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Abstract

In this thesis, we present three different randomized algorithms that help to solve
matrices, compute low rank approximations and perform the Fast Fourier Transform.

Matrix probing and its conditioning

When a matrix A with n columns is known to be well approximated by a linear
combination of basis matrices B1,... , Bp, we can apply A to a random vector and
solve a linear system to recover this linear combination. The same technique can
be used to obtain an approximation to A-'. A basic question is whether this linear
system is well-conditioned. This is important for two reasons: a well-conditioned
system means (1) we can invert it and (2) the error in the reconstruction can be
controlled. In this paper, we show that if the Gram matrix of the B,'s is sufficiently
well-conditioned and each B, has a high numerical rank, then n oc p log2 n will ensure
that the linear system is well-conditioned with high probability. Our main application
is probing linear operators with smooth pseudodifferential symbols such as the wave
equation Hessian in seismic imaging. We also demonstrate numerically that matrix
probing can produce good preconditioners for inverting elliptic operators in variable
media.

Skeleton decompositions in sublinear time

A skeleton decomposition of a matrix A is any factorization of the form A:CZAR:
where A:C comprises columns of A, and AR: comprises rows of A. In this paper,
we investigate the conditions under which random sampling of C and R results in
accurate skeleton decompositions. When the singular vectors (or more generally the
generating vectors) are incoherent, we show that a simple algorithm returns an ac-
curate skeleton in sublinear 0(f3) time from f ~ k logn rows and columns drawn
uniformly at random, with an approximation error of the form O(2cxk) where 0k is
the k-th singular value of A. We discuss the crucial role that regularization plays in
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forming the middle matrix U as a pseudo-inverse of the restriction ARC of A to rows
in R and columns in C. The proof methods enable the analysis of two alternative
sublinear-time algorithms, based on the rank-revealing QR decomposition, which al-
low us to tighten the number of rows and/or columns sampled to k with an error
bound proportional to 0-k.

Sparse Fourier transform using the matrix pencil method

One of the major applications of the FFT is to compress frequency-sparse signals. Yet,
FFT algorithms do not leverage on this sparsity. Say we want to perform the Fourier
transform on x E CN to obtain some , which is known to be S-sparse with some
additive noise. Even when S is small, FFT still takes 0(N log N) time. In contrast,
SFT (sparse Fourier transform) algorithms aim to run in O(S) time ignoring log
factors. Unfortunately, SFT algorithms are not widely used because they are faster
than the FFT only when S < N. We hope to address this deficiency. In this
work, we present the fastest known robust O(S)-time algorithm which can run up to
20 times faster than the current state-of-the-art algorithm AAFFT. The major new
ingredient is a mode collision detector using the matrix pencil method. This enables
us to do away with a time-consuming coefficient estimation loop, use a cheaper filter
and take fewer samples of x. We also speed up a crucial basic operation of many
SFT algorithms by halving the number of trigonometric computations. Our theory
is however not complete. First, we prove that the collision detector works for a few
classes of random signals. Second, we idealize the behavior of the collision detector
and show that with good probability, our algorithm runs in O(S log 2 - log N) time

and outputs a O(S)-sparse ' such that 1' - XI12 < (1 + e)| -11: 2 where X, is the
best exact S-sparse approximation of k.

Thesis Supervisor: Laurent Demanet
Title: Assistant Professor
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Chapter 1

Overview

This dissertation consists of three main parts. In this chapter, we briefly describe

what each of the three parts is about. Note that in each part, a different notation

may be set up.

1.1 Matrix probing and its conditioning

Matrix probing is a simple idea that can be used for preconditioning and system

identification. Let A be a large n x n matrix with not much information. Let p be

a small positive integer. Suppose we know that A ~ E= cB, for some predefined

B,'s. Let c = (cl, ... , c,)" be the vector of coefficients. The idea of matrix probing

is to recover c by applying A to random vectors. Let u be a random Gaussian vector.

Compute v = Au. Observe that

Lc ~ v where L = (BI, . . . , Bpu).

The linear system is then solved to find c. Our work addresses the following question:

to recover c accurately, what assumptions do we need and how big does n have to be

relative to p?

Let (, -) be the Frobenius inner product. Our theory says that if each Bj is

well-conditioned and act in a different way in the sense that (Bi, Bj) ~ 6 j, then
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n > p ensures that with high probability, L is well-conditioned and we can recover c

accurately and stably. For more details, see Theorem 2.1.3.

Matrix probing can be used to approximately invert a matrix. The idea is to

apply A-' to v = Au where u is a random Gaussian vector. The steps are:

1) Generate one random Gaussian vector u. Compute v = Au.

2) Compute Blv,..., Bpv and form L = (B1,v.... , Bv).

3) Solve Lc = u to estimate the coefficients ci's.

In our applications, we considered structured matrices A for which a good choice

is to take the B-'s to be elementary pseudodifferential symbols. More on pseudodif-

ferential symbols can be found in Section 2.3. If matrix-vector multiplications take

0(n) time for our structured matrix A, then matrix probing takes only 0(np2) time.

This is comparable with multigrid methods which we find more restrictive. We find

it intriguing that A- can be well-approximated merely by applying A to one random

vector.

A major application is inverting the wave equation Hessian in seismic imaging

[231. Consider the least squares problem minx lb - Ax112 where b is data, A is the

linearized forward operator and x is the model. A popular method to solve this is

the Newton method. It converges in very few iterations, but requires us to compute

(A*A)- 1 , the inverse of the Hessian. Our numerical experiments indicate that matrix

probing can produce a high quality approximation of (A*A) 1 .

1.2 Sublinear randomized algorithms for skeleton de-

compositions

We are interested in fast algorithms that produce low rank decompositions given

partial information of a matrix. Unlike matrix completion [13], we do not perform

any optimization. The algorithms we consider use only numerical linear algebra and

run in sublinear time, i.e., o(n 2 ) time if the matrix is of size n. Our work has many
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applications. For example, it can be used to compute low rank approximations of

Green's functions of many PDEs used in Boundary Integral Equation methods.

Let A be a n x n matrix. We seek to compute matrix skeletons [35] that approx-

imate A. Matrix skeletons take the form of CUR where C is a column subset of A

and R is a row subset of A. This representation is especially space-saving if we have

a closed form or compressed representation of A. Suppose A is approximately rank

k. Let f > k log n. We considered the following 0(0) time algorithm which returns

a rank t matrix skeleton. The pseudocode is on the left, while the Matlab code is on

the right.

1) Uniformly sample f rows of A to form R. r=randperm(n,f); % R=A(r,:);

2) Uniformly sample f columns of A to form c=randperm(n,f); % C=A(:,0;

C.

3) Let Z G Cxe be the intersection of C, R. Z=A(r,c);

4) Let Z' be Z with singular values less than U=pinv(, delta);

J removed. Let U = Z'+, i.e., U is the

thresholded pseudoinverse of Z.

5) Return implicitly the matrix skeleton (Return r,c,u)

CUR.

The above algorithm works well in practice and is very simple compared to meth-

ods such as Adaptive Cross Approximation [5]. We like to understand when the above

algorithm works well.

Suppose A ~ XBY* where X, Y are n x k matrices with orthonormal columns

and B is not necessarily diagonal. Like in matrix completion, assume that X, Y

are incoherent. This means all the entries of X, Y are of magnitude 0(n- 1/2 ). It is

instructive to consider Y = ( k0x), which is not incoherent. In this case, C - 0 with

high probability and the above algorithm fails. For uniform sampling to work, the

incoherence assumption on X, Y seems to be necessary.

Here is what our main result or Theorem 3.1.2 says. Let c = jjA ~ XBY*I where

is the operator norm. Suppose X, Y are incoherent, f > k log n and the above

13



algorithm is run with 6 -- e, then with high probability the algorithm will return a

skeleton decomposition CUR satisfying

1|A - CUR|| < nE/f.

Our numerical experiments in Section 3.4 show that the operator norm error can

blow up as 6 -+ 0, suggesting that the thresholding in Step 4 is indeed necessary.

We also considered the following O(nk2)1 time algorithm. Its main advantage is that

only k columns are selected instead of f > k log n.

1) Uniformly sample p rows of A to form R. r=randperm(n,p); R=A(r,:);

2) Run RRQR [36] on R to select k columns. c=rrqr(R,k); C=A(: ,c);

3) Let Z E CPxk be the intersection of C, R. Z=A(r,c);

4) Let U = Z+. No thresholding is needed. U=pinv(Z);

5) Return the matrix skeleton CUR.

In Step 2, we use the Rank Reveal QR or Interpolative Decomposition [17, 36] to

deterministically select k columns of R. Using the same proof framework, we show

that under similar assumptions on A as before, i.e., A - XBY*, e = 11A - XBY* 11,

e > k log n, X is incoherent, then the above algorithm will with high probability

return a skeleton decomposition CUR satisfying 1IA - CUR II < ne. For more details,

see Theorem 3.3.2.

1.3 Sparse Fourier transform using the matrix pencil

method

Frequency-sparse signals are abundant in our world. A natural question to ask is:

if the signal is frequency-sparse, can we find its Fourier coefficients faster than the

FFT? To be concrete, if the signal is of size N and has S large Fourier coefficients,

can we find these coefficients in 5(S) time instead of O(N log N) time?

16(-) is the O(-) notation with log factors dropped.
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In 2002, Gilbert, Indyk et al. [33, 321 provided an algorithm which runs in

0(S log' N) time for some c > 2. Although its running time is near-optimal in theory,

it is not very useful in practice. The reason is that we need S to be much smaller

than N for it to be faster than FFT. Recently, Hassanieh, Indyk et al. [41] proposed

a new algorithm sFFT1.0 which is significantly faster in practice. For N = 222, it

is able to beat FFT for S < 10002. The caveat is that its running time is O(V7NS)

which does not scale well with N.

Our contribution is the design of the fastest known robust 0(S)-time sparse Fourier

transform (SFT) algorithm. As of now, it is at least 5 times faster than AAFFT even

when it is using conservative parameters that favor robustness to noise. For more,

see Figure 4-1 and the numerical experiments in Section 4.6.1. Our main idea is to

combine the matrix pencil method [45], a well-established spectral estimation tool,

with sFFT3.0 [40], a fast but nonrobust SFT algorithm. By analyzing the spectral

properties of matrices formed from translates of a signal, we are able to detect "mode

collision" and speed up the estimation of coefficients. To understand how this works,

we need a review of sFFT3.0. Here are its main steps.

1. Let x E CN be our signal and X be its Fourier transform. Bin the modes by

convolving X^ with a smoothed boxcar filter of width - in the frequency space

[0, 1) where B is the number of bins. Obtain a Yo C CB such that

Yb~ S xkfor any b=0,...,B -1.
k in bin b

By "k in bin b", we mean that [kB/NJ = b or equivalently, < ; < L.

2. Let xr be x translated. Apply the previous step to x' and obtain Y, C CB. As

Er is . modulated,

Y S xke2,ir/N for any b = 0,..., B - 1.
k in bin b

2 We compile sFFT1.0 and sFFT2.0 using the same compiler flags as FFTW which include -03
and -mtune=native. The latter turns on hardware optimization which is likely to be unfavorable to
SFT algorithms. The hardware optimization however does not seem to affect the comparison with
FFTW on the FFTWMEASURE option.
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3. Fix a bin b. Suppose there is only one mode ko in this bin. Then yb ~

~2rikorN N yb
',e2k /. We call ko an isolated mode. Estimate ko as Narg and Xk as

Yb. 00

4. By making B > S, we expect a constant proportion of the modes to be isolated

and found. Let x' be x with its modes randomly and implicitly shuffled. Repeat

the above steps on x'.

The number of modes left to be found decay geometrically and only O(log S) repeti-

tions are needed.

When there is noise, Step 3 does not work and we have to identify ko bit by bit.

The idea of finding the index of an isolated mode in a multiscale fashion is not new.

What is new here is a mode collision mechanism based on the matrix pencil method

[45]. Fix a bin b. Define X E CN by X, = Y2 = ke2brikx/e. Apply the

matrix pencil method to X to try to find the modes in bin b. This involves forming

a J x J Toeplitz matrix (cf. (4.7))

Xo X_1 ... X-j+1

1 X 1  XO ... X-J+2

X XJ_ 2 ... XO

Let p 2 = 1IA112I - 1Ail 2 = 2 o-?(A) where o-j(A) is the j-th largest singular value of

A and 11-IIF is the Frobenius norm. The idea is that if there are more than one mode

in this bin, then it is likely that p is much bigger than what we expect from noise. In

other words, if p is small, then we are confident that we have an isolated mode and

will estimate the coefficient k using (Y)igi-;J_1. Existing iterative SFT algorithms

have to run a separate loop to estimate these coefficients. This loop requires more

bins than is optimal, a more expensive filter for binning, additional random shuffles,

which amount to more signal samples and a slower algorithm.

In Section 4.3, we assume that the modes landing in a bin are fully randomly

shuffled, and show that for some common cases, y is unlikely to be small when there
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is more than one heavy mode in the bin. One example is that the total energy of the

heavy modes in the bin is sufficiently large relative to the heaviest mode in the bin.

In Theorem 4.1.3, we idealize the effectiveness of the collision detector and show that

with good probability, our algorithm will terminate in O(! log N log 2 N) time with

a 1 + E relative f 2-error in the estimation of :, where X, is the best exact S-sparse

approximation of ,. We argue informally at the beginning of Section 4.5 that our

algorithm must run in Q( log N log 2 N) time.
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Chapter 2

Matrix probing and its conditioning

2.1 Introduction

The earliest randomized algorithms include Monte Carlo integration and Monte Carlo

Markov chains [2]. These are standard techniques in numerical computing with

widespread applications from physics, econometrics to machine learning. However,

they are often seen as the methods of last resort, because they are easy to implement

but produce solutions of uncertain accuracy.

In the last few decades, a new breed of randomized algorithms has been developed

by the computer science community. These algorithms remain easy to implement,

and in addition, have failure probabilities that are provably negligible. In other

words, we have rigorous theory to ensure that these algorithms perform consistently

well. Moreover, their time complexity can be as good as the most sophisticated

deterministic algorithms, e.g., Karp-Rabin's pattern matching algorithm [49] and

Karger's min-cut algorithm [48].

In recent years, equally attractive randomized algorithms are being developed in

the numerical community. For example, in compressed sensing [15], we can recover

sparse vectors with random measurement matrices and f minimization. Another

interesting example is that we can build a good low rank approximation of a matrix

by applying it to random vectors [39].

Our work carries a similar flavor: often, the matrix A can be approximated as
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a linear combination of a small number of matrices and the idea is to obtain these

coefficients by applying A to a random vector or just a few of them. We call this

"forward matrix probing." What is even more interesting is that we can also probe

for A- 1 by applying A to a random vector. We call this "backward matrix probing"

for a reason that will be clear in Section 2.1.5.

Due to approximation errors, the output of "backward probing' denoted as C, is

only an approximate inverse. Nevertheless, as we will see in Section 2.4, C serves very

well as a preconditioner for inverting A, and we believe that its performance could

match that of multigrid methods for elliptic operators in smooth media.

We like to add that the idea of "matrix probing" is not new. For example, Chan

[19, 18] et. al. use the technique to approximate A with a sparse matrix. Another

example is the work by Pfander et. al. [60] where the same idea is used in a way

typical in compressed sensing. In the next section, we will see that their set-up is

fundamentally different from ours.

2.1.1 Forward matrix probing

Let B = {B 1,..., B,} where each B3 E C"rn" is called a basis matrix. Note that B

is specified in advance. Let u be a Gaussian or a Rademacher sequence, that is each

component of u is independent and is either a standard normal variable or ±1 with

equal probability.

Define the matrix L E C"XP such that its j-th column is Bju. Let A E C"'<" be

the matrix we want to probe and suppose A lies in the span of B. Say

p

A = ciBi for some ci,. .. , c, E C.
i=1

Observe that Au = 3 ci(Biu) = Lc. Given the vector Au, we can obtain the

coefficient vector c = (ci,. .. , c,)T by solving the linear system

Lc = Au. (2.1)
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In practice, A is not exactly in the span of a small B and (2.1) has to be solved

in a least squares sense, that is c = L+ (Au) where L+ is the pseudoinverse of L.

We will assume that p n. Otherwise there are more unknowns than equations

and there is no unique solution if there is any. This differs from the set-up in [60]

where n > p but A is assumed to be a sparse linear combination of B 1,..., Bp.

2.1.2 Conditioning of L

Whether (2.1) can be solved accurately depends on cond(L), the condition number

of L. This is the ratio between the largest and the smallest singular values of L and

can be understood as how different L can stretch or shrink a vector.

Intuitively, whether cond(L) is small depends on the following two properties of

B.

1. The B's "act differently" in the sense that (Bj, Bk) e Jjk for any 1 < j, k < p.1

2. Each B has a high rank so that Btu,..., Bpu E C' exist in a high dimensional

space.

When B possesses these two properties and p is sufficiently small compared to

n, it makes sense that L's columns, B 1u,..., Bu, are likely to be independent, thus

guaranteeing that L is invertible, at least.

We now make the above two properties more precise. Let

M = L*L E CPXP and N = EM. (2.2)

Clearly, cond(M) = cond(L) 2 . If E M is ill-conditioned, there is little chance that

M or L is well-conditioned. This can be related to Property 1 by observing that

Nik = E Mik = tr(Bj*Bk) = (Bj, Bk) . (2.3)

'Note that (-,-) is the Frobenius inner product and jk is the Kronecker delta.
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If (Bj, Bk) 6 jk, then the Gram matrix N is approximately the identity matrix

which is well-conditioned. Hence, a more quantitative way of putting Property 1 is

that we have control over r,(B) defined as follows.

Definition 2.1.1. Let B = {B 1,... , B,} be a set of matrices. Define its condition

number K(B) as the condition number of the matrix N G CP'P where Njk = (Bj, Bk).

On the other hand, Property 2 can be made precise by saying that we have control

over A(B) as defined below.

Definition 2.1.2. Let A E Cr"xf. Define its weak condition number2 as

||AI|n1/2
A(A) = A1

Let B be a set of matrices. Define its (uniform) weak condition number as

A(B) = max A(A).
AEB

We justify the nomenclature as follows. Suppose A E C"'" has condition num-

ber k, then IIAH2 = a o > ncr2M > n1A I2 /k2. Taking square root, we ob-

tain A(A) < k. In other words, any well-conditioned matrix is also weakly well-

conditioned. And like the usual condition number, A(A) > 1 because we always have

|| A||F n'/2 JAJ

The numerical rank of a matrix A is 1IAI12 / 1AI12 = nA(A)- 2 , thus having a small

A(A) is the same as having a high numerical rank. We also want to caution the reader

that A(B) is defined very differently from n(B) and is not a weaker version of n(B).

Using classical concentration inequalties, it was shown [23] that when A(B) and

K(B) are fixed, p = 6(n1 /2)3 will ensure that L is well-conditioned with high proba-

bility.

Here we establish a stronger result, namely that p = 0(n) suffices. The implication

is that we can expect to recover 0(n) instead of O(n1 / 2 ) coefficients. The exact

2Throughout the chapter, II-II and 11k denote the spectral and Frobenius norms respectively.
3Note that 0(n) denotes O(nlogen) for some c > 0. In other words, ignore log factors.
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statement is presented below.

Theorem 2.1.3 (Main result). Let C1, C2 > 0 be numbers given by Remark A.1.3 in

the Appendix A.1. Let B = {B 1,..., B,} where each Bj E C"nxn. Define L c CnxP

such that its j-th column is Bju where u is either a Gaussian or Rademacher sequence.

Let M = L*L, N = E M = r(B) and A = A(B). Suppose

n > p (CA log n)2 for some C > 1.

Then
1't |N tC

P (JIM - N > < 2C 2pnl-a where a = .
K eC1

The number C1 is small. C2 may be large but it poses no problem because n-a

decays very fast with larger n and C. With t = 1/2, we deduce that with high

probability,

cond(M) < 2K + 1.

In general, we let 0 < t < 1 and for the probability bound to be useful, we need

a > 2, which implies C > 2eC1 > 1. Therefore the assumption that C > 1 in the

theorem can be considered redundant.

We remark that Rauhut and Tropp have a new result (a Bernstein-like tail bound)

that may be used to refine the theorem. This will be briefly discussed in Section 2.4.1

where we conduct a numerical experiment.

Note that when u is a Gaussian sequence, M resembles a Wishart matrix for which

the distribution of the smallest eigenvalue is well-studied [27]. However, each row of

L is not independent, so results from random matrix theory cannot be used in this

way.

An intermediate result in the proof of Theorem 2.1.3 is the following. It conveys

the essence of Theorem 2.1.3 and may be easier to remember.

Theorem 2.1.4. Assume the same set-up as in Theorem 2.1.3. Suppose n = 0(p).

Then

E JIM - Nil <; C(logn) uNit (p/n)1/ 2 A for some C > 0.
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A numerical experiment in Section 2.4.1 suggests that the relationship between p

and n is not tight in the log factor. Our experiment show that for E JIM - Nil / INJI

to vanish as p -+ oo, n just needs to increase faster than p log(np), whereas Theorem

2.1.4 requires n to grow faster than plog2 n.

Next, we see that when L is well-conditioned, the error in the reconstruction is

also small.

Proposition 2.1.5. Assume the same set-up as in Theorem 2.1.3. Suppose A =

p=l djBj + E where ||E|| < e and assume whp,

JIM - NiI < for some 0 < t < 1.

Let c = L+Au be the recovered coefficients. Then whp,

A - cB, < 0 - I 1t

If e = o(p-'/ 2), then the proposition guarantees that the overall error goes to zero

as p -+ oo. Of course, a larger n and more computational effort are required.

2.1.3 Multiple probes

Fix n and suppose p > n. L is not going to be well-conditioned or even invertible.

One way around this is to probe A with multiple random vectors ul, ... , Uq C Cn at

one go, that is to solve

L'c = A'u,

where the j-th column of L' and A'u are respectively

Bjui Aui

and Au .

Bjuq Auq

For this to make sense, A' = I0 9 A where Iq is the identity matrix of size q. Also
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define Bj = Iq 0 B, and treat the above as probing A' assuming that it lies in the

span of B' ={B,... , B'}.

Regarding the conditioning of L', we can apply Theorem 2.1.3 to A' and B'. It

is an easy exercise (cf. Proposition A.3.1) to see that the condition numbers are

unchanged, that is t,(B) = i,(B') and A(B) = A(B'). Applying Theorem 2.1.3 to A'

and B', we deduce that cond(L) < 2r, + 1 with high probability provided that

nq oc p(KA log n)2.

Remember that A has only mn degrees of freedom; while we can increase q as much

as we like to improve the conditioning of L, the problem set-up does not allow p > mn

coefficients. In general, when A has rank ii, its degrees of freedom is i(m + n - h)

by considering its SVD.

2.1.4 When to probe

Matrix probing is an especially useful technique when the following holds.

1. We know that the probed matrix A can be approximated by a small number

of basis matrices that are specified in advance. This holds for operators with

smooth pseudodifferential symbols, which will be studied in Section 2.3.

2. Each matrix Bi can be applied to a vector in O(max(m, n)) time using only

O (max(m, n)) memory.

The second condition confers two benefits. First, the coefficients c can be recov-

ered fast, assuming that u and Au are already provided. This is because L can be

computed in O(max(m, n)p) time and (2.1) can be solved in O(mp 2 +P) time by QR

factorization or other methods. In the case where increasing m, n does not require

a bigger B to approximate A, p can be treated as a constant and the recovery of c

takes only O(max(m, n)) time.

Second, given the coefficient vector c, A can be applied to any vector v by summing

over Biv's in O(max(m, n)p) time. This speeds up iterative methods such as GMRES
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Require: A+ ~ 11 ciBi.
procedure BAcKWARDPROBING(A, B1 ,... , B,)

Generate u N(O, 1)' iid.
Compute v = Au.
Filter away u's components in null(A). Call this ii.

Compute L by setting its j-column to Bjv.
Solve for c the system Lc = i! in a least squares sense.
return c

end procedure

Figure 2-1: Backward matrix probing.

and Arnoldi.

2.1.5 Backward matrix probing

A compelling application of matrix probing is computing the pseudoinverse A+ of a

matrix A E C"xn when A+ is known to be well-approximated in the space of some

B = {B1,... , B,}. This time, we probe A+ by applying it to a random vector v = Au

where u is a Gaussian or Rademacher sequence that we generate.

Like in Section 2.1.1, define L E C"XP such that its j-th column is Bjv = BjAu.

Suppose A+ = I:', ciBi for some ci,... , c, c C. Then the coefficient vector c can

be obtained by solving

Lc = A+v = A+Au. (2.4)

The right hand side is u projected onto null(A)' where null(A) is the nullspace of

A. When A is invertible, A+Au is simply u. We call this "backward matrix probing"

because the generated random vector u appears on the opposite side of the matrix

being probed in (2.4). The equation suggests a framework for probing A+ as shown

in Figure 2-1.

In order to perform the filtering in Step 3 efficiently, prior knowledge of A may

be needed. For example, if A is the Laplacian with periodic boundary conditions,

its nullspace is the set of constant functions and Step 3 amounts to subtracting the

mean from u. A more involved example can be found in [231. In this work, we invert
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the wave equation Hessian, and Step 3 entails building an illumination mask. Further

comments on [23] are located in Section 2.4.5.

For the conditioning of L, we may apply Theorem 2.1.3 with B replaced with

BA := {BlA,... ,BA} since the j-th column of L is now BAu. Of course, r'(BA)

and A(BA) can be very different from 1(B) and A(B); in fact, '(BA) and A(BA) seem

much harder to control because it depends on A. Fortunately, as we shall see in

Section 2.3.5, knowing the "order" of A+ as a pseudodifferential operator helps in

keeping these condition numbers small.

When A has a high dimensional nullspace but has comparable nonzero singular

values, A(BA) may be much larger than is necessary. By a change of basis, we can

obtain the following tighter result.

Corollary 2.1.6. Let C1,C2 > 0 be numbers given by Remark A.1.3 in the Appendix

A.1. Let A E C"xn, i = rank(A) and BA = {B1A,..., BpA} where each B E Cnxm .

Define L G C"xP such that its j-th column is BAu where u - N(0, 1)n iid. Let

M = L*L, N = E M, K = K(BA) and A = (ii/n)1/2A(BA). Suppose

i > p (CKA log5)2 for some C > 1.

Then

P (IM - N|I > < (2C2p)i 1  wherea= -to
K eC

Notice that i! = rank(A) has taken the role of n, and our A is now maxi, 5 fil/2IyAIIIBjAIIF

which ignores the n - h zero singular values of each BjA and can be much smaller

than A(BA).

2.2 Proofs

2.2.1 Proof of Theorem 2.1.3

Our proof is decoupled into two components: one linear algebraic and one probabilis-

tic. The plan is to collect all the results that are linear algebraic, deterministic in
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nature, then appeal to a probabilistic result developed in the Appendix A. 1.

To facilitate the exposition, we use a different notation for this section. We use

lower case letters as superscripts that run from 1 to p and Greek symbols as subscripts

that run from 1 to n or m. For example, the set of basis matrices is now B =

{B1, . .. , BP.

Our linear algebraic results concern the following variables.

1. Let Tik = Bi*Bk G Cflf and T , C CPXP such that the (j, k)-th entry of T , is

the ( , q)-th entry of Tik.

2. Let Q = El1 ,7,7:f T*

3. Let S = _ BiBi* C C'.

4. Let F and G be block matrices (Te,) 1  ,, and (T ,) 1<C, 7 respectively.

The reason for introducing T is that M can be written as a quadratic form in Tn

with input u:

M = U077TOY.
l ,77<n

Since u has unit variance and zero mean, N = E M = En 1 T C.

Probabilistic inequalties applied to M will involve T .., which must be related to

B. The connection between these n by n matrices and p by p matrices lies in the

identity

T = B' Bi. (2.5)
(=j

The linear algebraic results are contained in the following propositions.

Proposition 2.2.1. For any 1 < , < n, TC, = T,,. Hence, T , N are all Hermi-

tian. Moreover, they are positive semidefinite.

Proof. Showing that TC, = T,* is straightforward from (2.5). We now check that

T 6 is positive semidefinite. Let v E CP. By (2.5), v*TCgv = j: E 73vvkBjB k =

Zk vkB 12 > 0. It follows that N = E TC is also positive semidefinite. L
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Proposition 2.2.2. Qik = tr(Bi*SBk) and Q = Z 1<,n< T

Proof. By (2.5), Qik = E, (T'l, Tik) = T, tr(Bi*BB'*Bk). The summation and

trace commute to give us the first identity. Similarly, the (j, k)-th entry of E T4,TO*7

is E, (Tkl, Til) = E, tr(B*Bk Bi*B). Cycle the terms in the trace to obtain Qik. 0

Proposition 2.2.3. Let u G CP be a unit vector. Define U = _1a ukBk G Cmxn.

Then IIU||2 < IIN||.

Proof. IUH2 = tr(U*U) = tr(Ugk 12ukBi*Bk). The sum and trace commute and due

to (2.3), |IIU||2 = Zi UkNjk < ||N||.

Proposition 2.2.4. IQ11 < IISII IIND|.

Proof. Q is Hermitian, so IIQ1 = maxu u*Qu where u E CP has unit norm. Now

let u be an arbitrary unit vector and define U = E>i k Bk. By Proposition 2.2.2,

u*Qu = Z gkuniukQik = t(,kujukB*SBk) = tr(U*SU). Since S is positive defi-

nite, it follows from "11ABIIF < |A||IBIIF" that u*Qu = -S1/2U||2 5 jIUI2. By

Proposition 2.2.3, u*Qu < IISII IIN1. 0

Proposition 2.2.5. For any 1 < j p, |jB|| < An- 1 2 ||N1 2. It follows that

1Q|| = T ,T* I pA2II 2 /n.

Proof. We begin by noting that IN I ;> maxj IN"I = max, (Bi, Bi) = maxj IIB' 112

From Definition 2.1.2, |jBil| An- 1/ 2 |Bi1F An1/ 2 1N11 112 for any 1 < j p,

which is our first inequality. It follows that |SI| < E l IIB 1 2 < pA 2 IINiI /n. Apply

Propositions 2.2.4 and 2.2.2 to obtain the second inequality. El

Proposition 2.2.6. F, G are Hermitian, and max(IIFII ,IIG 1) < A 2 IIN (p/n).

