
Planning and Control for Simulated Robotic Sandia Hand for the DARPA Robotic
Challenge

by MA

Cecilia G. Cantu

Submitted to the
Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

4ARCHtN E

OF TECHNOLOGY

JUL 3 1 2013

LIBRARIES

Bachelor of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

June 2013

C 2013 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Cecilia G. Cantu

Department of Mechanical Engineering
May 17, 2013

Certified by:
Russell L. Tedrake

Associate Professor in the Department of Electrical Engineering and Computer Science
Thesis Supervisor

j

Accepted by:
Anette Hosoi

Professor of Mechanical Engineering
Undergraduate Officer

1

k--w I -

Planning and Control for Simulated Robotic Sandia Hand for the DARPA Robotic

Challenge

by

Cecilia G. Cantu.

Submitted to the Department of Mechanical Engineering
on May 17, 2013 in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

ABSTRACT

The DARPA Robotic Challenge (DRC) required the development of user interface, perception,
and planning and control modules for a robotic humanoid. This paper focuses on the planning
and control component for the manipulation qualification task of the virtual section of the DRC.
Nonlinear algorithms were employed for the planning systems, such as the grasp optimization
system and the robot state trajectory computation system. However, for closed-loop control, a
linear proportional-derivative (PD) joint position controller was used. The nonlinear algorithms
used for the planning systems may be improved, but their current functionality allows the
successful completion of the manipulation qualification task. Also, even though PD controllers
seem appropriate for the closed-loop control, PID controllers might yield a higher level of
accuracy if tuned properly. In conclusion, a linear controller appears sufficient for certain control
of the highly nonlinear ATLAS humanoid robot and Sandia hand as long as accurate
optimization and planning systems complement such control.

Thesis Supervisor: Russell L. Tedrake
Title: Associate Professor in the Department of Electrical Engineering and Computer Science

2

Acknowledgements

First and foremost, I would like to thank Prof. Russell Tedrake for his invaluable support not just
this semester but for this past year in which I have worked in his group. He has provided me with
opportunities to learn fascinating material and to grow as a student and as a person. Thanks to
Mark Pearrow for his help every time I had build errors, bugs in my MATLAB Drake code, for
troubleshooting every single computer/software catastrophe I was so apt at encountering, for
teaching me how to become more adept with the LINUX terminal, and for becoming such a good
friend to me in the process. Thanks to Sisir Karumanchi and Scott Kuindersama for taking me
under their wing and being my to-go people for any project troubles I encountered. Thanks to
Claudia Perez D'Arpino for being my partner in learning. Thanks to Michael Posa for sitting
with me many times over the course of the previous semester and helping me understand how to
apply linear complementarity problems to various robotic applications including manipulation
and planar walking, and for teaching me some of the structure of Drake.

I would also like to thank my parents, Mario Cantu and Cecilia Maldonado, for always believing
in me and for supporting me throughout my MIT career. Thank you to my sister, Andrea Cantu,
for being my soul mate, as we share everything including likes, dislikes, and even thoughts.
Thanks for understanding me always. Thanks to every single member of the MIT DARPA
Robotic Challenge Team, especially Seth Teller, for making it possible for me to work in such a
fascinating project and with such amazing and capable people.

3

Table of Contents

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Figures 5

List of Tables 5

1. Introduction 6

1.1 DARPA Robotic Challenge 6

1.1.1 Autonomous Robotic Manipulation (ARM) Program 7

1.1.2 Boston Dynamics' ATLAS Robot and Robotic Sandia Hand 8

2. Background 11

2.1 Lightweight Communications Marshalling (LCM) 11

2.2 Drake 12

2.3 Proportional-Integral-Derivative (PID) and Proportional-Derivative (PD) Controllers 13

2.4 Gazebo Simulation Environment 14

2.5 Grasping 15

3. Simulation Setup 15

3.1 Systems for the Qualification Task for Manipulation 16

3.1.1 MIT DARPA Grand Challenge (DGC) Viewer 16

3.1.2 Grasping-Specific Drake Systems 17

3.1.2.1 Grasp Optimizer (GO) 18

3.1.2.2 Reaching Planner (RP) 18

3.1.2.3 Grasp Controller (GC) and Reach Plan Follower (RPF) 19

3.2 LCM System Connections and Debugging 19

3.3 Gain Tuning 22

3.4 Grasping for the Qualification Manipulation Task 24

4. Summary and Future Work 26

5. Conclusions 27

6. Appendices 28

Appendix A: The Drake Toolbox 28

Appendix B: Universal Robot Description Format (URDF) 29

7. References 32

4

List of Figures

Figure 1-1:

Figure 1-2:

Figure 1-3:

Figure 1-4:

Figure 1-5:

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 3-8:

Figure A-1:

Figure B-1:

Figure B-2:

Artist's rendition of two humanoid robots in the DRC

Steps taken by CMU's ARM robot to hang up a telephone

Images of the PETMAN humanoid robot

Images of the robotic Sandia hand

Degrees of freedom of the robotic finger of the Sandia hand

Example of two LCM message types

Abstract representation of the LCM system

Block diagram of the interaction between Drake and the LCM cloud

Block diagram of an example of a feedback control loop with a PID controller

Gazebo simulation environment with the ATLAS humanoid robot

MIT Viewer rendering of the robot and interactive objects

MIT Viewer rendering of a trajectory

LCM inputs and outputs for the Drake grasping systems

Viewer and Drake grasping system block diagram

LCM-spy showing standard traffic for the qualification 2 task

Example of a desired vs. actual joint trajectory during gain tuning

Illustration of the fitting of a cylinder to a drill

A desired vs. actual joint trajectory during grasping

MATLAB implementation of a Drake class

XML URDF description of a simple robot

Abstract representation of a robot as described by URDF code

List of Tables

Empirically optimized gains for the humanoid robot PID controllers

5

6

8

9

10

10

11

12

13

14

15

17

19

20

21

22

23

25

26

29

30

31

Table 3-1: 24

1. Introduction

1.1 DARPA Robotic Challenge

In April 16, 2012, the Defense Advanced Research Projects Agency (DARPA)
announced the beginning of a large-scale robotic competition in which different groups, both
academic and industrial, would compete in the DARPA Robotic Challenge (DRC). The DRC
was introduced as a way to improve or develop control algorithms, user interfaces, and other
major component aspects to allow robotic humanoids to be sent to a disaster area as first
responders in place of humans to guarantee human protection while performing efficient disaster
control. Figure 1-1 represents an artist rendition of the concept of the DRC competition [1], [6].
The DRC proposers emphasized the need for a human-robot interaction that grants a human user
the ability to make high-level decisions and communicate them to a humanoid robot via a
specific group-developed interface and requires the humanoid robot to execute accordingly
without the need for the human user to specify low-level commands.

