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Abstract

Rapid advances in next-generation sequencing technologies are revolutionizing genomics,
with data sets at the scale of thousands of human genomes fast becoming the norm. These
technological leaps promise to enable corresponding advances in biology and medicine, but
the deluge of raw data poses substantial mathematical, computational and statistical chal-
lenges that must first be overcome. This thesis consists of two research thrusts along these
lines. First, we propose an algorithmic framework, “compressive genomics,” that accel-
erates bioinformatic computations through analysis-aware compression. We demonstrate
this methodology with proof-of-concept implementations of compression-accelerated search
(CaBLAST and CaBLAT). Second, we develop new computational tools for investigating
population admixture, a phenomenon of importance in understanding demographic histories
of human populations and facilitating association mapping of disease genes. Our recently re-
leased ALDER and MixMapper software packages provide fast, sensitive, and robust methods
for detecting and analyzing signatures of admixture created by genetic drift and recombina-
tion on genome-wide, large-sample scales.
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Introduction

Rapid advances in next-generation sequencing technologies are revolutionizing genomics. In
the decade since the publication of the first draft of the human genome (Lander et al.,
2001; Venter et al., 2001)—a 10-year, $400-million effort—new methods of image analysis,
chemistry and engineering (Kircher and Kelso, 2010) have been developed that sequence a
human genome in one week for less than $10,000. Data sets at the scale of thousands of
human genomes are fast becoming the norm (The 1000 Genomes Project Consortium, 2012).

These technological leaps hold the promise of enabling corresponding advances in biology
and medicine, but the deluge of raw data poses substantial mathematical, computational and
statistical challenges that must first be overcome (Kahn, 2011; Gross, 2011; Huttenhower and
Hofmann, 2010; Schatz et al., 2010). This thesis addresses such problems on two levels, (i)
developing a general algorithmic framework to mitigate increasingly demanding computa-
tional requirements for genomic data analysis (Loh et al., 2012); and (ii) developing robust,
efficient statistical methods that interpret genetic data to reveal insights about admixed
human populations (Lipson et al., 2012; Loh et al., 2013).

Compressive genomics

Despite the rapid growth of genomic data sets—far outpacing increases in available comput-
ing power—most data now being collected is highly redundant. For example, human genomes
differ on average by only 0.1% (Venter et al., 2001), so 1,000 human genomes only contain
roughly twice the unique information of one genome. Many compression algorithms have
been developed to increase storage and transmission efficiency (Grumbach and Tahi, 1994;
Chen et al., 2002; Christley et al., 2009; Brandon et al., 2009; Mäkinen et al., 2010; Kozanitis
et al., 2011; Hsi-Yang Fritz et al., 2011), but these techniques require decompression before
computational analysis and thus do not mitigate the computational bottleneck.

In contrast, the “compressive genomics” framework that we have recently proposed (Loh
et al., 2012) harnesses redundancy among genomes to achieve computational acceleration
(in addition to data compression) by storing genomes in a compressed format that respects
the structure of similarities and differences important for analysis. Once such a compressed
library has been created, it can be analyzed in an amount of time proportional to its com-
pressed size, rather than having to reconstruct the full data set every time one wishes to
query it.

This approach fundamentally changes the scaling behavior of algorithmic analyses and
will be essential in addressing the computational challenges now arising in the age of “big
data” biology. The prototype compressive search algorithm we present in Chapter 1 repre-
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sents a first step in the direction of compressive genomics, opening many avenues for further
study.

Admixture inference

The explosion in genetic data has enabled significant advances in understanding the demo-
graphic histories of human populations. In particular, admixture between populations has
left genetic traces in present-day populations (Wall et al., 2009; Reich et al., 2009; Green
et al., 2010; Gravel et al., 2011; Pugach et al., 2011; Patterson et al., 2012) that evince
past migrations and facilitate association mapping of disease genes (Patterson et al., 2004;
Pasaniuc et al., 2011). Admixture must also be taken into account when correcting for pop-
ulation stratification among cases and controls in genome-wide association studies (Price
et al., 2006; Tian et al., 2008).

Many methods have been developed to investigate admixture events using large-scale
SNP data sets; some of the most popular, such as STRUCTURE (Pritchard et al., 2000)
and principal component analysis (PCA) (Patterson et al., 2006), use clustering algorithms
to visually identify admixed populations. Gene flow parameters can also be studied quan-
titatively by measuring signals of admixture from two distinct genetic processes: drift and
recombination. Drift-based approaches model allele frequency divergences among popula-
tions caused by random sampling, allowing insight into admixture sources and proportions
using likelihood-based models (Chikhi et al., 2001; Wang, 2003; Sousa et al., 2009; Wall
et al., 2009; Laval et al., 2010; Gravel et al., 2011) or moment statistics (Reich et al., 2009;
Green et al., 2010; Patterson et al., 2012; Pickrell and Pritchard, 2012).

In contrast, recombination-based approaches harness the fact that chromosomes of ad-
mixed individuals contain continuous blocks inherited from each ancestral population that
break down through successive generations. Local ancestry methods (Tang et al., 2006;
Sankararaman et al., 2008; Price et al., 2009; Lawson et al., 2012) explicitly infer these
blocks, enabling estimation of the age of admixture from their length distribution (Pool and
Nielsen, 2009; Pugach et al., 2011; Gravel, 2012). Recent work has also shown the utility of
LD statistics for date inference (Moorjani et al., 2011; Patterson et al., 2012).

The drift and recombination signals are complementary; here we extend inference meth-
ods that analyze each.

Admixture inference using linkage disequilibrium

In Chapter 2 we comprehensively develop the technique of using linkage disequilibrium (LD)
in admixed populations as a source of information about population history. Linkage dis-
equilbrium has recently emerged as a powerful signal for studying history—especially for
studying migrations and inter-population gene flow—but previous methods have been some-
what rudimentary. Our work makes major new advances in both the theory and application
of LD-based admixture analysis:

1. Careful mathematical development of a novel weighted LD statistic. The
manuscript explores—in much greater depth than previous work—the exponential de-
cay of admixture-induced LD as a function of genetic distance, applying techniques
from probability theory and mathematical biology.
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2. Dating admixture 1000 times faster than previous methods. The new method
speeds up computation by a thousand-fold by applying an algebraic manipulation to
recast the problem in a form that can be computed using a fast Fourier transform
(FFT).

3. A novel statistical test for admixture based on LD. The paper shows how LD
can be used as the basis of a novel three-population test for admixture and applies this
test to detect admixture signals that other methods cannot, for example in Sardinians,
Mbuti Pygmies, and Japanese.

4. Novel methods for estimating other admixture parameters. The manuscript
describes how weighted LD can be used not only to estimate dates of admixture but
also to infer mixture proportions and phylogenetic relationships.

We have implemented this methodology in a versatile software package, ALDER (Loh et al.,
2013), that we anticipate will be a useful tool for a wide range of geneticists working on
human history as well as the genetics of other species.

Admixture inference using moment statistics

In Chapter 3 we present MixMapper , a new method for investigating population history that
identifies and models admixed populations using allele frequency moment statistics (Lipson
et al., 2012). We demonstrate the power of MixMapper by applying it to worldwide samples
from the Human Genome Diversity Project (HGDP). Surprisingly, MixMapper is able to
detect for the first time a signal of ancient admixture in all European HGDP populations,
altering the current understanding of the history of admixture in Europe. In particular,
Sardinians and Basques have previously been widely viewed as unadmixed descendants of
Neolithic farmers, but MixMapper identifies evidence of admixture in these populations,
which we convincingly validate using multiple lines of reasoning.

Methodologically, MixMapper has two key features that distinguish it from existing ap-
proaches:

1. Automatic identification of admixed populations and sources of gene flow.
Nearly all previous model-based admixture inference methods require the user to
specify a pre-determined phylogeny, which can sometimes be incorrect. In contrast,
MixMapper computationally explores all possible phylogenies and determines the topo-
logical relationships that best explain the data. This ability makes it particularly effec-
tive for understanding relationships involving unknown ancestral mixing populations
(e.g., ancient European populations).

2. Fast, interactive, and scalable computation. Following modest setup time of
roughly an hour for a given data set, each admixture fit in MixMapper takes only
seconds. This time scale is fast enough that the investigator can interactively explore
the robustness of inferences to perturbations of the model assumptions, promoting
greater understanding of the statistical significance of reported results. Also, as op-
posed to likelihood-based methods, which can typically only handle a few populations,
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the moment-based approach MixMapper employs can efficiently accommodate dozens
of populations.