Proof. That F, G are Hermitian follow from Proposition 2.2.1. Define F' = (Tik)

another block matrix. Since reindexing the rows and columns of F does not change

its norm, IIFH1 = IIF'11. By Proposition 2.2.5,

||F'l| 2  I j2 < E Bi ||2 |Bk12  A| |1N|| 2 (p/n)2.
j,k=1 j,k=1

The same argument works for G. El
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We now combine the above linear algebraic results with a probabilistic result in

Appendix A.1. Prepare to apply Proposition A.1.7 with Aij replaced with T . Note

that R = E TeT*,a = Q by Proposition 2.2.2. Bound o- using Propositions 2.2.5

and 2.2.6:

- = C1 max(IQII/ 2 ,IRI1/ 2 , IIFII I ,GI)

< C, |INII max((p/n)112(/2 ) 2)

C, u|Ni (p/n)1 /2A.

The last step goes through because our assumption on n guarantees that (p/n)1/2A <

1. Finally, apply Proposition A.1.7 with t INI / = euu. The proof is complete.

2.2.2 Sketch of the proof for Theorem 2.1.4

Follow the proof of Proposition A.1.7. Letting s = log n, we obtain

E JIM - N| (E JIM - NIIs)l/s

" C1(2C2np)1/'s max(IIQI11/ 2 , R||1/2 ,IIFII ,|GII)

" C(logn) JIN (p/n)1 / 2A.

2.2.3 Proof of Proposition 2.1.5

Recall that A is approximately the linear combination E_ d'B= , while _ C3Bi is

the recovered linear combination. We shall first show that the recovered coefficients

c is close to d:

ld - c|| = |L+Au - c||

= |L+(Lc+ Eu) - c||

= |L+Eu||

< E || l .I I
(1 - t) ||NI|
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Let v be a unit n-vector. Let L' be a n x p matrix such that its j-th column is Biv.

Now,

Av - cBiv = (L'd + Ev) - L'c = Ev + L'(d - c).
j=1

Combining the two equations, we have

P K )1/2

A-S cBi <E+E||L'|||ull (.-IN 11  (2.6)
i=1

With overwhelming probability, ljull = O(V/n). The only term left that needs to

be bounded is IIL'll. This turns out to be easy because llBill < An-1/2 1N111/ 2 by

Proposition 2.2.5 and lIL'l2 Z_1 Biv 2 2|NIIp/n. Substitute this into (2.6)

to finish the proof.

2.2.4 Proof of Corollary 2.1.6

Let u ~ N(O, 1)" iid. Say A has a singular value decomposition EAF* where A is

diagonal. Do a change of basis by letting u' = F*u ~ N(O, 1)n iid, B) = F*B3E and

BA = {B'A,... , B',A}. (2.1) is reduced to L'c = Au' where the j-th column of L' is

BjAu'.

Since Frobenius inner products, 11-11 and 11-IF are all preserved under unitary

transformations, it is clear that '.x(BA) = I,(BA) and A(BA) = A(BA). Essentially, for

our purpose here, we may pretend that A = A.

Let i = rank(A). If A has a large nullspace, i.e., i < min(m, n), then BjA has

n - i! columns of zeros and many components of u' are never transmitted to the B''s

anyway. We may therefore truncate the length of u' to fi, let B, E CXfz be B'A

with its columns of zeros chopped away and apply Theorem 2.1.3 with B replaced

with 1 := {B1 , ... , B}. Observe that K(B) = n(BA), whereas A (B) = (h/n)1/2 A(BA)

because IIF = I|BjA 1F and B, = |jBjAj| but B, has h instead of n columns.

The proof is complete.
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2.3 Probing operators with smooth symbols

2.3.1 Basics and assumptions

We begin by defining what a pseudodifferential symbol is.

Definition 2.3.1. Every linear operator A is associated with a pseudodifferential

symbol a(x, ) such that for any u : Rd -+ R,

Au(x) = j e2 7xa(x, )ft()df (2.7)

where 12 is the Fourier transform of u, that is fi( ) = f,,Rd u(x)e -i *xdx.

We refrain from calling A a "pseudodifferential operator" at this point because

its symbol has to satisfy some additional constraints that will be covered in Section

2.3.5. What is worth noting here is the Schwartz kernel theorem which shows that

every linear operator A : S(Rd) -+ S'(1Rd) has a symbol representation as in (2.7)

and in that integral, a(x, ) E S'(Rd x Rd) acts as a distribution. Recall that S is

the Schwartz space and S' is its dual or the space of tempered distributions. The

interested reader may refer to [281 or [70] for a deeper discourse.

The term "pseudodifferential" arises from the fact that differential operators have

very simple symbols. For example, the Laplacian has the symbol a(x, ) = -47r 2 12.

Another example is

Au(x) = u(x) - V -a(x)ablau(x) for some a(x) E Cl(Rd).

Its symbol is
d

a(x, () = 1 + a(x)(47r2 1112) - Z(27riwk)Oa(x). (2.8)
k=1

Clearly, if the media a(x) is smooth, so is the symbol a(x, ) smooth in both x and

an important property which will be used in Section 2.3.3.

For practical reasons, we make the following assumptions about u : Rd -+ R on

which symbols are applied.
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1. u is periodic with period 1, so only ( E Zd will be considered in the Fourier

domain.

2. u is bandlimited, say fL is supported on E [- o o]d C Zd . Any summation

over the Fourier domain is by default over E.4

3. a(x, ) and u(x) are only evaluated at x E X C [0, 1]d which are points uniformly

spaced apart. Any summation over x is by default over X.

Subsequently, (2.7) reduces to a discrete and finite form:

Au(x) = E e2 x a(x, )(). (2.9)

We like to call a(x, ) a "discrete symbol." Some tools are already available for

manipulating such symbols [24].

2.3.2 User friendly representations of symbols

Given a linear operator A, it is useful to relate its symbol a(x, ) to its matrix repre-

sentation in the Fourier basis. This helps us understand the symbol as a matrix and

also exposes easy ways of computing the symbols of A- 1 , A* and AB using standard

linear algebra software.

By a matrix representation (A.) in Fourier basis, we mean of course that Au(j) =

Z Agfi( ) for any q. We also introduce a more compact form of the symbol:

&(j, ) = f{ a(x, ()e 2 idd. The next few results are pedagogical and listed for

future reference.

Proposition 2.3.2. Let A be a linear operator with symbol a(x, ). Let (A..) and

&(j, ) be as defined above. Then

A?7 = Ixa(x, )e- 2 (7- )xdx; a(x, e) e- 2 Erz e 2>rxA77;

77

4To have an even number of points per dimension, one can use E = [-Co, Co -- 1]d for example.
We leave this generalization to the reader and continue to assume C E [-Co, C0 d.

33



A, = &(q - , ); d(j,) =Aj+,-

Proof. Let 7 = + j and apply the definitions. E

Proposition 2.3.3 (Trace). Let A be a linear operator with symbol a(x, ). Then

tr(A) = Z&(O,) = a(x, ) dx.

Proposition 2.3.4 (Adjoint). Let A and C = A* be linear operators with symbols

a(x,6),c(x, ). Then

(j, )= (-jj +); c(X, y) =27i(i-6)(T-V)dy.

Proposition 2.3.5 (Composition). Let A, B and C = AB be linear operators with

symbols a(x, ), b(x, ), c(x, ). Then

C , ) = Zau + - (7)I(( - ,);

c(X, e)= e27i((C )(-Y)a(x, ()b(y, )dy.

We leave it to the reader to verify the above results.

2.3.3 Symbol expansions

The idea is that when a linear operator A has a smooth symbol a(x, ), only a few

basis functions are needed to approximate a, and correspondingly only a small B

is needed to represent A. This is not new, see for example [241. In this paper, we

consider the separable expansion

a(x,.) = ckej(X)g(().
jk

This is the same as expanding A as Zjk cjkBjk where the symbol for Bjk is

ej(x)g( ). With an abuse of notation, let Bik also denote its matrix representa-
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procedure APPLYSYMBOL(u(x)) t> Apply the symbol ej(X)gk( ) to u(X)
Perform FFT on a to obtain ii( ).

Multiply fl( ) by gk( ) elementwise.
Perform IFFT on the previous result, obtaining E e*wOga( )n().
Multiply the previous result by ej (x) elementwise.

end procedure

Figure 2-2: Apply elementary symbol to u(x).

tion in Fourier basis. Given our assumption that E [-o, O]d, we have Bjk E C,,n

where n = (2o + 1)d. As its symbol is separable, Bk can be factorized as

Bjk = F diag(ej (x))F- 1 diag(gk ()) (2.10)

where F is the unitary Fourier matrix. An alternative way of viewing Bjk is that

it takes its input fi(), multiply by gk( ) and convolve it with &g(r), the Fourier

transform of ej(x). There is also an obvious algorithm to apply Bik to u(X) in 0(n)

time as outlined in Figure 2-2. As mentioned in Section 2.1.4, this speeds up the

recovery of the coefficients c and makes matrix probing a cheap operation.

Recall that for L to be well-conditioned with high probability, we need to check

whether N, as defined in (2.3), is well-conditioned, or in a rough sense whether

(Bj, Bk) - Jjk. For separable symbols, this inner product is easy to compute.

Proposition 2.3.6. Let Bk, B,'k' C Cn" be matrix representations (in Fourier ba-

sis) of linear operators with symbols ej (X)gk ( ) and ej, (X)gk (c). Then

(BjkB 3 'kI) = (e,,ej,) (g,g ')

where (ej, ej) = " ej(xi)ey (xj) and x1 ,. . . , ,- are points in [0, 1 ]d uniformly

spaced, and (gk,gkI) = 6gk()g(G).

Proof. Apply Propositions 2.3.3, 2.3.4 and 2.3.5 with the symbols in the &(yq, 6) form.

T

To compute A(B3) as in Definition 2.1.2, we examine the spectrum of '3 3 k for every
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j, k. A simple and relevant result is as follows.

Proposition 2.3.7. Assume the same set-up as in Proposition 2.3.6. Then

0min(Bjk) min Ie (x)I mingI( ) ; U-max(Bjk) < max Ie,(x)I max Ig().
X X

Proof. In (2.10), Fdiag(ej(x))F' has singular values Iej(x)I as x varies over X,

defined at the end of Section 2.3.1. The result follows from the min-max theorem. I

As an example, suppose a(x, ) is smooth and periodic in both x and . It is well-

known that a Fourier series is good expansion scheme because the smoother a(x, C)

is as a periodic function in x, the faster its Fourier coefficients decay, and less is lost

when we truncate the Fourier series. Hence, we pick5

where p() = ( +o)/( 2 6o + 1) maps 6 into [0, 1]d.

Due to Proposition 2.3.6, N = E M is a multiple of the identity matrix and i,(B) =

1 where B = {Bjk}. It is also immediate from Proposition 2.3.7 that A(Bik) = 1 for

every j, k, and A(B) = 1. The optimal condition numbers of this B make it suitable

for matrix probing.

2.3.4 Chebyshev expansion of symbols

The symbols of differential operators are polynomials in 6 and nonperiodic. When

probing these operators, a Chebyshev expansion in 6 is in principle favored over a

Fourier expansion, which may suffer from the Gibbs phenomenon. However, as we

shall see, i,(B) grows with p and can lead to ill-conditioning.

For simplicity, assume that the symbol is periodic in x and that ej (x) = e2 ri.

Applying Proposition 2.3.2, we see that Bik is a matrix with a displaced diagonal and

its singular values are (gk(O)) E_. (Recall that we denote the matrix representation

(in Fourier basis) of Bjk as Bjkas well.)

5Actually, exp(21rik o/(2o + 1)) does not vary with , and we can use (= /(2 o + 1).
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Let Tk be the k-th Chebyshev polynomial. In ID, we can pick

gk( ) =Tk( /1) for k = 1,..., K. (2.12)

Define IITk 12 = (I=- 1 Tk(z) 2dz) 1/ 2 . By approximating sums with integrals, A(Bjk) e

V2-11Tk - = 4- 1/2. Notice that there is no (1 - z2)-1/2 weight factor in the def-

inition of |ITk 112 because e(x)Tk( ) is treated as a pseudodifferential symbol and has

to be evaluated on the uniform grid. In practice, this approximation becomes very

accurate with larger n and we see no need to be rigorous here. As k increases, A(Bjk)

approaches v'2. More importantly, A(Bjk) < A(Bj 1 ) for any j, k, so

A(B) = v.

Applying the same technique to approximate the sum (gk, gA'), we find that

(9k, 9k') oc (1 - (k + k') 2 )- 1 + (1 - (k - k') 2 )- 1 when k + k' is even, and zero otherwise.

We then compute N = E M for various K and plot K(B) versus K, the number of

Chebyshev polynomials. As shown in Figure 2-3(a), K(B) ~ 1.3K. This means that

if we expect to recover p = 0(n) coefficients, we must keep K fixed. Otherwise, if

p = K2 , only p = O(n/ 2) are guaranteed to be recovered by Theorem 2.1.3.

In 2D, a plausible expansion is

gk(A ) = eikiarg Tk2( p(||t||)) for 1 < k2 < K (2.13)

where k = (ki, k2) and p(r) = (Vr/ o) - 1 maps Il(Il into [-1, 1]. We call this the

"Chebyshev on a disk" expansion.

The quantity A(Bjk) is approximately 2 ( f _1 Tk(4(x, y)) 2dx dy)1/2 where

4(x, y) = (2x 2 + 2y 2) 1/2 - 1. The integral is evaluated numerically and appears to
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Figure 2-3: Let K be the number of Chebyshev polynomials used in the expansion
of the symbol, see (2.12) and (2.13). Observe that in 1D, i,(B) = O(K) while in 2D,
n(B) = O(K3 ). These condition numbers mean that we cannot expect to retrieve
p = 0(n) parameters unless K is fixed and independent of p, n.

converge6 to V'2 for large k2. Also, k2 = 1 again produces the worst A(Bjk) and

A (B) < 2.43.7

As for K(B), observe that when k, $ ki, (gkik 2 , gkik) = +1 due to symmetry8 ,

whereas when k, = k', the inner product is proportional to n and is much larger.

As a result, the gk's with different ki's hardly interact and in studying i,(B), one

may assume that ki = k' = 0. To improve i'(B), we can normalize g, such that the

diagonal entries of N are all ones, that is g'(V) = gk(C4)/ Igk( ) II.

6This is because when we truncate the disk of radius &o 2 to a square of length 2 o, most is lost
along the vertical axis and away from the diagonals. However, for large k, Tk oscillates very much
and the truncation does not matter. If we pretend that the square is a disk, then we are back in the
1D case where the answer approaches v2 for large k.

7The exact value is 2(4 - !v/2sinh-'(1))-1/2
8The and - terms cancel each other. Only ( 0 contributes to the sum.

38

-I

B
- -- B' -

102



This yields another set of basis matrices B'. Figure 2-3(b) reveals that

t,(B) = O(K 3 ) and ('i(6) ~ K(B).

The latter can be explained as follows: we saw earlier that (Bjk, Bjk) converges as

k2 increases, so the diagonal entries of N are about the same and the normalization

is only a minor correction.

If a(x, ) is expanded using the same number of basis functions in each direction of

x and , i.e., K = p1 /4, then Theorem 2.1.3 suggests that only p = 6(n2 /") coefficients

can be recovered.

To recap, for both ID and 2D, A(B) is a small number but i,(B) increases with K.

Fortunately, if we know that the operator being probed is a second order derivative

for example, we can fix K = 2.

Numerically, we have observed that the Chebyshev expansion can produce dra-

matically better results than the Fourier expansion of the symbol. More details can

be found in Section 2.4.3.

2.3.5 Order of an operator

In standard texts, A is said to be a pseudodifferential operator of order w if its symbol

a(x, 6) is in C (Rd x Rd) and for any multi-indices a,,3, there exists a constant CaB

such that

joOao9a(x,)j < Cp[6)w--cIa for all 6, where [6] = 1 + 11611.

Letting a = 3 = 0, we see that such operators have symbols that grow or decay

as (1 + II II)w. As an example, the Laplacian is of order 2. The factor 1 prevents [61

from blowing up when 6 = 0. There is nothing special about it and if we take extra

care when evaluating the symbol at ( = 0, we can use

[(] =I||(||.
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For forward matrix probing, if it is known a priori that a(x, ) behaves like [$]w,

it makes sense to expand a(x, )[]~' instead. Another way of viewing this is that

the symbol of the operator Bk is modified from ej(X)gk() to e&)gk( )[w to suit

A better.

For backward matrix probing, if A is of order z, then A- 1 is of order -z and we

should replace the symbol of Bjk with ej(x)gk( )[ ]-w. We believe that this small

correction has an impact on the accuracy of matrix probing, as well as the condition

numbers I(BA) and A(BA).

Recall that an element of BA is BjkA. If A is of order w and Bjk is of order 0, then

BjkA is of order w and A(BjkA) will grow with nw, which will adversely affect the

conditioning of matrix probing. However, by multiplying the symbol of Bjk by [ ]-,

we can expect BjkA to be order 0 and that A(BjkA) is independent of the size of the

problem n. The argument is heuristical but we will support it with some numerical

evidence in Section 2.4.3.

2.4 Numerical examples

We carry out four different experiments. The first experiment suggests that Theorem

2.1.4 is not tight. The second experiment presents the output of backward probing in

a visual way. In the third experiment, we explore the limitations of backward probing

and also tests the Chebyshev expansion of symbols. The last experiment involves the

forward probing of the foveation operator, which is related to human vision.

2.4.1 1D statistical study

We are interested in whether the probability bound in Theorem 2.1.3 is tight with

respect to p and n, but as the tail probabilities are small and hard to estimate, we opt

to study the first moment instead. In particular, if Theorem 2.1.4 captures exactly

the dependence of E JIM - N|I / |IN I on p and n, then we would need n to grow faster

than p log 2 n for E JIM - NiI / uNit to vanish, assuming A(B) is fixed.

For simplicity, we use the Fourier expansion of the symbol in 1D so that A(B)
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Figure 2-4: Consider the Fourier expansion of the symbol. J is the number of basis
functions in x and 6, so p = J2 . Let n = p logcp. Figure (a) shows that the estimated
E JIM - Nil / liNil decays for c > 1.1 which suggests that Theorem 2.1.4 is not tight.
In Figure (b), we estimate P (JIM - Nil / IINiI > t) by sampling JIM - Nil / IINiI 105
times. The tail probability appears to be subgaussian for small t and subexponential
for larger t.

.(B) = 1. Let J be the number of basis functions in both x and ( and p = J 2. Figure

2-4(a) suggests that E JIM - Nil / i|Nil decays to zero when n = plogcp and c > 1.

It follows from the previous paragraph that Theorem 2.1.4 cannot be tight.

Nevertheless, Theorem 2.1.4 is optimal in the following sense. Imagine a more

general bound

JIM - N||
E JINi< (log n) for some a, # > 0. (2.14)

In Figure 2-5(a), we see that for various values of p/n, a = 1 since the graphs are

linear. On the other hand, if we fix p and vary n, the log-log graph of Figure 2-5(b)

shows that # = 1/2. Therefore, any bound in the form of (2.14) is no better than

Theorem 2.1.4.

Next, we fix p = 25, n = 51 and sample JIM - Nil / |INII many times to esti-
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Figure 2-5: Consider bounding E JIM - Nil / IINI by (log' n)(p/n)fl. There is little
loss in replacing log n with log p in the simulation. In Figure (a), the estimated
E IIM - NIl / IINII depends linearly on logp, so a > 1. In Figure (b), we fix p and
find that for large n, 3 = 1/2. The conclusion is that the bound in Theorem 2.1.4
has the best a, 0.
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mate the tail probabilities. In Figure 2-4(b), we see that the tail probability of

P (JIM - Nil / JINI > t) decays as exp(-cit) when t is big, and as exp(-c 2t2) when t

is small, for some positive numbers ci, c2 . This behavior may be explained by Rauhut

and Tropp's yet published result.

2.4.2 Elliptic equation in ID

We find it instructive to consider a ID example of matrix probing because it is easy

to visualize the symbol a(x, ). Consider the operator

Au(x) = a(x) dux) where a(x) = 1 + 0.4 cos(47rx) + 0.2 cos(67rx). (2.15)
dx dx

Note that we use periodic boundaries and A is positive semidefinite with a one

dimensional nullspace consisting of constant functions.

We probe for A+ according to Figure 2-1 and the Fourier expansion of its symbol

or (2.11). Since A is of order 2, we premultiply gk() by [ ]-2 as explained in Section

2.3.5.

In the experiment, n = 201 and there are two other parameters J, K which are

the number of ej's and gk's used in (2.11). To be clear, -- < j 5 - and
K-1 K-1

2 2

Let C be the output of matrix probing. In Figure 2-6(b), we see that J = K = 5

is not enough to represent A+ properly. This is expected because our media a(x) has

a bandwidth of 7. We expect J = K = 13 to do better, but the much larger p leads

to overfitting and a poor result, as is evident from the wobbles in the symbol of C in

Figure 2-6(c). Probing with four random vectors, we obtain a much better result as

shown in Figure 2-6(d).
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Figure 2-6: Let A be the ID elliptic operator in (2.15) and A+ be its pseudoinverse.
Let C be the output of backward matrix probing with the following parameters: q is
the number of random vectors applied to A+; J, K are the number of e,'s and gk's
used to expand the symbol of A+ in (2.11). Figure (a) is the symbol of A+. Figure
(b) is the symbol of C with J = K = 5. It lacks the sharp features of Figure (a)
because B is too small to represent A+ well. With J = K = 13, probing with only
one random vector leads to ill-conditioning and an inaccurate result in Figure (b). In
Figure (c), four random vectors are used and a much better result is obtained. Note
that the symbols are multipled by [ ]3 for better visual contrast.

44

0

F714
3

2

1

0 100
0

H-
4

-100

3

2

0 100
0

1



2.4.3 Elliptic in 2D

In this section, we extend the previous set-up to 2D and address a different set of

questions. Consider the operator A defined as

1
Au(x) = -V - a(x)Vu(x) where a(x) = -+ cos 2 (7ry7X) sin 2 (7r'yX2 ). (2.16)

T

The positive value T is called the contrast while the positive integer -y is the

roughness of the media, since the bandwidth of a(x) is 2-y + 1. Again, we assume

periodic boundary conditions such that A's nullspace is exactly the set of constant

functions.

Let C be the output of the backward probing of A. As we shall see, the quality

of C drops as we increase the contrast T or the roughness -y.

Fix n = 1012 and expand the symbol using (2.11). Let J = K be the number

of basis functions used to expand the symbol in each of its four dimensions, that is

p = J4 .

In Figure 2-7(b), we see that between J = 2- - 1 and J = 27 + 1, the bandwidth

of the media, there is a marked improvement in the preconditioner, as measured by

the ratio cond(CA)/ cond(A).9

On the other hand, Figure 2-7(a) shows that as the contrast increases, the pre-

conditioner C degrades in performance, but the improvement between J = 2Y - 1

and 2-y + 1 becomes more pronounced.

The error bars in Figure 2-7 are not error margins but & where &2 is the unbiased

estimator of the variance. They indicate that cond(CA)/ cond(A) is tightly concen-

trated around its mean, provided J is not too much larger than is necessary. For

instance, for y = 1, J = 3 already works well but pushing to J = 9 leads to greater

uncertainty.

Next, we consider forward probing of A using the "Chebyshev on a disk" expansion

or (2.13). Let m be the order correction, that is we multiply gk( ) by []' = |||"

9 Since A has one zero singular value, cond(A) actually refers to the ratio between its largest
singular value and its second smallest singular value. The same applies to CA.
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Figure 2-7: Let A be the operator defined in (2.16) and C be the output of backward
probing. In Figure (b), we fix T = 10' and find that as J goes from 2-y - 1 to
2 -y + 1, the bandwidth of the media, the quality of the preconditioner C improves by
a factor between 100-5 and 10. In Figure (a), we fix -y = 2 and find that increasing the
contrast worsens cond(CA)/ cond(A). Nevertheless, the improvement between J = 3
and J = 5 becomes more distinct. The error bars correspond to & where 2 is the
estimated variance. They indicate that C is not just good on average, but good with
high probability.
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Figure 2-8: Consider the backward probing of A in (2.16), a pseudodifferential oepra-
tor of order 2. Perform order correction by multiplying gk( ) by [ ]q in the expansion
of the symbol. See Section 2.3.5. Observe that at q = -2, the condition numbers
A(BA) and I,(BA) are minimized and hardly grow with n.

Let C be the output of the probing and K be the number of Chebyshev polynomials

used.

Fix n = 552, T = 10, Y = 2 and J = 5. For m = 0 and K = 3, i.e., no order

correction and using up to quadratic polynomials in , we obtain a relative error

11C - All / IAll that is less than 10-". On the other hand, using Fourier expansion,

with K =5 in the sense that -- Y ; ki, k2 < K-1, the relative error is on thewih =5nheeseht 2il 2

order of 10-1. The point is that in this case, A has an exact "Chebyshev on a disk"

representation and probing using the correct B enables us to retrieve the coefficients

with negligible errors.

Finally, we consider backward probing with the Chebyshev expansion. We use

J = 5, -y = 2 and T = 10. Figure 2-8 shows that when m = -2, the condition numbers

A(BA) and /'(BA) are minimized and hardly increases with n. This emphasizes the

importance of knowing the order of the operator being probed.
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2.4.4 Foveation

In this section, we forward-probe for the foveation operator, a space-variant imaging

operator [20], which is particularly interesting as a model for human vision. Formally,

we may treat the foveation operator A as a Gaussian blur with a width or standard

deviation that varies over space, that is

/' 1 -|z-y|
Au(x) = K(x, y)u(y)dy where K(x, y) = exp , (2.17)

JR 2  (X) 222

where w(x) is the width function which returns only positive real numbers.

The resolution of the output image is highest at the point where w(x) is minimal.

Call this point x0 . It is the point of fixation, corresponding to the center of the fovea.

For our experiment, the width function takes the form of w(x) = (a Ix - o 11 2+ 0)1/2.

Our images are 201 x 201 and treated as functions on the unit square. We choose

XO = (0.5,0.5) and a, / > 0 such that w(xo) = 0.003 and w(1, 1) = 0.012.

The symbol of A is a(x, ) = exp(-27r2W(X) 2 lI612), and we choose to use a

Fourier series or (2.11) for expanding it. Let C be the output of matrix prob-

ing and z be a standard test image. Figure 2-9(c) shows that the relative e2 er-

ror ||Cz - Az e2 / IIAzJle2 decreases exponentially as p increases. In general, forward

probing yields great results like this because we know its symbol well and can choose

an appropriate B.

2.4.5 Inverting the wave equation Hessian

In seismology, it is common to recover the model parameters m, which describe the

subsurface, by minimizing the least squares misfit between the observed data and

F(m) where F, the forward model, predicts data from m.

Methods to solve this problem can be broadly categorized into two classes: steepest

descent or Newton's method. The former takes more iterations to converge but each

iteration is computationally cheaper. The latter requires the inversion of the Hessian

of the objective function, but achieves quadratic convergence near the optimal point.
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Figure 2-9: Let A be the foveation operator in (2.17) and C be the output of the
forward probing of A. Figure (a) is the test image z. Figure (b) is Cz and it shows
that C behaves like the foveation operator as expected. Figure (c) shows that the
relative P error (see text) decreases exponentially with the number of parameters

p = J 4 .

49



In another paper, we use matrix probing to precondition the inversion of the

Hessian. Removing the nullspace component from the noise vector is more tricky (see

Algorithm 2-1) and involves checking whether "a curvelet is visible to any receiver"

via raytracing. For details on this more elaborate application, please refer to [23].

2.5 Conclusion and future work

When a matrix A with n columns belongs to a specified p-dimensional subspace, say

A = j ciBi, we can probe it with a few random vectors to recover the coefficient

vector c.

Let q be the number of random vectors used, r, be the condition number of the

Gram matrix of B 1,..., Bp and A be the "weak condition number" of each Bi (cf.

Definition 2.1.2) which is related to the numerical rank. From Theorem 2.1.3 and

Section 2.1.3, we learn that when nq oc p(nA log n)2 , then the linear system that has

to be solved to recover c (cf. (2.1)) will be well-conditioned with high probability.

Consequently, the reconstruction error is small by Proposition 2.1.5.

The same technique can be used to compute an approximate A 1 , or a precondi-

tioner for inverting A. In [23], we used it to invert the wave equation Hessian - here

we demonstrate that it can also be used to invert elliptic operators in smooth media

(cf. Sections 2.4.2 and 2.4.3).

Some possible future work include the following.

1. Extend the work of Pfander, Rauhut et. al. [60, 59, 61]. These papers are

concerned with sparse signal recovery. They consider the special case where

B contains n2 matrices each representing a time-frequency shift, but A is an

unknown linear combination of only p of them. The task is to identify these

p matrices and the associated coefficients by applying A to noise vectors. Our

proofs may be used to establish similar recovery results for a more general B.

However, note that in [591, Pfander and Rauhut show that n oc p log n suffices,

whereas our main result requires an additional log factor.
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2. Build a framework for probing f(A) interpreted as a Cauchy integral

1/
f(A) =- .f(z)(zI -A)-1dz,21ri Jr

where F is a closed curve enclosing the eigenvalues of A. For more on approxi-

mating matrix functions, see [38, 421.

3. Consider expansion schemes for symbols that highly oscillate or have singulari-

ties that are well-understood.

We conclude the chapter by outlining how better constants (see Remark A.1.3)

can be obtained for the Gaussian case. At the start of the proof of Proposition

A.1.7, we can split (E JIM - N11s)"s into two parts (E III: 1A and

(E IjZn(u - 1)Agjjl)1/s. For the first part, decouple using Theorem A.1.1 with

C2 = 1, then apply Theorem A.1.5. For the second part, note that every u? - 1 is

symmetrically distributed and has zero mean. Thus, we can introduce Rademacher

variables, condition on the Gaussians, apply Theorem A.1.4, and pull out the term

(E maxi ju? - 1 ") 'Is. Although this log factor is in practice smaller than the constants

we have, we prefer to avoid it by decoupling the Gaussian sum right away using [3].
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Chapter 3

Sublinear randomized algorithms for

skeleton decompositions

3.1 Introduction

3.1.1 Skeleton decompositions

This piece of work is concerned with the decomposition known as the matrix skeleton,

pseudo-skeleton [35], or CUR factorization [54, 26].

Throughout this chapter, we adopt the following Matlab-friendly notation. Let

R, C be index sets. Given A E Cmn , let A:c denote the restriction of A to columns

indexed by C, and AR: denote the restriction of A to rows indexed by R. A skeleton

decomposition of A is any factorization of the form

A:CZAR: for some Z E Ckxk.