Figure 1-1: Artist rendition of two humanoid robots competing in the DRC. There is a
clear emphasis on the humanoid robots' ability to interact with an environment that
would be dangerous for humans [1], [6].

Although there are many tasks that compose the entirety of the DRC, this paper
specializes in the aspect of robotic hand manipulation, the task of controlling the robot such that
it can form power grasps and optimized grasps on environment objects. Performing appropriate
manipulation is essential for the challenge as it allows the humanoid robot to interact with the

6

controls of a terrain vehicle, with power tools that might be needed to overcome obstacles, and
with valves for closing or opening a pipeline.'

1.1.1 Autonomous Robotic Manipulation (ARM) Program

As a research project agency, DARPA has introduced a variety of research challenges, of
which the Autonomous Robotic Manipulation (ARM) program is extremely relevant. The ARM
program was directed at developing "software and hardware that enables a robot to
autonomously manipulate, grasp, and perform complicated tasks with humans providing only
high-level supervision" [5]. The standard human-robot interface for robotic manipulation
applications requires the user to employ a high level of control of the robot. This can prove
cumbersome and time consuming for the average user, even after training. To stimulate the
development of a human-robot interface, which provides the robot a higher degree of autonomy
thus simplifying the control tasks of the user, DARPA introduce the ARM program. Thus far, it
appears that many research agencies, primarily in the academic field, have been experiencing
success in the development of this interface [5].

Deducing from the DRC proposers' hope for the DRC results and from the required task
specifications, the DRC also requires the development, if at least partially, of a similar
manipulation interface as the one demanded for the ARM program. The ARM-S track, or ARM
Software Track, promotes the development of algorithms that allows a robot with robotic
manipulators to execute a grasping task without requiring a human in the loop.2 The chosen
tactic by one of the top three ARM-S qualifiers, the team from Carnegie Mellon University
(CMU), involves utilizing visual feedback from cameras and 3D sensors along with a mesh
model matching software to analyze the environment. This analysis then provides the necessary
information for trajectory planning to obtain the "best grasping angles" while efficiently
avoiding collisions with obstacles. CMU's ARM software allows for execution of the planned
trajectory while allowing re-planning if necessary, such as when there is an unforeseen slip in the
grasp. For executing, position and force feedback from the manipulator is used to determine its
orientation and grasp status, and a behavior tree complements the optimization and planning
systems [2]. Figure 1-2 shows the steps the ARM robot takes to pick up a hang up a telephone as
executed using CMU's software [2].

These are some of the required tasks for successful completion of the DRC.
2 The DRC differs from the ARM program in that it focuses on full body control rather than on grasping,
however grasping still plays an important role. The DRC also requires a human to be involved in the
decision-making process whereas the ARM program eliminates human elements and leaves all the
planning and execution decisions to be computed by algorithms.

7

Figure 1-2: (A) After evaluating the object and planning a trajectory, the robot executes
the reaching trajectory. (B) The robot executes the planned grasp and picks up the
telephone. (C) The robot uses sensors to determine the orientation of the telephone in the
grasp. (D) The robot then proceeds to planning and executing the hanging up task [2].

1.1.2 Boston Dynamics' ATLAS Robot and the Robotic Sandia Hand

The DRC competitors were given an option to participate in one of three tracks: Track A
competitors are in charge of developing both software and hardware whereas track B and track C
competitors focus purely on software development and, if successful, would acquire a
"Government Furnished Equipment hardware platform." The chosen hardware platform is the
ATLAS humanoid robot developed by Boston Dynamics. Figure 1-3 depicts an image of the
PETMAN humanoid robot, a robotic cousin to the ATLAS. The PETMAN and ATLAS

8

humanoid robots differ in that they were developed for different applications, namely PETMAN
is used to test military apparel whereas ATLAS focuses of "rough terrain mobility" [4].

Figure 1-3: Left: Image of the PETMAN humanoid robot developed by Boston
Dynamics (BDI) without a head or anthropomorphic upper limbs. Right: Image of the
PETMAN humanoid robot during testing of military apparel [4].

The robotic manipulator for the DRC was chosen to be the robotic Sandia hand. This
robotic manipulator, developed by the Sandia laboratories, consists of four modular robotic
phalanges, one of which is opposable. Figure 1-4 depicts the robotic Sandia hand manipulating a
fruit and also with the modular robotic phalanges removed [19]. Each of the robotic phalanges
had three degrees of freedom (DOFs) in two joint locations. Figure 1-5 illustrates the DOFs of a
single robotic finger. However since the hand has four fingers, it has a total of 12 DOFs.

9

Figure 1-4: Left: Robotic Sandia hand manipulating an apple. Right: Sandia hand with
the modular robotic phalanges removed [19].

Front View Side View

K
K

Figure 1-5: Abstract representation of the front and side views of the robotic Sandia hand
illustrating the three DOFs of each robotic finger. The Sandia hand has a total of 12
DOFs.