We anticipate that MixMapper will be an important addition to the toolkit presently available
for studying the evolutionary genetics of humans and other species.
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Chapter 1

Compression-Accelerated Search

In the past two decades, genomic sequencing capabilities have increased exponentially (Lan-
der et al., 2001; Venter et al., 2001; Kircher and Kelso, 2010), outstripping advances in
computing power (Kahn, 2011; Gross, 2011; Huttenhower and Hofmann, 2010; Schatz et al.,
2010; The 1000 Genomes Project Consortium, 2012). Extracting new insights from the data
sets currently being generated will require not only faster computers, but also smarter al-
gorithms. However, most genomes currently sequenced are highly similar to ones already
collected (Stratton, 2008); thus, the amount of new sequence information is growing much
more slowly.

Here we show that this redundancy can be exploited by compressing sequence data in
such a way as to allow direct computation on the compressed data using methods we term
‘compressive’ algorithms. This approach reduces the task of computing on many similar
genomes to only slightly more than that of operating on just one. Moreover, its relative
advantage over existing algorithms will grow with the accumulation of genomic data. We
demonstrate this approach by implementing compressive versions of both the Basic Local
Alignment Search Tool (BLAST) (Altschul et al., 1990) and the BLAST-Like Alignment Tool
(BLAT) (Kent, 2002), and we emphasize how compressive genomics will enable biologists to
keep pace with current data.1

1.1 A changing environment

Successive generations of sequencing technologies have increased the availability of genomic
data exponentially. In the decade since the publication of the first draft of the human genome
(a 10-year, $400-million effort (Lander et al., 2001; Venter et al., 2001)), technologies (Kircher
and Kelso, 2010) have been developed that can be used to sequence a human genome in 1
week for less than $10,000, and the 1000 Genomes Project is well on its way to building a
library of over 2,500 human genomes (The 1000 Genomes Project Consortium, 2012).

These leaps in sequencing technology promise to enable corresponding advances in biology
and medicine, but this will require more efficient ways to store, access and analyze large
genomic data sets. Indeed, the scientific community is becoming aware of the fundamental

1The material in this chapter previously appeared in the July 2012 issue of Nature Biotechnology as
“Compressive Genomics” by Po-Ru Loh, Michael Baym, and Bonnie Berger (Loh et al., 2012).
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Figure 1.1. Sequencing capabilities vs. computational power from 1996-2010. Sequencing
capabilities are doubling approximately every four months, whereas processing capabilities
are doubling approximately every eighteen. (Data adapted with permission from Kahn
(2011).)

challenges in analyzing such data (Kahn, 2011; Gross, 2011; Huttenhower and Hofmann,
2010; Schatz et al., 2010). Difficulties with large data sets arise in settings in which one
analyzes genomic sequence libraries, including finding sequences similar to a given query
(e.g., from environmental or medical samples) or finding signatures of selection in large sets
of closely related genomes.

Currently, the total amount of available genomic data is increasing approximately ten-
fold every year, a rate much faster than Moore’s Law for computational processing power
(Fig. 1.1). Any computational analysis, such as sequence search, that runs on the full ge-
nomic library—or even a constant fraction thereof—scales at least linearly in time with
respect to the size of the library and therefore effectively grows exponentially slower every
year. If we wish to use the full power of these large genomic data sets, then we must develop
new algorithms that scale sublinearly with data size (that is, those that reduce the effective
size of the data set or do not operate on redundant data).

1.2 Sublinear analysis and compressed data

To achieve sublinear analysis, we must take advantage of redundancy inherent in the data.
Intuitively, given two highly similar genomes, any analysis based on sequence similarity that
is performed on one should have already done much of the work toward the same analysis
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on the other. We note that although efficient algorithms, such as BLAST (Altschul et al.,
1990), have been developed for individual genomes, large genomic libraries have additional
structure: they are highly redundant. For example, as human genomes differ on average by
only 0.1% (Venter et al., 2001), 1,000 human genomes contain less than twice the unique
information of one genome. Thus, although individual genomes are not very compressible
(Grumbach and Tahi, 1994; Chen et al., 2002), collections of related genomes are extremely
compressible (Christley et al., 2009; Brandon et al., 2009; Mäkinen et al., 2010; Kozanitis
et al., 2011).

This redundancy among genomes can be translated into computational acceleration by
storing genomes in a compressed format that respects the structure of similarities and differ-
ences important for analysis. Specifically, these differences are the nucleotide substitutions,
insertions, deletions and rearrangements introduced by evolution. Once such a compressed
library has been created, it can be analyzed in an amount of time proportional to its com-
pressed size, rather than having to reconstruct the full data set every time one wishes to
query it.

Many algorithms exist for the compression of genomic data sets purely to reduce the
space required for storage and transmission (Grumbach and Tahi, 1994; Chen et al., 2002;
Christley et al., 2009; Brandon et al., 2009; Kozanitis et al., 2011; Hsi-Yang Fritz et al., 2011).
Hsi-Yang Fritz et al. (2011) provide a particularly instructive discussion of the concerns
involved. However, existing techniques require decompression before computational analysis.
Thus, although these algorithms enable efficient data storage, they do not mitigate the
computational bottleneck: the original uncompressed data set must be reconstructed before
it can be analyzed.

There have been efforts to accelerate exact search through indexing techniques (Mäkinen
et al., 2010; Deorowicz and Grabowski, 2011). Although algorithms—such as Maq (Li et al.,
2008a), Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009) and Bowtie (Langmead
et al., 2009)—already can map short resequencing reads to a few genomes quite well, com-
pressive techniques will be extremely useful in the case of matching reads of unknown origin
to a large database (say, in a medical or forensic context). Search acceleration becomes
harder when one wishes to perform an inexact search (e.g., BLAST and BLAT) because
compression schemes in general do not allow efficient recovery of the similarity structure of
the data set.

As proof of principle for the underlying idea of compressive genomics, we present model
compressive algorithms that run BLAST and BLAT in time proportional to the size of the
nonredundant data in a genomic library. We chose BLAST for a primary demonstration
because it is widely used and also the principal means by which many other algorithms
query large genomic data sets; thus any improvement to BLAST will immediately improve
various analyses on large genomic data sets. Furthermore, the compressive architecture for
sequence search we introduce here is tied not only to BLAST but also to many algorithms
(particularly those based on sequence similarity).
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1.3 Compressive genomics using BLAST and BLAT

We describe versions of the widely used BLAST and BLAT algorithms that illustrate the
compressive genomics paradigm. BLAST and BLAT search a genomic database to iden-
tify sequences that are similar to a given sequence. Our compressive algorithms have two
phases: (i) compressing the database and (ii) searching the compressed data (Fig. 1.2). The
compression phase can be realized by various schemes. We used an approach based on edit
script compression. The search phase can be implemented using nearly any existing search
algorithm. We show the modularity of our approach by implementing compressive BLAST
and BLAT search algorithms that can operate on the same compressed database.

1.3.1 Database compression

To compress data, we store only the differences between similar sequence fragments, rather
than the complete, highly redundant sequences themselves. We implement this approach
by scanning the nucleotide database and identifying sequence fragments sufficiently similar
to previously seen fragments. Once identified, each fragment is replaced with a link to the
original sequence and a compact list of differences. By default, we consider only fragments
300 base pairs or longer with at least 85% identity to previous fragments (Appendix A). The
initial data-compression phase only needs to be done once, and the compressed database can
be updated incrementally if new data are added. This approach substantially reduces the
storage required for many genomes (Fig. 1.3a).

The exact output of compression is dependent on the order in which the uncompressed
data are examined; however, changing the order in which genomes are added to the library
does not substantially affect the database size, compression speed, search speed or search
accuracy (data not shown). For example, using our compressive BLAST algorithm, accuracy
to hits in the first genome added to the database was perfect, and the accuracy of all
subsequent hits was <1% lower.

1.3.2 Compressive BLAST

For the search phase, we implemented a two-step variant of BLAST. First, the algorithm
uses standard BLAST to search the unique data (that is, data not replaced by links during
compression) with a more permissive hit threshold (E value). Second, the algorithm traces
links to determine potential hit regions in the full database and examines these potential
hits with the original, stricter threshold. The initial ‘coarse’ search runs on the compressed
data without decompression, yielding a run time proportional to the size of the compressed
database. The second ‘fine’ alignment is done by locally decompressing only the potential
hit regions until either a hit is determined or the region can be ruled out.