In general, storing a rank-k approximation of A takes up O((m + n)k) space. For

skeletons however, only the middle factor Z and the two index sets C and R need to

be stored, if we assume that A's entries can be sampled on-demand by an external

function. Hence specifying the skeleton decomposition of A only requires O(k 2 ) space.

In addition, row and columns from the original matrix may carry more physical
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significance than their linear combinations.

There are important examples where the full matrix itself is not low rank but can

be partitioned into blocks each of which has low numerical rank. One example is

the Green's function of elliptic operators with mild regularity conditions 17]. Another

example is the amplitude factor in certain Fourier integral operators and wave prop-

agators [16, 25}. Algorithms that compute good skeleton representations can be used

to manipulate such matrices.

3.1.2 Overview

Our work mostly treats the case of skeleton decompositions with C and R drawn

uniformly at random. Denote by ARC the restriction of A to rows in R and columns

in C: we compute the middle matrix Z as the pseudoinverse of ARC with some amount

of regularization. Algorithm 1 below details the form of this regularization.

Throughout the chapter, we use the letter k to denote the baseline small dimension

of the factorization: it is either exactly the rank of A, or, more generally, it is the index

of the singular value Uk that governs the approximation error of the skeleton decom-

position. The small dimension of the skeleton decomposition may or may not be k:

for instance, Algorithm 1 requires a small oversampling since f = O(k log max(m, n)).

Later, we consider two algorithms where f is exactly k.

The situation in which Algorithm 1 works is when A is a priori known to have a

factorization of the form ~ X 1 A 1 Yl* where X 1, Y have k orthonormal columns, and

these columns are incoherent, or spread, in the sense that their uniform norm is about

as small as their normalization allows. In this scenario, our main result in Theorem

3.1.2 states that that the output of Algorithm 1 obeys

||A - A:cZAR:| = 0 (||A - X1AY*II (A)1 1* 2 )

with high probability, for some adequate choice of the regularization parameter J.

The drawback of Algorithm 1 is that it requires to set an appropriate regularization

parameter in advance. Unfortunately, there is no known way of estimating it fast,
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Algorithm 1. 0(k 3 )-time algorithm where 0 is the 0 notation with log factors
dropped.

Input: A matrix A E C"' that is approximately rank k, and user-defined

parameters f = 5(k) and J.
Output: Column index set C of size f, row index set R of size f, center matrix
of a matrix skeleton Z. Implicitly, we have the matrix skeleton A:CZAR:.
Steps:

1. Let C be a random index set of size e chosen uniformly from { 1,... ,
Implicitly, we have A:C.

2. Let R be a random index set of size f chosen uniformly from {1, ... , m}.
Implicitly, we have AR:.

3. Sample ARC, the intersection of A:C and AR:.

4. Compute the thin SVD of ARC as UjE 1 V* + U2 E 2 V2* where El, E2 are
diagonal, El contains singular values > 6 and E 2 contains singular
values < 6.

5. Compute Z = V1Ell U*.

Matlab code:

function [C,Z,R]=skeleton1(A,1,delta)

C=randperm(n,1); R=randperm(m,1); Z=pinv(A(R,C) ,delta);

end
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and this regularization step cannot be skipped. In Section 3.4.1, we illustrate with

a numerical example that without the regularization, the error in the operator norm

can blow up in a way predicted by our main result or Theorem 3.1.2.

Finally, we use our proof framework to establish error estimates for two other

algorithms. The goal of these algorithms is to further reduce the small dimension

of the skeleton decomposition to exactly k (instead of f = O(k log max(m, n))), with

c'k still providing control over the approximation error. The proposed methods still

run in sublinear-time complexity; they use well-known strong rank-revealing QR fac-

torizations applied after some amount of pruning via uniform random sampling of

rows and columns. This combination of existing ideas is an important part of the

discussion of how skeleton factorizations can be computed reliably without visiting

all the elements of the original matrix.

3.1.3 Related work

The idea of uniformly sampling rows and columns to build a matrix skeleton is not

new. In particular, for the case where A is symmetric, this technique is known as

the Nystr6m method'. The skeleton used is A:CA'CAC:, which is symmetric, and

the error in the operator norm was recently analyzed by Talwalkar [71] and Gittens

[341. Both papers make the assumption that X 1, Y are incoherent. Gittens obtained

relative error bounds that are similar to ours.

Nonetheless, our results are more general. They apply to nonsymmetric matrices

that are low rank in a broader sense. Specifically, when we write A ~ X1AY 1*, All is

not necessarily diagonal and X 1, Y are not necessarily the singular vectors of A. This

relaxes the incoherence requirement on X 1, Y 1. Furthermore, in the physical sciences,

it is not uncommon to work with linear operators that are known a priori to be almost

(but not fully) diagonalized by the Fourier basis or related bases in harmonic analysis.

These bases are often incoherent. One example is an integral operator with a smooth

kernel. See Section 3.4 for more details.

'In machine learning, the Nystrom method can be used to approximate kernel matrices of support
vector machines, or the Laplacian of affinity graphs, for instance.
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A factorization that is closely related to matrix skeletons is the interpolative de-

composition [21], also called the column subset selection problem [30] or a Rank Re-

vealing QR (RRQR) [17, 36]. An interpolative decomposition of A is the factorization

A:CD for some D. It is relevant to our work because algorithms that compute inter-

polative decompositions can be used to compute matrix skeletons [51]. Algorithms 2

and 3, discussed below, require the computation of interpolative decompositions.

One of the earliest theoretical results concerning matrix skeletons is due to Gor-

einov et al. [35]. In that paper, it is shown that for any A E C"Xr, there exists a

skeleton A:CZAR: such that in the operator norm, 1IA - A:cZAR:l - O(=( +

V5)ok+1(A)). Although the proof is constructive, it requires computing the SVD of

A, which takes much more time and space than the algorithms considered in this

work. A useful idea in 135] for selecting C and R is to maximize the volume or de-

terminant of submatrices. This idea may date back to interpolating projections [63]

and the proof of Auerbach's theorem [68].

A popular method of computing matrix skeletons is cross-approximation. The

idea is to iteratively select good rows and columns based on the residual matrix. As

processing the entire residual matrix is not practical, there are faster variants that

operate on only a small part of the residual, e.g., Adaptive Cross Approximation [5, 6]

and Incomplete Cross Approximation [75]. The algorithms considered in this work

are non-iterative, arguably easier to implement and analyze, yet possibly less efficient

for some applications.

In this work, we compute a matrix skeleton by randomly sampling rows and

columns of A. This idea dates back at least to the work of Frieze, Kannan and Vem-

pala [30]. One way of sampling rows and columns of A is called "subspace sampling"

[54, 26] by Drineas et al. If we assume that the top k singular vectors of A are inco-

herent, then a result due to Rudelson, Vershynin [66] implies that uniform sampling

of rows and columns, a special case of "subspace sampling", will produce a good skele-

ton representation A:C(A AA+)An:. However, it is not clear how the middle matrix

A+ AA+. can be computed in sublinear time.

In the main algorithm analyzed in this work, we uniformly sample rows and
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columns to produce a skeleton of the form A:CARCAR:, not A:C(A:CAAR:)AR:. One

major difference is that the skeleton A:CA CAR: can be computed in 6(k3 ) time2.

Note that the matrix skeleton output by our algorithms is represented by the index

sets R, C and matrix Z, not AR:, A:C.

Finally, let us mention that the term "skeleton" may refer to other factorizations.

Instead of A ~ AC:ZA:R, we can have A ~ ZlARCZ2 where Z1 , Z 2 are arbitrary m x k

and k x n matrices [211. As 0(mk + nk) space is needed to store Z 1, Z 2, this repre-

sentation does not seem as appealing in memory-critical situations where AC:ZA:R is.

Nevertheless, it is numerically more stable and has found several applications [43].

Alternatively, when A = MBN where M, B, N are n x n matrices, we can ap-

proximate M as M:CP, N as DNR:, where Mc has k columns of M and NR has k

rows of N. Thus, A ~ Mc(PBD)NR, effectively replacing B with the k x k matrix

B := PBD. Bremer calls B a skeleton and uses it to approximate scattering matrices

[11].

3.1.4 Notations

The matrices we consider take the form

An A12 Ky
A= (Xi X 2 ) A ) A1) (3.1)

A21 A22 Y2*

where X = (X 1 X 2) and Y = (Y1 Y2) are unitary matrices, with columns being

"spread", and the blocks A 12, A 21 and A 22 are in some sense small. By "spread", we

mean 0(1)-coherent.

Definition 3.1.1. Let X C Cnxk be a matrix with k orthonormal columns. Denote

\IXImax = maxij \XyI. We say X is p-coherent if IIXIm| < (p/n)1/ 2 .

This notion is well-known in compressed sensing [141 and matrix completion [13,

57].

2Note that 0 is the 0 notation with log factors dropped.
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Formally, let Ak 0 A 12 ) and consider that
A21 A22

Ek Ak is small. (3.2)

That means A can be represented using only O(k 2) data if we allow an &k error in the

operator norm. Note that 6 k is equivalent to max( |X2A11 , JAY2 11) up to constants.

To prevent clutter, we have suppressed the dependence on k from the definitions of

X1 , Y, All, A1 2 etc.

If (3.1) is the SVD of A, then Ek = O-k+1(A). It is good to keep this example in

mind as it simplifies many formulas that we see later.

An alternative to Ck is
m n

I : = E E I(Ak)ij| (3.3)
i=1 j=1

In other words, E is the P norm of Ak reshaped into a vector. We know Ek < E' <

mn-k. The reason for introducing 4' is that it is common for (Ak)ij to decay rapidly

such that 4 < mnEk. For such scenarios, the error guarantee of Algorithm 1 is much

stronger in terms of 4' than in terms of Ek as we will see in the next section.

3.1.5 Main result

Random subsets of rows and columns are only representative of the subspaces of the

matrix A under the incoherence assumption mentioned earlier, otherwise Algorithm

1 may fail. For example, if A = X 1A1 Y* and X1 = (Ikxk), then AR: is going to be

zero most of the time, and so is A:CZAR:. Hence, it makes sense that we want X1,R:

to be "as nonsingular as possible" so that little information is lost. In particular, it

is well-known that if X 1, Y are 0(1)-coherent, i.e., spread, then sampling f = 5(k)

rows will lead to X1,R:, Y,c: being well-conditioned 3 .

3Assume e = 0(k). Then IYillm. = 6(n-1/ 2) is a sufficient condition for Y,C: to be well-
conditioned with high probability. This condition can be relaxed in at least two ways. First, all we
need is that for each row i, ( ) j(Y1) .12)1/2 < (pk/n)1/ 2 . This would allow a few entries of each
row of Y to be bigger than O(n-1/ 2 ). Second, we can allow a few rows of Y to violate the previous
condition [4].
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Here is our main result. It is proved in Section 3.2.

Theorem 3.1.2. Let A be given by (3.1) for some k > 0. Assume m > n and X1, Y1

are p-coherent where p = 5(1) with respect to m, n. Recall the definitions of Ek, E' in

(3.2) and (3.3). Let f > 10pik log m and A = (mn)1/2 Then with probability at least

1 - 4km-2, Algorithm 1 returns a skeleton that satisfies

IA - A:cZAR:I = O(A6 + Ack + EkA/ 6 ). (3.4)

If furthermore the entire X and Y are p-coherent, then with probability at least 1 -

4m- 1,

I1A - A:cZAR:I = O(A6 + ' + '/(A)). (3.5)

The right hand sides of (3.4) and (3.5) can be minimized with respect to 6. For

(3.4), pick 6 = 9(Ek) so that

1IA - A:cZAR:I = O(EkA) = O(e-(mn)1/2/f). (3.6)

For (3.5), pick 6 = E(E'/A) so that

||A - A:cZAR:l| = O(E'4). (3.7)

Here are some possible scenarios where E' = O(EkA)

than (3.6):

" The entries of Ak decay exponentially or there are

m,n increases. Then E' = E(-k).

* Say n = m and (3.1) is the SVD of A. Suppose

M-1/ 2 . Then E' = O(Ekm 1 /2).

and (3.7) is strictly stronger

only 0(1) nonzero entries as

the singular values decay as

One important question remains: how can we guess Ek, in order to then chose 6?

Unfortunately, we are not aware of any 0(k3 ) algorithm that can accurately estimate

Ek. Here is one possible heuristic for choosing 6 for the case where (3.1) is the SVD.
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Imagine ARC - X1,R:A1Yl*C:. As we will see, the singular values of X1,R:, Y,C: are

likely to be on the order of (1/r) 1/2, (/r)'/ 2 . Therefore, it is not unreasonable to

view Ek - Jk+1(A) ~ Aok+1(ARc).

Another approach is to begin with a big 6, run the 0(k0) algorithm, check

11A - A:cZAR:11, divide 6 by two and repeat the whole process until the error does

not improve. However, calculating 11A - A:CZAR: 1 is expensive and other tricks are

needed. This seems to be an open problem.

The 0(k3 ) algorithm is among the fastest algorithms for computing skeleton rep-

resentations that one can expect to have. With more work, can the accuracy be

improved? In Section 3.3, we sketch two such algorithms. These two algorithms have

for the most part been analyzed in previous work: though their ability to perform

in sublinear-time complexity was not explicitly stated in those references, this fact

should not come as a surprise. The first algorithm samples f ~ k log m rows, columns,

then reduce it to exactly k rows, columns using the a rank-revealing QR decomposi-

tion (RRQR), with an operator norm error of O(Ek(mk)1/ 2). It is similar to what is

done in [9]. In the second algorithm, we uniformly sample e ~ k log m rows to get AR:,

then run RRQR on AR: to select k columns of A. The overall error is O(Ek(mn)1/ 2).

This is similar to the algorithm proposed by Tygert, Rokhlin et al. [51, 77].

Using the proof framework in Section 3.2, we will derive error estimates for the

above two algorithms. As mentioned earlier these error guarantees are not new, but

(i) they concern provable sublinear-time complexity algorithms, (ii) they work for

a more general model (3.1), and (iii) our proofs are also motivated differently. In

Section 3.3.3, we compare these three algorithms.

3.1.6 More on incoherence

If either X or Y is not 0(1)-coherent, we can use the idea of a randomized Fourier

transform [11 to impose incoherence. The idea is to multiply them on the left by

the unitary Fourier matrix with randomly rescaled columns. This has the effect

of "blending up" the rows of X, Y - at the possible cost of requiring linear-time

complexity. The following is a standard result that can be proved using Hoeffding's

61



inequality.

Proposition 3.1.3. Let X E Cnxk with orthonormal columns. Let D = diag(d1,... , dn)

where d1,... , dn are independent random variables such that E di = 0 and Idi| = 1. Let

F be the unitary Fourier matrix and y = a log n for some a > 0. Define U := FDX.

Then I|Ulima < (p/n)1/2 with probability at least 1 - 2(nk)n-2,

In other words, no matter what X is, U = FDX would be 0(1)-coherent with

high probability. Hence, we can write a wrapper around Algorithm 1. Call this

Algorithm 1'. Let F E Cn xn and F' E Cmxm be unitary Fourier transforms.

1. Let B := FD2AD 1F* where D 1 , D 2 are diagonal matrices with independent

entries that are ±1 with equal probability.

2. Feed B to the 6(k3) algorithm and obtain B ~ B:CZBR:.

3. It follows that A ~ (AD1F :)Z(FR:D2A).

The output (ADlT*c:)Z(.FR:D 2A) is not a matrix skeleton, but the amount of space

needed is 0(n) +0(k 2 ) which is still better than O(nk). Note that we are not storing

ADi.F . just as we do not store A:C in Algorithm 1. Let TA be the cost of matrix-

vector multiplication of A. See that Algorithm 1' runs in O(TAk + mk + k3 ) time.

The most expensive step is computing BRC and it can be carried out as follows.

Compute D1 (F*Sc) in 0(nk) time. Multiply the result by A on the left in 0(TAk)

time. Multiply the result by D 2 on the left in 0(mk) time. Multiply the result by F'

on the left in 5(mk) time using FFT. Multiply the result by SR on the left in 0(k 2 )

time.

3.2 Error estimates for 0(k 3 ) algorithm

3.2.1 Notation

SC, SR E Rnxk are both column selector matrices. They are column subsets of per-

mutation matrices. The subscripts "R:" and ": C" denote a row subset and a column
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subset respectively, e.g., AR: = S'A and A:C = ASC, while ARC is a row and column

subset of A. Transposes and pseudoinverses are taken after the subscripts, e.g., A*.

means (AR:)*.

3.2.2 Two principles

Our proofs are built on two principles. The first principle is due to Rudelson [66] in

1999. Intuitively, it says the following.

Let Y be a n x k matrix with orthonormal columns. Let YC: be a random

row subset of Y. Suppose Y is p-coherent with pa = 6(1), and 1C = f > uk.

Then with high probability, (,) 1/2YC: is like an isometry.

To be precise, we quote [73, Lemma 3.4]. Note that their M is our pIk.

Theorem 3.2.1. Let Y E Cnxk with orthonormal columns. Suppose Y is P-coherent

and f > akp for some a > 0. Let YC: be a random £-row subset of Y. Each row of

YC: is sampled independently, uniformly. Then

(1 + >') )

P (iYC:ii> (

< k Q -1 i for any 6 E [0, 1)

Sk ( e+'+5' for any ' > 0.

To be concrete, if J = 0.57 and J' = 0.709 and f > 10kp log n, then

P ( YC < 1.53(n/) 1/ 2 and 11Yc:Il < 1.31(f/n) 1/ 2) > 1 - 2kn- 2 . (3.8)

We will use (3.8) later. Let us proceed to the second principle, which says

Let C be an arbitrary index set. If |IA:Cjj is small , then iIAII is also small,

provided that we have control over ||AY2 and ||Yj+C: for some unitary matrix

(Y Y2).
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The roadmap is as follows. If we ignore the regularization step, then what we

want to show is that A ~ A:CARC AR:. But when we take row and column restrictions

on both sides, we have trivially ARC = ARCA+CARC. Hence, we desire a mechanism

to go backwards, that is to infer that "E := A - A:cA+ AR: is small" from "ERc is

small." We begin by inferring that "E is small" from "E:c is small".

Lemma 3.2.2. Let A E Crn n and Y = (Y1  Y2) E C"^f be a unitary matrix such

that Y has k columns. Select f > k rows of Y to form Y1,c: = Sc 1 C Cexk- Assume

Y1,C: has full column rank. Then

||Ail < IYcI:| ||A:c|| + ||Y11:11 AY2Y2*c:||+||A 2 ||

Proof. Note that Yl*C: %*+: = Ikxk. Now,

||A|| < ||AY|| + |JAY2 ||

= |AYYl*C:Y1*ci:| + |JAY2 11

I|AYY*SC II|Y 11|| + ||AY2 11

( |(A - AY2Y2*)Sc | ,CJ11 + l|AY 211

< ||A:cl |YC:11:| + IAY2Y2*c: 1 02CJ11: + l|AY 2 | -

Lemma 3.2.2 can be extended in two obvious ways. First, we can deduce that "A

is small if AR: is small." Second, we can deduce that "A is small if ARC is small." This

is what the next lemma establishes. (Although its form looks unduly complicated,

control over all the terms is in fine necessary.)

Lemma 3.2.3. Let A G C"nxn and X = (X1 X2) E C" m and Y = (Y Y2) C

Cfxn be unitary matrices such that X 1, Y1 each has k columns. Select f > k rows

and columns indexed by R, C respectively. Assume X1,R:, Y1,C: have full column rank.

Then

||Ail ||X+:11 lIAR: I + X+ 1 |lX 2,R:X 2* All + |X2*A||
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and

11AII < lX+,:llI YjlC:1 lIAR0 H +i
||A| X11 1C RC11 +

X1R C:11 lX 2,R:X*AYYl*Cil +

Xi1R ~",C:1 l X1,R:X*AY 2 Y2*C. +

X1,R 11 l X 2,R:X2*AY 2Y2*C:| +

jX1:11 lX1,R:X*AY2||+

Y11 X2*AY1Y1*C:|| +

|IX*AY2||.

Proof. The top inequality is obtained by applying Lemma 3.2.2 to A*. The proof of

the bottom inequality is similar to the proof of Lemma 3.2.2. For completeness,

||AII < |X*AY1|| + j|X*AY 2 | + ||X2*AY| + |X2*AY2 |

=JX I~ :Xl,R:X*AYY*C:l~ +
= |X1 , XR1XAYY1*S: +$ : +

XR Xl,R:X*AY 2 || + ||X2*AY 1Y1 0 J*c:1 + ||X*AY2 11

<5 |lX1+l ISRTX1X*AYY*Sc|| ||Y*+.|| +

X:1 ||X1,R:X* AY2| + ||X*AYY*: 1C:| + M|2 Y

= X 11 || S(A - X2X2*AYY 1* - X1X*AY 2Y2* - X 2X2*AY 2 Y2*)Sc| +

lXiRJ lX1,R:X*AY 2 | + ||11|J|X2* AYY*C:|| + I|X2*AY 2 |.

Split up the term SR(A - X 2X2AY1 Y1* - X 1X*AY 2Y2* - X 2X2AY 2Y2*)ScI| by the

triangle inequality and we are done. 0

We conclude this section with a useful corollary. It says that if PA:C is a good

low rank approximation of A:C for some P E C"'", then PA may also be a good low

rank approximation of A.

Corollary 3.2.4. Let A G C"'x and P e C"'. Let Y = (Y Y2) be a unitary

matrix such that Y has k columns. Let Y1,C: = SCTY1 E Cexk where f > k. Assume
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Y1,C: has full column rank. Let I G C"'x be the identity. Then

A - PAI| <_ ||Y11C:| IIA:c - PA:cII + Y1C:| ||I - P11 AY 2Y2*c:l + |I - PH l|AY 2 H.

In particular, if P is the orthogonal projection A:C A+, then

A - A:cAtc A |YC. IAY2Yc:|| + ||AY2 . (3.9)

Proof. To get the first inequality, apply Lemma 3.2.2 to A - PA. The second in-

equality is immediate from the first inequality since ||A:c - A:cAt'A:cl| = 0. 0

For the special case where X, Y are singular vectors of A, (3.9) can be proved using

the fact that 11A - A:cA+cAll = minD 1A - A:CDI1 and choosing an appropriate D.

See Boutsidis et al. [9].

Note that (3.9) can be strengthened to IIA - A:cA+cAl12 < ||AY2 Y2*c: 1c: 2 +

I|AY2 12, by modifying the first step of the proof of Lemma 3.2.2 from IAIl IAYI| +

IIAY21 to ||Ail2 < IIAY112 + IIAY 2 I2 . A similar result for the case where X, Y are

singular vectors can be found in Halko et al. [391. The originality of our results is

that they hold for a more general model (3.1).

3.2.3 Proof of Theorem 3.1.2

The proof is split into two main parts. The first part is probabilistic. We will apply

the first principle to control the largest and smallest singular values of Yi,C:, X1,R: and

other similar quantities. The second part, mainly linear algebra, uses these bounds

on Yi,C: and X1,R: to help control the error A - A:CB+A:9.

Probabilistic part

Let Ax = (M)1/2 and Ay = (,)1/2. To prove the first part of Theorem 3.1.2, i.e., (3.4),

we apply Theorem 3.2.1. From (3.8), it is clear that the assumptions of Theorem 3.1.2

guarantee that IIYi,c:Hl = O(A-'), ||Y7j:W = O(Ay), IIX1,R:h = O(A 1), fXi:11 =

O(Ax) hold simultaneously with probability at least 1 - 4km- 2
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For the second part of Theorem 3.1.2, i.e., (3.5), we need to refine (3.1) as fol-

lows. Let X = (X,...,Xrm/kl) and Y = (Yi,...,Yfl/k]) where X1,... ,Xrm/kl-1

and Y1 , . f.. , -n/a 1 has k columns, and Xrm/kl, irn/kl have < k columns. Note that

Zi = X 1, Yi = Y, A 1 = A11 where X 1, Y, A11 are defined in (3.1). Rewrite (3.1) as

All

A = (Xi,.. . ,Xrm/kl)

Arm/k1,1

... A 1 , [n/k]

... A r/k,[n/kl)

By applying Theorem 3.2.1 to every Xi, Y and doing a union bound, we see that

with probability at least 1 - 4m-1, we will have IIY,c:1I = O(A- 1 ), ||Yj:i| = O(Ay),

IXimI| = o(A-2), LRJ: O(Ax) for all i, j.

Deterministic part: Introducing B, an auxillary matrix

Recall that in Algorithm 1, we compute the SVD of ARC as U1E1V1* + U2E2V2* and

invert only U1E1 V7* to get the center matrix Z.

Define B E C"'x such that BRC = U1E1V1* and all other entries of B are the

same as A's. In other wrods, define E E Cmxn such that ERC = -U 2EV2* and all

other entries of E are zeros, then let B = A + E.

The skeleton returned is AC:BC AR:. By construction,

||A - B||< 6; J|B+1 1| < 6-1.

Our objective is to bound ||A - A:CB+AR. , but it is IB - B:CBZCBR: that

we have control over by the second principle. Recall that BRC = BRCB+CBRC

is to be lifted to B ~ B:CB+CBR: by Lemma 3.2.3. Thus, we shall first relate
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A - A:cB cAR: 1 to quantities involving only B by a perturbation argument.

||A - A:cB+ RAC A: <1A - Bi| + ||B - B:cBZCBR: +

B:c B+CBR: - A:CB+CBR: + IA:cBC BR: - A:cBC An:

<6 + JB - B:CB+ BR:1 +

II(B - A)ScII JB+CBR:| + IA:CBj 11||SR(B - A)||

6 + |IB - B:cB+C BR:. +

6 |BcBR:j + (||B:cB+C|| + IIA:cB+ - B:cB |

6 + JIB - B:CB BR: +

6 JIB+cBR:J| + 6 |B:cBc|| + ||I(A - B)ScII6-16

26 + |IB - B:cBRCBR:|| + 6 |IBRCBR:| + 6 \IB:cB~c|| (3.11)

Deterministic part: Bounds on ||BjCBR:Jj and ||B:CBe4|

It remains to bound |B - B:cBRCB R:l, 1JB+CBR:11, and JB:CB+ 11. In this subsec-

tion, we obtain bounds for the last two quantities. By the second principle, we do not

expect JIB+CBRR: to be much bigger than JIB+ BZC | 1. Specifically, by Lemma

3.2.2, we have

B+CBR:j < 1 C:Bj BjcC + K1,:| |B4C BR:Y 2 Y2C:| + ||B R1BJ:Y2B

[,C ~ + YC:| I|Bic (||(BR: - A C::)Y2Y2c:| + JI ABR: Y2 C:

B+ (|(BR: - AR:)Y 211 + ||AR:Y211)

YI l+'cII + IIYCJ1 J-1(6 + IAR:Y 2 YC:I) + 6-1(6 + IIARY 2 I
1 + 2 Y,C.| + |Y,C:1 61 IAR:Y 2Y2C:I + 6-1 IA:Y2 ||.

By the first principle, the following holds with high probability:

JB+CBR: j = O(Ay + Ay~ 1-AR:Y2Y 2 C:0 + 61|IAR:Y2 |I). (3.12)
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The same argument works for B:cB 11. With high probability,

B:cBc 11 = O(Ax + AxJ- 1 jjX 2 ,R:X*A:cI + 6-' IX2*A:cl) (3.13)

Deterministic part: Bounding JIB - B:cB+CBR:1

Bounding the third quantity requires more work, but the basic ideas are the same.

Recall that the second principle suggests that IIB - B:cB CBR: 1 cannot be too much

bigger than IIBRC - BRcBCBRC = 0. Applying Lemma 3.2.3 with B - B:CB CBR:

in the role of A yields

B - B:cB+CBR:J < X1j: JlC:J :X 2 ,:X(B - B:CB~CBR:)YYiC: +

X1RJI a ,C:J lX1,:Xl*(B - B:CB+CBR:)Y 2 Y2:C +

X ,C:J :X 2 ,R:X2* (B - B:cBC BR:)Y 2 Y2C: +

XjR: X1,R:X*(B - B:cBRCBR:)Y21 +

YC: X2*(B - B:CB+CBR:) Y1Y1 c: +

X2*( B - B:cBc BR:)Y 2

which is in turn bounded by

X1R:0 ,C: 1|Y1,c:II (I X 2,R:X2*B| + ||X 2,R:X2*B:c| |IB+C BR:11)+

IX1n:RJ J11C:J X1,:I| (||BY2Y2*c:J| + |IBR Y2 Y 2* C: B:cBj 11)
XIR:0 LIiC:11 ( IX 2,R:X2*BY 2Y2*C:| + ||X 2,R:X2*B c| 6- BR:Y 2 Y2 *C )+

X,RJJ IX1,R:j| (||BY 2|| + ||B:CB 11| ||BR:Y 2 II)+

Y1',C:JJ IY 1,c:l (|X2*B11 + JIB+CBR:J lIX2*B:cII)+

|1X2*BY 2 || + |IX2*B:c||61 |BR:Y2 II-

In the expression above, we have paired IIX1,R:1 with I|Xi R ,and ||Yi,c:I with |IYl CJ |

because the first principle implies that their products are 0(1) with high probability.
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This implies that JIB - B:cB+CBR: is less than a constant times

Ax(I|X 2,:X2*B|| + IX 2,R-X2*Bc|| |BICBR: )+

Ay(|IBY2 Y2*c:| + |BRY2 2* B:cB+ c|)+

AxAy(||X 2 ,R:X2*BY 2 Y2*C: + |X 2 ,:X*B:c| I B:Y2Y C:+

||BY2|| + ||B:CB+C|l I|BR:Y 2 | +

||X2*B|| + JB+ B|R:| |IX2* B:c|| +

1X2*B:c| |6' 1 |BR:Y21 -

We have dropped IIX BY21I because it is dominated by IIX2BI. Equations (3.13)

and (3.12) can be used to control ||B:cB 11 and ||B+CBR:JJ. Before doing so, we

want to replace B with A in all the other terms. This will introduce some extra

6's. For example, |IX 2,:X*B|| IX 2,R:X2*B - X 2,R:X2*AI + 11X 2,:X2 A|| 5 6 +

IIX2 ,R:X2Aj. Doing the same for other terms, we have that JIB - B:CBcB:f is

with high probability less than a constant times

Ax(6 + I|X 2,R:X2* A| + (6 + |X2,:X2*Ac|) |B+C BR:1)+

Ay( 6+ | IAY 2 Y2*c:| + (6+ |AR:Y 2Y2*C:||)1|B:cB 1|)+

AxAy(6 + X 2 ,:X2*AY 2 Y2*C: + ||X 2,:X*A:c|| +

| AR:Y 2Y 2*C: 1 + lIX 2,R:X2*A:c |6-1 ||AR:Y2 Y2 *C: )+

6 +||AY 211 + (6 + |AR:Y 2 ||) |B:cB 11 +

6 +||X2*A| + (6 + IIX2*A:c||) |IB+ BR: +

6 + |IX2*A:c| + IIAR:Y 211 + IX2*A:c|I 61 ||AR:Y 2 K

Several terms can be simplified by noting that 6 < Ax6 < AxAy6 and IIX2A:cI <

IIX2AII. We shall also use the estimates on ||B:cB+ 11 and JIB+cBR:11, from (3.13)
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and (3.12). This leads to

Ax(||X 2,R:X2* A + (6 + |X 2,:X2*A:cII)(Ay + AyJ 1 | AR:Y2Y2 C:l + -i |AR:Y 2 I))+

Ay(||AY 2Y2*c:|| + (6 + |AR:Y2 Y2 C: )(Ax + Ax~1 IX 2 ,:X*A:cI + 5'I X2* A:c ))+

Axhy(6 + X 2,R:X*AY 2 Y2*C:| +||X 2 ,R:X*A:c!| +

IAR:Y 2 2*C: + IX 2,R:X2*A:c| |5-||AR:Y2Y 2*C:J)+

IAY211 + (6 + |IAR:Y2 I)(Ax + Ax-1 I|X2 ,:X*A:cI + -I!X2*A:c1)+

||X2*AI + (6 + |X2*A:c|)(Ay + Ay-1 |AR:Y2Y 2*C: + J-1 IIAR:Y 2 |)-+

IX2* A:c| 5-1 ||AR:Y2 II -

Collect the terms by their Ax, Ay factors and drop the smaller terms to obtain that

with high probability,

B - B:cB+CBR:0 = O( Ax(IiX 2,R:X2*A|| + IAR:Y 211 + J51 ||X 2,R:X2*A:c|| IIAR:Y 21)-+

Ay (AY 2Y2*c:J| + |IX2*A:c|| + 6-1 | AR:Y 2 Y2*C:| |IX2* A:cII)+

AxAy( + ||X 2,:X2*A:c|| + IAR: Y2Y 2 C: -+

6-1 ||X 2,R:X2*A:c| | AR:y2y2YC: + X 2,R:X AY 2YC:+

||X2*A|| + IAY211 + 61 IIX*A:c|| IIAR:Y 2 || ). (3.14)

Deterministic part: conclusion of the proof

We now have control over all three terms JIB - B:CBcB BRB+CBR:J , B:cB+c j.

