppose mode k' has been added to 2" in iteration r. The previous paragraph rules
out probabilistically the case where the mode comes from a bin with no heavy modes.

Say k' comes from bin b. Let the dominant mode of bin b be k, = argmax, I}’;)"[k”

(cf. (4.22)).
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Suppose k, = k', i.e., k, is correctly identified. The explicit check for whether &’
is in the passband in Figure 4-4 ensures that Wb’(p(k) > 1 — 6 (cf. Proposition 4.4.7).
Moreover, the bin has passed the collision test and satisfies (4.6) by Assumption 4.1.2.
This ensures that |Y¢ — Y (k]| < & whether there is mode isolation or not. As
#" is approximated as YPe 27%+/N the error on mode k. is reduced to the following

in the next iteration:

ar+1
l””k.

| 27rz'7k:. /N _ Yb|

fr

< iz e2m’yk. /N YE]

)|+ |Felk) - Y8

< [87.] 6 + 35 max(a].  [71) + /22 frér z\/f’ (432)

The above equation is technically very similar to (4.30): apply Proposition 4.4.9 to
bound ‘170”[1: ] - Y2k, . The
difference between (4.32) and (4.30) is that (4.32) is deterministic and the Y;? — Y;[k.]

and Proposition 4.4.7 to bound |#}_e?™"*/N _ Y}[k,]

term above can be due to heavy modes that land out of the passband region inside
bin b, whereas the AX? term in (4.30) can only come from nonkeavy modes or heavy

modes that fall outside bin b.

Now, suppose &' # k,, i.e., k' is a subdominant mode. The collision test ensures
that each of the subdominant modes cannot have too much energy. In particular,
(4.6) guarantees that [Yob[k’]l < gi". The check for k' being in the passband
ensures that ’Wb"p(kl)l > 1—4 by Proposition 4.4.7. By Proposition 4.4.9, |)7B[k’] <
[YIK1] + 36 max(fé, 127 ) < 34/55. But [P2[K]

implies

== |.’f32;| Wb,cp(k’) and 6 S %

(4.33)

Since bin b is processed, we know that |Y¢| > 1 — p, — 2 -%”. By (4.33), this

wrong update must create a mode that is heavy enough for the next iteration, i.e.,
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k' € A.+1 because

fr&r
B,

& =

37| = |2 = Yee =N 2 |Yg| - lag] 2 1y — 4

=1-pry1.

To summarize, whenever a mode k' is added, it is either correctly identified and
estimated well, or wrongly identified and reappear as a heavy mode in the next

iteration. Observe that as a result,

2 2 2

Ar+1 — |far+l AT+l
:I:Ar+1 - xAr+1ﬂA’" T xrﬂﬂﬁ
4fr£r N 2 4err
<S5 ( B, + “a:%r- <1+ B, & =& 41
) 2
We have used (4.32) to bound the :?:T term above.
r+10AT

Next, we want to show that with good probability, iteration r is successful. Assume
|A"] < S,. Suppose less than £(e ! |A"]) of the heavy modes in iteration r are not
identified or estimated up to an error of %. Then the number of heavy modes in
iteration 7+ 1 is at most e~* |A"]. Note that PP (&) = 0. By Lemma 4.5.1, Proposition
(4.5.8), Proposition 4.5.7,

’ R
P (&) <P(HN&G) +P(6HENE) +...+P(6rNEra) <D _P(& | &)
r=1

< R (64€)

R-1 1/3 M
2 28, 2M+5¢ 8L, 8 2Mr. +1
— E —— ++3L,- -+ —— ).
’ e r=0 (B’" ks ( J2B; ) " Conpfr * fr " N

As k, = k(r +1)7*? and B, = B(r + 1)727?7, the above is the big O of

S 22M5 1/3R-1
ElogS+—=+K+ ( ) ZLr(T +1)@+2p)/3
r=0

B J2B
1R—l 1 2MR-—l
+1=S L+ TPl +2+52=D L. 4.34
(f;:( ) ) L2 (431)

Pick k = ©(1/M) and f = O(log¥) and B = © (£log &¥) such that B > 25,
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Three of the terms in (4.34) require further work.