10

I

P-I:D

P-M-14

b

2. Background

2.1 Lightweight Communications Marshalling (LCM)

The MIT DARPA Urban Challenge team3 developed a communications system that was
employed in the DRC. As software development overemphasizes modularity, this system, known
as LCM (Lightweight Communications and Marshalling), serves as the primary means of
communication between the multitudes of systems required for end-to-end operation. LCM is
characterized by low-latency, single-message, subscribe-publish communication using UDP
Multicast [14]. LCM messages are carried in LCM channels, the actual objects that are
subscribed to and published. LCM requires that the LCM message structure, or type, be specified
a priori; both the publisher and the subscriber to a specific message must know its structure to
decode and encode the information being exchanged. The structure specifications of LCM
messages, or LCM message types, come from a simple description written in C language, which
includes the name of the message type and the contents of the message. Figure 2-1 provides two
examples of LCM message types [14]. As seen in Figure 2-1, an LCM message type can be used
as an attribute for another LCM message type [14]. This increases efficiency as it avoids the sole
use of primitives in every LCM message type. Furthermore, the LCM system allows for multiple
subscribers to listen to a single message. Figure 2-2 provides an abstract representation of LCM
in which there are multiple messages, channels, subscribers, and publishers.

struct waypointt {
string id;
float position[2];

}

struct patht {
int64_t utime;
int32_t numwaypoints;
waypointt waypoints[num-waypoints];

}

Figure 2-1: Example of two LCM message types. The first LCM type contains primitives
as attributes. The second LCM type contains both primitives as well as another LCM type
[14].

3 The DARPA Urban Challenge was the previous challenge proposed by DARPA, which culminated in a
competition in 2007. This challenge consisted of developing an " autonomous ground vehicle [capable of]
maneuvering in a mock city environment, executing simulated military supply missions while merging
into moving traffic, navigating traffic circles, negotiating busy intersections, and avoiding obstacles" [7].

11

Process # 3

Subscribes to: Publishes to:
GRASPSEEDOPT CANDIDATEGRASP PLAN

LCM Cloud GRASPSEED OPT
LCM Type: dre_grasp.lcm

CANDIDATEGRASP PLAN
LCM Type: drcgrasp_plan.lcm JOINT COMMANDS

LCM Type:

ESTROBOTSTATE drcjoint_commrands.lcrn
LCM Type: drc-robot-state.lcm

e,-7
Subscribes to: Publishes to:
JOINTCOMMANDS ESTROBOTSTATE

Process # 1

Subscribes to: Publishes to:
CANDIDATE GRASP PLAN JOINT COMMANDS

Process # 2

Figure 2-2: Abstract representation of the functioning of the LCM system. This
particular example illustrates the interaction between three different processes. Note that
each process can publish and subscribe to more than one channel, however each channel
only has one LCM type.

2.2 Drake

The MIT DRC team uses Drake, 4 a MATLAB toolbox, for control design, stability analysis,
trajectory planning, and optimization. Drake inherently functions by simulating dynamical
systems, such as plants and controllers, using a Simulink engine [20]. These systems, or blocks,
can be arranged in many well-known configurations including feedback and cascade.
Furthermore, Drake provides tools that use the block system structure for analysis and controller
design [20]. Drake operates as a hierarchy of MATLAB classes that employ an input-output
structure [20].

Because the DRC requires for messages between systems to be structure specific, the inputs,
states, and outputs of Drake systems need to be user-specified. Thus a MATLAB class,
CoordinateFrame, was developed to represent structures in Drake. Each state, input, and
output is specified through its CoordinateFrame instance. However, for Drake to

4 Drake was developed by the Robot Locomotion Group of the MIT Computer Science and Artificial
Intelligence Laboratory with Prof. Russell Tedrake as the major contributor.

12

communicate with non-MATLAB systems, special sub-classes of the CoordinateFrame were
also developed, namely the LCMCoordinateFrame and the LCMCoordinateFrameWCoder.
The LCMCoordinateFrame allows the information communicated through the coordinate
frame structure to be published, or read, as an LCM message. The
LCMCoordinateFrameWCoder is more specific in that it utilizes a "coder" written in Java
language to create the structure of the coordinate frame and sets the method for encoding and
decoding information. Generally, because the state of a Drake system is internal, it's uncommon
for it to be associated with an LCMCoordinateFrame or an LCMCoordinateFrameWCoder.
However, inputs and outputs of systems should be LCM capable for modularity and improved
efficiency.

LCMCoordinateFrameWCoder CoordinateFrame LCMCoordinateFrame
Drake System 30Drake System

- - - -- - - - - -LCM Cloud- - - - - - - - - -

Z~ Externial System

Figure 2-3: Block diagram representation of the interaction between Drake systems with
the LCM cloud and with each other. If the output of a Drake system is connected to the
input of another, the input-output pair doesn't need to be LCM capable as long as it is
running in the same instance of MATLAB. However, Drake systems can communicate
with each other via the LCM cloud as well, especially if they are running in different
instances of MATLAB or in different computers. The external system in the figure could
or could not be another Drake system.

2.3 Proportional-Integral-Derivative (PID) and Proportional-Derivative (PD) Controllers

Proportional-Integral-Derivative (PID) controllers are controllers that utilize proportional,
integral, and derivative control. PID controllers are linear, allowing analysis via Laplace
transforms. These controllers are used to both decrease, or eliminate, the steady state error, and
manipulate the settling time of a system. The transfer function of a PID controller is

13

K. Kds2 +Kps+K(
CPID =K,+Kds+ = (1)

S S

If a PID controller is employed to control a linear plant, the entire feedback system can be
analyzed mathematically via Laplace transforms because it would also be linear. Figure 2-4
provides an example of a block diagram of a PID controller in a feedback loop controlling a
linear plant.

PID Controller Plant

yd(t) + e Ks 2 +K s+K (s-2)(s-4) y(t)

- s s2+6s+25

Figure 2-4: Example block diagram of a PID controller used in a negative feedback loop
configuration to control a plant represented by a Laplace transform. yd(t) represents the
desired trajectory, y(t) represents the actual trajectory of the system, and e represents the
error, or the difference between yd(t) and y(t).

Proportional-Derivative (PD) controllers are similar to PID controllers, with the difference lying
in that PD controllers lack an integral part in their transfer function. The transfer function of a
PD control is

CPD =KP+Kds. (2)

This lack of an integral component prevents the PD controller from being able to control steady
state error, which is why PID controllers are more widely used as they grant a higher degree of
control.