Substitute (3.12), (3.13), (3.14) into (3.11). As the right hand side of (3.14) dominates

6 multiplied by the right hand side of (3.12), (3.13), we conclude that with high

probability, IIA - A:cB+CAR:JJ is also bounded by the right hand side of (3.14).

To obtain the basic bound, (3.4), we note that all the "normed terms" on the right

hand side of (3.14), e.g., ||AR:Y2Y 2 cj| and IjX2A1L, are bounded by Ek. It follows that

with high probability, A - A:cB+Ac :h = O(Axy(6 + e + (-1&2)).

To obtain the other bound, (3.5), we need to bound each "normed term" of (3.14)
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differently. Recall (3.10). Consider |IX2 ,:X2A:cjj. We have

A 2 1  ... A2,rn/kl y1,:

X 2,R:X2*A:c = (X2,R: ... , Xrm/kl,R:)

Arm/kl,1 ... Arm/k],[n/k Yr*n/klC:

In Section 3.2.3, we show that with high probability, Xi,R: = O(AX') and YC: =

O(A-1) for all i, j. Recall the definition of E' in (3.3). It follows that with high

probability,

[m/k] [n/k]

||X2,R:X2*A:cl| < XX~ Y~ k *l

i=2 j=1

Apply the same argument to other terms on the right hand side of (3.14), e.g.,

X 2 ,:XAY 2 Y2*c:| = O(AR:A7') and A2X A:cI = O(A-'4) with high probabil-

ity. Mnemonically, a R in the subscript leads to a A1 and a C in the subscript leads

to a Ay 1.

Recall that I|A:cBZCAR:1| is bounded by the right hand side of (3.14). Upon

simplifying, we obtain that 11A - A:CB+AR: = O(AxAo + 4 + AxkAy 14 2

(3.5). The proof is complete.

3.3 Alternative sublinear-time algorithms

3.3.1 Second algorithm

In Algorithm 2, uniform random sampling first helps to trim down A to two factors

A:C and A* with JCJ = JRI = f = 0(k), then rank-revealing QR decompositions

(RRQR) are used on A:c and A* to further reduce the small dimension to exactly k.

For dense matrices, the most expensive step in Algorithm 2 is the multiplication of

A by A+,.. However, for structured matrices, the most expensive steps of Algorithm 2

are likely to be the RRQR factorization of A:C and A*. and the inversion of A:c,, AR:,,

which all take 0(mk2 ) time. The overall running time is O(TAk) + 0(mk2 ), where
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Algorithm 2. O(TAk) + 0(mk2 )-time algorithm
Input: A matrix A E C"'x that is approximately rank k, and user-defined
parameter f = 0(k). Assume m > n.
Output: Column index set C' of size k, row index set R' of size k, cen-
ter matrix of a matrix skeleton Z. Implicitly, we have the matrix skeleton
A:cZARI:.
Steps:

1. Let C be a random index set of size f chosen uniformly from {1, . . . , n}.
Explicitly form A:C.

2. Let R be a random index set of size f chosen uniformly from {1, . . . , m}.
Explicitly form AR:.

3. Run RRQR on A:c to select k columns of A:C. Denote the result as
A:C, where C' C C indexes the k selected columns of A. This takes
0(mk2 ) time and 0(mk) space.

4. Run RRQR on A*. to select k rows of AR:. Denote the result as AR',
where ' C R indexes the k selected rows of A. This takes O(nk2) time
and O(nk) space.

5. Compute Z = A', (AA',:). This takes O(TAk + mk 2 ) time and 0(mk)
space, where TA is the time needed to apply A to a vector.

Matlab code:
function [Cp,Z,Rp]=skeleton2(A,1)

C=randperm(n,1); ind=rrqr(A(:,C),k); Cp=C(ind);
R=randperm(m,1); ind=rrqr(A(R,:)',k); Rp=R(ind);
Z=pinv(A(:,Cp))*(A*pinv(A(Rp,:)));

end
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TA is the cost of a matrix-vector multiplication.

Note that in the Matlab code, the call rrqr(A,k) is assumed to return an index

set of size k specifying the selected columns. One can use Algorithm 782 [8] or its

Matlab port [69].

It can be easily shown [29] that once A:C,, AR': are fixed, the choice of Z =

A+AA ,: is optimal in the Frobenius norm (not operator norm), that is

Z = argwEcxe 1| A - A:cfWAR':h1 F.

Unsurprisingly, the error estimate is better than in Theorem 3.1.2.

Theorem 3.3.1. Let A be given by (3.1) for some k > 0. Assume m > n and X 1, Y1

are p-coherent where p = 0(1) with respect to m,n. Recall the definition of Ek in

(3.2). Let e > 10pik log m. With probability at least 1 - 4km- 2 , Algorithm 2 returns

a skeleton that satisfies

11A - A:cZAR':: 1 = O(Ek(mk) 1, 2 ).

Proof. Let P = A:CA+' G C"". RRQR [361 selects k columns from A:C such that

IIA:c - PA:c11 5 f(k,7)Uk+1(A:c) < f(ke)uk+l(A) < f (ke)k,

where f(k,f) := 1+ 2k(f - k). We have used the fact that

Uk+1(A) = 0k+1 ( ll A12 < 01 A i < Ek-
SA21 A22 (A22

See interlacing theorems in [44].

Recall from (3.8) that Y = O((n/) 1/2 ) with probability at least 1 - 2km- 2 .
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Apply Corollary 3.2.4 to obtain that with high probability

||A - PA|| < O(Ay) IIA:c - PA:c| + O(Ay)Ek + Ek

= O(Ek(n/) 11 2 f(k, f)) = O(Ek(nk) 1/ 2).

Let P' = Ai,A R:. By the same argument, 11A - AP'll = O(ek(mk)1/ 2 ) with the same

failure probability. Combine both estimates. With probability at least 1 - 4km--2,

A - A:c,Aj,AA,:AR,:|1 = ||A - PAP'||

< ||A - PAIl + ||PA - PAP'|

||A - PAII + |A - AP'|I

= O(k(mk)1/ 2 ).

Many algorithms that use the skeleton A:C(A;CAA-.)AR:, e.g., in [54], seek to

select columns indexed by C such that 11A - A:cA-0 Al is small. Here, we further

select k out of f = 6(k) columns, which is also suggested in [9]. Their estimate on

the error in the operator norm is O(k log1 / 2 k)ek + O(k3/4 logl/ 4 k)IIA - Ak lF where

Ak is the optimal rank k approximation to A. In general, I1A - Ak1F could be as

large as (n - k) 1/ 26k, which makes our bound better by a factor of k1/4. Nevertheless,

we make the extra assumption that X 1, Y are incoherent.

3.3.2 Third algorithm

Consider the case where only X 1 is 0(1)-coherent. See Algorithm 3. It computes a

skeleton with 0(k) rows and k columns in 0(k 2 +k 3 ) time. Intuitively, the algorithm

works as follows. We want to select k columns of A but running RRQR on A is too

expensive. Instead, we randomly choose 0(k) rows to form AR:, and select our k

columns using the much smaller matrix AR:. This works because X1 is assumed to

be 0(1)-coherent and choosing almost any 6(k) rows will give us a good sketch of A.
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Algorithm 3. 0(nk2 )-time algorithm
Input: A matrix A E C"X" that is approximately rank k, and user-defined

parameter f = 0(k).
Output: Column index set C' of size k, row index set R of size f, center matrix
of a matrix skeleton Z. Implicitly, we have the matrix skeleton A:C'ZAR:.
Steps:

1. Let R be a random index set of size f chosen uniformly from {1,.. , m}.
Explicitly form AR:.

2. Run RRQR on AR: and obtain a column index set C'. Note that
AR: ~ ARC,(A'CAR:) where ARC' contains k columns of AR:. This

takes O(nk2 ) time and O(nk) space.

3. Compute Z = AC,. This takes 0(k3 ) time and 0(k 2 ) space.

Matlab code:
function [Cp,Z,R]=skeleton3(A,1)

R=randperm(m,1); Cp=rrqr(A(R, :) ,k); Z=pinv(A(R,Cp));
end



Theorem 3.3.2. Let A be given by (3.1) for some k > 0. Assume m > n and X1

is p-coherent where p = 0(1) with respect to m, n. (Y needs not be incoherent.)

Recall the definition of Ek in (3.2). Let f > 10pak logm. Then, with probability at

least 1 - 2km- 2, Algorithm 3 returns a skeleton that satisfies

I|A - A:cZARj:I = O(Ek(mn)1/2 ).

Proof. We perform RRQR on AR: to obtain AR: ~ ARcD where D = A+RC,A: and

C' indexes the selected k columns. We want to use the second principle to "undo the

row restriction" and infer that A ~- AcD, the output of Algorithm 3. The details are

as follows.

Strong RRQR [36] guarantees that

|IAR: - ARcD| I-k+l(AR:)f(k,fn) Uk+l(A)f(k,fn) 5 Ekf(k,fn)

and

ID II < f(k, n)

where f(k, n) = 1 + 2k(n - k). Prepare to apply a transposed version of Corollary

3.2.4, i.e.,

IA - APII |X J ||IAR: - AR:P + - j IIX2,:X*AII+III - P| IIX2*AII.

(3.15)

Let P = SCD, so that lIP II < |ID I 5 f(k, n). Note that AP = A:CAC,AR:. By

(3.8), with probability at least 1 - 2km- 2 , Xi = O((m/) 1/2). By (3.15),

IA - APII O(Ax) lIAR: - ARCDII + O(Ax)(1 + IIPI)-k + (1 + IIPII)ek

= O(ekf(k, n)(m/) 1/ 2 ) = O(e-k(mn) 1/ 2).

If X1 is not incoherent and we fix it by multiplying on the left by a randomized
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Fourier matrix FD (cf. Section 3.1.6), then we arrive at the algorithm in [51]. The

linear algebraic part of their proof combined with the first principle will lead to similar

bounds. What we have done here is to split the proof into three simple parts: (1)

show that X1 := FDX1 is incoherent, (2) use the first principle to show that X1,R: is

"sufficiently nonsingular", (3) apply the second principle.

3.3.3 Comparison of three algorithms

Here is a summary of the three algorithms studied in this chapter. Assume m > n.

Recall that A ~- X1AiY 1*. For Algorithm 1 and Algorithm 2, assume that X 1, Y are

both incoherent. For Algorithm 3, assume that X1 is incoherent.

No. of No. of Upper bound

on error in the Running time Memory
rows columns

operator norm

Alg. 1 e= (k) e =0(k) O(ek(rme ) 6(k3 ) 6(k2)

Alg. 2 k k O(ek(mk) 1/2 ) O(TAk) + 0(mk 2 ) 6(mk)

Alg. 3 0(k) k O(Ek(mn)1/ 2 ) 0(rk 2 ) 0(nk)

Recall that TA is the cost of applying A to a vector. If TA = O(nk) and m 0 0(n),

then the running time of Algorithm 2 and Algorithm 3 are comparable and we would

recommend using Algorithm 2 because it has a better error guarantee.

Otherwise, if TA is on the order of mn, then Algorithm 2 is much slower than

Algorithm 1 and Algorithm 3, and is not recommended. Compared to Algorithm 3,

and in that scenario, Algorithm 1 is much faster and has better error guarantees, so

we view it as the better choice. The advantages of Algorithm 3 are that it selects

exactly k columns and does not require Y to be incoherent.

If we cannot afford using 5(rnk) memory or having a running time that scales

with m, n, then Algorithm 1 is the only possible choice here. Although Theorem

3.1.2 suggests that the error for Algorithm 1 grows with (mn)'/ 2 , we believe that in

practice, the error usually increases with mi/ 2 . See Section 3.4 for some numerical
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results.

Finally, we remind the reader that these recommendations are made based on

error guarantees which are not always tight.

3.4 Examples

3.4.1 First toy example: convolution

This first example shows that in Algorithm 1, it is crucial to regularize when inverting

ARC because otherwise, the error in the operator norm can blow up. In fact, even

when A is positive definite and we pick C = R as in the work of Gittens [34], we

encounter the same need to regularize. The reason is that due to numerical errors,

ARC tends to be ill-conditioned when ARC has more rows and columns than the rank

of A. In other words, numerical errors introduce spurious small but nonzero singular

values in ARC and inverting the components corresponding to these small singular

values leads to large errors.

The experiment is set up as follows. Let A = XEX* E C"'X where X is the

unitary Fourier matrix and E is a diagonal matrix of singular values. Note that every

entry of X is of magnitude n-1/ 2 and X is 1-coherent. Fix n = 301, e = 100 and

k = 10, 30, 50. Pick c = Ek = O-k+1 = ... = = 10"'. Pick the largest k singular

values to be logarithmically spaced between 1 and e. Note that A is Hermitian and

positive definite. In each random trial, we randomly shuffle the singular values, pick f

random rows and columns and measure 11A - A:CZAR: 1. The only parameters being

varied are k and J. Note that although R # C in this experiment, similar results are

obtained when R = C.

From (3.4) in Theorem 3.1.2, we expect that when variables such as n, m, f, k are

fixed,

log |IA - A:cZAR:JI - log(6"(ek + 6)2) = - log J + 2 log(ek + 6). (3.16)

Consider a plot of 11A - A:CZAR: 1 versus 6 on a log-log scale. According to the above
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Figure 3-1: Loglog plot of the empirical mean of the error in operator norm by the
0(k3 ) algorithm versus 5, a regularization parameter. This relationship between the
error and 6 agrees with Theorem 3.1.2. See (3.16). More importantly, the error blows
up for small 6, which implies that the regularization step should not be omitted.

equation, when 6 < Ek, the first term dominates and we expect to see a line of slope

-1, and when 6 >> Ek, log(Ek + 6) ~ log6 and we expect to see a line of slope +1.

Indeed, when we plot the experimental results in Figure 3-1, we see a right-angled

V-curve.

The point here is that the error in the operator norm can blow up as 6 -+ 0.

A curious feature of Figure 3-1 is that the error curves resemble staircases. As we

decrease k, the number of distinct error levels seems to decrease proportionally. A

possible explanation for this behavior is that the top singular vectors of A:C match

those of A, and as 6 increases from o-i(A) to or-u_(A) for some small i, smaller com-

ponents will not be inverted and the error is all on the order of oi (A).

3.4.2 Second toy example

For the second experiment, we consider A = XEY* where X, Y are unitary Fourier

matrices with randomly permuted columns and E is the diagonal matrix of singular
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Figure 3-2: The above is a loglog plot of the empirical mean of the error in operator
norm versus n, the size of square matrix A. Fix k = 10, e = 40 and A = XEY*
where X, Y are unitary Fourier matrices with randomly permuted columns and E is
the diagonal matrix of singular values. The top k singular values are set to 1 and
the others are set to e = 10-6. When we run Algorithm 1 with J = e, e/V5, e/n,
the expected errors seem to grow with no-55, n-0 .51, n0 -69 respectively. For Algorithm 2
and 3, the expected errors seem to grow with n0 52 , n0.4 respectively. The errorbars
correspond to of the standard deviations obtained empirically. Observe that the
error in Algorithm 3 fluctuates much more than Algorithm 1 with 6 = e, e/\/-i.

values. Fix k = 10, f = 40. The singular values are set such that the largest k singular

values are all 1 and the other singular values are all e = 10-6. We consider all three

algorithms. For Algorithm 1, we set J in three different ways: J = e, J = e/f and

6 = e/n.

We plot the error 11A - A:CZAR: 11 versus n in Figure 3-2. The numerical results

show that if we pick 6 = e/\/ni for Algorithm 1, then the estimated mean error is

almost the same as that of Algorithm 2 - they both scale with n0 -51, with k, f fixed.

On the other hand, if we pick J = e as suggested by (3.4) of Theorem 3.1.2, the

expected error seems to grow with n0 -55 which is slightly worse than Algorithm 2 but

much better than described in (3.6).

The expected error of Algorithm 3 seems to grow with n-.4 3 which is the best

in this experiment. However, its error is not as concentrated around the mean as
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Algorithm 2 and Algorithm 1 with 6 = E, E//nr.

3.4.3 Smooth kernel

Consider a ID integral operator with a kernel K that is analytic on [-1, 1]2. Define A

as (A)ij = cK(xi, y3) where the nodes X1,..., x and yi,..., yn are uniformly spaced

in [-1, 1]. First, suppose K = E1l<236 ci2 Ti(x)T (y) + 10-3 TO(x)TO(y) + 10- 9N

where Ti(x) is the i-th Chebyshev polynomial and N is the random Gaussian matrix,

i.e., noise. The coefficients cij's are chosen such that |jA II ~ 1. Pick n = m = 103 and

slowly increase e, the number of rows and columns sampled by the 6(k3 ) algorithm.

As shown in Figure 3-3, the skeleton representation A:CZAR: converges rapidly to A

as we increase e.

Next, consider K(x, y) = c exp(xy). Let n = 900 and pick c to normalize IA I = 1.

We then plot the empirical mean of the error of the 6(k3 ) algorithm against f on the

left of Figure 3-4. Notice that the error decreases exponentially with e.

To understand what is happening, imagine that the grid is infinitely fine. Let

01, W2,... be Legendre polynomials. Recall that these polynomials are orthogonal on

[-1,1]. Define the matrices X, Y as (X)ij = pj(xi) and (Y)ij = Pj(yi). Assume the

Wj's are scaled such that X, Y are unitary. It is well-known that if we expand K in

terms of Chebyshev polynomials or Legendre polynomials [101 or prolate spheroidal

wave functions [78], the expansion coefficients will decay exponentially. This means

that the entries of X*AY should decay exponentially away from the topleft corner

and E' = E(Ek) (cf. (3.2) and (3.3)). We confirm this by plotting Ek, e' versus k on

the right of Figure 3-4. The actual X, Y used to obtain this plot are obtained by

evaluating the Legendre polynomials on the uniform grid and orthonormalizing. It

can be verified that the entries of X, Y are of magnitude O((k/n)'/ 2 ) which implies

a coherence M ~ k, independent of n. The implication is that the algorithm will

continue to perform well as n increases.

As f increases, we can apply Theorem 3.1.2 with a larger k. Since Ek, E4 decrease

exponentially, the error should also decrease exponentially. However, as k increases

beyond ~ 15, ek stagnates and nothing can be gained from increasing f. In general,
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Figure 3-3: A is the smooth kernel K(x, y) where K is the sum of 62 low degree
Chebyshev polynomials evaluated on a 103 x 103 uniform grid. The topleft figure is
A while the other figures show that the more intricate features of A start to appear
as we increase f from 12 to 18 to 24. Recall that we sample f rows and f columns in
the 6(k3 ) algorithm.
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Figure 3-4: A is the smooth kernel K(x, y) = exp(-xy) sampled on a uniform

grid. The graph on the left shows that the error of the 0(k3 ) algorithm decreases
exponentially with f, the number of sampled rows and columns. The figure on the
right shows that if we expand A in terms of Legendre polynomials, the coefficients

(and therefore ek, E'4) decay exponentially. See (3.1), (3.2) and (3.3) for the definitions

of Ek and E'.
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as Ek decreases, we should pick a smaller J. But when k > 15, choosing a smaller J

does not help and may lead to worse results due to the instability of pseudoinverses.

This is evident from Figure 3-4.

A recent paper by Platte et al. [62] states that we cannot have an exponential

decrease of the error without a condition number that grows exponentially. In our

case, the random selection of columns and rows correspond to selecting interpola-

tion points randomly, and J serves as a regularization parameter of the interpolation

method. Due to the regularization, we can only expect an exponential decrease of

the error up to a limit dependent on J.

3.4.4 Fourier integral operators

In [161, Candes et al. consider how to efficiently apply 2D Fourier integral operators

of the form

Lf(x) = (x, )e(

where f(() is the Fourier transform of f, a(x, 6) is a smooth amplitude function and

1 is a smooth phase function that is homogeneous, i.e., 4D(x, A ) = A1(x, 6) for any

A > 0. Say there are N 2 points in the space domain and also the frequency domain.

The main idea is to split the frequency domain into V wedges, perform a Taylor

expansion of 1(x, -) about 161 j where j indexes a wedge, and observe that the residual

phase 41j(x, 4) (x, 6) - d1(x, I6ij ) -6 is nonoscillatory. Hence, the matrix Af :=

exp(27rig(x,,6t)) can be approximated by a low rank matrix, i.e., exp(27ri(j(x, 6))

can be written as DE fq(x)gq(6) where r, the separation rank, is independent of N.

By switching order of summations, the authors arrive at O(N2.5 ) algorithms for both

the preprocessing and the evaluation steps. See [161 for further details.

What we are concerned here is the approximate factorization of A(). This is a N 2

by N- 5 matrix since there are N 2 points in the space domain and N2/ /H points in

one wedge in the frequency domain. In [16], a slightly different algorithm is proposed.

1. Uniformly and randomly select f rows and columns to form AR: and A:C.
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2. Perform SVD on A:C. Say A:c = U1A1 V* + U2A2V2* where U, V are unitary and

||A 2j1 <6 , a user specified parameter.

3. Return the low rank representation U1UR: A:.

In the words of the authors, "this randomized approach works well in practice although

we are not able to offer a rigorous proof of its accuracy, and expect one to be non-

trivial" [16].

We are now in a position to explain why this randomized approach works well.

Consider equations (3.1) and (3.2). Let B be a perturbation of A such that Bc =

U1A1Vl* and I1A - B11 < 6. Since A1 is invertible, the output can be rewritten as

U1Uj+RAR: = B:CBC AR:-

By following the proof of Theorem 3.1.2, we see that

A - B:CBRCA R:|| = O(j|B - B:CBCBR: I)

and that all the estimates in Theorem 3.1.2 must continue to hold.

The analysis presented here therefore answers the questions posed in [16]. We

believe that the assumption of incoherence of the generating vectors is precisely the

right framework to express the error guarantees of the skeleton in such situations.

An important subclass of Fourier integral operators is pseudodifferential opera-

tors. These are linear operators with pseudodifferential symbols that obey certain

smoothness conditions [70]. In Discrete Symbol Calculus [24], a similar randomized

algorithm is used to derive low rank factorizations of such smooth symbols. It is likely

that the method works well here in the same way as it works well for a smooth kernel

as discussed in the previous section.
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Chapter 4

Sparse Fourier transform using the

matrix pencil method

4.1 Introduction

Frequency-sparse signals are ubiquitous. We are interested in computing the dis-

crete Fourier transform (DFT) of such signals much faster than using standard FFT

algorithms.

Before we proceed, we establish some notation for the rest of the paper. For any

positive integer T, let [T] = {, 1,. .. ,T -1}. If Tis odd, let JT] = {-T , . . . ,

Let 1-11 be the f2 norm, |1-11, be the P norm and oj(-) be the j-th largest singular

value. The overline denotes complex conjugation or set complement. When a set is

used as a subscript of a vector, we refer to the vector restricted to coordinates indexed

by the set. Let 0 (-) be the 0 (-) notation with log factors dropped. For any b > 0,

let a%b denote a mod b with the result being in [0, b). Define dist : R x R - [0, -] as

the wraparound distance in [0,1), i.e., dist((1,, 2 ) = minkez k + i - 62I-

Let N be a large prime1 . Given the signal X E CN, we want to compute its DFT

'Our algorithm MPFFT works even when N is not prime. However, we would have to be more
careful when analyzing the random shuffling of modes in Proposition 4.5.5. We envision that the
overall running time will be worsened by a factor of N/y(N) = 0 (log log N) where y(N) is the
Euler totient function, as suggested by [41, Lemma 3.61.

87



c E CN. They are related by

k 1 te 27rikt/N. Xt = ke2,riktN

tE[N] kE[N]

Assume that i is S-sparse with some additive noise. Traditional FFT algorithms can

compute k in 0 (N log N) time. However, since there are only (N) possible solutions,

the ideal algorithm should run in 0 (log 2 (N)) = 0 (Slog N) time, which is much

superior to 0 (N log N).

Some existing sparse Fourier transform (SFT) algorithms already achieve a run-

ning time of 0 (5). We believe the fastest implemented and published robust 0(S)-

time SFT algorithm is currently the AAFFT (Ann Arbor FFT) [47]. In this paper,

we present a robust 0 (S)-time SFT algorithm called MPFFT (Matrix Pencil FFT)

that runs many times faster than AAFFT. The major new ingredient is a mode col-

lision detector based on the matrix pencil method. This mechanism enables us to use

fewer samples of the input signal.

To facilitate the discussion and the analysis of MPFFT, we assume that every

heavy mode of x stands out against the noise in the following sense:

Assumption 4.1.1. For any 0 < p < 1, define the set of p-heavy modes as

A,(x) = {k G [N] : |Ik| 1 - p}.

Assume that there exists a 0 < p < 1 such that |Ap(x) < S and x) < 1.

We emphasize that MPFFT does work for a wide variety of inputs as demonstrated

numerically in Section 4.6. We impose the above assumption on x so that we can

provide a formal analysis of MPFFT in Section 4.5. Throughout the paper, p should

be regarded as very small, and for clarity, we will often drop p from the discussion.

For example, we may write A, as A and refer to p-heavy modes as heavy modes.

Modes not in A,(x) are referred to as nonheavy modes of x.

Assumption 4.1.1 can be interpreted as follows. Suppose we have an underlying

signal X that is exactly S-sparse in frequency space. Assume by rescaling that its
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nonzero Fourier coefficients have magnitude at least 1. In our notation, IAO(X) I = S

and XA0 x = 0. Sample X in time to obtain x. This introduces errors that can

be modelled as Gaussian random variables, i.e., for some o < 1,

xt - Xt ~ N(0, o- 2 ).

Note that isk - k ~ N(0, a/N) and E & - X = a. Letp= -X . It

is well-known that with high probability, - = 0 (o-) and p = 0 () <
2

1. Observe that A,(x) = AO(X) and the noise energy is bounded as ) -
2 < 1 _ ^12 = (02)< 1

ZkVAo(X) Xk - Xk k z - X = 0(a 2 ) < 1. We have verified that x satisfies

Assumption 4.1.1.

In previous work on SFT, almost all numerical examples use an input signal that

satisfies Assumption 4.1.1. It is unfortunate that even for this simple test case,

existing SFT algorithms seem hardly more appealing than FFTW 131], the fastest

implementation of standard FFT algorithms. The problem is that large constants are

hidden in their 6(S) running time and for a fixed N, most existing SFT algorithms

are faster than FFTW only when S < N. Otherwise, they face other major problems

that are summarized in Figure 4-1.

Our algorithm MPFFT is presented in two forms. The first form requires Assump-

tion 4.1.1 and is analyzed in this paper. The second form is implemented and seems

to work well without Assumption 4.1.1. The numerical results in Section 4.6 show

that the second form of MPFFT runs much faster than AAFFT and we encourage

the reader to try out the publicly available code.

4.1.1 Review of sFFT3.0

Our algorithm MPFFT is an extension of sFFT3.0 [40]. To understand the improve-

ments we have made to sFFT3.0, it is imperative to understand how sFFT3.0 works.

The goal of this section is to introduce the reader to the main ideas of sFFT3.0. We

begin by listing its pseudocode in Figure 4-2.

First and foremost, sFFT3.0 is an iterative algorithm. At the beginning of it-
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Faster
Method when What are the issues? What is appealing?

S <?
Requires S to be too small Fastest published
relative to N 0 (S)-time algorithm.

Running time scales with Faster than FFTW
sFFT.0N 1 which is nonoptimal. over a respectable

range of S.

Running time scales with Faster than FFTW
sFFT2.0 ~ 1200 . over a respectable

N1 /3 which is nonoptimal. ragof.
range of S.