First, we show that for any p > 0,

R-1 1 N
~1-p __
,Z:; L(r+1)?=0 ("M’ log 5) . (4.35)
Note that L, = O ( L log & rin ) O (Lo + 57 logr) and f = O (Lg). Write the sum on
the left hand side of (4.35) as 3% O (Lo + & a7 logr) 17177 = O (Lo) = O (& log £).
It follows that 1 ZR ' L,(r+1)"1"? = O (1/M). Second, we show that

R-1

1 N
(2+2p)/3 _ 2(1+p)/3+1 v
E L.(r+1) =0 ( (log S) (log S)) . (4.36)

r=0

Write the left hand side of (4.36) as 3.7 O (Lo + 55 logr) r+2)/3 Note that
LR r@r293 = 0 (£ (log BYR@+2)/3+1) while 3% (logr)r2(+7)/3 is bounded by
(Zil log 7‘) R2A4P)/3 = O ((log R)R?*P)/3+1) | Therefore, 371 L, (r 4+ 1)@129)/3 is
on the order of L (log***#)/3t1 g)(log & +loglog S). In Theorem 4.1.3, it is assumed
that for some ¢ > 0, Slog®S = O(N). This implies that log®S = O(N/S) and
loglog S = O (log 1—;—) and (4.36) follows. Third, we show that

Z L,=0 (— log S log ]; ) (4.37)

r=0
Like before, %', = 0 (Z,}Ll Lo + 47 log r) = O (LoR + Z2ER) which we know
is O (371og S (log & +loglog 5)) = O (7 log Slog &) as loglog S = O (log 2.

Substitute (4.35), (4.36), (4.37) and B = ©(£log &) into (4.34). Obtain that the
failure probability is the big O of

1/3
Elog S + —— + — + 2 Eelogt+ 25| L (10gX) 4 208 508 S)
52 T gl T M 728 M\ MN

The constants hidden in the O notation above can be reduced by increasing x, f, B

However, this comes at the expense of increasing the running time. The total running
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time of MPFFT is dominated by the time spent on BinInTime, BinInFrequency and

MatrixPencil. By (4.35), the total time spent on BinInTime is

R-1 &S]
L.B 1 B S N
" log= | =0 | (logN)) =L (r+1)'? ] =0(——1log? = logN ).
O(; K Og5) ((og )gn (r+1) ) (ME & Sog )

To be conservative, suppose each call to MatrixPencil runs in O(J3) time. By

(4.35), the total time spent on MatrixPencil is

0 (§ J:L.B ) =0 (J3B}§L (r + 1)-2<1+p>) =0 (ﬁ log? ﬁ)
r=0 o r=0 ' Me 5/
Assume erf takes O(1) time such that BinInFrequency takes O (|supp 2"|) time.
As |supp 27| < E;;é S; = O (S), the total time MPFFT spends on BinInFrequency
is O (Ef;ol L, |supp 2’[) =0 (S 21}-1_01 Lr) = O (£ logSlog &) by (4.37). Sum
up the running time of BinInTime, MatrixPencil, BinInFrequency to obtain the

desired bound on MPFFT’s running time.
O

4.6 Implementation and numerical results

The second form of MPFFT is listed in Figure 4-9. It differs from the first form of
MPFFT in Figure 4-4 in some minor ways listed below. Note that the first form
of MPFFT is not implemented but analyzed and shown to run in O(S log% log® N)
under certain assumptions. The second form of MPFFT is implemented. Although we
do not provide any theoretical guarantees for the second form of MPFFT, numerical
evidence suggests that it does run in O (S) time.

