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Abstract

It is experimentally known that the flight lengths of random searches by for-
agers such as honey bees statistically belong to a power law distribution[1].
Optimality of such random searches has been a topic of extensive research be-
cause knowing their optimal parameters may help applied sciences. Viswanathan
et al.[2] have shown the inverse-square power law to be the optimal law for
such random searches. This thesis explores the capability of the model pre-
sented in [2] such that it can be applied to Unmanned Autonomous Vehicles
(UAVs). The thesis also identifies the minimum flight length, lmin, as an im-
portant factor that needs to be controlled based on the UAV’s sensor range.
We present a theoretical lmin as an explicit function of the sensor range, rv,
and an estimated target density, ρ.
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1 Introduction

A recent observation made about foraging animals is that foragers when in
no or limited prior knowledge of food show searching patterns that have
special characteristics. The patterns are different from what can be seen in
Brownian motion, the random walk by particles diffusing in a liquid. Foragers
sometimes take long paths in just one direction. This strategy is found to
be the key to the foragers’ success in finding food rapidly in an unknown
environment [1].

It is shown experimentally that these foragers often take an optimal ran-
dom searching strategy [1]. The experimental method in [1] includes tracking
honeybees using harmonic radar tracking, and fitting the found flight lengths
to a probability distribution. The flight lengths fit in to a Lévy like char-
acteristic with the optimal parameters proposed earlier and independently
in [2]. Viswanathan et al. analytically show that the optimal strategy for
random searches is an inverse-square power law distribution for any general
case based on an idealized foraging model. Their analytical model closely
represents the forager-food relationship.

We take Viswanathan et al.’s analytical results and reapply them to a
controllable application such as Unmanned Autonomous Vehicles (UAVs).
UAVs, unlike natural objects, will require a precise probability distribution
so that it can generate random walks that statistically fit in a desired distri-
bution.

1.1 The Power-Law Distribution

Power-law distributions have a wide range of appearances in different fields.
In a target searching context, flight lengths, l, are said to have the power-law
distribution when all these lengths are drawn from a probability distribu-
tion of the form

p(l) ∝ l−µ, (1.1)

where µ is the scaling parameter.
A more general Lévy distribution can be classified as a power-law dis-

tribution where the scaling parameter, µ, lies in the range 1 < µ ≤ 3. Scaling
parameter µ ≤ 1 can not be normalized, and power-law distribution when
µ ≥ 3 turns into a Gaussian distribution [4]. Thus, a Lévy flight consists of
flight lengths that obey the power-law distribution with 1 < µ ≤ 3.

It is clear from the Relation (1.1) that when l approaches zero, the prob-
ability density p(l) diverges which suggests that l must have a lower bound,
lmin. Figure (1) shows probability distributions for a few arbitrary values of
µ. We rewrite (1.1) in an equation form:
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p(l) = C l−µ, (1.2)

where C is the normalization constant calculated as follows:
With a lower bound specified, probability density p(l) satisfies

∫

∞

lmin

p(l) dl =

∫

∞

lmin

C l−µdl = 1. (1.3)

For the continuous probability case, C can be easily calculated from Eq.(1.3).
For µ > 1, the normalization constant can be calculated and gives Relation
(1.2) the following form for the continuous case:

p(l) =
µ− 1

lmin

(

l

lmin

)

−µ

. (1.4)

Similarly, for the discrete case, C is calculated from
∞
∑

l=lmin

C p(l) = 1. In
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Figure 2: p(l) for different values of lmin at µ = 2.

discrete case, C takes the following form:

C =

(

∞
∑

n=0

(n+ lmin)
−µ

)

−1

. (1.5)

1.2 The Idealized Foraging Model

Assuming a two dimensional random search, the analytical model studied
by Viswanathan et al. is summarized in following points. The forager follows
these rules:

1. The forager moves from one point to another until it locates a target.

2. In the two dimensional case, the angle that the forager takes between
one flight to the next flight is drawn from a uniform distribution of
angles in a range of [0, 2π].

3. If the forager locates a target in its vicinity, the forager moves to the
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target in a straight line, i.e., the closest distance between the forager
and the target.

4. The forager resumes its search according to rules (1) and (2) as soon
as it can again no longer locate a target, i.e., its flight lengths, once
again, are drawn from the same probability distribution as rule (1).

One flight length can be defined as the distance traveled by the forager
between one point to another without stopping and changing the angle of its
path. The forager may take several of such flight lengths to find one target.