Nonheavy modes remain in
the solution, leading to a
final error that is not ac-

sFFT3.0 ~ 95000 ceptable. Nonrobust be- Simple, elegant, very
cause mode identification fast.
fails when there is too much
noise. See Section 4.1.2 for
more.
Not implemented. Not Offer new insights on

sFFT4.0 Unknow likely to be much faster than the analysis of SFT al-
AAFFT. See Section 4.1.2 gorithms.
for more.

Figure 4-1: List of some SFT algorithms. The second column shows the range of S
where the SFT algorithm is faster than FFTW for a fixed N = 222. The values for
sFFT1.0, sFFT2.0 are derived from our own numerical tests (cf. Section 4.6.1) and
differ from [411. We believe the reason is that in our tests, FFTW is compiled with
hardware acceleration on the same machine as it is run. The value for AAFFT is
obtained from [47]. The value for sFFT3.0 is obtained from [41].
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eration r, our approximate of i is 2 ', and we strive to recover at least a constant

proportion of the heavy modes of the residual signal x' = x - z'. We claim that with

good probability, this objective is achieved in each iteration, such that the number

of heavy modes left decays exponentially and the total running time is dominated by

the running time of the first iteration, which is 0 (S log N).

sFFT3.0 and many other SFT algorithms rely on a basic but important operation

called "binning". This is also the most computationally expensive step of these SFT

algorithms. As sFFT3.0 bins only two signals in each outer iteration, which is much

fewer than AAFFT or sFFT4.0, it is not surprising that sFFT3.0 runs much faster

in comparison.

Binning is carried out on the signal y, which is the residual signal x' randomly

transformed such that

yt = 2,rit (k = e2,rik/N (4.1)

where p(k) = ak + 3 is a random permutation with a,,3 uniformly chosen from

[N]\{} and [N] respectively. Binning of y requires only samples of y, y which can

be obtained as samples of r', r by (4.1). This means that the random transform of

Xr into y is implicit and we do not compute or store y or y in full.

Think of the spectrum of y as being supported on the grid [N]/N C [0, 1). Split

[0, 1) evenly into Br intervals [-, b"). We say mode k, lands in bin b if (p(k.)/N E

[ ,r) Define h : [N] - [Br] as h(k) = [p(kBrj. Observe that h(k) is the bin that

mode k lands in. When we bin signal y, we produce B, bin coefficients which ideally

satisfies the following: for b C [Br],

Yb:= Z Y,(k) = S e 2,riyk/N

kEh-1 (b) kCh-l(b)

In reality, (4.2) is not correct because realizing it is computationally infeasible. In-

stead, (4.2) is only approximately realized in 0 log +supp 2) time where Kr, J

controls the quality of the approximation. More details on binning is found in Section
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procedure sFFT3(x E CN, S)
0 <- 0

for r +- 0, 1, ... , R - 1 = 0 (log S) do > Start of an outer iteration

Let p(k) = ak + / be uniformly chosen permutation of [N]
Let -y be uniformly chosen from [N] r ,(k) = 4 e 27riyk/N

B, <- Ba' 0 < aB < 1,B = O(S)

r, - nar o aB < a, <1

0, 1}= 0(logN)
Y' +- BinInTime(a,, , 'y, , Br, 6, Kr)
Y" +- BinInFrequency(zr, a, 3, y, W, Br, 6, Kr)
Y <- Y' - Y" > Obtain B, sub-signals yb

for b c [Br] such that IYob > 1/2 do > Do not process every bin

Identify one mode ko using {Y': T E W}:

o <- arg(Y /Yob)
ko +- round ( N)

Estimate Ykp as Q' +Y
k. <- cV(ko)
Update our solution by k+1 <- . + p%0 e- 2

riyk,/N

end for
end for
return 2R

end procedure

Figure 4-2: sFFT3.0 [40] runs in 0 (Slog N)-time. It is fast in theory and in prac-
tice, but faces two limitations as described in Section 4.1.2. Firstly, mode collision

can create modes whose coefficients are of magnitude between 0 and 1/2. These spu-

rious modes are unlikely to be found in subsequent iterations. Secondly, the mode

identification is very unstable to noise. The parameters r, 6 controls how well (4.2)

is approximated and will be covered later in Section 4.4.
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4.4. Nevertheless, to simplify the explanation of sFFT3.0, we shall assume (4.2) holds

exactly for the rest of Section 4.1.1.

Translation in time corresponds to modulation in frequency. Thus, the binning

of signal yr, which is y translated by T, yields another set of B, bin coefficients: for

b C [Br],

Y := Y Qr(k) = 2ii:(k) rlN _ 2,rik/N 2ri(k)r/N (4.2)
kEh-l(b) kEh-l(b) kEh- 1 (b)

Treat Yr as the T-th time-sample of a signal yb E CN where yb is the transformed

signal y with frequency components outside [ , b") zeroed out. We like to call yb a

sub-signal. To reiterate, the set of bin coefficients {Yb : b C [Br], T E WH} are simply

the Br sub-signals sampled at X.

We say mode k. of signal x is isolated if its bin contains no heavy modes other

than k., i.e., (h 1 (h(k.)) n A(x))\{k,} = 0. The objective of binning is to identify

isolated heavy modes. Suppose bin b contains an isolated heavy mode and there is

no noise, i.e., I|xxII = 0. Say h1 (b) = {k,} and <p(k.) = ko. Then our sub-signal yb

is a pure sinusoid: for any T E [N], Y,' = 2 where o = k0 /N. It is easy to

decipher a pure sinusoid. Observe that ko, 0k can be obtained as

o = arg(Yb/Y o); ko = round -N o); p = Yb. 4.3)0 (~276) l

Finally, undo the random transformation to obtain k, and sk, as in Figure 4-2.

Next, consider why the number of heavy modes decays exponentially with good

probability. Our argument differs slightly from [40]'s. Suppose we are at the beginning

of iteration r. Let A' = A(x') be the set of heavy modes in the residual Xr. Assume

for now that MAl < Sr := Sa' for some 0 < as < 1. Instead of letting Br be

proportional to Sr like in [40], we let Br = Bar decay exponentially slower than Sr.

Fix a heavy mode k*. By Markov's inequality, the probability that k, is not isolated
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is bounded by OSr < L(as/aB)r. By Markov's inequality,

as 25
P (no. of heavy modes not isolated > Art) < 2(as/aB)r

2 as

Assuming no noise and that our bin coefficients are ideal and satisfy (4.2), we see

that an isolated heavy mode will be identified and eliminated in the residual, while a

non-isolated heavy mode will at worst create a new heavy mode in the next iteration.

Hence, with probability at least 1 - 2s (as/aB)r, the number of heavy modes in theas B

iteration r + 1 does not exceed 2(asSr/2) = asSr = Sr+i. By union bound over all

iterations,

rl 2S 00 ) 2S 1
P (IAr > Sr for some r) (as/aB s/aB

Pik B 34,as= B2,an B=asB EasB/aB-r as/SB

Pick aB = 3/4, as = aB/2, and B = 24S/aB = 32S and conclude that with proba-

bility at least 2/3, the number of heavy modes in Xr decay exponentially with r and

is bounded by Sr = Sar.

In practice, the bin coefficients are not ideal. Let k, be an isolated heavy mode

and b = h(k.). First, i., may be highly attenuated before it is added to its sub-signal

Y'. Second, heavy modes landing outside bin b can contribute to the sub-signal Y

and act as noise. Both of these imperfections of (4.2) can make the recovery of k, by

(4.3) unstable. Nonetheless, these problems can be mitigated with a proper choice of

6, 'r. There are however two other problems of sFFT3.0 that are more serious and

they are the focus of the next section.

4.1.2 Two limitations of sFFT3.0

The first limitation of sFFT3.0 is that its mode identification step is nonrobust. Fix

a heavy mode k.. Let b = h(k,) and A' = A(xr). Continuing from (4.2), let the

perturbation in Y6 due to nonheavy modes be AY,' := EZkCg fh-l(b) .e2riyk/N27rikT/N
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Taking expectation with respect to the random permutation W and integer 'y, we have

EEP E I -AYI2 -=Ein 2  2 S EI P 1kkeh-1(b)} ij1 2 /Br (4.4)
k Enh-1 (b) kE M

Suppose mode k, is isolated. Note that the perturbation in arg Yb due to the perturba-

tion in yb is O (1 AYrb / k. ) = 0 ( AYb ). For the rounding in (4.3) to correct AYb

so that we can recover mode ko = p(k.), we need AY = 0 (1/N) for each r = 0, 1.

Now (4.4) suggests that to have a good chance of identifying the heavy modes, we

need Br = 0 (N211L . Unless ,= 0 (1/N), we will need B, to grow with

a power of N which is undesirable. For example, if -,kr,= Q (N-1/ 2), we will need

B, = Q (N), which means that sFFT3.0 runs in 0 (N log N) time and is no faster

than FFT even in theory.

The way to fix this is to identify ko bit by bit. This idea is not new and has been

employed in AAFFT, sFFT4.0, etc. In AAFFT, we identify the least significant bit

of ko, implicitly bitshift ko to the right and repeat. In sFFT4.0, we identify groups of

bits at a time, starting from the most significant bits instead. We will use a simplified

version of the mode identification procedure in sFFT4.0. The details are postponed

to Section 4.2.3.

The second limitation of sFFT3.0 is that when two or more heavy modes land in a

bin, i.e., mode collision, they may cancel one another partially and create a mode with

coefficient 1/4 for instance. Such a mode will remain in the residual signal because

sFFT3.0 processes a bin b only if IYOb| > 1/2, and whenever this mode is isolated

in a bin, its bin coefficient Yeo will have magnitude < 1/2. We call such nonheavy

unidentifiable modes ghost modes.

It is tempting to fix this problem by reducing the threshold value 1/2 to a small

value Pr. As far as we are concerned, this modification alone does not solve the

problem. The inherent difficulty is that if P, is too small, then too many bins with

no heavy modes will be processed and too many spurious modes will be created. On

the other hand, if pr is too big, we run into the same problem of ghost modes having

too much energy.
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Require: Chance of getting a good estimate must exceed 1/2
procedure COEFFICIENTESTIMATIONLOOP(X E CN, 2, B, L)

Re <- O(log B), number of random shuffles
Create a table A of size IL| x Re
for i+-0,1,...,Re -1 do

Let p(k) = ak + 0 be uniformly chosen permutation of [N]
Let -y be uniformly chosen from [N] ye
S-H {0}
Y' +- BinInTime(x, a, 3, 7, , B, 6, N)
Y" <- BinInFrequency(pr, a, 3, y, , B, 6, i)
Y +- Y' - Y"
for j=o,...,1L -l do

ko +- p(k,) where k, is the j-th mode in C
b <- LY k
A,i <- YOb2, k./N

end for
end for
Create a list D of size ILI
for j = 0,...),Cl - 1 do

Dj <- median {Aj,i : i E [R]}
end for
return D

end procedure

Figure 4-3: Coefficient estimation loop used in AAFFT and sFFT4.0 requires us to
bin the residual signal 0 (log B) times, which is computationally very expensive.
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SFT algorithms such as AAFFT, sFFT4.0 fix this problem by processing all bins,

adding up to B, modes to a temporary list C and using a separate coefficient esti-

mation loop to estimate the coefficients of all modes in L to the desired accuracy.

After that, the largest 0 (S,) coefficients are kept. See Figure 4-3. We think that

this coefficient estimation loop should not be used for the following reasons.

Firstly, if k, is an isolated heavy mode, then the bin coefficient Y0 used for mode

identification is most likely a good estimate of ,(k.). It seems unnecessary to estimate

its coefficient in a separate loop. The difficulty lies in distinguishing between a bin

with an isolated mode and a bin with more than one heavy mode.

Secondly, binning is an extremely costly operation and the running time of many

SFT algorithms is very much determined by the number of times binning is performed.

As the coefficient estimation loop requires us to bin the residual signal 0(log B,) more

times in iteration r, it will slow down the SFT algorithm considerably.

Thirdly, for the coefficient estimation loop to work, B, has to be relatively large

compared to S, which is not optimal. Taking the median of estimates only works if

the probability that we get a good estimate of a mode coefficient per random shuffle

happens with sufficiently high probability, say at least a 3/4 chance. That means the

chance of mode collision has to be less than 1/4 and we need B, > 4 Sr. However, the

optimal B, is S, not 4S, by the following heuristic argument. In practice, the modes

of y appear to be fully randomly shuffled, and the chance that a mode is isolated is

(1 - 1/Br) 5 '1 ~ e-/B . Suppose we fix B, = CmuiS, for some Cmtil > 1. Suppose

e-Sr/Br = e1/CmuI of the heavy modes in x' is removed in iteration r. Then the total

time taken by binning is proportional to

ZBr = SB (1 - e-1/Cmu)r = SCmuje/cmuI. (4.5)
r=O r=O

The above is minimized when Cmul = 1, and whenever we use a larger Cmu1, our

algorithm will be slowed down by roughly a factor of Cmui. That is not all. The

chance that a mode cannot be recovered because it lands too far away from the

center of its bin [40] is rnr. For the median-taking to work, we need I'r <; 1/4. The
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time taken by binning scales with 1/r, which further slows down the algorithm by a

factor of 4.

Lastly, out of B, bins where B, is unreasonably large compared to S,, at most

S, of them contain useful information. It is wasteful to process every single bin,

estimate the coefficients of up to B, modes in the list L and then discard most of

these coefficients at the end of the iteration.

In the next section, we present our algorithm MPFFT and describe how it fixes

the second limitation of sFFT3.0 in a more efficient way.

4.1.3 MPFFT and main results

See Figure 4-4 for the pseudocode of MPFFT. Compare MPFFT with sFFT3.0 in

Figure 4-2. The main difference is that in each bin b, we run the "multiscale matrix

pencil method" on the sub-signal Yb and skip to the next bin if the subroutine returns

a I'max that is too large. This is the mode collision test. The basic idea is that if

there is more than one heavy mode in the bin, then Imax is unlikely to be small and

we will not attempt to recover any mode in the bin. In this way, we avoid creating

ghost modes and overcome the second limitation of sFFT3.0 without resorting to the

costly coefficient estimation loop in AAFFT.

The matrix pencil method [451 is a classical method for spectral estimation in

signal processing. Given a signal X' = X + AX where Xj = E cqe 27ij and AXi

is noise, the matrix pencil method aims to recover the frequencies q's and the coeffi-

cients cq's from 2J-1 samples (X')i i_<j1 with J > Q+1. We do not apply the matrix

pencil method to the input signal x C CN with Q = S because too many samples or

a large J will be needed to resolve the frequencies to a precision of 1/N. This will

be elaborated in Section 4.2.3. Instead, the matrix pencil method is applied to a few

frequency-dilated copies of the sub-signal Y' with Q = 1 so as to recover the permuted

mode location ko = p(k.). More precisely, from MatrixPencilMultiscale in Figure

4-6, we see that in MPFFT, the matrix pencil method is applied to (Y Mb)Iji J1

for some f to recover the f-th group of M bits of the frequency k9r%1 where M is an

input parameter to MPFFT. For example, if f = 3 and M = 2, then the matrix pencil
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procedure MPFFT(x E CN, 5, J, M, &, E)

Po -0
for r - 0,1,..., R - 1 = 0 (log S) do

Let cp(k) = ak + 3 be uniformly chosen permutation of [N]
Let -y be uniformly chosen from [N] > yp(k) e27riyk/N

Br +- B(r + 1)- 2( 1 +p) where p = 0.01
Sr <- Se-r

Kr <- K(r + 1)-l+P)

Lr +- [log2 M(N/Br)] + 1 = 0 ( log
W +- {j2A'B, : 1j1 <; J - 1, f c [Lr]}
Y' <- BinInTime(x, a, 0, 7, H, Br, 6, Kr)
Y" <- BinInFrequency(pr, a, 3, 7, H, Br, 6, Kr)
Y <- Y' - Y" > Obtain Br sub-signals Yb
for b c [Br] such that |Yb| > 1 - pr - 2 frEr/Br do

Identify one mode ko using {Y):'r E W}:

(G;, Ymax) +- MatrixPencilMulti scale (L,,7 J, M, (Y62M'fB, j:5;J-1,tE[Lr1)

ko <- round (N ('+10))

if P 2 > Cmpfrr/Br where Cmp is defined in (4.6) then mp
continue to next bin

if I - +1/2 > -- thenN Br -2B

continue to next bin
Estimate Yko as k -Y0b

k, +- <p-1 (k 0 )
Update our solution by E+1<- _ + 9e 2 iyk*/N

end for

Pr+1 -Pr+ 4 frff,/Br
4+1 <-4Er(1 + 4frSr/Br)

end for
return 2 R

end procedure

Figure 4-4: First form of MPFFT is analyzed in Section 4.5.
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method is used to recover the 7-th and 8-th most significant bits of kor %1.

The user needs to supply E as an upper bound on the energy of the nonheavy

modes in x, i.e., X > |II2. The parameter e is a precision parameter and MPFFT

aims to return a zR such that - 2 (1+ E)E. Numerical experiments suggest

that MPFFT runs in 0 (S) time, but developing a rigorous proof is tricky for a few

reasons.

Firstly, without using the coefficient estimation loop in Figure 4-3 to boost the

success probability of estimating a mode coefficient well, we cannot use a union bound

to say that up to B, modes are estimated well, which is a crucial step in the analysis

of sFFT4.0 and AAFFT. In practice, the mode collision detector serves a similar

purpose: it ensures that for all bins, we will not make too much error in the estimation

of any mode coefficient.

Secondly, despite the usefulness of the mode collision detector in practice, provid-

ing theoretical guarantees of its effectiveness seems difficult unless some assumptions

are made about the signal model. In Section 4.3, we assume that the frequencies q's

are independently and uniformly distributed and establish some lower bounds on Pma.

This assumption seems reasonable for the randomly shuffled modes in the context of

MPFFT, but it unfortunately does not hold formally. The reason is that noise in the

second iteration can arise from errors in the first iteration - even if noise in the first

iteration is Gaussian, it is no longer Gaussian in subsequent iterations - and the

random shuffling of these subdominant modes is only pairwise independent, not fully

independent.

To bypass these technical difficulties so that we can provide a formal analysis of

MPFFT, we make the following assumption about the matrix pencil method:

Assumption 4.1.2. There exists a 0 < Cp < 1 such that the following holds. Let

X = s e 2 where Icol > ... > |cp1. When MatrixPencil in Figure 4-5

is run on (X)i j_1 with Q = 1, it will return a IL that satisfies

P-1 2 P-1
p2 > c ECS +Cmp(ICs| 2 . (4.6)

s=1 s=1
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The above assumption is motivated by some theoretical results in Section 4.3 on

the matrix pencil method, which will be briefly discussed after we present the main

result. In addition to Assumption 4.1.2, we also assume that the perturbation in the

single frequency obtained by the matrix pencil method due to noise can be obtained

by first order approximation. This is Assumption 4.2.2. It has an impact in the

proof of the main result only when the perturbation in the input to the matrix pencil

method due to noise is small, which means that first order perturbation theory is

well-justified. More on Assumption 4.2.2 can be found at the end of Section 4.5.1.

Now, we are ready to present the main result about MPFFT.

Theorem 4.1.3 (Main result). Assume 11.^AI < E and for some c > 0, Slog' S

O(N). Let 0 < e < 1. Suppose 6 = N-() is sufficiently small as required by

Lemma 4.5.1. Suppose E,S are small such that (eS) 1/2 < I S - where p = 0.01.

Pick f = e(log E), r = 6(1/M) and B = 0(1 log E) such that B > 10ofs. Under

Assumption 4.1.2 and Assumption 4.2.2, we have that with probability at least

1 1 21-0 log2 + +2M2 log 2 (1+p)± 2 S 1/3 log N 2MloE log S1-0 Elogs+ + -+ s2 + S
logMJ2M MN'

MPFFT in Figure 4-4 runs in

0( log2 _ (j3 + log N)

time and outputs a zR such that | - X 2 (1 + e) and supp 0 )

Typically, we pick a small M such that N > 2 M and the 2 s term in theMN

failure probability is negligible. Moreover, J is usually very small such that the bound

on the running time reads as 0 (y log 2 N log N). Note that p can be arbitrarily close

to 0 but this will increase the constants in the bounds on the running time and failure

probability. The proof of Theorem 4.1.3 can be found in Section 4.5.

Now, let us motivate Assumption 4.1.2 by giving an overview of the results in

Section 4.3. Assume that the F,'s in Assumption 4.1.2 are independently, uniformly
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chosen from [0, 1). Refer to o as the dominant mode and E,_- 1cJ 2 as the subdom-

inant energy. Proposition 4.3.1 states that it is unlikely that /I is much bigger than

Cs +Ej 1 jc412, so the right hand side of (4.6) is at the least not unreasonably

large.

Theorem 4.3.3 says that if the total energy is comparable to lCo 2, which is inspired

by the case where there are several heavy modes in the bin with roughly the same

magnitude, then with high probability, yp2 > E[P jc,| 2. A similar result is Corollary

4.3.7. It says that if the subdominant energy is comparable to Ic 12, which is inspired

by the case where there is an isolated heavy mode in the bin with nonheavy modes

of roughly the same magnitude, then pL2 > cS + 7 Ics 2.

Theorem 4.3.9 is of a different nature compared to Theorem 4.3.3 and Corollary

4.3.7. It says that if there are T heavy modes in the bin and T 2 < J, then /12 > T - 1

with good probability. While this lower bound is weaker than E c,12, it hints at

why the collision detector is good at detecting the presence of a few heavy modes. The

T = 2 case is especially important because it is the most common case encountered

by MPFFT as mentioned in Section 4.3.5. For this case, Proposition 4.3.10 tells us

that for some scale level f, the yp2 returned by the matrix pencil method on the input

2 )IjlJ-1 must be > Icil (I _ 21). Note that this is a deterministic result.

4.2 Matrix pencil method

We first present the matrix pencil method [45, 46], then use it to identify just one

mode. Then we discuss in Section 4.3 how to detect whether the subdominant modes

are too energetic.

4.2.1 Introduction

Suppose we have a signal with Q modes, i.e., Xj = E CqWj where wq = e2
71iq and

q E [0, 1). This is an undamped signal as Wq1 = 1. Let J > Q + 1. Our objective

is to recover the frequencies (o,... ,Q-1 and the coefficients Co,... , cQ1 from 2J - 1

noisy measurements X' = (X'(J 1 ),..., X')T where each X'= X+AX and AX,
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is a random perturbation. Define the Toeplitz matrix on X as

Xo X_1 X- 2  ... X-J+1

1 X 1  XO X_1  ... X-J+2
TX=-

XJ_1 XJ- 2 XJ_3 ... XO

The 1/J normalization factor is non-standard. We use it out of convenience in Section

4.3, a major part of the paper. Consider the matrices A', A, AA c CJxJ:

A' = TX'; A = TX; AA = T(AX). (4.7)

Let A1 be A with the rightmost column removed and A2 be A with the leftmost

column removed. Let A(A 2, A1) be the set of generalized eigenvalues of A2 - AA 1. It

is equal to A(A'A 2), the set of nonzero2 ordinary eigenvalues of A+A 2.

For any T, denote vj(j)= (1, e2x, e 2  i()). Define UT E CTXQ as

UT = (vT( o), .. ,v(Q1)). (4.8)

Note that UT's columns are in general not orthogonal. Let C = diag(cq)qE[Q. Ob-

serve that rank(A) = Q and A has a Vandermonde decomposition. We can write

A = -LUjCU*, A1 = UJCUL>, A 2 = -!UjCdiag(w)*Uj*,. This suggests that

range(A1) = range(A 2) and range(A*) = range(A*). Furthermore, the generalized

eigenvalues of A2 - AA 1 are exactly the wq's we seek, conjugated, i.e., A(A 2, A1) =

{wo,..., wQ_1} because A2 - AA 1 has a nullspace whenever A = ag for some q:

1
A2 - AA 1 = 1UjC(diag(w)* - AI)U>*.

J

Once w is found, we can solve a Vandermonde system to find the coefficients co,... , cQ_1.

Now, consider the noisy version of A, i.e., A'. Let A' be A' with the rightmost

column removed and A' be A' with the leftmost column removed. Let A(A', A') =

2 A+A 2 contains Q nonzero eigenvalues and J - 1 - Q zero eigenvalues.
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procedure MATRIxPENCIL(J, Q, (X) 1j 1<ij-)
Form the matrix A' = T(Xjc)gj5-i E Cjxj according to (4.7)
Compute the SVD of A'

P2 _ =Q+1 oj(A') = IIA'112I - IIA'112  > Used for collision detection

Let V c CJxQ be the top Q right singular vectors of A'
Let V c C(J-1 )xQ be V with its bottom row removed
Let V2 E C(J 1)xQ be V with its top row removed

W' +- A(V 2, V1 ) = A(Vj1+V2)
Obtain Q frequencies by ' <- arg w' for q c [Q]
return (0,... ,'_ 1 )T, / > 0

end procedure

Figure 4-5: Matrix pencil method.

{wO,... ,w 1 } be the generalized eigenvalues of A'2 - AA. Let Aw = - Wq.

The hope is that Aw is small and we can estimate the frequencies ,..., Q_1 by

computing A(A', A'). In Section 4.2.2, we will bound Aw in terms of AX to first

order accuracy.

One way to obtain A(A', A') is to first compute the pseudoinverse (A')+ and then

the ordinary eigenvalues of (A)+A'. The problem is that due to the perturbation

AX, A' is very likely to have rank > Q. To avoid inverting the components cor-

responding to these small spurious singular values, we truncate A' to rank Q using

SVD, obtain Al, A' as column subsets of the truncated A', and then compute the

eigenvalues of (A)+A'

Suppose the SVD of the truncated A' is VEV* where E E RQXQ, V E CJxQ.

Let V be V with the bottom row removed and V2 be V with the top row removed.

Then A(A', Al) = A((A)+A') = A(V*+V2*) = A(V2*V1*+) +(V1 V2 ) = A (V2, V1).

Hence, it suffices to compute A(V 2 , V) and there is no need to compute Al, A'. See

MatrixPencil in Figure 4-5 for the pseudocode.

In MatrixPencil in Figure 4-5, we compute the quantity pI2 = EZ-Q+1 012(A').

This will be used in MPFFT to decide whether there is too much noise energy in the

bin. We will discuss its role in mode collision detection in Section 4.3.
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4.2.2 Identifying one mode and first order perturbations

For the rest of Section 4.2, we focus on the case where there is only one mode, i.e.,

Q = 1.

In our algorithm MPFFT, we apply the matrix pencil method to detect one mode

in each sub-signal. Fortunately, it is much easier to study the perturbation in W due

to the perturbation in X for the case where there is only one mode. The bounds we

present here can be obtained by adapting the arguments from [45]. The difference

is that they take samples Xo,...,X 2j1- whereas we take X_(j_1),...,Xj_1. This

seems like a trivial change as we can always modulate the coefficients cq, but it turns

out that our proof looks simpler. In particular, the variable I in (4.10) takes a much

simpler form than its counterpart in [451.

Proposition 4.2.1. Let X = cowl + AX, where wo = e2"ro and (o c [0, 1). Run

MatrixPencil in Figure 4-5 with Q = 1 on (X)Ijl<j-1 which returns (b. Let Ago =

- (o. To first order,

Aj2  1 lAX 12

1r2Ic l2  J(J 1)2

Assumption 4.2.2. In this paper, the entries of AX are very small and it is reason-

able to assume that Ago is indeed bounded by IIyeven though the inequality?Co 12J(J_1)2e

is only first order accurate.

See the end of Section 4.5.1 for a more detailed justification of Assumption 4.2.2.

Let us proceed with the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Recall this fact about first order perturbations in gener-

alized eigenvalues. Suppose (A2 - AA 1 )v = 0 and u*(A 2 - AA 1) = 0. Then to first

order,

u*(AA 2 - AAA 1 )vAAA = . (4.9)

In our case, A = DO, u = Uj = vj( O) defined in (4.8), v = Uj_1 = vji( o) and

u*Aiv = co(J- 1). Observe that (AA 2 - AAA1 )v is linear in Ax. Let Dj C RJx(2J-1)

such that its j-th diagonal is 1. For example, the topleft 3 x 3 corners of D 1, D_ 1 are
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0 1 0 0 0 0

0 01 1 , 1 0 0 respectively. With some algebra, we find that

0 0 0 0 1 0

(AA 2 - AAA,)v = -I(AX) where F = -ADj-i + A-J+ 2 Do. (4.10)

By (4.9) and (4.10), we know AA = _ U*F(AX). Thus,

IAW12 1 UT*r(AX) (AX)*FTU 1IIAX112 2 |UJI12
Icol2 J 2 (j - 1)2 - C12 J 2 (J _ 1)2

Apply the fact that jrfj |lDjill + |ID 2 J-1| 5 2 and IIUJI12 = J. Note that to first

order, IAGol = I- AWoI.

If AX is random while co, O are fixed, then the proof from Proposition 4.2.1 also

implies that E lA ol2 < ,E(AX)(AX)*II which is a tighter result than Proposition 4.2.1.

However, in MPFFT, the entries of AX are highly correlated and we do not lose

much when we bound IE(AX)(AX)*I by E l1AX112.

In our application, the frequency o lies on a grid and by rounding off to the

nearest grid point, there is a chance of obtaining the exact o. If we do obtain the

correct o and estimate the coefficient co as c' = , Ee X '7, then the estimation

error can be bounded as follows.

Proposition 4.2.3. Let X, =co + AX, where wo = e2 0 and O E [0, 1). Assume

the same set-up as Proposition 4.2.1. Suppose we sample the signal at a set of points

W and estimate co as c'O = - (Er X'p%-. Then Ic' - coC2 < _ Zi.rCn IAX,| 2.

Proof. Let F = diag(w ),E and z = (1,... , 1)T E C1L11. Then

co - co = AX'w -=-zF(AX).

Therefore, IcO - co1 2 = j zTF(AX)(AX)*F*zl 5 1 IzI12 |IFI12 IIAX112. Apply

the fact that |iz12 = 7-I and IIFiI = 1 and we are done. L

106



The above proof also implies the tighter bound E Ic'O - coI 2 < I E(AX)(AX)*|.

4.2.3 Multiscale matrix pencil method

Suppose our signal is X' = X, + AX, where X, = coe27rirko/N and ko E [N] is what we

want to recover exactly. Suppose the frequency space [0, 1) is split into B bins and ko

is in bin b, i.e., E E [, +). Define o = (kyQB) %1 = (koB 2 %N. Apply MatrixPencil

in Figure 4-5 with Q = 1 to (X,')Ii|<_11 and obtain (6 as an estimate of o. Since

ko = +(b +o), we shall estimate ko as

BN

k6 = round (b + C) E [N]. (4.11)

Unfortunately, this method is unstable for large N. This is related to the first

limitation of sFFT3.0 in Section 4.1.2. The reason is that Proposition 4.2.1 suggests

that A O may be on the order of I X11. For the rounding in (4.11) to correct this

perturbation, we need A O < B. This means we need J = Q N1|AX1| 2/3 which

grows too fast with N.