Firstly, we estimate i, as W, lcloanl > ren Ye 2mkor/N instead of Y{. Assuming
that Wy, ~ 1, Proposition 4.2.3 suggests that the error in this new estimate of g,
is on the order of (57 3, ¢y E ]AYT”|2)1/ 2 where AY] is the perturbation due to non-
heavy modes. Although E IT%lT Y oren IAYTbl2 is the same as E IAYX’]Z (cf. Proposition

4.5.5), the averaging over |H| tends to “denoise” and improve our estimate of g,
p Yko
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procedure MPFFT—IMPLEMENTED(IL‘ € CN, S, 6, J, M, €, Bnin, Cwins Crmuls Cbins Ceollides Citers)

290
r«20 .
iters < 0 > No. of iterations where no mode is found
while iters < Ciiers do > Start of an outer iteration
Let ¢(k) = ak + 8 be uniformly chosen permutation of [N] > 2" =z — 27
Let 4 be uniformly chosen from [N] > ok = 252 /N
Sy < S — |supp 27|
B, + max(Buiy, CoSr)
Ky — 1
L, + |log,m(N/B,)| +1
H«+ {j2M¢B, : |j| < -1, € [L.]}
Y’ < BinInTime(z, o, 3,7, H, B, 6, k) b Yl = Yprr; b = Jre>™RIN
Y” + BinInFrequency(%', o, 3,7, H, Br, 6, kr) > Bin y” for each 7 € H
Y <Y -Y” > Obtain B, sub-signals Y*

foundNothing <« true
for b € [B,] such that [YO”I > Cyin/E/B, do
Identify one mode ky using {Y? : 7 € H}:
(&0, max) ¢ MatrixPencilMultiscale(L,, J, M, (Y2

Jamep )lil<I-1,6€(L,])
ko < round (N (5559))

r

if pmax > Ceottidev/€/Br then continue to next bin
if Wb,ko < Cyin then continue to next bin
Estimate i, as ¢ < pr¥re >N and g, Wyilch (cf. (4.21))
k. Qo_l(kO)
Update our solution by 2;F" « 2 + g e 2rivke/N
foundNothing « false
end for
if foundNothing then iters < iters + 1
rer+1
end while
return 37
end procedure

Figure 4-9: The second form of MPFFT is implemented. Refer to Section 4.6.1 for
its numerical tests.
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significantly.

Secondly, we use the relazed passband P'[Cyin] in (4.25) for some 0 < Cyin < 1/2
and k, = 1 instead of a ., that decays exponentially. Recall that 0 < x, <1 and the
cost of binning is O (%— log %), so k, = 1 is the best x, in terms of computational
cost. However, when , = 1 is used, Proposition 4.4.7 only guarantees us |P| >
1_—;T = 0, i.e., no modes will be passed. On the other hand, if § < 1 — 2C54y, then

|P/[Cain]] = l“g/ 2 — 55, which means that at least half of the modes will be “passed”

if we use the relaxed passband. Below, we see that using a relaxed passband may

worsen the error by a multiplicative factor C,}. To see this, repeat the steps in 4.30:

Ybb ar  2mivks /[N
Wi ko Tk
1 % i 1 ~7
<9 (198 = Y] + ¥t = P20k + [Wo — W3] 221
yR0

The right hand side of the equation above is very similar to (4.30). The first term is
due to noise energy. The second term is small by Proposition 4.4.9. The third term
is small by Proposition 4.4.8. The main difference is that the error is blown up by
W,;jcé > C.L. We like picking Cyin =~ 0.1 because P’[Cyin] passes many more modes

than P (cf. (4.25)) at the expense of a slight loss of accuracy.

The third change is that we use much smaller thresholds for Yb” and fpax. In
practice, we do not know a priori that the S heavy modes have magnitude greater
than 1. If there are modes with coefficients 1/3, then MPFFT will suffer from the
same problem of ghost modes as sFFT3.0. See Section 4.1.2. In practice, the error
or noise energy of iteration r is O (€) and a bin b with no heavy modes will have
IYO"I =0 (\/éT/_B:) by Proposition 4.5.5. To avoid processing such bins and adding
a lot of small spurious modes, it suffices to reject bins with |Y})”| < Cbin\/m for
some Chin > 0, say Chi, = 10. Also, from the proof of Lemma 4.5.1, we see that
Eu? < O(E/B,) = O(E/B,). In practice, p? is seldom much bigger than O (£/B,)
when there are < 1 heavy mode in the bin. Hence, it makes sense to impose a smaller

threshold on fimax, 1-€., fimax < Ceollide vV €/ Br-
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Let us elaborate on why we expect &, to be O (£). Suppose iteration r is successful.
Then up to S, heavy modes may be estimated within an error of O ( \/E/E) and up
to agS, = 5,41 modes may be left in 27!, If these leftover modes have magnitude
O (M), which is the bin threshold for iteration r + 1, then they will remain
as ghost modes and contribute to the error energy of iteration r + 1. Thus, the error
energy in iteration r + 1 is bounded by &£, < &, + O (%’f) +0 (%’*—18) It follows

T+1

that £ < & (1 + 30O (g—: + ﬁﬂ)) = O (€) for a sufficiently large B.