2.4 Gazebo Simulation Environment

The DRC proposers chose Gazebo as the simulation environment for the virtual component
of the challenge. Gazebo is open source software with the capability to simulate multiple robots,
sensors, and objects in a three-dimensional environment. Currently, Bullet, also open source
software, is the physics engine employed by Gazebo, allowing for simulation of rolling friction,
collisions, and rigid body dynamics [9]. Figure 2-5 depicts a Gazebo simulation environment
with a humanoid robot and several objects. To spawn different robots into the Gazebo simulation
environment, they must be described using the Universal Robot Description Format (URDF).
URDF files, or URDFs, are written in XML format and contain the description of the robot,
including the moment of inertias, mass, and visual and collision shapes of each of the robot's
link, and specify the types of joints that connect these robotic links. Refer to Appendix B for a
more information regarding URDFs.

14

Figure 2-5: Visual of the ATLAS humanoid robot and several objects for manipulation

spawned in Gazebo. Several important features and interface parameters of Gazebo

include the real time factor, simulation (sim) time, and real time, play and pause physics

buttons located at the bottom of the screen. The sidebar informs the user about the

spawned models and the lighting.

2.5 Grasping

Grasping plays an important role in robotics due to the emphasis on the interaction

between robots and their environments; robots are increasingly being seen as tools that allow

interaction with certain objects that would prove either cumbersome or dangerous for humans.

Grasps are determined by optimizing several different grasp aspects, including grasp wrench
spaces, contact detection and determination, and friction cone approximations. Generally, grasp

planning and execution involves the use of mathematical models of the robotic manipulator,
including velocity kinematics, system dynamics, contact modeling, restraint analysis, etc. [10].
However, for real-life robotic applications, these tools must be combined with perception
modules so that the robot is aware of the objects in its environment, whether for manipulation or

to avoid collisions.

3. Simulation Setup

This paper focuses on the DRC qualification task for manipulation in which the simulated
humanoid robot is pinned to the world at the hip and is allowed to move the upper body to

complete the task. This simplifies manipulation since the robot doesn't need a balancing

controller to execute the necessary commands. In summary, the MIT DRC team chose to execute

the task in steps as follows: The user selects an object of interest through the user interface,

15

which is visualized in a viewer from perception information obtained from simulated sensor data.
The user specifies a direction normal to the object for grasp optimization. The user-specified
normal direction and object information are sent to a Drake grasp optimizer. The Drake grasp
optimizer outputs an optimized grasp, which is visually represented in the viewer. The user then
has the option to specify a command to be sent to a reaching planner. These options include
reaching a pre-grasp configuration, meaning that the end effector of the robot will be sent to a
location proximal to the optimized grasp, or executing a palm touch, meaning that the end
effector will be send to the optimized grasp but without giving any command to the robotic
fingers. Once the user has specified the desired command, a reaching planner that uses an inverse
kinematic algorithm computes a joint trajectory for each of the joints in the upper body of the
humanoid robot. This joint trajectory is then visualized in the viewer for user approval. If the
user is content with the plan, he approves it for execution in the simulation environment.

3.1 Systems for the Qualification Task for Manipulation

End-to-end operation for the qualification task for manipulation requires the use of several
systems, including optimization systems, planners, and user interfaces. This section will present
all of these different components in detail.

3.1.1 MIT DARPA Grand Challenge (DGC) Viewer

The MIT team that participated in the DGC developed a user interface for data visualization
and logging. This interface was adapted for use in the DRC and is referred to as the MIT DRC
Viewer, or simply Viewer. The Viewer developers focused on creating a modular platform to
allow, and even foster, parallel development. As one of the Viewer's primarily uses is data
visualization, individual Viewer users develop data renderers according to their specific tasks
and needs. For example, the MIT DRC footstep-planning sub-team wrote code to allow for
visualization of footstep plans in the Viewer.

The qualification task for manipulation for the virtual competition of the DRC, or Virtual
Robotic Challenge (VRC), requires visualization of the state of the robotic humanoid, optimized
grasps using the robotic Sandia hand, and state of manipulation and environmental objects for
interaction planning and collision detection. Figure 3-1 represents the visualization of some of
this information. Subsequent figures in section 3 will provide visualization for the rest of the
information.

16

RewRd, R SCreefshot * Q RecordF

TRobot Klan Display
Enable SelectionF
SOWA xs For Meshes

Get Vion Plan

Ride PRan
use Cotormap

Part of Plan

" Affordances & Stickyands/Ffeet
FotStepPlanS&SatickyFeet

A, Walking

PS 30.0 CoQUpsWAI

0 Advanced Grid

I BOTFRAMES
0ar BtFRAMESI 8OT-FRAMES

SLCM GL

Laser

- - Dense Depth
01 Robot Stte Dislay

octorap
Maps

Appftrance Viems

- -~- Point Size
I ORR ScOe m i.

ZScaleMax

7 J A Scrolling Plots

1143x907[1drJ Oeody

Figure 3-1: MIT Viewer rendering of the state of the humanoid robot and other relevant
objects. The interactive objects are drawn in blue, and other relevant environmental
objects can be seen either as lidar sensor data or as, in this case, white objects.

It is important to note that for the VRC, given that the Gazebo simulation environment is
meant to mimic a real-life situation in which the humanoid robot is in a disaster zone, the user is
not aware of the state of the robot as visualized in this simulation environment, and is only aware
of the state of the robot as visualized in the Viewer. Thus for the actual VRC, the user will only
have access to information portrayed in the Viewer. However for the qualification task, as
currently progressed, it is possible, and often necessary, for the user to see the Gazebo simulation
environment along with the Viewer.

Since the Viewer also serves as user interface, it is where plans are committed or rejected.
The Viewer may thus serves as a pass-through system in which the user controls which
information passes through and which doesn't.

3.1.2 Grasping-Specific Drake Systems

Drake systems were developed to perform optimization for grasping, for planning trajectories
based on the output of the grasp optimizer and the desired action specified by the user through
the Viewer, and for executing the plans. Overall, there are five main Drake systems that are used
for the manipulation qualification task: Grasp Optimizer, Reaching Planner, Grasp Controller,
Reach Plan Follower, and Qualification 2 State Machine. The Grasp Optimizer and Reaching
Planner are planning systems while the Grasp Controller and the Reach Plan Follower are
executing systems. The Qualification 2 State Machine determines the state of the robot and the

17

Request Command

3.00 -

0.00-.(
1.00em-

. -.-

controller that will be used. For the manipulation task, the robot is always pinned, thus a
controller for a harnessed robot is used.