Using the analytical method in [2], the mean flight length is derived to
be

lmean =

(

µ− 1

2− µ

)(

λ2−µ − r2−µ
v

r1−µ
v

)

+
λ2−µ

r1−µ
v

, (1.6)

where µ is the scaling parameter of the power-law distribution, rv is the
radius of the circle which represents forager’s vicinity, and λ is the mean
free path between the successive targets. Figure (3) shows the variation of
analytical lmean value for an increasing µ for different target area densities.

The search efficiency η, a function of µ, is defined in terms of mean flight
length and the number of flights taken to find a target. Figure (4) shows η
times λ as it varies with changing µ.

η(µ) =
1

lmean N
(1.7)

2 The Model and Optimized Parameter

2.1 The Modified UAV Model

We assume that the targets are randomly distributed and are stationary.
The modified UAV model does not follow rule (3) in the idealized forager
model discussed earlier. Since, in many engineering applications, most of the
random searches done are intended to only locate an object of interest, we
are only concerned of locating the target as fast as possible. Once the object
is located, often an operator decides what to do with the found target. For
instance, in a case of a rescue mission, finding drowning people is the sole
aim of a UAV. It cannot further spend its time in interacting with the just
found target, it must move on to its search for finding other targets. In such
a case, however, there can be another system that can be released from the
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searching UAV to send some relief items to the person until the found person
waits for the complete help.

This modified model can be summarized similarly to the forager model
by excluding the rule (2) as follows:

1. The Unmanned Autonomous Vehicle (UAV) moves from one point to
another until it locates a target, i.e UAV keeps drawing lengths to
follow from a predetermined probability distribution. The probability
distribution in our case will be a power-law distribution with a fixed µ.

2. If the UAV locates a target in its vicinity, the sensor range of radius
rv, the UAV sends out the information to an operator outside.

3. Without stopping, the UAV moves on to its search i.e., the next flight
length is drawn from the power-law distribution with a pre-determined
value of scale factor µ. The angle UAV takes is drawn from a uniformly
distributed set of range [0, 2π].
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4. The mapping of the region has not been specified - the UAV can revisit
any region.

2.2 Search Efficiency and Optimal Scaling Parameter

Let’s take λ to be the mean free path between the successive targets, lmean

to be the mean UAV flight length over the N steps traveled by the UAV,
rv the range of the sensor mounted, and ρ to be the target area density.
Viswanathan et al. defines the efficiency η of one complete path of discovering
the target to be the ratio of the number of target discovered over the total
distance traveled.

If lmean is the mean flight length over N steps taken by the UAV to
discover its first target, the total distance traveled by the UAV can be equated
to N times lmean, and the efficiency η is given by

η =
1

N lmean
(2.1)

The Eq.(2.1) is the efficiency of one such path, i.e., the path from one target
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to finding the next, where λ is the mean free path between the two successive
target sites.

It is important to note while reproducing Figure (4) that N in Eq.(2.1)
is variable which changes with varying µ. Viswanathan et al. presents the
variable N for two cases: the forager finishes eating the target (destructive
foraging), and non-destructive foraging. UAV searches, can have similar
divisions: once the target is located it could either be moved away or remain
in the search area. Figure (4) is produced taking N to be for the non-
destructive case:

N =

(

λ

rv

)(µ−1)/2

(2.2)

3 Generating Lévy Flights

3.1 Simulating Random Searches with Arbitrary Para-
metric Values

Simulating random searches includes generating Lévy flights drawn from the
power-law distribution as described in the Introduction section, and angles
drawn from a uniform distribution. This section explores a basic methodol-
ogy of generating these flights for different values of scaling parameter µ.

The method used to generate the power-law distributed flight lengths is
known as the transformation method. The method is one of the simplest
and elegant methods for producing such probability distribution for generat-
ing both, discrete and continuous distributions [4]. It maps a uniformly
distributed data to the desired distribution in the following manner:

The method is based on first calculating the cumulative density function
of our power-law density function, and then, inverting the cumulative density
function. The CDF takes uniformly distributed points as input to generate
the desired set of Lévy distributed flight lengths.