B,y

The last change we make is that instead of setting a conservative decay rate for
the S,, B,’s, we adopt an adaptive strategy: let S, = S — |supp 2”| and B, = Cpu S
for some Cry > 1. This is because in practice, if the parameters are set appropriately,
then almost all of the modes added to z” in iteration r are correctly identified and
well-estimated. This means that S — |supp 27| is an excellent estimate of how many
heavy modes are left in the residual. In case we do find a few wrong modes and S,
turns negative, we set B, = max(C;S,, Byi,) for some small By, €.g., By, = 8. We

stop the algorithm when no mode is added for Cj.r iterations.

We recommend picking Cpy slightly bigger than 1. Although we argued that
Cmu = 1 is optimal in Section 4.1.2, it is still safer to use a slightly larger Cyuy in
case we add some wrong modes and underestimate the number of heavy modes left
in z". We like to remark that in our experience, if the collision detector is turned off
for a Cpy close to 1, then too many wrong modes tend to be created, which leads to

catastrophic failure.

The main reason for using a bigger Cpy is to reduce the effect of noise on the bin
coefficients. From Proposition 4.5.5, we see that each bin coefficient is perturbed by

O (\/5 /B,.). From (4.28) in the proof of Lemma 4.5.1, we see that the chance that

is too close to V€,

we fail to identify a mode k., grows with O (W‘i‘lg)ug. If |2,
we simply have to use a larger B, or Cp, so that mode identification can succeed
with good probability. However, using any Cpy larger than 1 means a slowdown by
a factor of Cl,u as mentioned in Section 4.1.2. For this reason, we do not recommend

trying to find any mode coefficient with magnitude much smaller than /& /Bin.
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Figure 4-10: Results of our first and second experiments. MPFFT is run with N
fixed as the closest prime to 222 while FFTW is run with N = 22, MPFFT with J =
2, M =5 is faster than FFTW-Est when § < 2500 while MPFFT with J =2, M =1
is faster than FFTW-Est when S < 1000. Each z; is perturbed by Gaussian noise
N(0,0?) where ¢ = 1077,107" in the first and second experiments respectively. The
average L' error is on the order of 10~7, 102 respectively.

4.6.1 Numerical tests

MPFFT is implemented using FFTW [31] for the binning and the Eigen library [37]
for the matrix pencil method. It is benchmarked against FFTW’s in-place complex
1D FFT routine. The size of the input signal to MPFFT are primes closest to powers
of 2, whereas the size of the input signal to FFTW are ezact powers of 2. This is
to ensure a fair comparison because FFTW tends to run slower when N is prime.
MPFFT, FFTW, sFFT1.0, sFFT2.0 are all compiled using the same flags, e.g., -03,
-mtune=native, -ffast-math. They are compiled and run on 2.67GHz Intel Xeon
X5550 processors with 8Mb cache.

FFTW is run with two different options, FFTW_ESTIMATE or FFTW_MEASURE. They
will be referred to as FFTW-Est and FFTW-Opt respectively. FFTW-Opt requires
heavy preprocessing and always outperforms FFTW-Est. On our machines, FFTW

seems to run much faster relative to sFFT1.0, sFFT2.0 than in [41]. For example, for
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N = 222 sFFT2 is faster than FFTW-Est when S < 1000 here instead of < 2000 in
[41]. Our results seem consistent with [47] which says that AAFFTO0.9 is faster than
FFTW when S < 135 instead of S < 250 according to [41].