It is not surprising that a direct application of the matrix pencil method does

not work well. If we can only access the first few time samples, there is no hope of

distinguishing between two pure sinusoids with very close frequencies. Say AzO = B

Then for any small j, Ie2xij( o+A/o) - e2
7rijo = 12 sin(27r(A o)j/2)1 ~ 27r(A~o)j which

is very small. But if we can skip the earlier samples and jump to j ~ = , then2AO- 2B the

12 sin(27r(A o)j/2)l ~ 2 and we would have noticed the difference between a signal

with frequency 6o and a signal with frequency o + A6o.

In our application, we do have access to any time samples. Exploit this by un-

covering 6o M bits at a time for some small M > 1. For example, if M = 1, we will

be solving a low resolution problem of whether 20 o, 2'6o, 226o, ... is in [0, -) or [1, 1).

Consequently, we can tolerate much larger errors in estimating 20o , 216o, 22 o and so

on.
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Suppose o = O.dodi ... in base 2M where each de E [2 M]. Define

G = (2eM' )%= k2MB 511  k02'MB)%N = O.dede+1 ... in base 2 M.
kN N

As de = [(t 2 MJ, we shall run MatrixPencil in Figure 4-5 on (X' 2 eMB) ljl<J-1 which

returns G" as an estimate of 6, and then estimate de as d' = [LOt2M1. Notice that

to get the less significant bits of 0, we sample X much further in time as an earlier

paragraph suggested.

Next, consider how to calculate o if we manage to compute do,..., dL-1 Let

L = .do ... dL-1 and R = L + 2 -LM Recall that o = -do-... dL-ldL ... E [ &,R)-
If 2-M < _L, or equivalently, LM > log 2 E, then there is at most one integer k'

such that k' E [E(b+L), (b + R)), and it must be that k' = ko. This implies that

whenever we correctly identify the first L digits of 6o in base 2 M and LM > log 2 B,

we will be able to obtain ko as [ N(b+L) = [(b + 6R)J-

Here is another way to estimate ko which we find more intuitive. Let 6 = j(6L +

(R) be an estimate of 6o. Since 6R -6L = 2-LM and o E [6L, R), we have 16 - 6oI <

2-LM-1 < . Consequently, ko can be recovered by the rounding in (4.11).

Refer to Figure 4-6 for the pseudocode. Notice that the algorithm does not require

knowledge of N or B and can be applied to any discrete signal with a dominant

frequency 6o E R. It returns 6 as an estimate of 60 and if our parameters are

reasonably chosen, we can expect to recover the first LM bits of 6o. We leave it to

the caller to estimate ko from 6 using (4.11). Note that we use integer arithmetic as

much as possible to avoid floating point errors. Finally, the quantity t is used to

determine if there is too much noise in the signal and will be analyzed in Section 4.3.

The point of finding 6o M bits at a time for a small M is that we can tolerate a

larger A( for each e E [L]. For example, if M = 1 and 6 = ., then d' = [($+A O) -2]

is equal to the correct de for any IA6 min{ , - } = .. Let us formalize this

argument.

Proposition 4.2.4. Suppose o is uniformly distributed in [0, 1). Let X3' = X3+AX3

where Xj = coe2
7ii'A and AX3 is random and not necessarily independent from 60.
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procedure MATRIXPENCI LMULT ISCALE(L, J, M, (X 2M)Ij J-1, e[L])
s+-O
for each scale level f C [L] do

( O", pe -MatrixPencil(J, 1, (X'.rljl _)
s -- s 2m + [' 2MJ

end for
6 +- 2 -LM-1( 2 s + 1) -> = = 0-d ...

Amax <- maxtE[L] i
return G, Amax

end procedure

" ~2 M ]> 4' = [(2G
s is an integer

L-1 in base 2 M

Figure 4-6: Multiscale matrix pencil method.

Run MatrixPencilMultiscale in Figure 4-6 on (X'2eM)IjIJ-1E[LI which returns an

estimate G1. Suppose o = .do ... dL-1 in base 2 M. Then P (|( - (I < 2 -LM-1) <

3 - 2 2M/3 ZEE[L] (E | A6 |2) 1/. By Proposition 4.2.1 and Assumption 4.2.2,

P (161 - 601 < 2-LM-1) <3. 2 M/3 E lc[L]- E AXj21 2 1/3

tE[L] 72 '0 12 j(j _ 1)2

Note that Proposition 4.2.4 is not useful if (EI A 2) 1/2

f e [L].

> 3 -3/2 2 -M for any

Proof of Proposition 4.2.4. It suffices to bound P (d' # de for some f c [L]). Fix a

e E [L]. Note that ($ is also uniformly distributed in [0, 1). Let 0 < 0 < 2-m-'

Split [0,1) into 2 M parts. Define the "decision edges" as HI = [2 M]/2 M. Suppose

A t <9 . Then as long as (6 is more than 9 away from all the decision edges,

i.e., minEm dist(6j, r) > 0, de will be identified correctly as L[6 2MJ. For example, if

M = 1, we can obtain the correct de whenever 60 V [0, 0] U [1 - 0, . + 0] U [1 - 0, 1].

Hence, by union bound and Markov's inequality,

P (d ' # d j) < 2 M + 1O ± 2

92

Pick 9 = 2-M13 (E IA60,2 )1/3 to obtain P (d't -7 de) < 3.- 2M"~/1 (E IA~t 2) 3. Union
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bound over all f G [L] to complete the proof.

Suppose we fix J and the desired accuracy, i.e., fix LM, the number of bits of o

we want. Then we should pick M = 1 to minimize the chance of failure according to

Proposition 4.2.4. However, if AX is very small, then Proposition 4.2.4 says that the

failure probability can be acceptable even if we choose a larger M. The advantage of

a larger M is that L can be smaller (since LM is fixed) and the number of samples,

A/J,M := IJ 2 eM : Ij 1 J - II E [L]}| can be smaller. In MPFFT, taking a sample

of our sub-signal corresponds to one expensive binning operation, so choosing a larger

M can speed up MPFFT significantly.

Nevertheless, for maximum robustness, we recommend choosing M = 1. For this

case, instead of computing G" = ; arg w' when running MatrixPencil in Figure 4-5,

it suffices to check if Im(wo) > 0. In addition, if J is even, then

Ar,1 = J(L + 1) - 1; Kr+,,1 = H ,1+ 2. (4.12)

This suggests that we should always pick an odd J because for two extra samples, J

can be incremented which implies a better error bound by Proposition 4.2.4 and also a

better collision detector as we will see in Section 4.6.2. In our numerical experiments

(cf. Section 4.6.1), however, MPFFT seems to be just as robust when J = 2 as J = 3.

Finally, if the Fourier coefficients of X' are all real, then A is a Hermitian matrix

and the number of samples needed Ns can be halved because X' = X'_.

4.3 Collision detector

Let us return to studying MatrixPencil in Figure 4-5 with Q = 1. Consider the

following probability model for the noisy signal X'. Fix P coefficients c(,..., cp_1

such that Icol ;> ... > cp_1 I. Our true signal is Xj = coe 27ri'jo and 0 is referred to as

the dominant mode. Our noise vector AX is composed of P - 1 subdominant modes,

i.e., AXj = -1 cse 27ijC.. Assume the Us to be independently and uniformly chosen

from [0, 1). The results of this section also hold if the frequencies lie on a grid, i.e.,
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S = ks/N with k, independently, uniformly chosen from [N]. Be warned that these

results cannot be applied directly in MPFFT because these modes can be thought of

as being fully randomly shuffled whereas in MPFFT, the random shuffling of modes

is only pairwise independent.

Let v, = JvJ((s). Note that A = cOvOvO and AA = E 1 c,,vv*. In MPFFT,

we stop processing a bin if p2 exceeds a certain threshold. This is our mode collision

test. The problem of false negatives, i.e., not rejecting a bin when we should, is tricky.

Let us first deal with the problem of false positives. For any vector u, let

2

R[u] Euj +|II2

Proposition 4.3.1. Assume that Xj = E,[p] cse 2
7,ij where each , is indepen-

dently, uniformly chosen from [0, 1). Run MatrixPencil in Figure 4-5 on (X')igi,_
which returns some y. Then

p (1,2 ;> tjZ[(Ci, ..., CP_1)] ;1t

Proposition 4.3.1 suggests that if R[(ci, ... , cp_1 )] is small, then it is unlikely that

AL2 is large and the bin is rejected by the collision test. To prove Proposition 4.3.1,

we compute some basic quantities that will be useful later as well.

Lemma 4.3.2. For any s C [P], Evv* = I/J where I is the identity. Let K C [P3

be an index set. Then

2

E cvv* = ZEKCS E cvv* 2 [ c K-
SEK ssEK F

Proof. We leave it to the reader to verify that E vv* = I/J. Now, E Es csvsv* =

111



Ecs Esv = Z I. On the other hand,

2

IE ZcsovSv* = Etr ((Zcrvv,*)*(Zcvsvs*V)
S F r S

= |cs12 tr(E vsvvsv*) + Z c tr(E vs*vrvr*v)
S r:As

= Ics2 tr(E vs'*) + E cT tr(I/J 2 )
S ros

S r,s
r54s

2- Zcs 2+Z csI2/J)

= CS + E CS12

S S

Proof of Proposition 4.3. 1. Recall that A' = A + AA where A has rank one. Write

J J

= S o-(A')2  5 (o-(A') - o (A)) 2  IIAAIIF. (4.13)
j=2 j=1

The second inequality is due to Wielandt-Hoffman. By Lemma 4.3.2, E IIAA 1 2

I[(ci, ... , cp_1 )]. The result follows from Markov's inequality. l

Now, consider false negatives. The claim is that if p2 is small, then most likely,

the noise energy Z j_- Ics12 and the sum of the coefficients P-1 Cs will be both

small. In the context of MPFFT, X' is the sub-signal of a bin dilated in frequency

by a factor of 2eMBr. If the noise energy in the bin is small, then our dominant mode

must be isolated and if - cS is small, then the coefficient estimation error must

be small. This will be useful in Section 4.5 where MPFFT is analyzed.

For the rest of Section 4.3, we establish the claim or weaker form of the claim

for some special cases, e.g., multiple heavy modes of roughly the same magnitude, or

one heavy mode with many smaller modes of roughly the same magnitude. Lastly,

Section 4.6.2 contains some supporting numerical evidence.
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4.3.1 Total energy comparable to energy of dominant mode

The first result pertains to the case where there is substantial amount of subdominant

energy relative to our dominant mode, i.e.,

IcsI2 > Ico12

sC[P]

Theorem 4.3.3. Without loss of generality, assume that Ico| = 1. Let a = cs

and 32 = ||c1| 2 > 1 where c = (co,... ,cP 1)T. Assume that X,' = ZSE[P] ce 2nij .

where each s is independently, uniformly chosen from [0,1). Let A' = TX' as in

(4.7). For any 0 < t < 62 and 0 < u < C6±, we have with probability at least

1 - Ce- - 2Je-u,

1A112 112  | a2 2) +'32 (1 1 C3 t 2CQuI|A' l - 2 _ _ I - -( .4

The constants C1,C2, C3, C, 6 are defined in Lemma 4.3.5 and Corollary A.2.2.

For the bound on the failure probability Cle-+2Je- to be nontrivial, t, u cannot

be too small. For example, u has to be Q (log J). But for the lower bound in (4.14) to

be useful, J has to be sufficiently large relative to t, u . Recall our assumption about

32. It has to be comparable to J for the proof to go through. Therefore, the theorem

is applicable only for a sufficiently large J and a sufficiently large 32 relative to J.

Now, let us prove Theorem 4.3.3. The idea is to use concentration inequalities to

control 11A' 12 - E |IA' 12 and IA' - E A'I. First, we check that IE A'112 and E IIA' 12

are sufficiently far apart. The gap between them is i(1 - j) + 12(1 -

Later, we also need the second and fourth moments of Jv*vI.

Lemma 4.3.4. Let r, s E [P] such that r = s. Then

2 1 1 + 2J 2

E |v,v 5 | - , E |v,v 8| = 3

Proof. Note that vs are random vectors in isotropic position [56, 66] because for all

u CJ, E Iu*vs12 = u*(E vsv*)u = lull 2 /J. Let u = Vr which is independent of vs to
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obtain the second moment of Iv,*vS.

For the fourth moment, we condition on v, and take expectation over v,. Let

B, = diag(v,)*. Write IV,*Vq14 = |(Bv,)*(BVs)|4 = Iz*v',s4 where v' = Bv, and

z = (1, . )T/VJ. Observe that conditioned on v, v' has the same distribution as

VS, so E Iv*vS 4 = E Iz*v,14 . Take expectation over v, to undo the conditioning and

obtain E Iv*vSI 4 = E Iz*v.4 The latter can be evaluated directly. Let 6(x) = 1 if

x = 0, zero otherwise.

4

E|z*vq= j Ze-27rii d
4 =0

410 e27ri(j1-j2+ji3-ja4)(
j ,i 2,j3,j 4E[J

~ 4 Jj -j2~ + 3 ~~ j4 -

1,J2 , 34 E[J]

We want to count the total number of 4-tuples (ji,j2 ,j 3,j 4 ) ; [J]4 such that ji -

j2 + j3 - j4 = 0. If ji - j 2 = k for some -(J-1) < k < J-1, thenthereare

J - Iki pairs of (j, j4 such that 3 - j4 = -k. Deduce that the total number of such

4-tuples is - (J - Ik) 2  j 2 + 2ZC J - k = !(1 + 2J 2). It follows that

Elz*v = iIj(1 + 2J 2 ) 1+2j 2  l
J4 3 3

Next, we bound the deviation of IA',l from its mean using moments. Let Em X

denote (E IXI')/m for any real random variable X. We will use standard techniques

such as symmetrization, decoupling and Khintchine inequalities. Let X denote an

independent copy of random variable X.

Lemma 4.3.5. Let C1 = 4, C2 = 12. For any t > 0,

IIA'|| - E IIA'| |2 eC10/2  eC 3/2 t3/2 + eC t2 C2e-t.

Let C3= 3eC1 . If 0 < t < 12 , then P (II A' 11 - E IIA'||12| ;> t C Ce-.

Proof. Let Dm = C1 C2/m. Let c,, = crc, if r $ s and zero otherwise, i.e., it is
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diagonal-free. Now,

Em (IIA'l|2 - E ||A'||2 Em Z
r,sE[P

Crs |v*v,|2 _ )

Dm Em S Crse IV*s 12 b
r,sE[P

Dmm Em Sc,2v*,4
, Crs12 IVVE[14(r,sE[P]

Dmm Em
r,sE[P

y [22, Theorem 3.5.3]

1/2

by [22, Theorem 3.2.2]

1/2

ICrS 12 IV*S 14 (4.15)

The randomization step between the first and second line is justified by the fact that

the sum E,,,[P CrS(IV*vs12 - 1) is centered and degenerate of order 1 [22, Chapter

3]. This means that for any r $ s, when we fix vr, we have Ecr,,(Iv*vs 2 - = 0,

due to Lemma 4.3.4.

Next, we bound EmZrsC[P] Ic I2 1v*v,1 4 in the same way as in [67]. Let g =

EE IE,P1 ICrs 12v,.vs 4 . By Lemma 4.3.4, g = Z,,,[P] ICrs12 1+2j2 < IC14 1+2J 2

Furthermore,

E:= Em Icr 12v,*v9 4 
- g

(,,sE[P]

Dm Em E |Crsj2,pjq jVq4 |
r,sE[P]

_ Dmm EmE lcrS141v*q18)
r,SE [P]

Dmm Em r E CrS2 1 v* q14)
,E [P]

by [22, Theorem 3.5.3]

1/2

by [22, Theorem 3.2.2]

1/2

Dmm(E + g)1/2

The sum Em Er,E iCrsi2 (lvvsl4 - 3j-) is also centered and degenerate of order

1 by Lemma 4.3.4. This justifies the randomization in the second line.
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obtained E <; Dnm(E+g)1/2 . It follows that E < -(D 2 rn2 + VD4m 4 + 4D m2 g) 

DmM2 + Dmmg1/ 2 and

Em E 1Crs|2 II V*V1 4 g + Dmmg 11/ 2 + D m2

r,sE [P]

+ DmmC |c 2

Substitute this back into (4.15) to obtain E. (1 A' 112 - E ||A'1125 DmmlI +c D +/2c+

D2m 2 . Recall Dm = C1C1/m. Let A = CltjjcII 2 C t / + C2 t 2 . Let Tn = t. By

Markov's inequality, P (I IA'1 2, - E IIA'1121 > eA) < (EtIIA'I I-EIIA' F <C et.

As for the deviation in the spectral norm, we use the Matrix Bernstein inequality

[58, 74].

Lemma 4.3.6. Let 06 be as defined in Corollary A.2.2. For any 0 < u < C6L,

P (IA'-EA'I C5u 1/2 < 2Je.u.

Proof. Note that A' - E A' = sc p, c,(vv* - 1). Apply Theorem A.2.2 with Gk =

1:1CI(Vk'14 - .), R =1 and Or2 (1 _ 3

Finally, we apply our bounds on IA' - EA'l and I IA'II2 - E IIA'112 1 to prove

Theorem 4.3.3.

Proof of Theorem 4.3.3. By Lemma 4.3.5 and Lemma 4.3.2, with probability at least

Ce-, A'2 F+ ( - j ) - j 1 /2

with probability at least 1 - 2Je-u, ||A'112 <

By Lemma 4.3.6 and Lemma 4.3.2,

+ /

the difference between the two bounds and we are done.

+ 2Cf 2 u. Take

4.3.2 Subdominant energy comparable to energy of second

mode

Suppose $~ lcP2 iC> c 1 12 J. This models the case where there is an isolated heavy

mode and many small nonheavy modes of roughly the same magnitude in the sub-
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signal of a bin. Such nonheavy modes typically arise from coefficient estimation errors

made in previous iterations. As a simple consequence of Theorem 4.3.3, we have:

Corollary 4.3.7. Without loss of generality, assume that |ci = 1. Let a = E- cs

(which excludes co) and 02 = |P-1 IcS| 2 > 1 (which excludes ico| 2 ). Assume that

X1= Z[ c2rijh where each , is independently, uniformly chosen from [0,1).

Let A'=TX' as in (4.7). For any 0<t< 82 and 0<u<C6 ,3,

A '12 _1 A'12 | a |r I 4 ) ) 2( I 1 - C at 4C .2u

|A'|F 2 i J1/ 2

The constants C1,C2, C3 , C5,06 are defined in Lemma 4.3.5 and Corollary A.2.2.

Proof. As A' - AA is rank one, we have EJ 2 cj2(A') > E of(AA) IlAAII2 -

2 IIAAII 2. Compute a lower bound for IIAAIIF and an upper bound for IIAAII. Specif-

ically, apply the proof of Theorem 4.3.3 with Xj replaced with AXj = EY-1 coe 2
rij'

and A replaced with AA to conclude that with probability at least 1- C2 - 2Je-,

IIAAII2 2 > iL + 32(1 _L) _ t and IIAAI12 <2a + 2C52-u. Take the difference

between the two bounds to complete the proof.

4.3.3 Subdominant modes do not cancel one another

Suppose c, 2 ci12 J like in the previous section. In addition, assume that

the subdominant modes do not cancel one another and satisfies - cS

I - icS! 2 . Then ||A'Il2 - IIA'iI2 2 according to Proposition 4.3.8 below.

It is a weaker result than Corollary 4.3.7 as it requires an additional assumption, but

its proof is much shorter and may be of interest to the reader. An example of such a

signal is c, = s~11 2 for s > 1. In this case, EP-c = E(P 1/ 2) which is much bigger

than ZP-l ICS1 2 = E(ogp).

Proposition 4.3.8. Without loss of generality, assume that Ic1 I = 1. Let a =

,=' c. and /2 = Z-i i| 2 > 1. Assume that X' = >j ccseTija where each

, is independently, uniformly chosen from [0,1). Let A' = TX' as in (4.7). As-

sume that for some , > 1, lal > .C 5 C1/ 2 02. For any 0 < u < C6±, we have with
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probability at least 1 - 2Je-u,

11A'|2I -||A'1I 2 > 02(, _ 12C2 J - 2 C/2 3 1/2

The constants C5, 06 are defined in Corollary A.2.2.

Proof. Like in Lemma 4.3.6, apply matrix Bernstein or Theorem A.2.2 to AA and

deduce that with probability at least 1 - 2Je-u, j|AA - ELAAI < Cu1/2. Since

EAA= L, we have that for 1 < j < J,

o-j (A A) > IaI - C0 /1/2 > iC 5 /2 _ 1/2 > (r' -1)C 3 C6 2 _ 1/2
j -j1/2 J j1/2  /12(j/

(4.16)

As A' - AA is rank one, o-2
2 (A') > Eo-j (AA) 2 . Substitute in (4.16) to

complete the proof.

4.3.4 A few heavy modes with little noise

In MPFFT, most of the time, very few heavy modes will land in the same bin. Let

T < J be a small integer, say T = 2 or T = 3. In Theorem 4.3.9 below, we shall treat

the case where there are T heavy modes with little noise energy E=T Ic 2

Theorem 4.3.9. Let T < J. Without loss of generality, assume that IcoI > ... >

IcT_1I = 1 > cT > ... > |cp_1|. Assume that X,' = EsC[P] cse 2,ij4 where each ,

is independently, uniformly chosen from [0, 1). Let A' = T(X') as in (4.7). For any

t > 0 and 0 <u < v/T-1(1 - t), we have

"A"' (IT T 2 + Z(cT,... I cp-)]
P ||IA' 2r- |(A' 2Y / - ( - ) _ + ( 2

-1 -j I

Before we prove Theorem 4.3.9, we remark that unlike Theorem 4.3.3, Theorem

4.3.9 works for an arbitrarily large Ico12 relative to the energy of the subdominant

modes S=1 -c 812. Also, in our application, ET-1 cvv* is due to nonheavy modes

and c'§-1c*v r is very small. Hence, Theorem 4.3.9 should be interpreted as
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P (I A' |2 - IIA'12 > T(1 - t) 2 ) <T

Proof of Theorem 4.3.9. Let W = (vO,... , VT_1) E CJXT. Write

W*W = I +

0

vtvo

v;_1 vo

v1;v1

0

VT_1V1

... VOVT_1

... V~V_1

. . 0

By Lemma 4.3.4, E IIW*W - II2I = (T 2 - T)/J < T 2 /J. Therefore, for any t > 0,

a(W*W - I ) < 1. if 1,W*W - Iha 5 t, then o1,(W) -t for I < j 5 T

and by [76], we have

T-1

Eoj+1 (W diag(co, ..., 7CT-1) W*)
j=1

T-1

> E o2+1 (W)o? -j+ (diag(co, ... , cT-_)W*)

j=1
T-1

> E uj+(W)o?2-j+ (diag(co, ... , CT-1)) o4(W)
j=1

> (T - 1)(1 - t)2.

Let H = _~Cse2,ij-. By Lemma 4.3.2, EllHlI2 = H[(c,..., cp-_)]. By

Markov, for any u > 0, P (ljHlII U) RJ(CT, CP)]/U 2. Conclude that with

probability at least 1 - ! - ±, we have

|A'1 2 - IA 2 1/2
T-1

> 2+1 (W diag(co, ... ,cTl)w* + H)
j=1

T-1 1/2

> o-j+1 (W diag(co, .. ., C_1)W*) -
(j=1

> V T- 1(1 - t) - U.

1/2

T-1 1/2

E j (H)
j=1

Between the first line and second line, we applied Wielandt-Hoffman-Lidskii in the

following way. Let o(-) denote the vector of singular values of a given matrix. It is

known [50, 55] that for any matrices A, E, Io(A + E) - u(A)I is weakly majorized
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from below3 by a-(E). Thus, for any il > ... > ik,E Z, i,(A + E) - o-2,(A) 2

=1 oj(E), which implies by triangle inequality that

k 1/2 k 1/2 1/2

ofi (A + E) o-i (A) - o-j(E) .
j=1 (j=1 j=1

4.3.5 Two heavy modes

The T = 2 case is especially important to MPFFT. The reason is that it is very

unlikely for more than a few heavy modes to land in a bin. Let S, be the number

of heavy modes in the residual signal and B, be the number of bins in iteration r.

Condition on a fixed heavy mode landing in a bin b. Let X be the number of other

heavy modes in bin b. In practice, the shuffling of the heavy modes appears to be

fully random such that X is a binomial random variable X ~ Bin(Sr - 1, 1/B,).

Hence, P (X = T - 1) = _ 1 ( - 1 )s -T = Br (1 - i) (Br - 1)-T decreases

exponentially with T. Clearly, the most common case that needs to be detected and

rejected by the collision detector is T = 2.

Fix the frequencies of the two heavy modes, 60, 1. Let Icot I >ci = 1 > 1c21 >

... cp_1 I and H = _-1 c e2,ii s. Specialize the proof of Theorem 4.3.9 to T = 2.

Let W = (vo vi). By applying Gershgorin to W*W, 0-2 (W) /1 -r vOviL It

follows that

c 2 (A') 02 (Wdiag(co,ci)W*) - IIH11

l v*v1| - ||H 11|.

Observe that if vo, vi are incoherent, i.e., v~vilI is small, then O-2(A') should be close

to 1 and the collision detector should detect that there are two heavy modes in the

bin. On the other hand, if (o, & are very close, then vo, v, will be coherent and the

3 For more on the topic of majorization, see Marshall, Olkin and Arnold [551 or Horn and Johnson

[441.
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collision detector may fail. Fortunately, when we try to identify the next group of M

bits of the dominant mode in MatrixPencilMultiscale in Figure 4-6, the distance

between the two frequencies of the signal supplied to MatrixPencil will be dilated

by 2M, and as we continue this dilation, this distance between the two frequencies

will become sufficiently large such that vo, v, become incoherent.

Proposition 4.3.10. Let M > 1. Let (o,' i E [0,1) where (o = 1. Let L >

log2M 1ist( 0 ,-). Let = 2'M. Let v' = kvj( t) for s = 0,1. Then there exists

some e E [L] such that

dist(($,[f) > 1 2M+2 + V 2J

For instance, for M = 1, we can expect 0-2 (H) > 1 - -1 for some f c [L]. The

result is deterministic but is useful for only T = 2 heavy modes.

Proof of Proposition 4.3.10. Without loss of generality, assume that o = 0 and 1 =

dist(6o, 6) < 2± . Let

fmax = max{e: 6f < 1}.

In other words, e = emax + 1 is the first time 2tMdist(60 ,61) exceeds or is equal to 1.
1>The hypothesis L > log 2M dist(ioii) guarantees that ( > 1, so fmax < L - 1. Also,

emax > 1 because 61 < 2 and 61 < 1. To summarize, 1 e fmax L - 1. Observe

that 61 is away from 0, i.e.,

6'ma > 2-M > ( 2 M + 1)'.

Otherwise, 6fma±1 < 1, which contradicts the maximality of fmax. If 6tm is also

away from 1, i.e., 61"ax < 1 - 2 j1 , then dist(6max, f") > (2M + 1-1 as de-

sired. For the rest of the proof, suppose 6f"ax > 1 - (2 M + 1)-1. The claim is that

di( -1, e"-1) 21 . First, we see that max-1 is away from 0:

Imax-1 > 2-M (1 - (2 M + 1)-1) = ( 2 M + 1)-.
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Second, we see that 6f"-- is away from 1: as M > 1,

1m < 2-mMm <1/2 < 1 - ( 2 M + 1)-i

We have shown the first inequality of Proposition 4.3.10. For the second inequality,

assume we have a e such that ( dist(6t,(f) E [2+, ]. It follows that =

sin(JrC) < _L < 2M+1. We have used the fact that sin(wr) 2( on [0, 1]. l
J sin(7r() I 2J(~ - 2J2

4.4 Binning

Binning is the most costly operation in MPFFT. In this section, we explain how

binning is done, discuss how to speed up binning, and establish some elementary

lemmas which will be needed in Section 4.5. As hinted by (4.2 in Section 4.1, binning

is achieved by convolving our signal with a boxcar-like filter in frequency space. The

basic design of this filter is the same as in [40], but we make some small improvements.

Most notably, our analysis does not require N to be divisible by the number of bins

B, unlike Lemma 3.3 of [40] or Claim 3.7 of 141]. As a result, we do not need N to be

powers of 2 in order to have more choices for B,. In fact, we are allowed to work with

a prime N which simplifies slightly the analysis of the random shuffling of modes in

Section 4.5.

4.4.1 How binning works

Let B be the number of bins. For simplicity, assume that B is odd. For any odd T, let

[T] denote {-1. . ., - . For any 0 < w < j, let jw(6) : [- j, 1) -+ R be the indi-

cator function on [-f, g], i.e., w(6) = 1 if 161 < w/2, zero otherwise. Its semidiscrete

Fourier transform Xy E Rz is the sinc function: X = f1/2 (6)e 2 7it*d( = sin(irtw)
L -1/2 X rt

Suppose we want to bin a signal x E CN. Extend it to a X G CZ by Xt = Xt%N-

The semidiscrete Fourier transform of X is a series of spikes supported on 1 , i.e.,

X()= tz Xte 27igt = Z z(Zk [N] Ske 27ikt/N - 2xigt k [N] Xk 6 (( - 4) where J

is the Dirac delta function.