As the coarse search has a relaxed threshold, searches that hit repeat regions will result
in many more coarse hits and thus burden the full computation. In practice, we mitigate
this issue by masking repeat regions. For the results presented here, we used a coarse E
value threshold of 10−20, and always set the BLAST database size parameter to the size of
the uncompressed database (Appendix A).
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AGCTATACTGATGGCAGTATCGTAGTCG
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1. Coarse BLAST

3. Fine BLAST
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+

Original database
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TCGCTGCGATACTTATGGCAGCGCGCTC
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Preprocessing (similarity search)

A

B

Figure 1.2. The CaBLAST algorithm. (A) Preprocessing: Scan through the genomic
database, eliminating redundancy by identifying regions of high similarity and encoding
them as links to previously seen sequences. The blue sequence fragments in the figure
match perfectly, aside from a few discrepancies (red). Thus, only the first occurrence
appears in the unique database; information about the other two fragments is stored in the
links table. (B) Search: (1) BLAST against unique database with relaxed E-value
threshold; (2) Recover additional candidate hits via links table; (3) BLAST against
candidate hits to select final results. Here, the query (purple) matches the second original
sequence, but most of the second sequence does not appear in the unique database because
of a similar region in the first sequence (blue). The coarse BLAST query thus hits only the
first sequence; the second sequence is recovered as a candidate after checking the links
table.
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Figure 1.3. Results of compressive algorithms on up to 36 yeast genomes. (a) File sizes of
the uncompressed (black), compressed with links and edits (blue), and unique sequence
(red) datasets with default parameters. (b) Runtimes of BLAST (black), Compressive
BLAST (blue), and the coarse search step of Compressive BLAST on the unique data
(red). Error bars are the standard deviation of five runs. Runtimes are on a set of 10,000
simulated queries. , The coarse search time provides a lower bound on search time that
would be achieved for query sets that generate very few hits. (c) Runtimes of BLAT
(black), Compressive BLAT (blue), and the coarse search step on the unique data (red) for
10,000 queries. Error bars are the standard deviation of five runs. BLAST and BLAT are
both run with default parameters. The data displayed represent differences between
searches with 10,000 and 20,000 queries so as to remove the bias introduced by database
construction time in BLAT. The anomalous decrease in runtime with more data at 8
uncompressed genomes or 21 compressed genomes is a repeatable behavior of BLAT with
default parameters.
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Figure 1.4. Performance of Compressive BLAST on databases of four bacterial genera
using a single search set derived from the combined library of bacterial and yeast
sequences. (a) Escherichia; (b) Salmonella; (c) Yersinia; (d) Brucella.

To determine whether compression yields acceleration, we compressed 36 Saccharomyces
sp. genomes (Liti et al., 2009) (Fig. 1.3a), four sets of bacterial genera and twelve Drosophila
sp. fly genomes (Tweedie et al., 2009). We simulated queries by sampling from the data set
and adding mutations, producing a set of queries with many expected hits.

Compressive BLAST analysis of the yeast data set achieved a more than fourfold increase
in speed with respect to a BLAST analysis. As expected, the advantage increased substan-
tially with the number of genomes (Fig. 1.3b). We found a similar increase in speed for the
microbial data sets (Figs. 1.4, 1.5 and 1.6). As our queries had many hits, the majority
of the computation time (≈73% for yeast) was spent on the fine search step, whereas for
queries with few hits, the coarse step alone would be a more accurate predictor of run time.
We expect that much faster fine search times can be achieved with an optimized fine search
algorithm; our implementation simply runs BLAST a second time on potential hit regions.

For the fly species, although we achieved a large increase in search speed for the closely
related D. melanogaster, D. simulans and D. sechellia genomes, the gains diminished as
we included more distant cousins (Table 1.1). In general, the run time of our compressive
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Figure 1.5. Performance of Compressive BLAST on databases of four bacterial genera
using distinct search sets derived from each bacterial genus individually. Results, while still
showing improvement over BLAST, are slower than the test set of Fig. 1.4, representing
the increased time spent in fine search owing to increased hit rates. (a) Escherichia; (b)
Salmonella; (c) Yersinia; (d) Brucella.
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Figure 1.6. Performance of the Compressive BLAST preprocessing phase on simulated
genera. Databases consist of sets of 50 simulated genomes (at 5%, 10%, 15%, and 20%
divergence) generated with INDELible v1.03 (Fletcher and Yang, 2009).
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Species set BLAST Coarse CaBLAST runtime (sec) Total % of Accuracy
runtime E-value Coarse Fine BLAST (%)

(sec) BLAST BLAST runtime
{sim,sec} 97 1e-20 54 3.1 59 99.6
Original size: 304 Mb 1e-15 53 3.6 58 100.0
Unique size: 174 Mb (57.1%) 1e-10 55 8.0 65 100.0
{sim,sec,mel} 147 1e-20 72 4.8 53 98.9
Original size: 473 Mb 1e-15 73 6.4 54 99.7
Unique size: 235 Mb (49.7%) 1e-10 74 13.7 60 99.8
{yak,ere} 96 1e-20 67 2.5 73 99.6
Original size: 318 Mb 1e-15 67 3.2 73 99.8
Unique size: 225 Mb (70.5%) 1e-10 69 8.8 80 99.9
{sim,sec,mel,yak,ere} 243 1e-20 126 6.7 55 98.9
Original size: 792 Mb 1e-15 127 9.0 56 99.6
Unique size: 411 Mb (57.3%) 1e-10 130 20.6 62 99.8

Table 1.1. Detailed preprocessing and search results from CaBLAST runs on four sets of
Drosophila genomes using final E-value 1e-30 and three choices of coarse E-value.
CaBLAST runtime is dominated by the coarse BLAST step, achieving speedup relative to
BLAST almost exactly proportional to the reduction from the original to the unique
database (size ratio in parentheses). Accuracies nearly match those of BLAST; note that
specificity is always 100% by virtue of the algorithm design: hits picked up by the fine
search are by definition true BLAST hits.

technique scales linearly with respect to the size of the nonredundant component of the
library (which we expect to be a diminishing proportion), and linearly in the number of
coarse hits.

1.3.3 Compressive BLAT

To implement a compressive version of the faster BLAT algorithm, we substituted BLAT for
BLAST in the coarse search step and used BLAT’s local alignment algorithm for the fine
search to ensure comparable results. We tested compressive BLAT on the same data as above
using BLAT’s minIdentity parameter for coarse and fine search thresholds (minIdentity
= 80 and 90, respectively).

Our compressive approach achieved acceleration over BLAT comparable to our results
from accelerating BLAST (Figs. 1.3c and 1.7). Although the coarse search step in BLAT
theoretically takes a constant amount of time, in practice the running time of BLAT on
a database of many genomes scales linearly with database size owing to the existence of
many more 10-mer seed matches found during a search. Compression accelerates this step
by allowing BLAT to rule out families of spurious hits only once. The hits produced by
compressive BLAT analysis had an overall 96% accuracy and 97% specificity with respect to
a BLAT analysis. The hits found by one algorithm and not the other were overwhelmingly
of weak similarity. Thus, although it did not produce precisely the same hits as BLAT,
compressive BLAT obtained coverage of true hits similar to the performance of BLAT.
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Figure 1.7. Performance of Compressive BLAT on databases of four bacterial genera
using distinct search sets derived from each bacterial genus individually. Parameters are
the same (default) as in the primary manuscript. (a) Escherichia; (b) Salmonella; (c)
Yersinia; (d) Brucella.
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Figure 1.8. Trade-offs in Compressive BLAST. Data presented are from runs on the
combined microbial data set (yeast genomes and four bacterial genera) with search queries
drawn randomly from the combined library. Except where explicitly parameterized, default
values for the compression threshold (85%) and coarse E-value (10−30) were used. (a)
Speed vs. accuracy as a function of the match identity threshold in database compression.
From left to right, the points represent thresholds of 70-90%, with points every 2%. (b)
Accuracy as a function of coarse and fine E-value thresholds.

1.4 Challenges of compressive algorithms

There are trade-offs to this approach. As more divergent genomes are added to a database,
the computational acceleration resulting from compression decreases, although this is to be
expected, as these data are less mutually informative. Although our compressive BLAST
algorithm achieves over 99% sensitivity without substantial slowdown (Figs. 1.8, 1.9 and
1.10), improvements in sensitivity necessarily involve losses in speed.

There is also a trade-off between achieving optimal data compression and accuracy of
analysis (Fig. 1.9a). This trade-off is fundamental to the problem of compressive algorithms
for biology: in genomic analysis, one is interested in the probability of similar sequences
occurring by chance rather than because of common ancestry, whereas compression ratios
depend only on the absolute sequence similarity. For example, two sequences of 50% identity
for over 1,000 bases are a strong BLAST hit, but admit no useful compression because the
overhead would outweigh the savings. Although these two measures of sequence similarity
are closely related, the difference is at the root of these trade-offs. However, sacrificing some
accuracy of distant matches helps to achieve a dramatic increase in speed from compression.