In the first four experiments, we use the following random signal model. Construct
a signal with S modes independently and uniformly distributed in [N]. Each of these
S coeflicients have magnitude 1 and a phase independently and uniformly distributed

in [0,27]. In the time domain, each z; is perturbed by Gaussians with variance o2.

For the first experiment, we fix N ~ 2?2 and vary S. Pick ¢ = 1077 and run
MPFFT with § = 3 x 107°, £ = (3 x 1075)2, Buin = 8, Chin = 20, Ceolide = 4,
Cuu = 1.1, Citers = 10 and Cyy, = 0.1. The only variables being varied in the first
experiment are J, M,S. Recall that MPFFT outputs 2% after R iterations. Define
the average L' error as

1. .
3 ”xA - ZR“1 '

The parameter £ is set as (3 x 107°)? instead of o because it is empirically observed
that it always yields an average L' error on the order of 1077, In [41, 47], a similar
input signal is used and the parameters of their algorithms are set such that the

average L! error is also on the order of 10~7.

Each data point of Figure 4-10a is the average running time of MPFFT over
100 x 2'4-1825 jndependent runs. Observe that in Figure 4-10a, MPFFT with J =
2, M =5 is faster than FFTW-Est when S§ < 3500. This is more than 10 times faster
than AAFFT, and hardly slower than sFFT1.0, sFFT2.0 for any N. Meanwhile,
MPFFT with J =2, M = 1 is faster than FFTW-Est when S < 1000 and its running
time is comparable to that of sSFFT1.0, sFFT2.0.

Our second experiment is similar to our first experiment except that o = 1071,
E=026=10"*Cuu = 1.5 and By, = 32. To deal with the higher level of noise
compared to the first experiment, we use a larger number of bins, i.e., a larger By,
and Cgyy. The average L' crror this time is on the order of 1073, Using more bins
slows down the algorithm, but as our desired accuracy is degraded from 107 to 103,

we can use a larger §, which leads to MPFFT running at about the same speed as in
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Figure 4-11: The left figure is generated by our third experiment where S is fixed at
50 and N is varied. Each z; is perturbed by Gaussian noise N(0,0?) where o = 1077.
The average L' error is on the order of 1077. The left figure suggests that MPFFT
with J = 2,M = 5 is faster than FFTW-Est when N 2 70000 while MPFFT
with J = 2, M = 1 is faster than FFTW-Est when N 2 260000. The figure also
suggests that MPFFT runs in O (S) time. The right figure is generated by our fourth
experiment where S = 50, N ~ 2?2 and o is varied. The figure shows that MPFFT
is robust. The errorbars indicate the square root of the empirical variance of the
average L' error.
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the first experiment.

In Figure 4-10b, we see that there is little difference in the running time for
M=5,J=2and M = 3,J = 2. This is due to two counterbalancing effects. On
one hand, each outer iteration of MPFFT is cheaper for M = 5 than M = 3 because
L, is smaller and we need to bin fewer times. On the other hand, the chance that
mode identification fails is higher for M = 5 than M = 3, which means that fewer
heavy modes are found per iteration and more iterations are needed. In fact, when
M > 6, mode identification fails too often and MPFFT no longer finds all the heavy
modes consistently. This is not surprising because Theorem 4.1.3 or Proposition 4.2.4
suggest that the chance that mode identification fails grows exponentially with M.

Figure 4-10b also shows that for M = 1, the running time for J/ = 2 and J = 3
are about the same. This is because the number of times binning is performed is
about the same for J = 2 and J = 3. Specifically, from (4.12), N33 = 2L, — 1 ~
2L, + 1 = Nj3;. Similarly, the running time for J = 5 is about twice that of J = 2
because N1 = 4L, + 5 ~ 2N, 1. This underscores the fact that the binning step is
the bottleneck of iterative SFT algorithms such as AAFFT and sFFT4.0.

For our third ezperiment, we fix S = 50 and vary N. All other parameters are set
the same as the first experiment. The results are displayed in Figure 4-11a. It shows
that the running time of MPFFT is O (S) and does not grow with N1/2 or N1/3 like
sFFT1.0 or sFFT2.0.