3.1.2.1 Grasp Optimizer (GO)

For grasp optimization, the user must select an interactive object from the Viewer and specify an
approach direction, "defining the direction of approach movements toward an object" [22]. The
pose and contact information about the object and the approach direction are sent via LCM to the
Grasp Optimizer. The Grasp Optimizer computes a grasp by maximizing the number of contact
points between the robotic Sandia hand and the object of interest using this information. A
MATLAB built-in function from the Optimization toolbox, fmincon, which finds the value of x
which minimizes some functionf(x), subject to the constraints

c(x)O0 , (3)

Ceq(x) = 0, (4)

Ax r b , (5)

Aeqx = beq (6)

lb 5 x < ub, (7)

wheref(x), c(x), and Ceq(x) can all be nonlinear functions, is used for this purpose [8]. The
function c(x), represents the distance between contact points in the robotic hand and surface
contact points of the object, which are modeled for cylinders, rectangular prisms, or tori
depending of the best fit to perception data.5 Currently, only the constraint represented by
equation (3) is being used for maximizing the number of contact points between the robotic hand
and the object.

3.1.2.2 Reaching Planner (RP)

Once the grasp optimizer calculates a grasp, the user has the option to specify in the Viewer
an action for the robot to perform. Currently, these options include touching the object or moving
the end effector, or robotic hand, close to the object, or in actuality close to the pose of the
optimized grasp. The Viewer then, depending on the user-specified command, outputs the
desired pose for the end effector, which is received by the Reaching Planner. The planner then
uses spline interpolation to compute waypoints between the current estimated state of the robot
and a desired state determined by inverse kinematics (1K). These waypoints are then fed into an
1K solver, which computes the state trajectory of the robot. 6

5 Object fitting is an essential component of the MIT DRC software, however, as it is the responsibility of
the MIT DRC perception sub-team it is beyond the scope of this paper; functionality of the necessary
perception systems to execute grasping are assumed.
6 The IK Solver used by the Reaching Planner is a C++ adaptation of an IK code from Drake.
Implementation in C++ allows the solver to execute faster.

18

To allow the user freedom to alter the trajectory, the plan computed by the Reaching Planner
is sent back to the Viewer for visualization. Figure 3-2 shows the Viewer visualization of a
reaching plan. If the user is satisfied with the plan, the plan can be committed for execution in
the simulation environment. Otherwise, the user has the option of selecting two intermediary
waypoints and adjusting the desired pose of the robot at those points. Once this has been done,
the new waypoints are sent to the Reaching Planner for spline interpolation and trajectory
computation to reoccur. The user also has the option to completely reject the plan.

ab Q's~t 4 a0t. J w

Robot M M&O 'M

* F.ebfred.~. WeOTFRAMES

S usin ao Meshes ma.To fte apinsc utdb1teRacigPAner r

Copee ejent t paanFRAMES

3.1.2.3~~~~~~~~~ GrsoCllecetGCiodRensP a F low r(R F

THe rasp CotolradteRahPanFloe r ipesse s a ovrtpast

(GC an Lthgfrom Dethe

i at that the ser a RoPFt stemi s als

"Affd is tiqud/etMp

Fgre-the ec plan c t ed by the Ing plneris in heb VI r
uin g a r map.dywomof thwayponts co d bya the echnglaer ainae

rhne-planing if ex thse.
.cmplytely Creectipans and rebgan.

The Grso otrlefn the RechPlniolowrdresipl systems that aebe ecibdi h rv on etpns tao
cnommandsn senth to the rotd, ths Gazeoigueatio stenvironmenat Both thers.asprConasollg,

(GC)r and: thTRahe Plah Folnoerte (RPF tgereaupong receig asagen fro the Viewer
indcaing aclrmpToo the user hats committed ay caddt lnors.the GCeachnd PFne sysemsas
hvesuthezoption ete blising yloTheansed yit thne IDconiroe in Gaebo Cuerfrety
tecnrolpler gins arte non-idynasic, hwver the codren bae Alws ily the trler gavlust

change el du rgeecton. lnan e-ln

3.2 .2LCMGSys ConntonsrGC and egging oloer(RF

All ofs otrle n the individualowr resipl systems that haebe ecibdi h rv o etons har
inormatin winth an LCM oudi thus Galloigueaho stemvitonterat with thers.aForCgrasping,

19

the Viewer interacts with all of the Drake systems. The Grasp Optimizer and Reaching Planner
require the Viewer to send initialization signals, and the Grasp Controller and Reach Plan
Follower depend on the candidate plans' conversion to committed plans through the Viewer.
Figure 3-3 represents a block diagram abstraction containing the names of the LCM channels to
which each system subscribes and publishes. Figure 3-4 shows the connections between the
individual Drake systems the locations in which Viewer is used to transform candidate plans to
committed plans to be executed in the simulation environment.

INITGRASPSEEDOPT

COMMITTEDGRASPSEED

ESTROBOTSTATE

RIGHTPALMGOAL

LEFTPALMGOAL

COMMITTEDROBOTPLAN

Grasp Optimizer

Grasp Controller

Reaching
Planner

Reach Plan
Follower

GRASPOPTSTATUS

CANDIDATE_GRASPSEED

L_HANDJOINTCOMMANDS

RHANDJOINTCOMMANDS

CANDIDATEROBOTPLAN

JOINTCOMMANDS

Figure 3-3: LCM channel inputs and outputs of the Drake grasping systems.

20

-+ Grasp Optimizer Grasp Controller

Reaching Reach Plan
Planner Follower

Figure 3-4: The Grasp Optimizer and the Reaching Planner output candidate plans and
are communicated to the user via the Viewer, which is represented by a V in this
diagram. The user then commits the plans, which are intersected by the Grasp Controller
and the Reach Plan Follower and sent as position commands to be executed in the
Gazebo simulation environment.

Because the majority of inputs and outputs to all the systems required for the manipulation
qualification task reside in the LCM Cloud, a tool "useful for logging, replaying, and inspecting
traffic," known as the LCM-spy was used to determine whether systems were publishing as
expected [14]. If a particular system weren't publishing to its LCM channel, the developer would
interpret it as an error in that particular system. This tool, along with the modular design of the
end-to-end system allowed bugs to be located and solved in a more efficient manner. Figure 3-5
shows an image of the LCM-spy being used to see which channels were being published during
end-to-end operation of the manipulation task.