122



procedure BININTIME(x E CN, , , y, 7-H, B, 6, K) - {J2 MB: Ii|<; J - ie E [L]}

Compute Wt by (4.17) for all t E
for r E R do

for t E [P] do
c <- e2 ?i(At+6(t+r)/N)W where A = -1 > yt =xztye 2 7rflt/N
d +- X(a(t+r)+y)%N ry = Yt+r
utP +<- cd > Ut = ytWte 2 st

end for
for t E [B] do

Vt +- E jE[P/B UjB+t
end for
i' +- StandardFFT(v) > Vb = E[B vte2 

ritb/B

Yb +- f for all b E [B]
end for
return Y

end procedure
procedure BININFREQUENCY(i E CN,a, , 0y,) , B,, i)

7 = {j2eM B : ji < J - 1, f E [L]}
Zero out Y E CBx|WI

for k, E suppi do
k0 <- <p(k,) where (p(k) = ak +/
b<- [ okJ w= bE [B] is the bin k, lands in
C +- We',ko where Wbk is defined in (4.21)
for T E R do

yb Yb ,ce2 ri(yk./N+kor/N)

end for
end for

return Y
end procedure

Figure 4-7: BinInTime runs in 0 (R log 1) time. As for BinInFrequency, we use

the erf routine to approximate Wb,ko. In practice, it makes sense to assume that
erf takes 0 (1) time with respect to J because if 6 is too small, we will run into
floating point precision issues anyway. With this assumption, BinFrequency runs in
O (1supp X1) time.
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We want to convolve X() with the rectangular window 1/B( ) and sample the

result Z*kI/B( ) at B uniformly spaced points in [0, 1). Each of the B samples will be

the sum of all the modes landing in a bin as desired. To implement the convolution in

frequency space, we will need to multiply X with Xl/B. The problem is that the sine

function Xl/B decays too slowly and we will need too many time samples of x. The

solution is to smooth i1/B ( ) by convolving it with a periodized Gaussian, so that in

the time domain, Xl/B is multiplied by a Gaussian and will decay exponentially with

Itl and can be truncated with negligible loss of accuracy. Let us be more specific.

Let 0 < K < 1 and 6 > 0. Let cj = log . Let I = Ujcz[ +j - 1B,4 +j+ 1-1]/2]

Define our window function W C Cz or W( ) : [0,1) -+ R as

We t2 /2=e B W(I e-7 2 /2 dq where (4.17)

K1 2BV/ B___
U, = 07t = =

4B,,/2cS' 27ruf 7rK 0

The parameters -t, of are carefully chosen so that we apply the ideal amount of

smoothing to the boxcar filter. This will be made precise later. Note that W(C) is

real-valued, infinitely differentiable and is periodic with period 1. Next, we verify

that Wt and W( ) are indeed Fourier transform of each other.

Proposition 4.4.1.

Wt= 1/2 ()e27*d; W( ) = S We-2t./1/2 E1-1/2

Proof. Let Gt = et 2 /2 . Its Fourier transform is the periodized Gaussian

G( ) = > -2Gyer

jEZ

= 7( 1 2 /20,2 2?ri77idOj e-7r

=- VfFE e-772/2",2 J(T - 6 - j)d?7.
f ?E jEZ
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By the convolution theorem, the Fourier transform of GtX1/ 2B is

G * i () /2

1-xK/2
2B

=1-K2 G( - ()d( because G is even
2B

1-K/2

1f f J e-2/2"- >jj/(2iR -6( +( -j)d d(
S2B ER jEZ

S BJ __ +j)2 /20,d

jEZ -2B

if 172/20,2dqj
Urf\ JIt

In the time domain, we truncate W C Rz to have support [P] where P is an odd

integer that is divisible by B. As we will see later in Section 4.4.3, the truncation

error will be 0 (5) if P is sufficiently large relative to o-t:

(4.18)

Let F G Rz be the indicator on [P]. Its Fourier transform is () = sin(Pr) thesin(pre)

periodic sinc function. Define our truncated window WcCZ or W : [0, 1) -+ JR as

Wt=WtFt; W(n)= 12 (4.19)

Multiply our signal X with W and obtain a P-vector u such that for t E [P]

Utp = XtWte21rAt for some A to be decided later. Let ft be the unscaled DFT of u,

i.e., fip = Etc ute-27itp/P. The following proposition says that i4 corresponds to a

bin with center P - A.
P

Proposition 4.4.2. For any p G fP],

t,= 5XkEW

kE[N]
( - A _ k
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Proof. Recall that for any t, xt = ZkE[N] Ske 27rikt/N and Wt = f-2 e2itd.

Thus,

, S xtWte 2 ti6t e- 2 itp/P

tc[P

~ k e2,rit(p/P-k/N-A- )

kC[N J _1/2 tE IPI

z - f 1 2  (p 2k)d
kE[N k /2 P N

From (4.19), we see that above integral is -( - A - ).

These bins overlap because their centers are I apart but their width is about .

We only want B of the P bins. In other words, we want to subsample ' E C . This

corresponds to periodizing u to obtain a B-vector v in the time domain. Formally,

let vt = ZjE[P/B] UjB+t and fk = ZtE[B] Vte 2 ,ritb/B be the unscaled DFT of v. Define

= b _ _k) ;W b _ _k)(.0
Wb,k =W - A- ; k = &A--. (.0B N B N

The following proposition says that b corresponds to a bin with center A. By

setting A = - the center of bin b will be the center of the interval [A, L1]. This

is convenient because the bin that a given mode k lands in will be simply [LB].

Proposition 4.4.3. For b E [B], Vb = UbP/B = ZkE[N] ik b,k-

Proof. Apply the Poisson summation formula and Proposition 4.4.2. We omit the

details.

In MPFFT of Figure 4-4, the residual signal x' = x - z' is implicitly randomly

transformed before we bin it. As binning is a linear operation, it is carried out

separately on the transformed x and the transformed 2 r. To bin x, we follow the

aforementioned steps which are summarized in BinInTime of Figure 4-7, i.e., multiply

by Gaussian and sinc function on [PI, periodize, perform B-point FFT.
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To bin 2', we apply Proposition 4.4.3 with z being 2'. As Wb,k is hard to compute,

we replace it with

Wk=W - _ -) _ V(~ W 10 j fe 'fd (4.21)

where I= [( - 1-./2 ,+ 1-K/2]. Also, we incorporate the technique of updating

the bins instead of the signal from [40]. Specifically, given any nonzero mode k.

in z', we update only the b-th bin coefficient where b is the bin that k, lands in.

The pseudocode for binning ,' is found in BinInFrequency of Figure 4-7. To be

clear, during iteration r of MPFFT in Figure 4-4, Y is equal to Yb[[N]] where for any

K C [N],

Y[K] : ke 2,ri(,k(k))/Nb,(k) - 2ri(yk+p(k)r)/N , (4.22)
kcK kEh- 1 (b)nK

In Proposition 4.4.9 of Section 4.4.3, we see that W,k, W',k, Wb,k are all close to one

another such that (4.22) is approximately

b[K] := r 2,ri(^tk+w(k),r)/N b~ )-(4.23)

kEK

We introduce a K C [N] because in Section 4.5, it is more convenient to bound

the contributions to Yr by different subsets of [N], e.g., the nonheavy modes of Xr.

If K = {k.} is a singleton set, we abuse notation by denoting Y[{k,}] as Yb[k*].

Similarly, denote Y[{k,}] as Y.'[k*].

4.4.2 Faster binning

The speed bottleneck of MPFFT lies in binning. It is therefore worthwhile to optimize

the binning procedure as much as possible. Below, we list two changes that speed up

binning significantly in our implementation of MPFFT.

Firstly, in BinInTime of Figure 4-7, instead of running a single inner loop over

127



procedure BININTIMEFAST(x C CN, a,7 ),7,,B,6, r)
Compute Wt by (4.17) for all t E
for T E 71 do

for t G P do
c 4- e27ri(At+,8(t+r)/N)We where A =

di +- X(e(t+r)+y)%N > Yt 2 =

d2 +(-a(t+r)+y)%N

Uf - c(d1 + d2 )

Uf1p <- c(d1 - d2 )
end for

for t E [B] do
R U R

Vt L-~jE[P/B] UJB+t

Vt Ej[P/BlUJ-B+t
end for
v, <- StandardFFT(vR)

7L = {j2'MB j E [J],e E [L]}

-t (Yt - Y-t)
=,- R R,i- = R

t Yt+r I Yt Yt+r

R =t

> Rb RE B e 2,ritb/B

b~ = ftE[ e2]V t

f) +- StandardFFT(v') >b rIv e2 citb/
YR,b +-R for all b c [B]

yI,b i- 3I for all b E [B]
end for
return yR yI

end procedure
procedure BININFREQUENCYFAST( E CN, a, , Wy,, B, 6)

R = {j2'MB: j G [J], EC [L]}
Zero out yR Y' CBxINI

for ko E supp do
k1 +- p(ko) where W(k) = ak + 
b +LkJ t b E [B] is the bin ko lands in

c <- xkoWbke 27rYko/N where Wb,k is defined in (4.21)
for T E 7 do

d <- e2,rikir/N

Ybr 7 YRb + Re(c)d
yIb + YI'b + Im(c)d

end for

end for
return yR, Y1

end procedure

Figure 4-8: Faster binning by splitting y into yR and y' and halving the number
of trigonometric evaluations. We also recommend splitting the loop over [P] in

BinInTimeFast into three simpler loops as mentioned in the text.
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[P , it is surprisingly much better to run three simpler loops over [P]. In the first

loop, compute and store all the indices a(t + T) + -y modulo N. In the second loop,

sample x at all the indices computed in the first loop. In the third loop, multiple by

the phase factor e27(A+ 3 (t+r)/N) and Wt. We believe by splitting into three loops, the

code becomes more cache-friendly and can be unrolled more by the compiler.

Secondly, the most expensive step within binning is the computation of phase

factors in BinInTime because evaluating sines and cosines is costly. It turns out that

we can halve the number of trigonometric computations by exploiting the symmetry of

W and splitting our transformed signal y into two signals with real Fourier coefficients.

Let x' be the residual signal. Here is the original schematic:

X' r''b' n y Yi for each b E [Br].

Recall that we sample Y at 7- = {j2M'Br : lij < J - 1 I E [L]}. The number of

phase factors that need to be computed is (2J - 1)L(P + supp r|). Consider the

following new schematic:

x' ,'3 >R I yRb yI,b for each b E [Br]

The signals yR y'I satisfy R = Re( k) and D' = Im(Pk). Let yR,b yIb be sub-signals

obtained from binning yR, yI respectively. Since yRI yI as well as yR,b YIb are even

in time domain, we only need to sample them at nonnegative r's. This essentially

halves the size of X. After sampling yRb, ylb at nonnegative T's, we can rebuild

the original sub-signal Yb by Yb = Yb + i,' if T > 0 and Y = YRE' + I'b

if T < 0. In addition, observe that yR y'I can be binned simultaneously using the

same phase factors. The number of phase factors computed is in fact reduced to

JLP + Isupp 2r 1(1 + JL), which is roughly half as before. The pseudocode is found

in Figure 4-8.

129



4.4.3 Binning-related estimates

In this section, we derive some bounds that will be used in the analysis of MPFFT in

Section 4.5. The following fact about the normal distribution (cf. Proposition A.2.3)

is useful for the rest of the section. For any z > 0,

J 00
(4.24)e-t

2 /2,2 dt < -e- z2/2a2
z

Let c = log } which is bounded by 6 when 0 < 6 < e-'/7. The first result controls

the error made in frequency space when our window W is truncated to W.

Proposition 4.4.4 (Truncation in time). Let 0 < 6 < e- 1/". Then

W- W
00

< <6.
7rc3s

Proof. For any , we have

(Wtxt - Wt)e-2i t | < SIWI
ItI (P+1)/2

Z -t 2/2a2

ItI (P+1)/2

- 7r (P - 1)/2 fit (P-1)/2e- td

1 2o2 _(p-1)2 /8C

- r(P - 1)/2 (P - 1)/2e8

The result follows from (4.18) which guarantees that ( P-1)/2 > .2,-

Next, we have a simple lemma that will be used for the next few results. Let

Iout = {r: [I I > f}.

Lemma 4.4.5. Suppose 0 < 6 < e-"'. Then f 1 ef 2/2 dr, < <6.

Proof. By (4.24), f , e 2/2 d7r < e-(/) 2  . The latter is bounded

by because our choice of of in (4.17) guarantees that K/4B ;> V2c.
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The next result says that W( ) is very small when > -!-. This is to ensure

that heavy modes that land outside a bin b do not contribute much to the sub-signal

Yb.

Proposition 4.4.6 (Outside bin). Let 0 < 6 < e-1'/ and cj = log .. For any such

that -L < , we have _ ( ) < < J.

Proof. Observe that for < < -, we have I = UiEz[+ j- 1K/2 ++ 1-r./2 ]C

Iout. This is because for j = 0, 6 + j - 1-K/2 > 1 1-/2 > -L- and for j = -1,
2B -2:B -2B - 4B

+ j + 1-r./2 < -1 + 1-.2 < - as B > 1. Apply Lemma 4.4.5 to complete the

proof. I

Define the passband and relaxed passband as

{7 2B ; n'[Cwn]{?: ek Cwn for some 0 < Ci, < 1/ 2 .2B P["]t:I"IC"
(4.25)

The next result says that W(6) is very close to 1 when 6 is in the passband P and

that P'[Cm] contains {q : JqJ < 2-2} for any 6 < 1 - 2 Cin. We use the passband

for analysis but in our implementation of MPFFT, we use the relaxed passband. The

reason is that for computational speed, we prefer using K = 1, but when K = 1, P is

empty which means that we have to reject every mode.

Proposition 4.4.7 (Inside passband). Let 0 < 6 < e-1/7. For any P E 7, W(6) >

1 - 5 1 - J. For any 161 < 1-/2 >() - 2 2 - -

Proof. Observe that for 0 < < %, we have I D [6 - 1-n/2, + 12/2]

[- 1, -. /2 out. The last containment is because K < 1 implies 1-/2 > -L-. It

follows from a- fR e- 2 /2dq = 1 and Lemma 4.4.5 that W(6) > 1 - >1 - 6.

Now, consider the second inequality of Proposition 4.4.7. When 0 < < 1-2/2
2B

we have I D - -K/2,6 + 1- /2] I [0, l/2] D [0, L]. Thus, W(() -

f u , /2d. Apply Lemma 4.4.5. E

Next, we show that when <'| -L, then W'(6) is close to W( ), where W'(6) is

defined in (4.21).
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Proposition 4.4.8 (Truncation in frequency). Let 0 < 6 < e-'/?r and J(l -L. Then

Proof. Suppose 0 < < -. Observe that Ig\I, = Uj 0 [C+j - 12 I +

Iout. This is because forj = 1, C+j -2 1- -K/2 I as B > 1, and for

=-,+j + 12 < + -1+2/2 <-2L as B >1.

Combining the previous results, we can control how much (4.22) deviates from

(4.23) when we restrict the residual signal to some K C [N] in frequency space.

Proposition 4.4.9. Let K C [N]. Suppose we are in iteration r of MPFFT, and have

just run BinInTime on x, BinInFrequency on r and obtained the bin coefficients Y.

Then for any b E [Br], T E 71, we have Y'[K] - Y. [K] < 3 max(||l||1,||12||1 1). If

K is a singleton set, then Y[K] - Y[K ] I 36 max(I|2||c, ,1|I ||I1).

Proof. Write

Y[K] - Y.'[K] x I Wb,(k) - Wb,(k)
kcK

+ krZ~ Wb,V(k) - Wb,V(k) I+ kI IjWb, k
keKnh-l(b) kEK\h-'(b)

Consider each of the three terms on the right hand side of the equation above. The

first term is bounded by 6 11i| 1 by Proposition 4.4.4. The second term is bounded by

6 ll by Proposition 4.4.8. The third term is bounded by 6|| | by Proposition

4.4.6. Therefore, Yrb[K] - Yf'[K] < 36 max(llKl, jj I1 1). Trivially, IljKI 1  I IJ JI,

|114|11  |i1 and if K is singleton, I|K K II I 0 .
2

The next result provides a bound on ZkE[N] Wb,k , the energy of the window.

This result will be used later to control the perturbation of bin coefficients due
2

to nonheavy modes in a bin in Proposition 4.5.5. In practice, y ZkE[N] bk 2

( ) ~ but for the analysis of MPFFT, we use the weaker bounds below.

Proposition 4.4.10 (Energy of window). Let 0 < 6 < e-1/" and b c [B]. Then

ZkE[N] b,k <
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Proof. The idea is that WV(6) is very small outside [-L, -] and bounded by 1 inside

Let K = {k E [N] : dist(, b - A) -}. Note that IKI < L J + 1
|B2 2

N + 1. By Proposition 4.4.6, W,k + Zk2K Wbk IKI + (N - IKI)J 2 <

IKI+ N 2 < (L + 1) + N 2 <3

For the analysis of MPFFT, we use a r, that decreases with r. Although this

simplifies our proofs, we do not recommend using a small K,. The reason is that in

practice, MPFFT performs just as stably even when K, = 1, and using a smaller K,

will slow down BinInTime and the overall algorithm significantly. We will revisit this

point in Section 4.6.

4.5 Analysis of MPFFT

4.5.1 Chance that a mode is identified and estimated well

Our analysis of MPFFT is adapted from [40]. The main difference is that we have to

do without guarantees related to the coefficient estimation loop.

Fix an iteration r and a heavy mode k, of the residual signal. Let ko = p(k,) and

b = h(k.). With an abuse of notation, let S = S, B = Br, K = K,, A = A', E = 9,

f = f, and L = L, just for Section 4.5.1. Here is the main result of Section 4.5.1.

Lemma 4.5.1. Assume k.1 > 1/2, klijll <8 = N-0 (1M, max(1iJ11 , III 1) =NOM

JAl < S and J = N-(1) is sufficiently small, e.g., 35max(II|,1j, i|ril.) < .

Run MPFFT in Figure 4-4. The probability that k, is identified and 1 k. is estimated

with an additive error no greater than f is at least
B

I 2S ( 222M+5 1/3  8L 8 2ML+1

B J2 Cmpf f N

The 2ML+1 term is due to the frequencies being discretized and is usually unim-N

portant because N > 2 M, L in practice.

Proof of Lemma 4.5.1. Recall (4.22) and that Y = Yl[[N]]. Write the sub-signal Yb
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as Yb - Xb + Ub and XI - Xb + AXb and AXb = AXbl + AXb,2 where

XI = Yb[k.], (true signal)

AXbl = Yb[(A\({k})\h- 1(b)], (heavy modes outside bin)

= Y [], (nonheavy modes)

Ur = Y[(A\{k,}) n h1 (b)]. (heavy modes in bin)

Xb can be thought of as the true signal and it is contaminated by AXb. The signal

AXbl is due to heavy modes landing outside bin b, while the signal AXb, 2 is due to

nonheavy modes. On the other hand, Ub is due to heavy modes landing in the bin.

We will see that with good probability, mode k, is isolated, which means that Ur = 0

and MatrixPencilMultiscale is effectively run on X'b.

Recall the definition of the passband in (4.25). Note that b+1/2 is the center of binB

b. Let 6o = k0B% 1. Recall that MatrixPencilMultiscale attempts to identify the

first LM bits of 6o. Let 60 = (602 eM)%I. Let III = [2 M 1/ 2 M be the "decision edges".

Define the following bad events.

g, = {k, not isolated} = {|h-(b)| 2},

g N too near to bin edges, i.e., large offset = { B '

gtD(O) = {6 within 9 of decision edges} = min dist(6 , r/) <; ,

gtM(t) = {perturbation in input to MatrixPencil at scale f too large}

{ 2J-1 S AX 2 eMB I 2 t

IiI J-'

gA(t) = {perturbation in IIAI|F at scale f too large}

= {T(AXj
21MB)jIJs-11 t

gE(t) = {estimation error too large} = {AXOb2 > t}.

We first bound the probability of each of the above bad events, then infer that if they
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all do not hold, then k, will be identified and estimated well.

Proposition 4.5.2 (No isolation). Given that |Al < S, we have P (60') < 2S/B.

Proof. Condition on b = h(k.). For any mode k, we have

P (h(k) = b) < 1 < 1/B + 1/N.-N _1/N_ -

Thus, the expected number of heavy modes landing in the same bin as k, is (IAI -
1)(1/B + 1/N) < S/B + S/N. Apply Markov's inequality to complete the proof. E

Proposition 4.5.3 (Large offset). The chance that ko misses the passband region is

P (g 0 ) + 1/N.

Proof. Let k' = (koB)%N which has the same distribution as ko. By definition of

P in (4.25), P (g) = P -+I/2 2 ). Observe that by taking modulo 1,

k__- (b+ 1/2)1 > !(1 - K) is equivalent to I - 1/21 > I(1 - r,). The probability

that this happens is bounded by L(tKI + 1) < K + 1/N. L

Proposition 4.5.4 (Near decision edges). For any f C [L], P (1D(0)) < 2 M+10 +

2M/N.

Proof. The proof is very similar to the proof for the previous lemma. Let k' =

(ko2eMB)%N. Instead of avoiding an interval of width K, we have to avoid 2 M in-

tervals of width 20. Therefore, the probability that 1 is too close to any decision

edge is bounded by Z ([2 + 1) < 2 M+10 + 2M/N. Compare this with the proof

of Proposition 4.2.4 and see that we have an additional 2M/N term due to the dis-

cretization.

The following is analogous to [41, Lemma 4.11. Define

S. = 6S/B + 5262 max(JI&IiI 1, I|rlI)2. (4.26)

Assume J = N-8(1) is sufficiently small such that E,, 8S/B.
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Proposition 4.5.5. For any -r E W, EI AX1 2 < E,.. Thus, for any t > 0,

max (P (,M (t)) (&A(t)) p (gE(t))) e*jt.

Proof. Condition on b = h(k,). Let K = A U K' where K' = (A\{k,})\h 1 (b).

Note that AXr = Yr[K] = (Yrb[K] - Yf7[K]) + if[A] + Yf.r[K']. By Cauchy-Schwarz,

lE Yf[K] 2 4 E(Y [K] - Y[K])2 +4 Eif[K']2 +2E [] 2 . The first term is bounded

by 4(36max(JII|s 1 , I IrI1))2 by Proposition 4.4.9. The second term is bounded by

4(J IIsrII )2 X 4 2 (2max(I^II1 , |I2'I|1))2 by Proposition 4.4.6. Bound the third term:

2

E 7b - 2 = E EY ire e2riyk/N b 27ri-r(k)/N

kEX

= E' 14i12 1b (k) 2 _ r 2 E' W,(k) 2

kEX kEX

2 2 < 9(3/B).
kEX kcE [N

The last inequality is due to Proposition 4.4.10. Undo the conditioning by taking

expectation over b = h(k,). We have shown that E I AX1 2 < E4 for any T E 7-.

Complete the proof by applying the linearity of expectation and Markov's inequality.

0

Consider the chance that k, is identified. Recall the proof of Proposition 4.2.4.

Suppose g' does not happen. Then MatrixPencilMultiscale is effectively run on

(X'.2eM)Ij<;J-1,eeL]. Think of (Xj2mB)jE[N as a single sinusoid perturbed by noise

and the single mode has coefficient co = Yob[k,]. Suppose 600 does not happen.

Write IcoI I YB[k.] - Yob[k,] - fB[k.] . The first term is at least pr 1k. (1 - 6) by

Proposition 4.4.7 because k, lands in the passband. The second term is bounded by

3max(jIjlJ. , IIrI,) due to Proposition 4.4.9. Assume 6 = N-e(1) is sufficiently

small such that 36max(II|I1., lKj.) ! I4 and J <1 - - - . As a result,

Icol 1 (1 - 6) - 36max(jII.II , II'I.) 2 (3/r). (4.27)

136



4. . A ~e12  < j- Z 1 AX .~ M B be aue2
By Proposition 4.2.1, 02 2r 12 2J(J-1)

2

By Proposition 4.5.5,

P (I A _ 0) p p(M(J2

--Las J >2.

.: r* 2 02)) < 86
SJ2 r* 2 2J2 k

Recall that P (eD(O)) < 2M+10+2M/N by Proposition 4.5.4. Pick 0 =

and obtain

2M 1/3

p (gD( 0 )) +p(M (j 2 k0)) 2 + 2 M /t : 3 ~~J2 1- k--1

(
N.

)1/3

(4.28)

To identify k., we also need to pass the collision test, i.e., we need pL , CFe for

all f. By (4.13) in the proof of Proposition 4.3.1, p T(AX 2 eMB)Ijj<;J-1 F. Thus,

the chance that yp2 exceeds Cm fs is bounded by

P(ge (CmBfE) < fB < .8
-CMf S - Cmpf*

When there is mode isolation, 4 will be estimated as X'Be-2,riyk*/N. Control the

estimation error by

IB e-2riyk*/N - r < B - r 2,riyk*/N

Yo[k*] - 4 .e 2 ,ik./N + AXB

Y[k*] - Z[k + jWbk - 3k4 + JAXj. (4.30)

By Proposition 4.4.9, the first term on the right hand side of the equation above

is bounded by 3Jmax(II.,,, 11z'11.) 2 B assuming that J = N-e(1) is suf-

ficiently small. By Proposition 4.4.7, the second term is bounded by 4s*, <

2Jmax(jj- 11., ,j||,'.) 2 B assuming that J = N-e(1) is sufficiently small. Con-

clude that to estimate 4 with an error less than 2 it suffices that gE( ) does
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not hold. By Proposition 4.5.5,

(EfE \B 8
p E <. (4.31)

We also need to ensure that we do not reject the bin containing k. because Y0b

is too small. Note that when gE(L) does not hold, we have JY0 bJ > IYob[k-] -

Recall from (4.27) that

Icol = IYOb[k,] I > 4j (1 - 6) - 36 max(llll,, II2110) (1 - p)(l - 6) - 1 fe2 B

Assume 6 = N-e() is sufficiently small such that 26 < . Hence, 1co 1-p- I

and IY 0bJ 1 > - p-2 . Indeed, in Figure 4-4, a bin is processed only if Y0b

1-p-2V .

Complete the proof by doing a union bound over scale levels and over all the

bad events listed earlier. This involves summing (4.28), (4.29), (4.31) and applying

Proposition 4.5.2 and Proposition 4.5.3.

We end the section with a justification of Assumption 4.2.2. In the proof of Lemma

4.5.1, we argue that mode k, is identified and well-estimated if a series of conditions

hold simultaneously. In particular, 6I and &A (Cn f&) must not happen. This

guarantees that the perturbation in the matrix used by the matrix pencil method,

or AA in (4.7), is small. In other words, if the first order perturbation theory is

inaccurate and Assumption 4.2.2 is invalid because AA is too big, we would not

claim that k, is identified anyway.

4.5.2 Overall analysis of MPFFT

We now use the same notation as the rest of the paper, not Section 4.5.1. For example,

S is the initial number of heavy modes and B is the initial number of bins.

Before we begin the proof of Theorem 4.1.3, we remark why we think that the

0 (Slog N log 2 _) bound on the running time is tight. Consider the running time
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of the first iteration. According to Lemma 4.5.1, the chance of failure includes a

o (Lo/f) term which suggests that we need f = Q (Lo) = Q (log E). The total

error energy made in the first iteration is on the order of f which suggests that

we need B = Q (S log L). As we need to bin Lo = Q (log -f) times and each bin-

ning takes Q (B log Q) = (S log L log N) time, the total time is expected to be

Q (Slog N log 2 N). Now, let us proceed with the proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. Let A' = APr(X') be the set of heavy modes at the start of
2

iteration r. We say iteration j is successful is lAj+'1  jAI e- and <j+1
Define , as the event that iteration j is unsuccessful for some j = 0,... , r - 1:

, = Aj+1 > IA I e-1 or 2>Ej+l for some j r -1

Read 6, as "iteration 0,.. .,r - 1 are all successful". Observe that . implies

jAij < Se-i = Sj for j = 1,...,r. In particular, for R = [logSJ + 1 > logS, 00R

implies that AR Se-R < 1, i.e, all heavy modes are found after R iterations.

Next, we establish a few intermediate results. Let p = 0.01.

Proposition 4.5.6. Suppose 0 < e < 1 and ~, holds. Then 2 < S( +e) < 2S.

Proof. Recall that B, = B(r + 1)-2-2P and f, = f(r + 1)1+P and L < e. After R

iterations,

00 '/0

ArII_2 < Sr<gEf[l 0 4fsSs
r9| <= +, B ) < E exp E B

= Sexp ( E(s + 1)3+3e-s) < exp (B)
< e*(lo< 2) (1 c ).

The last inequality is because 0 < e < 1.

This is a good time to check the growth of Pr. We need PT to be bounded by j so

that all heavy modes are sufficiently heavy and can be easily identified by the matrix
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pencil method. Note that R + 1 < log S + 2 < 3 log S assuming S > e. Note that

,, p, are predefined and independent of how well the algorithm performs.

Proposition 4.5.7. Let 0 < r < R. Suppose S > e and 4 (_E )1/21 2
,
5 ;15 p S <

Then P, .

Proof. Expand our p, as follows:

r-1 1/2 R-1

Pr = 4E L) 41 B(s + 1)1.5(1+P)

s=O S=O
( / 2  R+1

<S 4) 1/2 X _+p)dX
100S

<4 2. 1/2 (3 log S) 2.5+1.5p
-(100S) 2.5 + 1.5p

< 4 (6,E)1/2 og s 1

S 2

A bin b is processed only if |Yb| 1 - Pr - 2 . If the bin contains no heavy

modes, this is unlikely to happen.

Proposition 4.5.8. Consider iteration r where 0 < r < R - 1. Suppose ~r. The

probability that some bin with no heavy modes landing in it is processed by MPFFT

is bounded by 649.

Proof. By Proposition 4.5.7, 1 - pr - 2 fr1r > - p+1 - P. Some bin with nor6

heavy modes is processed only if rAXB 1- pr -2 = } for some b c [Br]. By

Proposition 4.5.5, E AXB1 2 < 84/Br for any b. The latter is bounded by 16E/Br

by Proposition 4.5.6. Apply Markov's inequality and union bound over Br bins. E

Suppose mode k' has been added to r in iteration r. The previous paragraph rules

out probabilistically the case where the mode comes from a bin with no heavy modes.

Say k' comes from bin b. Let the dominant mode of bin b be k, = argmaxk YO"[k]l

(cf. (4.22)).
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Suppose k, = k', i.e., k. is correctly identified. The explicit check for whether k'

is in the passband in Figure 4-4 ensures that Wb,V(k) > 1 - J (cf. Proposition 4.4.7).

Moreover, the bin has passed the collision test and satisfies (4.6) by Assumption 4.1.2.

This ensures that Yb - Yob[k,]<fr5r whether there is mode isolation or not. As

xr is approximated as Ybe2ri~k*/N, the error on mode k, is reduced to the following

in the next iteration:

|; I r2,ri-k/N _ yb

er2,ri-yk./N 
_e 2 ~"" _ Yb[k]1 + I -b[k*] - yb"[k] I+ VBr

I + 3Jmax(jj.,, pr'|.) + 2 r (4.32)k B-rB- r-

The above equation is technically very similar to (4.30): apply Proposition 4.4.9 to

bound Yob[k*] - Yb[k,] and Proposition 4.4.7 to bound xe 2
rik./N _ gb[k,] . The

difference between (4.32) and (4.30) is that (4.32) is deterministic and the Ygb - Yob[k,]

term above can be due to heavy modes that land out of the passband region inside

bin b, whereas the AXb term in (4.30) can only come from nonheavy modes or heavy

modes that fall outside bin b.