For the fourth experiment, we fix S = 50, N ~ 222§ = 1075, By, = 32,

Cma = 1.1 and vary o, the amount of Gaussian noise. Pick £& = o2.

Figure 4-
11b shows that with these settings, the average L' error of MPFFT scales almost
linearly with o, i.e., MPFFT is robust. Observe that J = 5, M = 1 produces the
smallest errors because MPFFT averages over more samples when estimating the
mode coefficients. The average L error does not decrease beyond 10~7 as ¢ decreases
because § = 107° is not small enough for the desired accuracy.

The objective of the fifth and sixth experiments is to demonstratec that the second

form of MPFFT in Figure 4-9 works even when its input signal does not satisfy

Assumption 4.1.1. In both experiments, we set £ to be roughly proportional to the
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Figure 4-12: In our fifth experiment, the input signal has 25 modes with coefficients
spaced logarithmically between cni, and 1 and MPFFT is asked to find S = 250
modes with £ = ¢, Which is the energy of the less energetic S modes. In our sixth
experiment, the input signal is p-compressible, which means that the k-th largest
coeficient has magnitude k~1/?. MPFFT is asked to find S = 100 modes with £ =

3 /;_131‘2/ P, This is the total energy minus the energy of the largest S modes. Both

figures show that the average L' error varies linearly with v/€. The errorbars are
obtained from the square roots of the empirical variance.
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total energy of the signal minus the energy of its top S modes. We also pick N =~ 222,
Cliters = 20, Cryu = 1.5 and By, = 32 and add no Gaussian noise to the signal.
Numerically, we observe that MPFFT almost always terminates with less than S
modes found, but the average L' error will be roughly proportional to V€. Their
running times are consistent with the first experiment for S = 100, 250.

For the fifth experiment, the locations of 25 modes are independently and uni-
formly chosen from [N], and their magnitudes are spaced logarithmically between
Cmin and 1 where ¢y, is varied between 1077 and 10~3. MPFFT is asked to recover
only § = 250 modes with £ = ¢,,;,. We run MPFFT 1000 times and plot the empirical
mean of the average L' error versus cp;, in Figure 4-12a.

For the sizth experiment, we consider a p-compressible signal. The k-th largest
Fourier coefficient of a p-compressible signal has magnitude ¥~/ for 1 < k < N. In
our experiment, these N modes are fully randomly permuted. Fix S = 100 and pick
£ = 52=5'"%?. We run MPFFT 1000 times and plot the empirical mean of the

2/p—-1

average L' error versus 1/p in Figure 4-12b.

4.6.2 Collision detection

The collision detector plays a crucial role when Cy, is close to 1 and the chance
of mode collision is high. In Section 4.3, we show that under some circumstances,
MatrixPencil in Figure 4-5 will return a p that reflects the energy of the subdominant
modes in its input signal. In this section, we perform two numerical experiments to
check this claim.

In the first experiment, we simulate what happens in a bin with an isolated mode
after a few iterations of MPFFT: there is one heavy mode and many small modes
which come from well-estimated modes in previous iterations. Here, we have 10 small
modes with total energy 107*. To be concrete, our signal is z; = 3 .o, c,e?™ést
where ¢g = 1 and for 1 < s < 10, ¢, = (—1)* - 107%/+/10. The frequencies £,’s are
independently and uniformly distributed in [0,1). We pick alternating signs for the

small modes because Proposition 4.3.1 suggests that Zﬁl ¢s = 0 is the worst case

scenario for our collision detector. We slowly increase J and plot the empirical cdf
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Figure 4-13: On the left, we fix 1 heavy mode and generate 10 small modes with
frequencies uniformly chosen from [0,1). The total energy of the 10 small modes is
10~* and they have alternating signs. From 10° trials, we obtain an empirical cdf of
u returned by MatrixPencil in Figure 4-5 with Q = 1. The left figure shows that it
is very unlikely for u to be much smaller than the total energy of the small modes.
For the right figure, we fix J = 3 and consider a signal with 7" heavy modes. Each of
these modes have magnitude 1. Again, we perform 108 trials and obtain an empirical
cdf of p. The plot shows that as T increases, it becomes very unlikely for p to be
much smaller than 1.
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of 1 in Figure 4-13a. The plot suggests that as J increases, it becomes extremely
unlikely that p? is much smaller than the total energy of the small modes. This
agrees with Corollary 4.3.7.