As computing moves toward distributed and multiprocessor architectures, one must con-
sider the ability of new algorithms to run in parallel. Although we expect that the primary
method of parallelizing compressive genomic search algorithms will be to run queries inde-
pendently, truly massive data sets will require single queries to be executed in parallel as
well. In the algorithms presented here, queries can be parallelized by dividing the compressed
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while search speedup decreases (B).
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Figure 1.10. Analysis of missed BLAST hits. Ten thousand queries were run on the
combined microbial dataset (yeast plus four bacterial genera) at three different coarse
E-values and a fine E-value of 1e-30. The overwhelming majority of misses are at the
margin of significance; in total these represent less than 0.5% of the hits.
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library and link table among computer processors, although the exact gains from doing so
will depend on the topology of the link graph on the uncompressed database.

To the extent that researchers restrict their analyses to small data sets (e.g., what could
be generated in a single laboratory as opposed to a large sequencing center), existing non-
compressive custom pipelines may be sufficiently fast in the short term. However, if one
wishes to extend an analysis to a much larger corpus of sequencing data (perhaps several
terabytes of raw data), noncompressive approaches quickly become computationally imprac-
tical. This is where compressive algorithms are useful for smaller research groups in addition
to large centers.

1.5 Conclusions

Compressive algorithms for genomics have the great advantage of becoming proportionately
faster with the size of the available data. Although the compression schemes for BLAST and
BLAT that we presented yield an increase in computational speed and, more importantly,
in scaling, they are only a first step. Many enhancements of our proof-of-concept imple-
mentations are possible; for example, hierarchical compression structures, which respect the
phylogeny underlying a set of sequences, may yield additional long-term performance gains.
Moreover, analyses of such compressive structures will lead to insights as well. As sequencing
technologies continue to improve, the compressive genomic paradigm will become critical to
fully realizing the potential of large-scale genomics.

Software is available at http://cast.csail.mit.edu/.
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Chapter 2

Admixture Inference Using Linkage
Disequilibrium

Long-range migrations and the resulting admixtures between populations have been impor-
tant forces shaping human genetic diversity. Most existing methods for detecting and recon-
structing historical admixture events are based on allele frequency divergences or patterns of
ancestry segments in chromosomes of admixed individuals. An emerging new approach har-
nesses the exponential decay of admixture-induced linkage disequilibrium (LD) as a function
of genetic distance. Here, we comprehensively develop LD-based inference into a versatile
tool for investigating admixture. We present a new weighted LD statistic that can be used
to infer mixture proportions as well as dates with fewer constraints on reference populations
than previous methods. We define an LD-based three-population test for admixture and
identify scenarios in which it can detect admixture events that previous formal tests cannot.
We further show that we can uncover phylogenetic relationships among populations by com-
paring weighted LD curves obtained using a suite of references. Finally, we describe several
improvements to the computation and fitting of weighted LD curves that greatly increase the
robustness and speed of the calculations. We implement all of these advances in a software
package, ALDER, which we validate in simulations and apply to test for admixture among
all populations from the Human Genome Diversity Project (HGDP), highlighting insights
into the admixture history of Central African Pygmies, Sardinians, and Japanese.1

2.1 Introduction

Admixture between previously diverged populations has been a common feature throughout
the evolution of modern humans and has left significant genetic traces in contemporary pop-
ulations (Li et al., 2008b; Wall et al., 2009; Reich et al., 2009; Green et al., 2010; Gravel et al.,
2011; Pugach et al., 2011; Patterson et al., 2012). Resulting patterns of variation can provide
information about migrations, demographic histories, and natural selection and can also be
a valuable tool for association mapping of disease genes in admixed populations (Patterson

1The material in this chapter previously appeared in the April 2013 issue of Genetics as “Inferring
Admixture Histories of Human Populations Using Linkage Disequilibrium” by Po-Ru Loh, Mark Lipson,
Nick Patterson, Priya Moorjani, Joseph K. Pickrell, David Reich, and Bonnie Berger (Loh et al., 2013).
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et al., 2004).
Recently, a variety of methods have been developed to harness large-scale genotype data

to infer admixture events in the history of sampled populations, as well as to estimate a range
of gene flow parameters, including ages, proportions, and sources. Some of the most popular
approaches, such as STRUCTURE (Pritchard et al., 2000) and principal component analysis
(PCA) (Patterson et al., 2006), use clustering algorithms to identify admixed populations as
intermediates in relation to surrogate ancestral populations. In a somewhat similar vein, local
ancestry inference methods (Tang et al., 2006; Sankararaman et al., 2008; Price et al., 2009;
Lawson et al., 2012) analyze chromosomes of admixed individuals with the goal of recovering
continuous blocks inherited directly from each ancestral population. Because recombination
breaks down ancestry tracts through successive generations, the time of admixture can be
inferred from the tract length distribution (Pool and Nielsen, 2009; Pugach et al., 2011;
Gravel, 2012), with the caveat that accurate local ancestry inference becomes difficult when
tracts are short or the reference populations used are highly diverged from the true mixing
populations.

A third class of methods makes use of allele frequency differentiation among populations
to deduce the presence of admixture and estimate parameters, either with likelihood-based
models (Chikhi et al., 2001; Wang, 2003; Sousa et al., 2009; Wall et al., 2009; Laval et al.,
2010; Gravel et al., 2011) or with phylogenetic trees built by taking moments of the site
frequency spectrum over large sets of SNPs (Reich et al., 2009; Green et al., 2010; Patterson
et al., 2012; Pickrell and Pritchard, 2012; Lipson et al., 2012). For example, f -statistic-
based three- and four-population tests for admixture (Reich et al., 2009; Green et al., 2010;
Patterson et al., 2012) are highly sensitive in the proper parameter regimes and when the
set of sampled populations sufficiently represents the phylogeny. One disadvantage of drift-
based statistics, however, is that because the rate of genetic drift depends on population
size, these methods do not allow for inference of the time that has elapsed since admixture
events.

Finally, Moorjani et al. (2011) recently proposed a fourth approach, using associations
between pairs of loci to make inference about admixture, which we further develop in this
article. In general, linkage disequilibrium (LD) in a population can be generated by se-
lection, genetic drift, or population structure, and it is eroded by recombination. Within
a homogeneous population, steady-state neutral LD is maintained by the balance of drift
and recombination, typically becoming negligible in humans at distances of more than a
few hundred kilobases (Reich et al., 2001; The International HapMap Consortium, 2007).
Even if a population is currently well-mixed, however, it can retain longer-range admixture
LD (ALD) from admixture events in its history involving previously separated populations.
ALD is caused by associations between nearby loci co-inherited on an intact chromosomal
block from one of the ancestral mixing populations (Chakraborty and Weiss, 1988). Re-
combination breaks down these associations, leaving a signature of the time elapsed since
admixture that can be probed by aggregating pairwise LD measurements through an appro-
priate weighting scheme; the resulting weighted LD curve (as a function of genetic distance)
exhibits an exponential decay with rate constant giving the age of admixture (Moorjani et al.,
2011; Patterson et al., 2012). This approach to admixture dating is similar in spirit to strate-
gies based on local ancestry, but LD statistics have the advantage of a simple mathematical
form that facilitates error analysis.
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In this paper, we comprehensively develop LD-based admixture inference, extending the
methodology to several novel applications that constitute a versatile set of tools for investi-
gating admixture. We first propose a cleaner functional form of the underlying weighted LD
statistic and provide a precise mathematical development of its properties. As an immediate
result of this theory, we observe that our new weighted LD statistic can be used to infer mix-
ture proportions as well as dates, extending the results of Pickrell et al. (2012). Moreover,
such inference can still be performed (albeit with reduced power) when data are available
from only the admixed population and one surrogate ancestral population, whereas all pre-
vious techniques require at least two such reference populations. As a second application,
we present an LD-based three-population test for admixture with sensitivity complementary
to the 3-population f -statistic test (Reich et al., 2009; Patterson et al., 2012) and char-
acterize the scenarios in which each is advantageous. We further show that phylogenetic
relationships between true mixing populations and present-day references can be inferred by
comparing weighted LD curves using weights derived from a suite of reference populations.
Finally, we describe several improvements to the computation and fitting of weighted LD
curves: we show how to detect confounding LD from sources other than admixture, improv-
ing the robustness of our methods in the presence of such effects, and we present a novel
fast Fourier transform-based algorithm for weighted LD computation that reduces typical
run times from hours to seconds. We implement all of these advances in a software package,
ALDER (Admixture-induced Linkage Disequilibrium for Evolutionary Relationships).