Cumulative density function (CDF ) when continuous

CDF =

∫

∞

lmin

p(l) dl

=

∫

∞

lmin

C l−µ dl where C = (µ− 1) l−µ
min

CDF = 1−

(

l

lmin

)1−µ

(3.1)
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Inverting the CDF function and the transformation

lj = lmin (1− CDF )
1

−µ+1

lj = lmin (1− uj)
1

−µ+1

l = lmin (1− u)
1

−µ+1 (3.2)

Eq.(3.2) shows the transformation method - u as input, is uniformly dis-
tributed set in range [0, 1), that is transformed in to the output l, the flight
lengths between [lmin,∞) obeying power-law distribution of scaling parame-
ter µ. In other words, if u1 and u2 belong to a uniform distribution in [0, 1),
plugging these value in Eq.(3.2) will result in two points, say, l1 and l2 that
belong to the power-law distribution of parameter µ. The MATLAB code
that implements this method can be found in Appendix A.

3.2 Validating Power-Law Distribution

To check whether the flight lengths l generated in Section (3.1) do belong
to the desired power-law distribution, we estimate the value of µ for the
generated flight lengths. The method used here is referred as the method of
maximum likelihood (MLE) [4]. The maximum likelihood estimator (MLE)
for continuous power-law distribution is

µest = 1 + n

[

n
∑

j=1

ln
lj
lmin

]

−1

. (3.3)

Figure (5) shows the estimated scaling parameter, µest, for lj that are
being generated using Eq.(3.3) for µ = 2. We observe that µest quickly
catches up to a close value of actual µ that is been used to generate these
sample flight lengths, and thus validates our method described in Section
(3.1). The MATLAB code in Appendix A has been provided that produces
this result.

4 Estimating the Minimum Flight Length: lmin

In a previous section, we discussed that optimal random searches are achieved
for µ ≈ 2. In the case of UAV search, the robot at any given location and
instant of time needs an instruction that tells it a direction it should take
and how long it should travel. Our attempt in this section is to identify a
parameter that will ultimately be used in a code for a practical UAV search.
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What we consider here is an inverse of the problem of foraging. In the
problem of foraging, we collect the flight lengths animals take and see what
probability distribution they fit. Now we are interested to instruct a robot
for a given probability distribution.

We identify lmin to be an important parameter for the following reason.
In a UAV search context, the flight lengths drawn with a higher lmin will
have a higher mean flight length than the mean flight length with a lower
value of lmin. Figure (9) validates this point. It also shows lmean is highly
sensitive to lmin when the scaling parameter, µ, is a close value to 2.

Motivation: An intuitive way of looking at it is to think about having
a very small minimum flight length compared with the UAV sensor’s range.
Since it’s a low value of lmin, from Figure (2), it will lie in far left region on
the x axis. Since the power-law distribution is normalized, the values closer
to lmin have a higher probability than the other larger flight lengths which
fall further on the right side of the axis. A CDF has been plotted to show
this behavior.
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Figure 6: CDF between a varying lmin, and lmin+ ε, where ε is a small value.
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In Figure (6), we vary lmin to see its effect on the probability distribution
in its nearby region. ε parametrizes this small region. The region, lmin with a
fixed value of ε, have a higher cumulative probability distribution than from
the region with the bigger lmin values. Thus, when lmin is low, the probability
of the sample lengths that are a close value of lmin is high, and vice versa.
For instance, let’s say when we draw twenty flight lengths from one of these
distributions, we find fifteen out of these twenty flight lengths to have a close
value to lmin, which is a very low value compared with the sensor range, then
the UAV would barely cover any region with these samples. From a similar
scenario, where lmin is very large compared with rv, then that would leave out
a lot of area uncovered. Thus, one can see how inefficient these flight lengths
will be for our search, and the need to determine lmin carefully. Figure (7) is
a schematic presentation of this observation. Furthermore, one can see from
Figure (8) that lmean stays positive for only a range of rv. Therefore, it is
important to identify the constraints on lmin.

Methodology: Analytical solution for mean flight length Eq.(4.1) pro-
vided by Viswanathan et al. after simplifying for λ gives us a co-relation
between lmean and rv. Assuming that - the value of µ has been decided to be
taken a close number to 2 to keep the random search optimal, ρ is roughly
known to the operator based on operator’s knowledge of the search field, rv,
the sensor range, is known (as it is reasonable to assume most sensor are
shipped with specifications) - we compute lmean using Eq.(4.1). Now to ob-
tain a corresponding value of lmin for input values of ρ, µ, and rv, we calculate
the mean flight length from the probability distribution, Eq.(4.5), we thus
eliminate lmean from these equations and obtain the desired value of lmin in
terms of ρ, µ, and rv.