For the second experiment, we simulate what happens in a bin with more than one
heavy mode. The input signal to MatrixPencil is z; = Zst_ol ce?™%st where ¢, has
magnitude 1 and a random phase so that E ZZ:J ¢s = 0 and &, is uniformly chosen
from [0,1). Fix J = 3. Observe in Figure 4-13b that as T increases, it becomes very
unlikely for x4 to be much less than 1. This is consistent with Theorem 4.3.3 and

Proposition 4.3.9.
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Appendix A

A.1 Khintchine inequalities

In this section, we present some probabilistic results used in our proofs. The first
theorem is used to decouple homogeneous Rademacher chaos of order 2 and can be

found in [22, 64] for example.

Theorem A.1.1. Let (u;) and (@;) be two iid sequences of real-valued random vari-
ables and A;; be in a Banach space where 1 < 4,5 < n. There exists universal

constants C1,Cy > 0 such that for any s > 1,

s\ 1/s s\ 1/s
(E ) < CC 1/3( ) : (A.1)

A homogeneous Gaussian chaos is one that involves only products of Hermite

1<i#j<n

E uiuJ ij

1<i,j<n

polynomials with the same total degree. For instance, a homogeneous Gaussian chaos
of order 2 takes the form 33, ;.. 6:igj Ay + >i1 (g7 — 1)Au. It can be decoupled

according to Arcones and Giné [3].

Theorem A.1.2. Let (u;) and (@;) be two #id Gaussian sequences and A;; be in a

Banach space where 1 < 1,7 < n. There exists universal constants Cy,Cy > 0 such

s\ 1/s s\ 1/s
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that for any s > 1,

(E

Z U,‘Uinj + i(uf — l)An

1<i#j<n i=1

E ’U,z’U,J ij

1<4,j<s




Remark A.1.3. For Rademacher chaos, C1 = 4 and Cy = 1. For Gaussian chaos,
we can integrate Equation (2.6) of [3] (with m = 2) to obtain C, = 2'/2 and Cp = 214

Better constants may be available.

We now proceed to the Khintchine inequalties. Let ||, denote the s-Schatten
norm. Recall that [|A]lg, = (3;|0i|*)/* where o; is a singular value of A. The
following is due to Lust-Piquard and Pisier [52, 53].

Theorem A.1.4. Let s > 2 and (u;) be a Rademacher or Gaussian sequence. Then
for any set of matrices {Ai}1<i<n,

s 1/s
(IE ) < sY/2 max ( ) .
Cs Cs

The factor s'/2 above is not optimal. See for example [12] by Buchholz, or [65, 72].

H
Cy

"
E U Ay
i=1

(> Ay
i=1

(> Audpy?
i=1

In [64], Theorem A.1.4 is applied twice in a clever way to obtain a Khintchine

inequality for a decoupled chaos of order 2.

Theorem A.1.5. Let s > 2 and (u;) and (4;) be two independent Rademacher or

Gaussian sequences. For any set of matrices {Aijhi<ij<n,

s 1/s

E

E uiﬂinj

1<ij<n

< 2Y5g max (HQl/zl

R

N1 N el

Cs
where Q =31 icn AfjAy and R= 3, .., AijA}; and F,G are the block matrices

(Aij)i<ij<n, (Af)1<ij<n TeSpPectively.

For Rademacher and Gaussian chaos, higher moments are controlled by lower
moments, a property known as “hypercontractivity” [3, 22|. This leads to exponential
tail bounds by Markov’s inequality as we illustrate below. The same result appears

as Proposition 6.5 of [65].

Proposition A.1.6. Let X be a nonnegative random wvariable. Let o,c,a > 0. Sup-

158



pose (B X*)V/* < gct/*s¥* for all sp < s < co. Then for any k >0 and u > s(l)/a,

P (X > efou) < cexp(—ku®).