We demonstrate the performance of ALDER by using it to test for admixture among all
HGDP populations (Li et al., 2008b) and compare its results to those of the 3-population test,
highlighting the sensitivity trade-offs of each approach. We further illustrate our methodol-
ogy with case studies of Central African Pygmies, Sardinians, and Japanese, revealing new
details that add to our understanding of admixture events in the history of each population.

2.2 Methods

2.2.1 Properties of weighted admixture LD

In this section we introduce a weighted LD statistic that uses the decay of LD to detect signals
of admixture given SNP data from an admixed population and reference populations. This
statistic is similar to, but has an important difference from, the weighted LD statistic used in
ROLLOFF (Moorjani et al., 2011; Patterson et al., 2012). The formulation of our statistic is
particularly important in allowing us to use the amplitude (i.e., y-intercept) of the weighted
LD curve to make inferences about history. We begin by deriving quantitative mathematical
properties of this statistic that can be used to infer admixture parameters.

Basic model and notation

We will primarily consider a point-admixture model in which a population C ′ descends from
a mixture of populations A and B to form C, n generations ago, in proportions α + β = 1,
followed by random mating (Figure 2.1). As we discuss later, we can assume for our purposes
that the genetic drift between C and C ′ is negligible, and hence we will simply refer to
the descendant population as C as well; we will state whether we mean the population
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Figure 2.1. Notational diagram of phylogeny containing admixed population and
references. Population C ′ is descended from an admixture between A and B to form C;
populations A′ and B′ are present-day references. In practice, we assume that
post-admixture drift is negligible, i.e., the C–C ′ branch is extremely short and C ′ and C
have identical allele frequencies. The branch points of A′ and B′ from the A–B lineage are
marked A′′ and B′′; note that in a rooted phylogeny, these need not be most recent
common ancestors.

immediately after admixture vs. n generations later when there is any risk of ambiguity. We
are interested in the properties of the LD in population C induced by admixture. Consider
two biallelic, neutrally evolving SNPs x and y, and for each SNP call one allele ‘0’ and the
other ‘1’ (this assignment is arbitrary; ‘0’ and ‘1’ do not need to be oriented with regard to
ancestral state via an outgroup). Denote by pA(x), pB(x), pA(y), and pB(y) the frequencies
of the ‘1’ alleles at x and y in the mixing populations A and B (at the time of admixture),
and let δ(x) := pA(x)− pB(x) and δ(y) := pA(y)− pB(y) be the allele frequency differences.

Let d denote the genetic distance between x and y and assume that x and y were in
linkage equilibrium in populations A and B. Then the LD in population C immediately
after admixture is

D0 = αβδ(x)δ(y),

where D is the standard haploid measure of linkage disequilibrium as the covariance of alleles
at x and y (Chakraborty and Weiss, 1988). After n generations of random mating, the LD
decays to

Dn = e−ndD0 = e−ndαβδ(x)δ(y)

assuming infinite population size (Chakraborty and Weiss, 1988). For a finite population,
the above formula holds in expectation with respect to random drift, with a small adjustment
factor caused by post-admixture drift (Ohta and Kimura, 1971):

E[Dn] = e−nde−n/2Neαβδ(x)δ(y),

where Ne is the effective population size. In most applications the adjustment factor e−n/2Ne

is negligible, so we will omit it in what follows (Moorjani et al., 2013, , Note S1).
In practice, our data consist of unphased diploid genotypes, so we expand our notation

accordingly. Consider sampling a random individual from population C (n generations after
admixture). We use a pair of {0, 1} random variables X1 and X2 to refer to the two alleles
at x and define random variables Y1 and Y2 likewise. Our unphased SNP data represent
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observations of the {0, 1, 2} random variables X := X1 +X2 and Y := Y1 + Y2.

Define z(x, y) to be the covariance

z(x, y) := cov(X, Y ) = cov(X1 +X2, Y1 + Y2), (2.1)

which can be decomposed into a sum of four haplotype covariances:

z(x, y) = cov(X1, Y1) + cov(X2, Y2) + cov(X1, Y2) + cov(X2, Y1). (2.2)

The first two terms measure D for the separate chromosomes, while the third and fourth
terms vanish, since they represent covariances between variables for different chromosomes,
which are independent. Thus, the expectation (again with respect to random drift) of the
total diploid covariance is simply

E[z(x, y)] = 2e−ndαβδ(x)δ(y). (2.3)

Relating weighted LD to admixture parameters

Moorjani et al. (2011) first observed that pairwise LD measurements across a panel of SNPs
can be combined to enable accurate inference of the age of admixture, n. The crux of their
approach was to harness the fact that the ALD between two sites x and y scales as e−nd

multiplied by the product of allele frequency differences δ(x)δ(y) in the mixing populations.
While the allele frequency differences δ(·) are usually not directly computable, they can
often be approximated. Thus, Moorjani et al. (2011) formulated a method, ROLLOFF, that
dates admixture by fitting an exponential decay e−nd to correlation coefficients between LD
measurements and surrogates for δ(x)δ(y). Note that Moorjani et al. (2011) define z(x, y)
as a sample correlation coefficient, analogous to the classical LD measure r, as opposed to
the sample covariance (2.1) we use here; we find the latter more mathematically convenient.

We build upon these previous results by deriving exact formulas for weighted sums of
ALD under a variety of weighting schemes that serve as useful surrogates for δ(x)δ(y) in
practice. These calculations will allow us to interpret the magnitude of weighted ALD to
obtain additional information about admixture parameters. Additionally, the theoretical
development will generally elucidate the behavior of weighted ALD and its applicability in
various phylogenetic scenarios.

Following Moorjani et al. (2011), we partition all pairs of SNPs (x, y) into bins of roughly
constant genetic distance:

S(d) :=
{

(x, y) : d− ε

2
< |x− y| < d+

ε

2

}
,

where ε is a discretization parameter inducing a discretization on d. Given a choice of weights
w(·), one per SNP, we define the weighted LD at distance d as

a(d) :=

∑
S(d) z(x, y)w(x)w(y)

|S(d)|
.

Assume first that our weights are the true allele frequency differences in the mixing
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populations, i.e., w(x) = δ(x) for all x. Applying (2.3),

E[a(d)] = E

[∑
S(d) z(x, y)δ(x)δ(y)

|S(d)|

]

=

∑
S(d) 2αβE[δ(x)2δ(y)2]e−nd

|S(d)|
= 2αβF2(A,B)2e−nd, (2.4)

where F2(A,B) is the expected squared allele frequency difference for a randomly drifting
neutral allele, as defined in Reich et al. (2009) and Patterson et al. (2012). Thus, a(d) has
the form of an exponential decay as a function of d, with time constant n giving the date of
admixture.

In practice, we must compute an empirical estimator of a(d) from a finite number of
sampled genotypes. Say we have a set of m diploid admixed samples from population C
indexed by i = 1, . . . ,m, and denote their genotypes at sites x and y by xi, yi ∈ {0, 1, 2}.
Also assume we have some finite number of reference individuals from A and B with empirical
mean allele frequences p̂A(·) and p̂B(·). Then our estimator is

â(d) :=

∑
S(d)

̂cov(X, Y )(p̂A(x)− p̂B(x))(p̂A(y)− p̂B(y))

|S(d)|
, (2.5)

where

̂cov(X, Y ) =
1

m− 1

m∑
i=1

(xi − x)(yi − y)

is the usual unbiased sample covariance, so the expectation over the choice of samples satisfies
E[â(d)] = a(d) (assuming no background LD, so the ALD in population C is independent
of the drift processes producing the weights).

The weighted sum
∑
S(d) z(x, y)w(x)w(y) is a natural quantity to use for detecting ALD

decay and is common to our weighted LD statistic â(d) and previous formulations of the
ROLLOFF statistic. Indeed, for SNP pairs (x, y) at a fixed distance d, we can think of
equation (2.3) as providing a simple linear regression model between LD measurements
z(x, y) and allele frequency divergence products δ(x)δ(y). In practice, the linear relation is
made noisy by random sampling, as noted above, but the regression coefficient 2αβe−nd can
be inferred by combining measurements from many SNP pairs (x, y). In fact, the weighted
sum

∑
S(d) ẑ(x, y)δ̂(x)δ̂(y) in the numerator of formula (2.5) is precisely the numerator of the

least-squares estimator of the regression coefficient, which is the formulation of ROLLOFF
given in Moorjani et al. (2013, , Note S1). Note that measurements of z(x, y) cannot be
combined directly without a weighting scheme, as the sign of the LD can be either positive
or negative; additionally, the weights tend to preserve signal from ALD while depleting
contributions from other forms of LD.