Detailed Derivation: The analytical model given by Viswanathan et
al. that correlates mean flight length to µ, the scaling parameter, rv, the
range of the forager, and λ, the mean free path between the successive target
sites, is as follows:

lmean =

(

µ− 1

2− µ

)(

λ2−µ − r2−µ
v

r1−µ
v

)

+
λ2−µ

r1−µ
v

(4.1)

For the two dimension case, mean free path between successive targets,
λ, and target area density, ρ are correlated as follows [2]:

λ = (2ρrv)
−1 (4.2)

Plugging (4.2) into (4.1) takes the following form that correlates rv with

17
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lmin

Figure 7: Schematic presentation of the effect of – a comparable lmin and a
low value of lmin compared with the sensor range rv – on search efficiency.
The demo shows the three flight lengths which are minimum flight lengths
lmin.

lmean :
lmean =

(

(−k1 + 1) k2
)

r2µ−3
v + k1 rv (4.3)

where k1 =

(

µ− 1

µ− 2

)

and k2 = (2ρ)µ−2.

It can be noted from Eq.(4.1) that for an exact µ = 2, the value of lmean

becomes infinity. To inspect the behavior of Eq.(4.3), a plot between lmean

and rv has been shown in Figure (8). Here, to keep lmean value finite, we
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arbitrarily choose µ = 2.01 considering it to be a close value to 2, and ρ = 1.
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Figure 8: lmean and rv for µ = 2.01 and different target site densities, ρ.

The plot shows an interesting result as we see that lmean is only valid, i.e
positive, of a certain range of rv. Further exploring the co-relation (4.3), we
observe the target density is an important factor in keeping the lmean valid
for a larger value of rv.

Continuous power-law distribution

p(l) =

(

µ− 1

lmin

)(

l

lmin

)

−µ

(4.4)

By definition, the mean of a given probability density function p(x) is calcu-
lated as follows :

xmean =

b
∫

a

x p(x) dx (4.5)
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Eq.(4.5) for the power-law distribution can be written as

lmean =

∞
∫

lmin

l

(

µ− 1

lmin

)(

l

lmin

)

−µ

dl (4.6)

=

∞
∫

lmin

(µ− 1) l−µ+1

l−µ+1
min

dl

=

(

µ− 1

l−µ+1
min

)[

l−µ+2

−µ+ 2

]

∞

lmin

=

(

µ− 1

l−µ+1
min

)

lim
b→∞

[

l−µ+2

−µ+ 2

]b

lmin

=

(

µ− 1

l−µ+1
min

)

lim
b→∞

[

b−µ+2

−µ+ 2
−

l−µ+2
min

−µ+ 2

]

lmean = lµ−1
min

(

µ− 1

µ− 2

)

lim
b→∞

[

l2−µ
min − b2−µ

]

(4.7)

The second term in Eq.(4.7) diverges when µ ≤ 2; for µ > 2, the term
b2−µ converges and lmean can be written as

lmean =

(

µ− 1

µ− 2

)

lmin for µ > 2 (4.8)

Eq.(4.8) can be written in a desirable state for calculating lmin

lmin = lmean

(

µ− 2

µ− 1

)

for µ > 2 (4.9)

Eq.(4.9) when plugged in for lmean results into a direct correlation relating
minimum flight length lmin to sensor’s range rv and target area density λ.

lmin = −(2ρ)µ−2

(

1 +
µ− 2

µ− 1

)

r2µ−1
v + rv for µ > 2 (4.10)
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Figure 9: lmean as it varies with changing lmin - Eq.(4.8).

5 Conclusion

As mentioned in Introduction section, the analytical model has been used
extensively in the animal foraging research community, but the aim of this
paper is to extend the model to a more controlled application such as UAVs.
The thesis focuses on exploring the required technical aspects of transferring
a random search that is been classically proposed by Viswanathan et al. to an
Unmanned Autonomous Vehicle. The thesis discusses the analytical aspects
of the model and random search parameters, but it doesn’t include a pre-
cise implementation of a specific sensor for UAV. We assume that UAVs and
forager have the similar searching mechanism for random searches. Using
Viswanathan et al. ’s methods, we take inverse square law (scaling parame-
ter : µ = 2) to be the most optimal value for random searches as shown in
Figure (4) in Section (2.2).