21

5 Channels:.:':
Channel Type Num Msgs Hz 1/Hz litter Bandwidth Undecodable

AFFORDANCE COLLECTI... affordance collection t 106 20.00 50.01 ms 44.44 ms 27.59 KB/s 0
AFFORDANCE PLUS CO... affordance plus collec... 6 1.00 __1000.20 ... 990.56 ms 1.43 KB/s 0
AFFORDANCE TRACK 0... affordance plus t 99 18&00 55.57 ms 184.62 ms 4.23 KB/s 0
CAMER?14739ffe3d5f5f0 9 1.00 1000.20 ... 906.57 ms 1249.79 ... 9
CAMERALEFT ?? 14739ffe13d5f5f0 20 9.00 111,13 ms 175.42 ms 16872.03... 20
CAMERALEFT COMPRES... ?? 14739ffe13d5f5f0 4 1.00 1000.20 ... 990.47 ms 3.02 KB/s 4
EST ROBOT STATE robot state t 1403 286.94 3.49 ms 18.54 ms 780.69 K... 0
EST ROBOT STATE MIN... minimal robot state t 6 1.00 1000.20 ... 990.36 ms 0,28 KB/s 0
FOOT CONTACT ESTIMA.., foot contact estimate t 141 286.9 3.49 ms 18.60 ms 7.01 KB/s 0 _____

GRASP OPT STATUS grasp opt status t 6 1.00 1000.20 ... 143.25 ms 0.02 KB/s 0
HEADIMU imu t 1645 329.94 3.03 ms 21.09 ms 102.14 K- 0
HEAD TO BODY ?? ea9ffbf2acc5c5ae 1410 286.94 3.49 ms 18.55 ms 20.18 KB/s 1410
HEAD TO HOKUYO UNK ?? ea9ffbf2acc5c5ae 1398 282.94 3.53 ms 18.62 ms 19.89 KB/s 1398
MAP DEPTH map image t 5 1.00 1000.20 ... 985.52 ms 15.81 KB/s 0
MAP REQUEST map request t 5 1.00 1000.20 ... 990.06 ms 0.22 KB/s 0
OB COLLECTION ?? 6f6a315797618b88 33 6.00 166,70 ms 174.99 ms 1.16 KB/s 33
PARAM UPDATE ?? 2b278b90880d6535 1 0.00 Infinit ms -10.00 ms 0.00 KB/s 1
PMD INFO ?? da374b52bflddOfc 5 1.00 1000.20 ... 991.20 ms 12.27 KB/s 5
PMD ORDERS ?? 105068997663d542 6 1.00 11000.20 ... 990.58 ms 9.85 KB/s 6
PMD PRINTF ?? Oabac44d8e3a7bad 32 6.00 166.70 ms 739.66 ms 0.37 KB/s 32
POSE BODY ?? 2e16efb052b01O5e 1403 286.94 3.49 ms 18.59 ms 40.35 KB/s 1403
POSE HEAD ?? 2e16efbO52b01O5e 1406 286.94 1 3.49 ms 18.59 ms 40.35 KB/s 1406
POSE HEAD ORIENT ?? 2e16efb052b0105e 1647 329.94 3.03 ms 21.11 ms 46.40 KB/s 1647
POSE HEAD TRUE ?? 2e16efb052b0105e 1404 286.94 3.49 ms 18.59 ms 40.35 KB/s 1404
ROBOT MODEL robot urdf t 5 1.00 1000.20. 991.35 ms 65.42 KB/s 0
ROBOT UTIME utime t 1626 329.94 _ 3.03 ms 21.77 ms 5.16 KB/s 0
SCAN ?? e3d17423180b5e8d 61 15.00 66.68 ms 150.09 ms 84.83 KB/s 61
SCAN FREE ?? e3d17423180b5e8d 61 15.00 66.68 ms 148.62 ms 84.83 KB/s 61
TORSO IMU imu t 1635 329.94 3.03 ms 17.43 ms 102.14 K... 0
TRIGGER CAMERA Jdata request t 5 1.00 1000.20 ... 990.16 ms 0.01 KB/s 0
TRIGGER STATE data request t 6 1.00 1000.20 ... 990.35 ms 0.01 KB/s 0
TRUE ROBOT STATE robot state t 1419 286.94 3.49 ms 18.59 ms 780.69 K.. 0

Clear

Figure 3-5: LCM-spy showing the traffic. LCM-spy was designed to show the channels,
the LCM type associated with its channel, the number of messaged published from the
initiation of the spy, the frequency at which messages are being published, and some
other information.

3.3 Gain Tuning

Even though PD and PID controllers are linear controllers, for this particular case, they are
being used to control a nonlinear plant as the presence of revolute joints produces nonlinearities.
Although standard mathematical tools for control analysis for linear controller-plant
combinations may be used in general, the behavior of this system, which has a linear controller
and nonlinear plant, was tuned empirically for better performance due to the complexity of the
nonlinear plant. A gain-tuning script was utilized for this purpose.7

This gain-tuning script sends joint position commands via LCM to the robot in a Gazebo
simulation environment. The script then reads the state of the robot, which is published by
Gazebo. The designer along with knowledge about joint referencing determined by a plug-in
provided by the DRC developers provides information, which is used to develop a simple
trajectory for a specific joint to follow. This trajectory may be a series of step functions or may
more closely assimilate a sinusoid wave depending on parameters established by the designer.
The script then takes its position command trajectory and plots it against the joint position as
published by Gazebo. The designer could then compare the two signals and determine how to

7 This Drake MATLAB script that was written by Scott Kuindersama.

22

change the controller gains so as to match the signals as closely as possible. Figure 3-6 shows an
example plot created by the script when attempting to tune the gains for one of the elbow joints
of the robot.

2.5 -

1.5

1 2 3 5 G 7 8

Figure 3-6: MATLAB plot created by the gain-tuning script in which the blue signal
represents the joint position trajectory sent to Gazebo and the red signal represents the
position of the joint as output by Gazebo. The gains should be tuned such that the two
signals match as closely as possible.