Up to scaling, our ALDER formulation is roughly equivalent to the regression coeffi-
cient formulation of ROLLOFF (Moorjani et al., 2013, , Note S1). In contrast, the origi-
nal ROLLOFF statistic (Patterson et al., 2012) computed a correlation coefficient between
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z(x, y) and w(x)w(y) over S(d). However, the normalization term
√∑

S(d) z(x, y)2 in the

denominator of the correlation coefficient can exhibit an unwanted d-dependence that biases
the inferred admixture date if the admixed population has undergone a strong bottleneck
(Moorjani et al., 2013, , Note S1) or in the case of recent admixture and large sample sizes.
Beyond correcting the date bias, the â(d) curve that ALDER computes has the advantage
of a simple form for its amplitude in terms of meaningful quantities, providing us additional
leverage on admixture parameters. Additionally, we will show that â(d) can be computed
efficiently via a new fast Fourier transform-based algorithm.

Using weights derived from diverged reference populations

In the above development, we set the weights w(x) to equal the allele frequency differences
δ(x) between the true mixing populations A and B. In practice, in the absence of DNA
samples from past populations, it is impossible to measure historical allele frequencies from
the time of mixture, so instead, we substitute reference populations A′ and B′ that are
accessible, setting w(x) = δ′(x) := pA′(x)−pB′(x). In a given data set, the closest surrogates
A′ and B′ may be somewhat diverged from A and B, so it is important to understand the
consequences for the weighted LD a(d).

We show in Appendix B.1 that with reference populations A′ and B′ in place of A and
B, equation (2.4) for the expected weighted LD curve changes only slightly, becoming

E[a(d)] = 2αβF2(A
′′, B′′)2e−nd, (2.6)

where A′′ and B′′ are the branch points of A′ and B′ on the A–B lineage (Figure 2.1).
Notably, the curve still has the form of an exponential decay with time constant n (the
age of admixture), albeit with its amplitude (and therefore signal-to-noise ratio) attenuated
according to how far A′′ and B′′ are from the true ancestral mixing populations. Drift along
the A′–A′′ and B′–B′′ branches likewise decreases signal-to-noise but in the reverse manner:
higher drift on these branches makes the weighted LD curve noisier but does not change
its expected amplitude (Figure 2.2; see Appendix B.3 for additional discussion). As above,
given a real data set containing finite samples, we compute an estimator â(d) analogous to
formula (2.5) that has the same expectation (over sampling and drift) as the expectation of
a(d) with respect to drift (2.6).

Using the admixed population as one reference

Weighted LD can also be computed with only a single reference population by using the
admixed population as the other reference (Pickrell et al., 2012, , Supplement Sec. 4). As-
suming first that we know the allele frequencies of the ancestral mixing population A and
the admixed population C, the formula for the expected curve becomes

E[a(d)] = 2αβ3F2(A,B)2e−nd. (2.7)

Using C itself as one reference population and R′ as the other reference (which could branch
anywhere between A and B), the formula for the amplitude is slightly more complicated,
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Figure 2.2. Weighted LD curves from four coalescent simulations of admixture scenarios
with varying divergence times and drift between the reference population A′ and the true
mixing population. In each case, gene flow occurred 40 generations ago. In the
low-divergence scenarios, the split point A′′ is immediately prior to gene flow, while in the
high-divergence scenarios, A′′ is halfway up the tree (520 generations ago). The high-drift
scenarios are distinguished from the low-drift scenarios by a 20-fold reduction in population
size for the past 40 generations. Standard errors shown are ALDER’s jackknife estimates of
its own error on a single simulation.
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Figure 2.3. Dependence of single-reference weighted LD amplitude on the reference
population. When taking weights as allele frequency differences between the admixed
population and a single reference population R′, the weighted LD curve a(d) has expected
amplitude proportional to (αF2(A,R

′′)− βF2(B,R
′′))2, where R′′ is the point along the

A–B lineage at which the reference population branches. Note in particular that as R′′

varies from A to B, the amplitude traces out a parabola that starts at 2αβ3F2(A,B)2,
decreases to a minimum value of 0, and increases to 2α3βF2(A,B)2.

but the curve retains the e−nd decay (Figure 2.3):

E[a(d)] = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2e−nd. (2.8)

Derivations of these formulas are given in Appendix B.1.

A subtle but important technical issue arises when computing weighted LD with a single
reference. In this case, the true weighted LD statistic is

a(d) = cov(X, Y )(µx − p(x))(µy − p(y)),

where
µx = αpA(x) + βpB(x) and µy = αpA(y) + βpB(y)

are the mean allele frequencies of the admixed population (ignoring drift) and p(·) denotes
allele frequencies of the reference population. Here a(d) cannot be estimated accurately by
the näıve formula

̂cov(X, Y )(µ̂x − p̂(x))(µ̂y − p̂(y)),
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Figure 2.4. Unbiased polyache estimator for weighted LD using the admixed population
itself as one reference. Mathematica code and output are shown for computing the
polyache statistic that estimates the one-reference weighted LD,
E[(X − µx)(Y − µy)(µx − pA(x))(µy − pA(y))], where pA(·) are allele frequencies of the
single reference population and µx and µy denote allele frequencies of the admixed

population. In the above, S
(k)
0 := m(m− 1) · · · (m− k + 1) and Sr,s :=

∑m
i=1X

r
i Y

s
i , where

m is the number of admixed samples and i ranges over the admixed individuals, which
have allele counts Xi and Yi at sites x and y.

which is the natural analog of (2.5). The difficulty is that the covariance term and the
weights both involve the allele frequencies µx and µy; thus, while the standard estimators
for each term are individually unbiased, their product is a biased estimate of the weighted
LD.

Pickrell et al. (2012) circumvents this problem by partitioning the admixed samples into
two groups, designating one group for use as admixed representatives and the other as a
reference population; this method eliminates bias but reduces statistical power. We instead
compute a polyache statistic (Figure 2.4) that provides an unbiased estimator â(d) of the
weighted LD with maximal power.

Affine term in weighted LD curve from population substructure

Weighted LD curves computed on real populations often exhibit a nonzero horizontal asymp-
tote contrary to the exact exponential decay formulas we have derived above. Such behavior
can be caused by assortative mating resulting in subpopulations structured by ancestry per-
centage in violation of our model. We show in Appendix B.1 that if we instead model the
admixed population as consisting of randomly mating subpopulations with heterogeneous
amounts α—now a random variable—of mixed ancestry, our equations for the curves take
the form

E[a(d)] = Me−nd +K, (2.9)
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whereM is a coefficient representing the contribution of admixture LD andK is an additional
constant produced by substructure. Conveniently, however, the sum M + K/2 satisfies
the same equations that the coefficient of the exponential does in the homogeneous case:
adjusting equation (2.6) for population substructure gives

M +K/2 = 2αβF2(A
′′, B′′)2 (2.10)

for two-reference weighted LD, and in the one-reference case, modifying equation (2.8) gives

M +K/2 = 2αβ(αF2(A,R
′′)− βF2(B,R

′′))2. (2.11)

For brevity, from here on we will take the amplitude of an exponential-plus-affine curve to
mean M +K/2.

2.2.2 Admixture inference using weighted LD

We now describe how the theory we have developed can be used to investigate admixture.
We detail novel techniques that use weighted LD to infer admixture parameters, test for
admixture, and learn about phylogeny.

Inferring admixture dates and fractions using one or two reference populations

As noted above, our ALDER formulation of weighted LD hones the original two-reference
admixture dating technique of ROLLOFF (Moorjani et al., 2011), correcting a possible bias
(Moorjani et al., 2013, , Note S1), and the one-reference technique (Pickrell et al., 2012),
improving statistical power. Pickrell et al. (2012) also observed that weighted LD can be
used to estimate ancestral mixing fractions. We further develop this application now.

The main idea is to treat our expressions for the amplitude of the weighted LD curve
as equations that can be solved for the ancestry fractions α and β = 1 − α. First consider
two-reference weighted LD. Given samples from an admixed population C and reference
populations A′ and B′, we compute the curve â(d) and fit it as an exponential decay plus
affine term: â(d) ≈ M̂e−nd + K̂. Let â0 := M̂ + K̂/2 denote the amplitude of the curve.
Then equation (2.10) gives us a quadratic equation that we can solve to obtain an estimate
α̂ of the mixture fraction α,

2α̂(1− α̂)F2(A
′′, B′′)2 = â0,

assuming we can estimate F2(A
′′, B′′)2. Typically the branch-point populations A′′ and B′′

are unavailable, but their F2 distance can be computed by means of an admixture tree
(Patterson et al., 2012; Pickrell and Pritchard, 2012; Lipson et al., 2012). A caveat of this
approach is that α and 1 − α produce the same amplitude and cannot be distinguished by
this method alone; additionally, the inversion problem is ill-conditioned near α = 0.5, where
the derivative of the quadratic vanishes.