The report talks extensively about the importance of the minimum flight
length and its relation to the sensor range as depicted in schematic 7. The
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Figure 10: Estimating lmin for different rv and λ at µ = 2.05 using Equation
(4.10).

Eq.(4.10) finds the minimum flight length, lmin, to be a function of UAV
sensor’s range (rv) and a roughly known target-site density (ρ) or mean
free path between successive target (λ), where ρ and λ are interrelated by
Eq.(4.2). Figure (10) shows a direct relationship between the sensor range
and minimum flight length. As one can predict from Schematic (7), the
minimum flight length lmin should increase as the range of the sensor rv
increases as to keep the search optimal. We obtain a confirming result for
varying target density. This relation, Eq.(4.10), derived from Viswanathan
et al. ’s analytical solution helps by optimally deciding minimum flight length
for UAVs with various ranges for different target densities.
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A MATLAB Code

1 %% plotting 'Normalized' mu =2 for different values of lmin
2 mu = 3;
3 lmin = 3% 1, 2, 3
4 l=[3:0.1:10]; % 0.5, 1, 2, 3
5 C=(mu−1)*lmin.ˆ(mu−1);
6 p=C*l.ˆ(−mu);
7 plot(l,p,'−−')
8 hold on
9 % Create xlabel

10 xlabel({'$\l$'},'Interpreter','latex','FontSize',12);
11 % Create ylabel
12 ylabel({'$p(l)$'},'Interpreter','latex','FontSize',12);
13 % Create title
14 legend1 = legend('$\l {min} = 0.5$','$\l {min} = ...

1$','$\l {min} = 2 $',...
15 '$\l {min} = 3 $');
16 set(legend1,'Interpreter','latex','FontSize',12)
17

18 %% Plotting normalized again with keeping l mean = ...
constant for diff values

19 % of mu. The intention is show how the curve looks like ...
for the range of

20 % interest.
21 mu = 3; %1.1, 1.5, 2, 2.5, 3
22 lmin = 1;
23 l=[1:0.1:6];
24 C=(mu−1)*lmin.ˆ(mu−1);
25 p=C*l.ˆ(−mu);
26 plot(l,p,':') % '−−','.','−',':'
27 hold on
28 % Create xlabel
29 xlabel({'$\l$'},'Interpreter','latex','FontSize',12);
30 % Create ylabel
31 ylabel({'$p(l)$'},'Interpreter','latex','FontSize',12);
32 % Create title
33 legend1 = legend('$\mu = 1.1$','$\mu = 1.5$','$\mu = 2 ...

$',...
34 '$\mu = 2.5 $','$\mu = 3 $');
35 set(legend1,'Interpreter','latex','FontSize',12)
36

37 %% log scale
38 mu = 3; %1.1, 1.5, 2, 2.5, 3
39 lmin = 1;
40 l=[0.1:0.1:10]; % 0.5, 1, 2, 3
41 C=(mu−1)*lmin.ˆ(mu−1);
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42 p=C*l.ˆ(−mu);
43 loglog(l,p,'−.') % '−−','.','−',':','−.'
44 hold on
45 % Create xlabel
46 xlabel({'$\l$'},'Interpreter','latex','FontSize',11);
47 % Create ylabel
48 ylabel({'$p(l)$'},'Interpreter','latex','FontSize',11);
49 % Create title
50 legend1 = legend('$\mu = 1.1$','$\mu = 1.5$','$\mu = 2 ...

$',...
51 '$\mu = 2.5 $','$\mu = 3 $');
52 set(legend1,'Interpreter','latex')

1 %% Plot of Y as lmean and x as mu : rv = 1
2 clear all;
3 lambda =100; %10000,1000,100
4 rv=1;
5 mu i=[1.01:0.12:2.99];
6 mu length=length(mu)
7 for i=1:length(mu i)
8 mu=mu i(i);
9 k1=(mu−1)/(2−mu)

10 k2=((lambdaˆ(2−mu)) −(rvˆ(2−mu)))/(rvˆ(1−mu))
11 k3=(lambdaˆ(2−mu))/rvˆ(1−mu)
12 lmean = (k1*k2)+k3;
13 lmean s(i)=lmean;
14 end
15 semilogy(mu i,lmean s,'−.')
16 hold on
17 % Create xlabel
18 xlabel({'$\mu$'},'Interpreter','latex','FontSize',12);
19 % Create ylabel
20 ylabel({'$l {mean}$'},'Interpreter','latex','FontSize',12);
21 % Create title
22 % title({' $lmean versus \mu for r v=1$'},...
23 % 'Interpreter','latex',...
24 % 'FontSize',11);
25 % Create legend
26 legend1 = legend('$\lambda = 10ˆ4$','$\lambda = ...