After interpreting plots like the one in Figure 3-6 and making changes to the gains, the
process was repeated until the designer was satisfied with the plot. Then the designer would re-
execute the entire process for each relevant joint (for manipulation, gain tuning for the leg joints
of the robot was unnecessary as the robot was pinned from the hip). Table 3-1 contains the
values of the tuned proportional and derivative gains for the robot and the fingers of the Sandia
hand.

23

Table 3-1: Tuned gains for the manipulation qualification
script described above.

task using the gain-tuning

Joint Name K, Gain Kd Gain

Upper Shoulder Y 400 70

Shoulder X 2000 70

Elbow Y 200 5

Elbow X 400 15

Upper Wrist Y 15 6

Middle Wrist X 300 15

Upper Hip Z 100 30

Middle Hip X 250 50

Lower Hip Y 500 25

Knee Y 120 5

Upper Ankle Y 15 2

Lower Ankle X 15 2

Neck Y 100 5

Lower Back Z 5000 45

Middle Back Y 3000 45

Upper Back X 6000 45

Finger Joint 0 150 0.75

Finger Joint 1 100 0.45

Finger Joint 2 100 0.30

3.4 Grasping for the Qualification Manipulation Task

Since the GO system obtained specific grasps to execute, position control was used to
command the Sandia hand to attain the desired position and orientation. As such, the user, after
planning and executing a full body trajectory for the robot to reach a pre-grasp or palm touch
configuration, would then command the Sandia hand to close into the desired grasp as calculated
by the GO system. However, since environmental objects were simplified into more basic
geometries for grasp optimization, the optimized grasp from the GO wasn't completely accurate
with respect to constraint points. Figure 3-7 represents an object and the simple shape that was

24

fitted to it by the perception systems. Because of this simplification, the optimized grasps,

though appropriate, contained intrinsic errors that originated from the slightly inaccurate

determination of contact points. Figure 3-8 represents the actual vs. the desired position of one

joint, of the twelve, in the robotic Sandia hand. It shows how the joint never reaches the desired

position because of an early, unexpected collision. Such plots for other joints depict similar

information but shall not be shown without loss of generality.

Figure 3-7: Example of the cylindrical shape that was used for the GO system for contact

determination. As shown, the simplified shape is, though appropriate, not completely

representative of the actual environmental object. However, this doesn't cause any

problems for grasp execution and is even preferred for simplifying the grasp optimization

process, which would otherwise be very computationally expensive.

25

0.9 -

0.6

0.7 -

0.6

0.4

0.3 --

0.2 -

0.1

59 59.5 60 60.5 61 01.5 62 62.5 W

Figure 3-7: Actual vs. desired trajectory (as computed by the GO system) for a specific
joint in the robotic Sandia hand during grasp execution.

4. Summary and Future Work

For end-to-end operation, first a grasp around an object, which could be modeled as a shape
primitive such as a cylinder, rectangular prism, or torus, would be computed. Then, the state
trajectory of the robot between the current and desired states was determined using spline
interpolation and inverse kinematics. The robot was then given joint position commands to
execute the plan in sequences. Because the human user is such an important component of the
control loop, modular computation and execution proved convenient as it facilitated human
interference in case there were any errors with the optimizers and planners. Even when errors
were detected, the human user didn't necessarily have to adapt to switching between higher-level
to lower-level control; the user would simply re-establish the optimization parameters to be re-
sent to the optimizer/planner systems.

The gains were optimized with no restrictions to the degrees of freedom of the robotic
fingers, however these gains may not be appropriate for situations in which the fingers must
collide with objects, presenting a slight drawback for the use of linear position control. A
suggestion for future work would be to introduce dynamic gains calculated using feedback from
simulated force sensors in the robotic fingers. Currently, the GO maximizes the number of
contact points between the Sandia hand and the interactive object. For future work, it might be
possible to allow the GO to also consider force feedback and perhaps include optimization for
the grasp wrench space describe in the background section of this paper. Other proposed
suggestions include allowing the user to modify the orientation of the optimized grasp and
require the GO to re-optimize the grasp given the orientation constraints defined by the human
user.

26

5. Conclusions

Even though liner controllers can be appropriate for nonlinear robots such as Boston
Dynamic's ATLAS and the Sandia hand developed by the Sandia Laboratories, the standard
mathematical tools available for control system development for linear plants might not
applicable or efficient. Instead, controller optimization relies on designer judgment and empirical
gain tuning. For robots to be effective in real world situations, complex, and sometimes
nonlinear, optimization techniques must be employed for trajectory planning. Nevertheless,
human intuition and input are useful for detecting errors in optimization systems.

27

6. Appendices

6.1 Appendix A: Drake Toolbox

The Drake MATLAB toolbox developed by the Robot Locomotion Group of the MIT
Computer Science and Artificial Intelligence Laboratory has applications in modeling and
simulation, planning, stability analysis, controller design, system identification, and state
estimation [20]. Since this toolbox has very extensive applications, this appendix will focus on
detailing Drake's modeling and simulation capabilities, which will present enough information to
the reader to understand Drake usability and procedures.

Drake systems, which are dynamical systems, are represented in code using the standard
state-space model. These dynamical systems have an internal state, represented as a MATLAB
array, and can have inputs and outputs. Drake has the capability to allow MIMO (multiple-input
multiple-output) systems to be created, and to make them LCM capable. Drake is built as a class
hierarchy in MATLAB and supports both discrete, continuous and hybrid systems. Figure A-I
shows a Drake class that implements the nonlinear continuous system described by [20]

i=-x+x3 (8)

y =x. (9)

28

classdef SimpleCTExample < DrakeSystem
methods

function obj = SimpleCTExample()
% call the parent class constructor:
obj = obj@DrakeSystem(...
1, ... % number of continuous states
0, ... % number of discrete states
0, ... % number of inputs
1, ... % number of outputs
false, ... % because the output does not depend on u
true);%because the dynamics and output do not depend on t
end

function xdot = dynamics(obj,t,x,u)
xdot = -x+x^3;

end

function y=output(obj,t,x,u)

y=x;
end

end
end

Figure A-1: Drake (MATLAB) implementation of the nonlinear continuous system
described by equations (2) and (3). As shown in the code, DrakeSystem instances require
the specification of the number of states, both discrete and continuous, inputs, and outputs.
Furthermore the user must specify whether the system is time dependant and whether the
output directly depends on the input [20].