The situation is more complicated when using the admixed population as one reference.
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First, the amplitude relation from equation (2.11) gives a quartic equation in α̂:

2α̂(1− α̂)[α̂F2(A,R
′′)− (1− α̂)F2(B,R

′′)]2 = â0.

Second, the F2 distances involved are in general not possible to calculate by solving allele
frequency moment equations (Patterson et al., 2012; Lipson et al., 2012). In the special case
that one of the true mixing populations is available as a reference, however—i.e., R′ = A—
Pickrell et al. (2012) demonstrated that mixture fractions can be estimated much more
easily. From equation (2.7), the expected amplitude of the curve is 2αβ3F2(A,B)2. On the
other hand, assuming no drift in C since the admixture, allele frequencies in C are given by
weighted averages of allele frequencies in A and B with weights α and β; thus, the squared
allele frequency differences from A to B and C satisfy

F2(A,C) = β2F2(A,B),

and F2(A,C) is estimable directly from the sample data. Combining these relations, we can
obtain our estimate α̂ by solving the equation

2α̂/(1− α̂) = â0/F2(A,C)2. (2.12)

In practice, the true mixing population A is not available for sampling, but a closely-
related population A′ may be. In this case, the value of α̂ given by equation (2.12) with
A′ in place of A is a lower bound on the true mixture fraction α (see Appendix B.1 for
theoretical development and Results for simulations exploring the tightness of the bound).
This bounding technique is the most compelling of the above mixture fraction inference
approaches, as prior methods cannot perform such inference with only one reference popula-
tion. In contrast, when more references are available, moment-based admixture tree-fitting
methods, for example, readily estimate mixture fractions (Patterson et al., 2012; Pickrell
and Pritchard, 2012; Lipson et al., 2012). In such cases we believe that existing methods are
more robust than LD-based inference, which suffers from the degeneracy of solutions noted
above; however, the weighted LD approach can provide confirmation based on a different
genetic mechanism.

Testing for admixture

Thus far, we have taken it as given that the population C of interest is admixed and developed
methods for inferring admixture parameters by fitting weighted LD curves. Now we consider
the question of whether weighted LD can be used to determine whether admixture occurred
in the first place. We develop a weighted LD-based formal test for admixture that is broadly
analogous to the drift-based 3-population test (Reich et al., 2009; Patterson et al., 2012) but
sensitive in different scenarios.

A complication of interpreting weighted LD is that certain demographic events other
than admixture can also produce positive weighted LD that decays with genetic distance,
particularly in the one-reference case. Specifically, if population C has experienced a recent
bottleneck or an extended period of low population size, it may contain long-range LD. Fur-
thermore, this LD typically has some correlation with allele frequencies in C; consequently,
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using C as one reference in the weighting scheme produces a spurious weighted LD signal.
In the two-reference case, LD from reduced population size in C is generally washed

out by the weighting scheme assuming the reference populations A′ and B′ are not too
genetically similar to C. The reason is that the weights δ(·) = pA′(·)− pB′(·) arise from drift
between A′ and B′ that is independent of demographic events producing LD in C (beyond
genetic distances that are so short that the populations share haplotypes descended without
recombination from their common ancestral haplotype). Thus, observing a two-reference
weighted LD decay curve is generally good evidence that population C is admixed. There
is still a caveat, however. If C and one of the references, say A′, share a recent population
bottleneck, then the bottleneck-induced LD in C can be correlated to the allele frequencies
of A′, resulting once again in spurious weighted LD. In fact, the one-reference example
mentioned above is the limiting case A′ = C of this situation.

With these considerations in mind, we propose an LD-based three-population test for
admixture that includes a series of pre-tests safeguarding against the pathological demogra-
phies that can produce a non-admixture weighted LD signal. We outline the test now; details
are in Appendix B.2. Given a population C to test for admixture and references A′ and B′,
the main test is whether the observed weighted LD â(d) using A′–B′ weights is positive and
well-fit by an exponential decay curve. We estimate a jackknife-based p-value by leaving
out each chromosome in turn and re-fitting the weighted LD as an exponential decay; the
jackknife then gives us a standard error on the fitting parameters—namely, the amplitude
and the decay constant—that we use to measure the significance of the observed curve.

The above procedure allows us to determine whether there is sufficient signal in the
weighted LD curve to reject the null hypothesis (under which â(d) is random “colored” noise
in the sense that it contains autocorrelation). However, in order to conclude that the curve
is the result of admixture, we must rule out the possibility that it is being produced by
demography unrelated to admixture. We therefore apply the following pre-test procedure.
First, we determine the distance to which LD in C is significantly correlated with LD in
either A′ or B′; to minimize signal from shared demography, we subsequently ignore data
from SNP pairs at distances smaller than this correlation threshold. Then, we compute
one-reference weighted LD curves for population C with A′–C and B′–C weights and check
that the curves are well-fit as exponential decays. In the case that C is actually admixed
between populations related to A′ and B′, the one-reference A′–C and B′–C curves pick up
the same e−nd admixture LD decay signal. If C is not admixed but has experienced a shared
bottleneck with A′ (producing false-positive admixture signals from the A′–B′ and B′–C
curves), however, the A′–C weighting scheme is unlikely to produce a weighted LD curve,
especially when fitting beyond the LD correlation threshold.

This test procedure is intended to be conservative, so that a population C identified as
admixed can strongly be assumed to be so, whereas if C is not identified as admixed, we are
less confident in claiming that C has experienced no admixture whatsoever. In situations
where distinguishing admixture from other demography is particularly difficult, the test will
err on the side of caution; for example, even if C is admixed, the test may fail to identify
C as admixed if it has also experienced a bottleneck. Also, if a reference A′ shares some
of the same admixture history as C or is simply very closely related to C, the pre-test will
typically identify long-range correlated LD and deem A′ an unsuitable reference to use for
testing admixture. The behavior of the test and pre-test criteria are explored in detail with
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coalescent simulations in Appendix B.3.

Learning about phylogeny

Given a triple of populations (C;A′, B′), our test can identify admixture in the test popu-
lation C, but what does this imply about the relationship of populations A′ and B′ to C?
As with the drift-based 3-population test, test results must be interpreted carefully: even
if C is admixed, this does not necessarily mean that the reference populations A′ and B′

are closely related to the true mixing populations. However, computing weighted LD curves
with a suite of different references can elucidate the phylogeny of the populations involved,
since our amplitude formulas (2.10) and (2.11) provide information about the locations on
the phylogeny at which the references diverge from the true mixing populations.

More precisely, in the notation of Figure 2.1, the amplitude of the two-reference weighted
LD curve is 2αβF2(A

′′, B′′)2, which is maximized when A′′ = A and B′′ = B and is minimized
when A′′ = B′′. So, for example, we can fix A′ and compute curves for a variety of references
B′; the larger the resulting amplitude, the closer the branch point B′′ is to B. In the one-
reference case, as the reference R′ is varied, the amplitude 2αβ(αF2(A,R

′′) − βF2(B,R
′′))2

traces out a parabola that starts at 2αβ3F2(A,B)2 when R′′ = A, decreases to a minimum
value of 0, and increases again to 2α3βF2(A,B)2 when R′′ = B (Figure 2.3). Here, the
procedure is more qualitative because the branches F2(A,R

′′) and F2(B,R
′′) are less directly

useful and the mixture proportions α and β may not be known.

2.2.3 Implementation of ALDER

We now describe some more technical details of the ALDER software package in which we
have implemented our weighted LD methods.

Fast Fourier transform algorithm for computing weighted LD

We developed a novel algorithm that algebraically manipulates the weighted LD statistic into
a form that can be computed using a fast Fourier transform (FFT), dramatically speeding
up the computation (File B.4). The algebraic transformation is made possible by the simple
form (2.5) of our weighted LD statistic along with a genetic distance discretization procedure
that is similar in spirit to ROLLOFF (Moorjani et al., 2011) but subtly different: instead of
binning the contributions of SNP pairs (x, y) by discretizing the genetic distance |x−y| = d,
we discretize the genetic map positions x and y themselves (using a default resolution of 0.05
cM) (Figure 2.5). For two-reference weighted LD, the resulting FFT-based algorithm that
we implemented in ALDER has computational cost that is approximately linear in the data
size; in practice, it ran three orders of magnitude faster than ROLLOFF on typical data sets
we analyzed.