10ˆ3$','$\lambda = 10ˆ2$');
27 set(legend1,'Interpreter','latex','FontSize',12)
28

29 %% Plot of lmin and rv with a fixed rho.
30 clear all
31 lambda = 10; %10000,1000,100,10
32 rv i = 0.1:0.1:5;
33 mu=2.05

25



34 for i = 1:length(rv i)
35 rv = rv i(i);
36 rho = (2*lambda*rv)ˆ−1;
37 k1=(mu−1)/(2−mu);
38 k2=((lambdaˆ(2−mu)) −(rvˆ(2−mu)))/(rvˆ(1−mu));
39 k3=(lambdaˆ(2−mu))/rvˆ(1−mu);
40 lmean = (k1*k2)+k3;
41 lmin = (lmean)*((mu−2)/(mu−1));
42 lmin i(i) = lmin;
43 end
44 hold on
45 plot(rv i,lmin i,'.')
46

47 % Create xlabel
48 xlabel({'$r v$'},'Interpreter','latex','FontSize',12);
49 % Create ylabel
50 ylabel({'$l {min}$'},'Interpreter','latex','FontSize',12);
51 % Create legend
52 legend1 = legend('$\lambda = 10ˆ4$','$\lambda = ...

10ˆ3$','$\lambda = 10ˆ2$',...
53 '$\lambda = 10$');
54 set(legend1,'Interpreter','latex','FontSize',12)
55 legend boxoff

1 %% Plotting mu versus efficiency equation(3).
2 %rv=1/(2*lambda*rho);
3 set(gcf,'DefaultAxesColorOrder',[0 0 1],...
4 'DefaultAxesLineStyleOrder','−|−−|−. |:')
5 for lambda = [10000,1000,100,10]
6 rv=1;
7 mu i=[1:0.05:3];
8 for i=1:length(mu i)
9 mu=mu i(i);

10 k1=(mu−1)/(2−mu);
11 k2=((lambdaˆ(2−mu)) −(rvˆ(2−mu)))/(rvˆ(1−mu));
12 k3=(lambdaˆ(2−mu))/rvˆ(1−mu);
13 lmean = (k1*k2)+k3;
14 N = (lambda/rv)ˆ((mu−1)/2); %Non−destructive N
15 eff= 1/(N*lmean);
16 l eff(i) = lambda*eff;
17 hold all
18 end
19 plot(mu i,l eff)
20 end
21 hold off
22 xlabel({'$\mu$'},'Interpreter','latex','FontSize',12);
23 ylabel({'$\lambda\eta$'},'Interpreter','latex','FontSize',12);
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24 legend1 = legend('$\lambda = 10ˆ4$','$\lambda = ...
10ˆ3$','$\lambda = 10ˆ2$',...

25 '$\lambda = 10$');
26 set(legend1,'Interpreter','latex','FontSize',12)
27 %% Effect of lmin on lmean AT a close value of mu.
28 clear figure; clear all;
29 set(gcf,'DefaultAxesColorOrder',[0 0 1],...
30 'DefaultAxesLineStyleOrder','−|−−|−. |:')
31 for mu = [2.01 2.05 2.1];
32 lmin = [0.1:0.1:5];
33 lmean = ((mu−1)/(mu−2))*lmin;
34 plot(lmin,lmean)
35 hold all
36 end
37 hold off
38 % Create xlabel
39 xlabel({'$\l {min}$'},'Interpreter','latex','FontSize',12);
40 % Create ylabel
41 ylabel({'$\l {mean}$'},'Interpreter','latex','FontSize',12);
42 % Create legend
43 legend1 = legend('$\mu = 2.01$','$\mu = 2.05$','$\mu = 2.1$');
44 set(legend1,'Interpreter','latex','FontSize',12)

1 function [total distance,mu estimated] = total distance ...
(mu,steps)

2 u = rand(1,1E4); %uniformaly distributed open interval (0,1)
3 l min=1;
4 %mu=1.5;
5 f=l min*(1−u).ˆ−(1/(mu−1));
6 %figure(1);
7 %hist(f,[1:0.1:10]);
8