Now, suppose k' # k,, i.e., k' is a subdominant mode. The collision test ensures

that each of the subdominant modes cannot have too much energy. In particular,

(4.6) guarantees that IYb[k'] < . The check for k' being in the passband
- r

ensures that Wb,(k') > 1 - 6 by Proposition 4.4.7. By Proposition 4.4.9, yB[k] I

Y b[k']l + 3Jmax(Ijj|j, 2fr) < . But iB[k'] = . , , and 6
-2VBr k n

implies

1 B, 1 j [k'1] 2 . (4.33)
16 Br

1b -- I fr By(.3) ti

Since bin b is processed, we know that 0b| 1 - pr - 2 . By (4.33), thisBr t
wrong update must create a mode that is heavy enough for the next iteration, i.e.,
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k' E Ar+, because

- Ybe-2,i'k'/N b _b r I - Pr - 4 fr = 1 - Pr+-

To summarize, whenever a mode k' is added, it is either correctly identified and

estimated well, or wrongly identified and reappear as a heavy mode in the next

iteration. Observe that as a result,

i~~ 12 1r 2 + 1^+ 12

Ar~i Aril Ar+ifl~r

SS frr,- 2r 4Afr ) Sr= Sr-.

2
We have used (4.32) to bound the r+ 2 term above.

1Ar+iflAr

Next, we want to show that with good probability, iteration r is successful. Assume

IA'I 5 Sr. Suppose less than j(e-1 IAI) of the heavy modes in iteration r are not

identified or estimated up to an error of frr Then the number of heavy modes inBrr

iteration r+ 1 is at most e- 1 A'1. Note that P (o) = 0. By Lemma 4.5.1, Proposition

(4.5.8), Proposition 4.5.7,

R

P (A) <- P (,1 n To + P (92 n 7, + ... + P (,g n7 7R1) < P ('r I r-1)
r=1

< R (64E)

2 R-1 2Sr 2 2M+5gr ) 1/3 8Lr 8 2MLr + 1
e+ r, + Ur3L- 2B + Cmpf- + + N )

As Ir = I(r + 1)-1-P and Br = B(r + 1)-2-2P, the above is the big 0 of

s 2 2M& )/ 3 R-1
s log s + B + S + 2B Lr(r +

r=O

1 R-1 1 2" M -1

+ ( I:Lr(r+ 1)1~P + + N Lr. (4.34)
P r=/ r=o

Pick K = 8(1/M) and f = E)(log;E) and B = E)( log E) such that B ;> 100/f.
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Three of the terms in (4.34) require further work.

First, we show that for any p > 0,

R-1 N
L,(r + 1)-i-P = 0 ( log SZ.

r=O
(4.35)

Note that Lr = 0 (M log -L = 0 (Lo + - log r) and f = 0 (Lo). Write the sum on

the left hand side of (4.35) as ER 10 (Lo + -L log r) r-'-P = 0 (Lo) = 0 (-y log }).
It follows that I E- L,(r + l)- 1 -P = 0 (1/M). Second, we show that

R- 1

L( + 1)( 2+ 2p)/ 3 = 0 (+ (log2(1+p)/3+1 S log ))
r=O

(4.36)

Write the left hand side of (4.36) as ERi 0 (Lo + -L log r) r(2+2p)/ 3 . Note that

L0 Er_1 r(2+2p/ 3 = 0 ( 1(log E)R(2+ 2P)/3 + 1 ) while 1 (log r)r2G+P)/ 3 is bounded by

( log r) R2(1+p)/ 3 = 0 ((log R)R 2(1+p)/ 3+1). Therefore, ER_ Lr(r + 1)(2+2p)/3 is

on the order of y (log 2 (1+p)/3+ 1 S)(log ; + log log S). In Theorem 4.1.3, it is assumed

that for some c > 0, S log' S = O(N). This implies that log'S = 0 (N/S) and

log log S = 0 (log ) and (4.36) follows. Third, we show that

R-1 

N
Lr= 0 log S log .

r=0

(4.37)

Like before, ZR-l Lr = 0 (ER 1 L, + - logr) = 0 (LoR + Rl"gR)

is O (- log S (log;1 + log log S)) = 0 (y log Slog2 ) as log logS =

Substitute (4.35), (4.36), (4.37) and B = 1(! logs}) into (4.34).

failure probability is the big 0 of

which we know

0 (log ).

Obtain that the

1 1 22g 2+)2 /3
E logS + + + ( 2MS 6 )+25)1/3 1 loN \) 2(log )(log S)

g log -+ MN

The constants hidden in the 0 notation above can be reduced by increasing rs, f, B.

However, this comes at the expense of increasing the running time. The total running
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time of MPFFT is dominated by the time spent on BinInTime, BinInFrequency and

MatrixPencil. By (4.35), the total time spent on BinInTime is

LrBr log = 0 (log N) BL,(r + )-1-P =0 log2N log N.
O Kr loK (ME SL~r

To be conservative, suppose each call to MatrixPencil runs in O(J 3 ) time. By

(4.35), the total time spent on MatrixPencil is

0 J3 LrBr =0 J3B EL(r + l)-2(1+P) log 2

Assume erf takes 0(1) time such that BinInFrequency takes 0 (Isupp rI1) time.

As Isupp _rl < < I- S = 0 (S), the total time MPFFT spends on BinInFrequency

is 0 1 Lr Isupp rl) = 0 (SZE§_ LR) = 0 (- log Slog E) by (4.37). Sum

up the running time of BinInTime, MatrixPencil, BinInFrequency to obtain the

desired bound on MPFFT's running time.

4.6 Implementation and numerical results

The second form of MPFFT is listed in Figure 4-9. It differs from the first form of

MPFFT in Figure 4-4 in some minor ways listed below. Note that the first form

of MPFFT is not implemented but analyzed and shown to run in O(S log E log 2 N)

under certain assumptions. The second form of MPFFT is implemented. Although we

do not provide any theoretical guarantees for the second form of MPFFT, numerical

evidence suggests that it does run in 0 (S) time.

Firstly, we estimate yko as 1 Erc'O e Ye 2 ?rikor/N instead of YOb. Assuming

that Wb,ko - 1, Proposition 4.2.3 suggests that the error in this new estimate of yko

is on the order of (E E E AY 2)1/2 where AY' is the perturbation due to non-

heavy modes. Although E g Eg AY'2 is the same as E 0AYob2 (cf. Proposition

4.5.5), the averaging over J'H tends to "denoise" and improve our estimate of Yk0
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procedure MPFFT-IMPLEMENTED(Z E CN, S, 5, J, M, ,, Bmin, Cwin, Cmui, Cin, Ccollide, Citers)

20 <- 0
r-0

iters <- 0 > No. of iterations where no mode is found
while iters < Citem, do > Start of an outer iteration

Let cp(k) = ak + 3 be uniformly chosen permutation of [N] > x' = x - z'
Let -y be uniformly chosen from [N] (k) = e2iyk/N

Sr +- S - Isupp r|
Br <- max(Bmin, CmulSr)

Kr 1
Lr <- [log 2M(N/Br)] + 1
S<- {j2MeBr : IjI < J - 1, f E [Lj}

Y' <- BinInTime(x, a, ,3,, 7 , Br, 6, Kr) > ytr = yt+r ) 9k = ke27rikr/N

Y" -- BinInFrequency(', a,) ,17, , Br, , irx) > Bin yT for each T E W

Y +- Y' - Y" > Obtain Br sub-signals yb

foundNothing +- true
for b c [B,] such that IYb| > Cbin TE/Br do

Identify one mode ko using {f yb: T C j}:

( o, Itmax) +- MatrixPencilultiscale (Lr, J, M, (Y2MIB r)jjJ-1,EE[LrI)

ko +- round (N (b+0))

if /Imax > collide/E/B, then continue to next bin

if W,ko < Cwil then continue to next bin
Estimate Yk 0 as co <- gYLe- 27rikor/N and e- co (cf. (4.21))

k* +- cp- 1 (ko)

Update our solution by 4 H <- 4 + 0 e 2 iyk,/N

foundNothing <- false
end for
if foundNothing then iters <- iters + 1
r +- r + 1

end while
return 2 R

end procedure

Figure 4-9: The second form of MPFFT is implemented. Refer to Section 4.6.1 for
its numerical tests.
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significantly.

Secondly, we use the relaxed passband P'[Cij] in (4.25) for some 0 < C~in < 1/2

and K, = 1 instead of a K, that decays exponentially. Recall that 0 < r, <_ 1 and the

cost of binning isO (Blog.), so K, = 1 is the best K, in terms of computational

cost. However, when K, = 1 is used, Proposition 4.4.7 only guarantees us [PM >

B = 0, i.e., no modes will be passed. On the other hand, if J < 1 - 2 Cwin, then

I>P'[Cwin] 1-"/2 = -, which means that at least half of the modes will be "passed"

if we use the relaxed passband. Below, we see that using a relaxed passband may

worsen the error by a multiplicative factor C-in. To see this, repeat the steps in 4.30:

yb
0 _ eg 27ri-yk,/N

Wb,k0

Y ( Yb Y y[k]| + yb[k] - YB +Wb,k - Wb,k
- b, k o 0 01 

k k

The right hand side of the equation above is very similar to (4.30). The first term is

due to noise energy. The second term is small by Proposition 4.4.9. The third term

is small by Proposition 4.4.8. The main difference is that the error is blown up by

W'j > C-. We like picking Cwin ~ 0.1 because P'[Cii] passes many more modes

than P (cf. (4.25)) at the expense of a slight loss of accuracy.

The third change is that we use much smaller thresholds for Y0b and Amax. In

practice, we do not know a priori that the S heavy modes have magnitude greater

than 1. If there are modes with coefficients 1/3, then MPFFT will suffer from the

same problem of ghost modes as sFFT3.0. See Section 4.1.2. In practice, the error

or noise energy of iteration r is 0 (E) and a bin b with no heavy modes will have

ybJ = 0 (E/Br) by Proposition 4.5.5. To avoid processing such bins and adding

a lot of small spurious modes, it suffices to reject bins with JY0bJ < Cbin 8/Br for

some Cbin > 0, say Cbin = 10. Also, from the proof of Lemma 4.5.1, we see that

E I 2 < 0 (E/Br) = 0 (8/Br). In practice, pt2 is seldom much bigger than 0 (8/B,)

when there are < 1 heavy mode in the bin. Hence, it makes sense to impose a smaller

threshold on p'ma, i.e., Imax 5 Cco1lide £/Br.

146



Let us elaborate on why we expect E, to be 0 (8). Suppose iteration r is successful.

Then up to S, heavy modes may be estimated within an error of 0 (E8/Br) and up

to asSr = S,+1 modes may be left in Xr+. If these leftover modes have magnitude

0 ( E/Br+i), which is the bin threshold for iteration r + 1, then they will remain

as ghost modes and contribute to the error energy of iteration r + 1. Thus, the error

energy in iteration r + 1 is bounded by E,+i < S, +0 ( O) +0 (s+). It follows

that Er 8 (1 + E0 0 + = 0 (8) for a sufficiently large B.

The last change we make is that instead of setting a conservative decay rate for

the Sr, Br's, we adopt an adaptive strategy: let Sr = S - Isupp Frl and Br = CmuiSr

for some Cmui ;> 1. This is because in practice, if the parameters are set appropriately,

then almost all of the modes added to Zr in iteration r are correctly identified and

well-estimated. This means that S - Jsupp rjI is an excellent estimate of how many

heavy modes are left in the residual. In case we do find a few wrong modes and S,

turns negative, we set Br = max(CsSr, Bmin) for some small Bmin, e.g., Bmi = 8. We

stop the algorithm when no mode is added for Cijte iterations.

We recommend picking Cmui slightly bigger than 1. Although we argued that

Cmui = 1 is optimal in Section 4.1.2, it is still safer to use a slightly larger Cmui in

case we add some wrong modes and underestimate the number of heavy modes left

in Xr. We like to remark that in our experience, if the collision detector is turned off

for a Cmul close to 1, then too many wrong modes tend to be created, which leads to

catastrophic failure.

The main reason for using a bigger Cmui is to reduce the effect of noise on the bin

coefficients. From Proposition 4.5.5, we see that each bin coefficient is perturbed by

0 (E8/Br). From (4.28) in the proof of Lemma 4.5.1, we see that the chance that

we fail to identify a mode k. grows with 0 (-c )' /'. If i.1, is too close to v,

we simply have to use a larger Br or Cmul so that mode identification can succeed

with good probability. However, using any Cmul larger than 1 means a slowdown by

a factor of Cmui as mentioned in Section 4.1.2. For this reason, we do not recommend

trying to find any mode coefficient with magnitude much smaller than 8/E/Bmin.
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Figure 4-10: Results of our first and second experiments. MPFFT is run with N
fixed as the closest prime to 222 while FFTW is run with N = 222. MPFFT with J =
2, M = 5 is faster than FFTW-Est when S < 2500 while MPFFT with J = 2, M = 1
is faster than FFTW-Est when S < 1000. Each xt is perturbed by Gaussian noise
N(0, .2 ) where o- = 10-7, 10-1 in the first and second experiments respectively. The
average L' error is on the order of 10-7, 10-3 respectively.

4.6.1 Numerical tests

MPFFT is- implemented using FFTW [31] for the binning and the Eigen library [37]

for the matrix pencil method. It is benchmarked against FFTW's in-place complex

ID FFT routine. The size of the input signal to MPFFT are primes closest to powers

of 2, whereas the size of the input signal to FFTW are exact powers of 2. This is

to ensure a fair comparison because FFTW tends to run slower when N is prime.

MPFFT, FFTW, sFFT1.0, sFFT2.0 are all compiled using the same flags, e.g., -03,

-mtune=native, -ff ast-math. They are compiled and run on 2.67GHz Intel Xeon

X5550 processors with 8Mb cache.

FFTW is run with two different options, FFTW_ESTIMATE or FFTWMEASURE. They

will be referred to as FFTW-Est and FFTW-Opt respectively. FFTW-Opt requires

heavy preprocessing and always outperforms FFTW-Est. On our machines, FFTW

seems to run much faster relative to sFFT1.0, sFFT2.0 than in [41]. For example, for
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N = 222, sFFT2 is faster than FFTW-Est when S < 1000 here instead of < 2000 in

[41]. Our results seem consistent with [47] which says that AAFFTO.9 is faster than

FFTW when S < 135 instead of S < 250 according to [411.

In the first four experiments, we use the following random signal model. Construct

a signal with S modes independently and uniformly distributed in [N]. Each of these

S coefficients have magnitude 1 and a phase independently and uniformly distributed

in [0, 27r]. In the time domain, each Xt is perturbed by Gaussians with variance o2.

For the first experiment, we fix N ~- 222 and vary S. Pick o = 10-7 and run

MPFFT with 6 = 3 x 10-5, = (3 x 10-5)2, Bmin = 8, Cbin = 20, Ccollide = 4,

Cmul = 1.1, Citers = 10 and Cin = 0.1. The only variables being varied in the first

experiment are J, M, S. Recall that MPFFT outputs 2 R after R iterations. Define

the average L' error as

The parameter E is set as (3 x 10-5)2 instead of ,2 because it is empirically observed

that it always yields an average L' error on the order of 10-7. In [41, 47], a similar

input signal is used and the parameters of their algorithms are set such that the

average L' error is also on the order of 10-7.

Each data point of Figure 4-10a is the average running time of MPFFT over

100 x 2 14-10 2 S independent runs. Observe that in Figure 4-10a, MPFFT with J =

2, M = 5 is faster than FFTW-Est when S < 3500. This is more than 10 times faster

than AAFFT, and hardly slower than sFFT1.0, sFFT2.0 for any N. Meanwhile,

MPFFT with J = 2, M = 1 is faster than FFTW-Est when S < 1000 and its running

time is comparable to that of sFFT1.0, sFFT2.0.

Our second experiment is similar to our first experiment except that 0- = 10-1,

E = 0 2 , j = 10- 4 , Cmui = 1.5 and Bmin = 32. To deal with the higher level of noise

compared to the first experiment, we use a larger number of bins, i.e., a larger Bmin

and Cmul. The average L' error this time is on the order of 10-3. Using more bins

slows down the algorithm, but as our desired accuracy is degraded from 10-7 to 10-3,

we can use a larger 6, which leads to MPFFT running at about the same speed as in
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Figure 4-11: The left figure is generated by our third experiment where S is fixed at
50 and N is varied. Each xt is perturbed by Gaussian noise N(0, a.2 ) where o = 10-7.

The average L' error is on the order of 10-7. The left figure suggests that MPFFT
with J = 2, M = 5 is faster than FFTW-Est when N > 70000 while MPFFT
with J = 2, M = 1 is faster than FFTW-Est when N > 260000. The figure also
suggests that MPFFT runs in 0 (S) time. The right figure is generated by our fourth
experiment where S = 50, N ~ 222 and o- is varied. The figure shows that MPFFT
is robust. The errorbars indicate the square root of the empirical variance of the
average L' error.
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the first experiment.

In Figure 4-10b, we see that there is little difference in the running time for

M = 5, J = 2 and M = 3, J = 2. This is due to two counterbalancing effects. On

one hand, each outer iteration of MPFFT is cheaper for M = 5 than M = 3 because

Lr is smaller and we need to bin fewer times. On the other hand, the chance that

mode identification fails is higher for M = 5 than M = 3, which means that fewer

heavy modes are found per iteration and more iterations are needed. In fact, when

M > 6, mode identification fails too often and MPFFT no longer finds all the heavy

modes consistently. This is not surprising because Theorem 4.1.3 or Proposition 4.2.4

suggest that the chance that mode identification fails grows exponentially with M.

Figure 4-10b also shows that for M = 1, the running time for J = 2 and J = 3

are about the same. This is because the number of times binning is performed is

about the same for J = 2 and J = 3. Specifically, from (4.12), .A2,1 = 2L, - 1 ~

2L, + 1 = N 3,j. Similarly, the running time for J = 5 is about twice that of J = 2

because .N,1 = 4 L, + 5 ~ 22,. This underscores the fact that the binning step is

the bottleneck of iterative SFT algorithms such as AAFFT and sFFT4.0.

For our third experiment, we fix S = 50 and vary N. All other parameters are set

the same as the first experiment. The results are displayed in Figure 4-11a. It shows

that the running time of MPFFT is 0 (S) and does not grow with N1 /2 or N'/ 3 like

sFFT1.0 or sFFT2.0.

For the fourth experiment, we fix S = 50, N ~ 222, J = 10--, Bmin = 32,

Cmul = 1.1 and vary -, the amount of Gaussian noise. Pick S = c.2 . Figure 4-

11b shows that with these settings, the average L' error of MPFFT scales almost

linearly with o-, i.e., MPFFT is robust. Observe that J = 5, M = 1 produces the

smallest errors because MPFFT averages over more samples when estimating the

mode coefficients. The average L' error does not decrease beyond 10- as o- decreases

because J = 10- is not small enough for the desired accuracy.

The objective of the fifth and sixth experiments is to demonstrate that the second

form of MPFFT in Figure 4-9 works even when its input signal does not satisfy

Assumption 4.1.1. In both experiments, we set E to be roughly proportional to the
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Figure 4-12: In our fifth experiment, the input signal has 2S modes with coefficients
spaced logarithmically between Cmin and 1 and MPFFT is asked to find S = 250
modes with E = cmj, which is the energy of the less energetic S modes. In our sixth
experiment, the input signal is p-compressible, which means that the k-th largest
coefficient has magnitude k-1 /P. MPFFT is asked to find S = 100 modes with £ =

2 1 - 2/P. This is the total energy minus the energy of the largest S modes. Both

figures show that the average L' error varies linearly with VH. The errorbars are
obtained from the square roots of the empirical variance.
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total energy of the signal minus the energy of its top S modes. We also pick N _ 222,

Citers = 20, Cmul = 1.5 and Bmin = 32 and add no Gaussian noise to the signal.

Numerically, we observe that MPFFT almost always terminates with less than S

modes found, but the average L' error will be roughly proportional to Vl. Their

running times are consistent with the first experiment for S = 100, 250.

For the fifth experiment, the locations of 2S modes are independently and uni-

formly chosen from [N], and their magnitudes are spaced logarithmically between

cmjin and 1 where cm,in is varied between 10-7 and 10-3. MPFFT is asked to recover

only S = 250 modes with E = ci. We run MPFFT 1000 times and plot the empirical

mean of the average L' error versus cmin in Figure 4-12a.

For the sixth experiment, we consider a p-compressible signal. The k-th largest

Fourier coefficient of a p-compressible signal has magnitude k-1 /P for 1 < k < N. In

our experiment, these N modes are fully randomly permuted. Fix S = 100 and pick

e = 1 il- 2/p. We run MPFFT 1000 times and plot the empirical mean of the2/p-1

average L' error versus 1/p in Figure 4-12b.

4.6.2 Collision detection

The collision detector plays a crucial role when Cmul is close to 1 and the chance

of mode collision is high. In Section 4.3, we show that under some circumstances,

MatrixPencil in Figure 4-5 will return a 1 that reflects the energy of the subdominant

modes in its input signal. In this section, we perform two numerical experiments to

check this claim.

In the first experiment, we simulate what happens in a bin with an isolated mode

after a few iterations of MPFFT: there is one heavy mode and many small modes

which come from well-estimated modes in previous iterations. Here, we have 10 small

modes with total energy 10-. To be concrete, our signal is xt = EZS cse2"5

where co = 1 and for 1 < s < 10, c. = (-1)s - 10-'/'I . The frequencies .'s are

independently and uniformly distributed in [0, 1). We pick alternating signs for the

small modes because Proposition 4.3.1 suggests that E,=, c. = 0 is the worst case

scenario for our collision detector. We slowly increase J and plot the empirical cdf
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Figure 4-13: On the left, we fix 1 heavy mode and generate 10 small modes with
frequencies uniformly chosen from [0, 1). The total energy of the 10 small modes is
10- 4 and they have alternating signs. From 106 trials, we obtain an empirical cdf of
IL returned by MatrixPencil in Figure 4-5 with Q = 1. The left figure shows that it
is very unlikely for pt to be much smaller than the total energy of the small modes.
For the right figure, we fix J = 3 and consider a signal with T heavy modes. Each of
these modes have magnitude 1. Again, we perform 106 trials and obtain an empirical
cdf of M. The plot shows that as T increases, it becomes very unlikely for P to be
much smaller than 1.
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of p in Figure 4-13a. The plot suggests that as J increases, it becomes extremely

unlikely that I. 2 is much smaller than the total energy of the small modes. This

agrees with Corollary 4.3.7.

For the second experiment, we simulate what happens in a bin with more than one

heavy mode. The input signal to MatrixPencil is xt = T 0 cae2 where c8 has

magnitude l and a random phase so that E Ej- c = 0 and ' is uniformly chosen

from [0, 1). Fix J = 3. Observe in Figure 4-13b that as T increases, it becomes very

unlikely for p to be much less than 1. This is consistent with Theorem 4.3.3 and

Proposition 4.3.9.
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Appendix A

A.1 Khintchine inequalities

In this section, we present some probabilistic results used in our proofs. The first

theorem is used to decouple homogeneous Rademacher chaos of order 2 and can be

found in [22, 641 for example.

Theorem A.1.1. Let (uj) and (ii) be two iid sequences of real-valued random vari-

ables and Aij be in a Banach space where 1 < i, j < n. There exists universal

constants C1, C2 > 0 such that for any s> 1

S 1/s S 1/s

E uu Asj r CC" E ( uin Aii j ( A. 1)
1i5i4j::n 1<ij:n

A homogeneous Gaussian chaos is one that involves only products of Hermite

polynomials with the same total degree. For instance, a homogeneous Gaussian chaos

of order 2 takes the form E<igj<ngA + (g - 1)Aji. It can be decoupled

according to Arcones and Gin6 [3].

Theorem A.1.2. Let (ui) and (iii) be two iid Gaussian sequences and Aij be in a

Banach space where 1 < i, j < n. There exists universal constants C1,C2 > 0 such

that for any s > 1,

n S 1/s s 1/s

(E 1 < KujujAii + EN(u - 1)Air ) C1C21 " E S uji A ) .
<isjn i=1 isi,js

157



Remark A.1.3. For Rademacher chaos, C1 = 4 and C2 = 1. For Gaussian chaos,

we can integrate Equation (2.6) of [3J (with m 2) to obtain C1 = 21/2 and C2= 21.

Better constants may be available.

We now proceed to the Khintchine inequalties. Let 11-11. denote the s-Schatten

norm. Recall that |hAilC. = (Ei kJls)l/s where o-, is a singular value of A. The

following is due to Lust-Piquard and Pisier [52, 53].

Theorem A.1.4. Let s > 2 and (uj) be a Rademacher or Gaussian sequence. Then

for any set of matrices {Aj} 1 <is<,

n s 1/snn

E ujAj ) s 1/2max ( AA)1/ 2  , AjA*)1/2
= C - i=C.1 c i=1 C

The factor s1/2 above is not optimal. See for example [12] by Buchholz, or [65, 72J.

In [64], Theorem A.1.4 is applied twice in a clever way to obtain a Khintchine

inequality for a decoupled chaos of order 2.

Theorem A.1.5. Let s > 2 and (uj) and (f4) be two independent Rademacher or

Gaussian sequences. For any set of matrices {Ajj}1<,jsn,

s1/s

E uiiijA, < 21's max (IIQ1/2 C. , 1R1/211' , IIFh|c. ,iGC.)
1<i,j n ,)

where Q = (1 ,4 Ai and R =E 1 ,i 5n AjjA* and F, G are the block matrices

(Ajj)1ij:<,, (A)1<ij<n respectively.

For Rademacher and Gaussian chaos, higher moments are controlled by lower

moments, a property known as "hypercontractivity" [3, 22]. This leads to exponential

tail bounds by Markov's inequality as we illustrate below. The same result appears

as Proposition 6.5 of [65].

Proposition A.1.6. Let X be a nonnegative random variable. Let o-, c, a > 0. Sup-
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pose (E Xs)lI < -ci/'s'l for all so < s < oo. Then for any k > 0 and u > sl 1,

P (X > ekcu) < cexp(-ku").

Proof. By Markov's inequality, for any s > 0, P (X > ekau) E .)
Pick s = ua > so to complete the proof.

Proposition A.1.7. Let (uj) be a Rademacher or Gaussian sequence and C1, C2 be

constants obtained from Theorem A.1.1 or A.1.2. Let {Ajj} 1 <,in be a set of p by p

matrices, and assume that the diagonal entries Aii are positive semidefinite. Define

M = Zj ujujAij and o-= C1 max(IIQ||1/2 ,|R|1/2 ,||F|| ,||G||) where Q, R, F,G are as

defined in Theorem A. 1.5. Then

P (IM - E M > eo-u) < (2C 2np) exp(-u).

Proof. We will prove the Gaussian case first. Recall that the s-Schatten and spectral

norms are equivalent: for any A E Crxr, |jAil |hAill0  < ri/s IIAH. Apply the

decoupling inequality, that is Theorem A.1.2, and deduce that for any s > 2,

s 1/s

(E |IM - N|ls)'i/ < C1C'Is E 1 uii Ai ) .
1<i,j-.n C.

Invoke Khintchine's inequality, that is Theorem A.1.5, and obtain

(E JIM - NJ|i) 11s < Ci(2C2)1I"s max( IQ1/2 11 ,IIR1/ 2 11., ,iF|c ', ,lGiC.)

< C1(2C2np)1/s smax(IIQiil/ 2 ,iRll1/ 2 , liFli , Gl)

o-(2C 2np)11's.

Apply Proposition A.1.6 with c = 2C 2np and k = a = I to complete the proof for

the Gaussian case. For the Rademacher case, we take similar steps. First, decouple

(E JIM - NiI5)11/ using Theorem A.1.1. This leaves us a sum that excludes the Agi's.

Apply Khintchine's inequality with the Agi's zeroed. Of course, Q, R, F, G in Propo-
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sition A.1.5 will not contain any Agi's, but this does not matter because A Ajj and

AjjA* and Aii are all positive semidefinite for any 1 < i < n and we can add them

back. For example, ||(Ajj)Ii:Aj: nj < I(Ajj)1<i<njj as block matrices. 0

A.2 Other probabilistic inequalities

Theorem A.2.1 (Theorem 1.6 of [74]). Consider a finite sequence {Gk} of inde-

pendent, random, Hermitian matrices with dimension d. Assume E Gk = 0 and

||GkI| < R. Let o.2 = ||Ek1EG |1. For any t > 0,

P (G >T)
k - ) < 2d exp -

T 2/2

0.2 + RT13)

Corollary A.2.2. Assume the same set-up as Theorem A.2.1.

2(1 + C ) and 06 = (C4/C5)2 = 24/7. For any 0 < t < C6E ,

Let C4 = 4, C5 =

;> Co5 -t1/2 < 2de-'.P K G

Proof. Apply Theorem A.2.1 with T = c-tl/2C5 . Our upper bound on t ensures that

T < C4 2. Thus, the exponent T 2 /2 is at least T 2 /2 /= c 2
tC5/2 =t- Rp U2 ±RT/3 a2(1±C 4/3) - 2(1±C4 /3)

l

Here is an elementary result about the tail of a Gaussian distribution.

Proposition A.2.3. For any z > 0, f: e- 2/2 2 dt < iez2/2-2
-z

Proof. This is proved by integration by parts. For simplicity, let - = 1.

f0 1(te- 2/2)dt = -[.je-t 2/2]tjo _ f te-2/2dt ez 2/2'

A.3 Linear algebra

Recall the definitions of K(B) and A(B) at the beginning of the paper. The following

concerns probing with multiple vectors (cf. Section 2.1.3).
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Proposition A.3.1. Let Iq C Cqxq be the identity.

B5 = I 9 B and B' = {B',... B' }. Then ti(B) = K(B') and A(B) = A(B').

Proof. Define N E CPXP such that Njk = (Bj, Bk). Define N' c CPXP such that

Njk = (B,', B'). Clearly, N' = qN, so their condition numbers are the same and

r'(B) = ,(&).

For any A = B, E Cmxn and A' = Bj', we have IIA'II( 1/2 IAIq 1 2
- hAn 2

Hence, A(B) = A(B'). Li
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