6.2 Appendix B: Universal Robot Description Format (URDF)

All of the Gazebo simulations conducted in this project utilized URDF files to represent, the
ATLAS humanoid robot, the robotic Sandia hand, and all other unactuated objects in the
simulated environment. URDF requires specifications for the number of bodies, or links, of a
robot, which are contained in link fields. Link fields may also contain other optional information
such as visual and collision properties and inertial characteristics such as mass and moment of
inertia. Once all the links are specified, joints can be created to connect links with each other.
Each joint can only connect two links, the parent link and the child link, and only provides one
degree of freedom. Although for simulation this can be cumbersome because of the need to
create "dummy links" to simulate multi-DOF joints, it is still appropriate for real life applications
as most individual robotic joints only have a single DOF. Figure B-I shows the XML formatted
code that describes a simple robot with four bodies, or links, and three joints and Figure B-2
provides a figure that abstractly represents the description [21].

29

<robot name="testrobot">
<link name="linkl" />
<link name="link2" />
<link name="link3" />
<link name="link4" />

<joint name="jointl" type="continuous">
<parent link="link1"I/>
<child link="link2"/>
<origin xyz="5 3 0" rpy="0 0 0" />
<axis xyz="-0.9 0.15 0" />

</joint>

<joint name="joint2" type="continuous">
<parent link="link1"I/>
<child link="link3"/>
<origin xyz="-2 5 0" rpy="O 0 1.57" />
<axis xyz="-0.707 0.707 0" />

</joint>

<joint name="joint3" type="continuous">
<parent link="link3"/>
<child link="link4"/>
<origin xyz="5 0 0" rpy="O 0 -1.57" />
<axis xyz="0.707 -0.707 0" />

</joint>
</robot>

Figure B-1: XML formatted code of a simple robot with four links and three joints [21].

30

fy
yW'

Figure B-2: Abstract representation of the robot described by the code in Figure B-i
[21].

Depending of the capabilities of the parser being used to read URDFs, it is possible to
include sensors, mesh descriptions for visual and collision properties, and even plug-ins in these
descriptions as well. For the DRC, enhanced parsing capabilities are employed to make the robot
description as representative of the hardware system as possible. URDF is part of open source
software, thus is it possible to find tutorials and more information about it online [21].

31

x

7. References

[1] Artist's Concept for Robots Competing in the DARPA Robotic Challenge (2012).

[2] Autonomous Robotic Manipulation Software (ARM-S) Description. (2013). Retrieved May
16, 2013, from https://www.rec.ri.cmu.edu/projects/arms/description/

[3] Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to Choose a Suitable
Task Wrench Space. Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE
International Conference. pp. 319-325 Vol.1.

[4] Boston Dynamics: PETMAN. (2013). Retrieved April 30, 2013, from
http://www.bostondynamics.com/robot-petman.html

[5] DARPA Autonomous Robotic Manipulation. (2013). Retrieved April 30, 2013, from
http://thearmrobot.com/index.html

[6] DARPA Robotics Challenge. (2013). Retrieved April 29, 2013, from
http://www.darpa.mil/OurWork/TTO/Programs/DARPARoboticsChallenge.aspx

[7] DARPA Urban Challenge. Retrieved April 29, 2013, from
http://archive.darpa.mil/grandchallenge/

[8] Find Minimum of Constrained Nonlinear Multivariable Function - MA TLABfmincon.
(2013). Retrieved May 16, 2013, from
http://www.mathworks.com/help/optim/ug/fmincon.html

[9] Game Physics Simulation. (2013). Retrieved May 16, 2013, from
http://bulletphysics.org/wordpress/

[10] Grasping. (2008). In B. Siciliano, & 0. Khatib (Eds.), Springer Handbook ofRobotics.
Berlin: Springer.

[11] Gazebo Wiki. (2013). Retrieved April 30, 2013, from http://gazebosim.org/wiki/Main Page

[12] Greenemeier, L. (2012). 4-Fingered Robot can Replace Flashlight Batteries [video].
Retrieved April 30, 2013, from
http://blogs.scientificamerican.com/observations/2012/08/19/four-fingered-robot-can-
replace-flashlight-batteries-video/

[13] Huang, A. S., Antone, M., Olson, E., Moore, D., Fletcher, L., Teller, S., et al. DARPA
Grand Challenge Viewer

[14] Huang, A. S., Olson, E., & Moore, D. C. LCM: Lightweight Communications and
Marshalling

[15] LCM - Lightweight Communications and Processing. (2012). Retrieved April 29, 2013,
from https://code.google.com/p/lcm/

32

[16] Miller, A. T., & Christensen, H. I. (2003). Implementation of Multi-Rigid-Body Dynamics
Within a Robotic Grasping Simulator. Robotics and Automation, 2003. Proceedings. ICRA
'03. IEEE International Conference. pp. 2262-2268 vol.2.

[17] Nise, N. S. (2008). Control Systems Engineering (5th ed.). United States of America: Wiley.

[18] PETMAN Tests Camo - YOUTUBE. . (2013). [Video/DVD] Retrieved from

http://www.youtube.com/watch?feature=player embedded&v=tFrjrgBV8KO

[19] Sandia Labs News Releases: Lifelike, Cost-effective Robotic Sandia Hand can Disable
IEDs. (2013). Retrieved April 30, 2013, from
https://share.sandia.gov/news/resources/news releases/robotic hand/

[20] Tedrake, R. (2013). Drake: A Planning, Control, and Analysis Toolbox for Nonlinear
Dynamical Systems. Retrieved May 16, 2013, from http://drake.mit.edu/

[21] URDF - ROS Wiki. (2013). Retrieved April 30, 2013, from http://www.ros.org/wiki/urdf

[22] Vahrenkamp, N., Asfour, T., & Dillmann, R. (2012). Simultaneous Grasp and Motion
Planning: Humanoid Robot ARMAR-III. Robotics & Automation Magazine, IEEE, 19(2),
43-57.

33