9 total distance=0;
10

11 %figure(4)
12 %axis([−1000 1000 −1000 1000])
13 xi=0;yi=0;
14 %steps=10000;
15 n=steps;
16 log sum=0;
17 for i=1:steps
18 l=f(1,randi(10000));
19 angle=2*pi*rand(1,1); %uniformaly distributed angle
20 total distance=total distance+l;
21 % xf=xi+l*cos(angle);
22 % yf=yi+l*sin(angle);
23 % line([xi xf],[yi yf])
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24 % hold on
25 % plot(xf,yf,'o')
26 % xi=xf;
27 % yi=yf;
28

29 log r = log(l/l min);
30 log sum = log sum+log r;
31 mu estimated = 1+ n*(log sum)ˆ−1;
32

33 end
34 total distance;
35 end

1 clear all, clear figure
2 steps=[1:300];
3 for i = 1:length(steps)
4 [A,B]=total distance(2,steps(i));
5 B i(i)=B;
6 x i(i) = mean(B i);
7 end
8 plot(steps,B i,'.','LineWidth',1)
9 hold on

10 plot(steps,x i,'r−','LineWidth',1.2)
11 hold off
12 title('Maximum Likelihood Estimator (MLE) method', ...

'Interpreter', 'latex','FontSize',12)
13 xlabel({'$n$ (The count of sample lengths)'},'Interpreter'...
14 ,'latex','FontSize',12);
15 % Create ylabel
16 ylabel({'$\mu {est}$ \,(The estimated ...

$\mu$)'},'Interpreter',...
17 'latex','FontSize',12);
18 % Create legend
19 legend1 = legend('$\mu {est}$','mean($\mu {est}$)');
20 set(legend1,'Interpreter','latex','FontSize',12, ...

'box','on',...
21 'Xcolor',[1 1 1],'Ycolor',[1 1 1]);
22 % grids
23 set(gca,'YLim',[1.5 3])
24 set(gca,'YTick',[1:0.1:4])
25 grid on
26 %set(gca,'YTickLabel',['0';' ';'1';' ';'2';' ';'3';' ';'4'])

1 clear figure
2 set(gcf,'DefaultAxesColorOrder',[0 0 1],...
3 'DefaultAxesLineStyleOrder','−|−−|−. |:')
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4 for ep = [0.1,0.5,1]
5 lmin = [0.5:0.1:10];
6 l = lmin+ep;
7 mu=2.01;
8 CDF= 1−(l./lmin).ˆ(1−mu);
9

10 plot(lmin,CDF)
11 hold all
12 end
13 xlabel({'$l {min}+\epsilon$'},'Interpreter','latex',...
14 'FontSize',12);
15 % Create ylabel
16 ylabel({'Cumulative Density Fcn'},'Interpreter','latex',...
17 'FontSize',12);
18 % Create legend
19 legend1 = legend('$\epsilon = 0.1 $','$\epsilon = 0.5 $',...
20 '$\epsilon = 1 $');
21

22 set(legend1,'Interpreter','latex','FontSize',12, ...
'box','on',...

23 'Xcolor',[1 1 1],'Ycolor',[1 1 1]);
24 set(gca,'XLim',[0 10],'FontSize',10,'XTick',[0:1:10])
25 grid on

1 % lmean versus rv
2 clear all;
3 rv i=[0.01:0.05:5];
4 rho = 0.1; %1, 0.1
5 mu=2.01;
6 for i =1:length(rv i)
7 rv=rv i(i);
8 k1 = (mu−1)/(mu−2);
9 k2=(2*rho)ˆ(mu−2);

10 l mean= ((−k1*k2+k2)*(rv.ˆ(2*mu−3)))+(k1*rv);
11 l mean i(i)= l mean;
12 end
13 plot(rv i,l mean i,'−') % −−, −
14 hold on
15 xlabel({'$r v$'},'Interpreter','latex','FontSize',12);
16 ylabel({'$l {mean}$'},'Interpreter','latex','FontSize',12);
17 legend1 = legend('$\rho = 1, \mu = 2.01$','$\rho = 0.1, ...

\mu = 2.01$');
18 set(legend1,'Interpreter','latex','FontSize',12, ...

'box','on',...
19 'Xcolor',[1 1 1],'Ycolor',[1 1 1]);
20 set(gca,'XTick',[0:0.5:5])
21 grid on
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