Proof. By Markov’s inequality, for any s > 0, P (X > efou) < & <¢ (“1/“) .

Pick s = u® > sy to complete the proof. O

Proposition A.1.7. Let (u;) be a Rademacher or Gaussian sequence and Cy,Cs be
constants obtained from Theorem A.1.1 or A.1.2. Let {A;j}1<ij<n be a set of p by p
matrices, and assume that the diagonal entries Ay are positive semidefinite. Define
M = 3, uu;Ay and o = Cymax(|Q))Y2, | RIV2, |IF|l, |Gl) where Q, R, F,G are as
defined in Theorem A.1.5. Then

P(|M —E M| > eou) < (2Cynp) exp(—u).

Proof. We will prove the Gaussian case first. Recall that the s-Schatten and spectral
norms are equivalent: for any A € C™", ||A| < ||Allg, < r*/*||A|l. Apply the
decoupling inequality, that is Theorem A.1.2, and deduce that for any s > 2,

s 1/s

1<ig<n

Cs

Invoke Khintchine’s inequality, that is Theorem A.1.5, and obtain

(E||M — N|P)/* < C1(2C,)*s max(|| Q2|

|RY?|| . IFllg, > 1Glle,)
< Cy(2Cynp) Ve s max(| QY2 | RIMA, | F I, 1G]
< 0(2C,np)*s.

Cs?

Apply Proposition A.1.6 with ¢ = 2Cynp and k = a = 1 to complete the proof for
the Gaussian case. For the Rademacher case, we take similar steps. First, decouple
(E||M — N||°)*/* using Theorem A.1.1. This leaves us a sum that excludes the A;’s.
Apply Khintchine’s inequality with the A;;’s zeroed. Of course, @, R, F, G in Propo-
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sition A.1.5 will not contain any A;’s, but this does not matter because A};A; and
A AY and Ay are all positive semidefinite for any 1 < 7 < n and we can add them

back. For example, ||{A;;)1<izi<nll < l1(Aij)1<ii<nll as block matrices. O

A.2 Other probabilistic inequalities

Theorem A.2.1 (Theorem 1.6 of [74]). Consider a finite sequence {Gr} of inde-
pendent, random, Hermitian matrices with dimension d. Assume EG, = 0 and

|Gkl < R. Let 6® = |3, EG%||. For anyt >0,

2
P( ZT)SQdexp(—%}/éﬂ/zs).

Corollary A.2.2. Assume the same set-up as Theorem A.2.1. Let Cy = 4, C5 =

\V2(14+ %) and Cg = (C4/Cs)? = 24/7. For any0 < t < 06;’2—22,

d

Proof. Apply Theorem A.2.1 with T = ¢t}/2C5. Our upper bound on ¢ ensures that

>a
k

>a.
k

> Csatl/ 2) < 2de”t.

a? T2/2 T2/2  _  dhCE/2
T < C4% - Thus, the exponent WRTL/3 is at least ST = ey =t

O
Here is an elementary result about the tail of a Gaussian distribution.
Proposition A.2.3. For any z >0, [° et gy < ée‘zz/%'z.

Proof. This is proved by integration by parts. For simplicity, let ¢ = 1. Write
f°° l(te—t2/2)dt _ _{%e~t2/2]t=oo _ fzoo tlze“tz/"“’dt < %6_22/2. n

z t t=z

A.3 Linear algebra

Recall the definitions of x(B) and A(B) at the beginning of the paper. The following

concerns probing with multiple vectors (cf. Section 2.1.3).

160



Proposition A.3.1. Let I, € C%9 be the identity. Let B = {B,...,B,}. Let
B =1, ® B; and B'= {B,...,B,}. Then k(B) = k(B’) and A(B) = A(B').

Proof. Define N € CP*P such that Ny = (Bj, By). Define N' € CP*? such that

N}, = (B}, B;). Clearly, N' = gN, so their condition numbers are the same and
K(B) = K(B').

_ n _ 4 [{n)* /2 _ |All(ng)!/2 __ | Aln/2

For any A = B; € C™" and A' = B}, we have ”A'I;]F = lIAllpZW = A

Hence, A(B) = A\(B'). O
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