Curve-fitting

We fit discretized weighted LD curves â(d) as M̂e−nd + K̂ from equation (2.9), using least-
squares to find best-fit parameters. This procedure is similar to ROLLOFF, but ALDER
makes two important technical advances that significantly improve the robustness of the
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Figure 2.5. Comparison of binning procedures used by ROLLOFF and ALDER. Instead
of discretizing inter-SNP distances, ALDER discretizes the genetic map before subtracting
SNP coordinates.

fitting. First, ALDER directly estimates the affine term K that arises from the presence
of subpopulations with differing ancestry percentages by using inter-chromosome SNP pairs
that are effectively at infinite genetic distance (Appendix B.1). The algorithmic advances we
implement in ALDER enable efficient computation of the average weighted LD over all pairs
of SNPs on different chromosomes, giving K̂ and, importantly, eliminating one parameter
from the exponential fitting. In practice, we have observed that ROLLOFF fits are sometimes
sensitive to the maximum inter-SNP distance d to which the weighted LD curve is computed
and fit; ALDER eliminates this sensitivity.

Second, because background LD is present in real populations at short genetic distances
and confounds the ALD signal (interfering with parameter estimates or producing spurious
signal entirely), it is important to fit weighted LD curves starting only at a distance beyond
which background LD is negligible. ROLLOFF used a fixed threshold of d > 0.5 cM, but
some populations have longer-range background LD (e.g., from bottlenecks), and moreover,
if a reference population is closely related to the test population, it can produce a spurious
weighted LD signal due to recent shared demography. ALDER therefore estimates the ex-
tent to which the test population shares correlated LD with the reference(s) and only fits
the weighted LD curve beyond this minimum distance as in our test for admixture (Ap-
pendix B.2).

We estimate standard errors on parameter estimates by performing a jackknife over the
autosomes used in the analysis, leaving out each in turn. Note that the weighted LD mea-
surements from individual pairs of SNPs that go into the computed curve â(d) are not inde-
pendent of each other; however, the contributions of different chromosomes can reasonably
be assumed to be independent.
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2.2.4 Data sets

We primarily applied our weighted LD techniques to a data set of 940 individuals in 53
populations from the CEPH-Human Genome Diversity Cell Line Panel (HGDP) (Rosenberg
et al., 2002) genotyped on an Illumina 650K SNP array (Li et al., 2008b). To study the
effect of SNP ascertainment, we also analyzed the same HGDP populations genotyped on
the Affymetrix Human Origins Array (Patterson et al., 2012). For some analyses we also
included HapMap Phase 3 data (The International HapMap Consortium, 2010) merged either
with the Illumina HGDP data set, leaving approximately 600K SNPs, or with the Indian data
set of Reich et al. (2009) including 16 Andaman Islanders (9 Onge and 7 Great Andamanese),
leaving 500K SNPs.

We also constructed simulated admixed chromosomes from 112 CEU and 113 YRI phased
HapMap individuals using the following procedure, described in Moorjani et al. (2011). Given
desired ancestry proportions α and β, the age n of the point admixture, and the number
m of admixed individuals to simulate, we built each admixed chromosome as a composite
of chromosomal segments from the source populations, choosing breakpoints via a Poisson
process with rate constant n, and sampling blocks at random according to the specified
mixture fractions. We stipulated that no individual haplotype could be reused at a given
locus among the m simulated individuals, preventing unnaturally long identical-by-descent
segments but effectively eliminating post-admixture genetic drift. For the short time scales
we study (admixture occurring 200 or fewer generations ago), this approximation has little
impact. We used this method in order to maintain some of the complications inherent in
real data.

2.3 Results

2.3.1 Simulations

First, we demonstrate the accuracy of several forms of inference from ALDER on simulated
data. We generated simulated genomes for mixture fractions of 75% YRI / 25% CEU and
90% YRI / 10% CEU and admixture dates of 10, 20, 50, 100, and 200 generations ago.
For each mixture scenario we simulated 40 admixed individuals according to the procedure
above.

We first investigated the admixture dates estimated by ALDER using a variety of ref-
erence populations drawn from the HGDP with varying levels of divergence from the true
mixing populations. On the African side, we used HGDP Yoruba (21 samples; essentially
the same population as HapMap YRI) and San (5 samples); on the European side, we used
French (28 samples; very close to CEU), Han (34 samples), and Papuan (17 samples). We
computed two-reference weighted LD curves using pairs of references, one from each group,
as well as one-reference curves using the simulated population as one reference and each of
the above HGDP populations as the other.

For the 75% YRI mixture, estimated dates are nearly all accurate to within 10% (Ta-
ble 2.1). The noise levels of the fitted dates (estimated by ALDER using the jackknife) are
the lowest for the Yoruba–French curve, as expected, followed by the one-reference curve
with French, consistent with the admixed population being mostly Yoruba. The situation is
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Table 2.1. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 9±1 20±1 49±2 107±5 195±9
Yoruba Han 9±1 21±1 50±2 107±6 191±12
Yoruba Papuan 9±1 21±1 49±3 118±8 223±23
San French 9±1 20±1 50±2 109±4 197±15
San Han 9±0 21±1 51±3 111±4 194±16
San Papuan 9±1 21±1 51±3 115±6 209±16
Yoruba 9±1 21±1 48±2 107±5 181±17
San 9±1 20±2 56±7 139±22 213±97
French 9±1 20±1 50±2 108±3 194±9
Han 9±0 21±1 52±2 110±6 192±17
Papuan 9±1 21±1 53±3 125±8 217±26

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

similar but noisier for the 90% YRI mixture (Table 2.2); in this case, the one-reference signal
is quite weak with Yoruba and undetectable with San as the reference, due to the scaling of
the amplitude (equation (2.11)) with the cube of the CEU mixture fraction.

We also compared fitted amplitudes of the weighted LD curves for the same scenar-
ios to those predicted by formulas (2.10) and (2.11); the accuracy trends are similar (Ta-
bles 2.3, 2.4).

Finally, we tested formula (2.12) for bounding mixture proportions using one-reference
weighted LD amplitudes. We computed lower bounds on the European ancestry fraction
using French, Russian, Sardinian, and Kalash as successively more diverged references. As
expected, the bounds are tight for the French reference and grow successively weaker (Ta-
bles 2.5, 2.6).

We also tried lower-bounding the African ancestry using one-reference curves with an
African reference. In general, we expect lower bounds computed for the major ancestry
proportion to be much weaker (Appendix B.1), and indeed we find this to be the case,
with the only slightly diverged Mandenka population producing extremely weak bounds. An
added complication is that the Mandenka are an admixed population with a small amount
of West Eurasian ancestry (Price et al., 2009), which is not accounted for in the amplitude
formulas we use here.

Another notable feature of ALDER is that, to a much greater extent than f -statistic
methods, its inference quality improves with more samples from the admixed test population.
As a demonstration of this, we simulated a larger set of 100 admixed individuals as above,
for both 75% YRI / 25% CEU and 90% YRI / 10% CEU scenarios, and compared the
date estimates obtained on subsets of 5–100 of these individuals with two different reference
pairs (Tables 2.7, 2.8). With larger sample sizes, the estimates become almost uniformly
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Table 2.2. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 10±0 21±1 50±2 107±7 193±19
Yoruba Han 10±0 20±1 51±2 109±10 220±32
Yoruba Papuan 10±0 22±1 53±3 111±11 233±65
San French 10±0 21±1 51±2 112±6 223±19
San Han 10±0 21±1 52±3 121±5 254±40
San Papuan 11±0 23±1 53±3 126±8 287±56
Yoruba 9±1 20±2 55±7 100±27 363±183
San 98±87 56±28 94±69 2±0 9±5
French 10±0 21±1 51±2 107±5 217±13
Han 11±0 21±1 52±2 111±7 234±25
Papuan 11±0 23±1 56±3 117±8 256±47

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.3. Amplitudes of weighted LD curves (multiplied by 106) for simulated 75% YRI
/ 25% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 1173 1139±20 1203±40 1188±54 1283±100 1202±88
Yoruba Han 693 678±17 717±28 711±43 774±73 716±74
Yoruba Papuan 602 598±13 631±23 595±34 775±96 835±152
San French 1017 981±23 1028±34 1044±49 1128±70 1037±130
San Han 574 556±18 590±24 604±42 667±39 626±65
San Papuan 491 487±17 514±20 503±34 589±45 574±60
Yoruba 75 77±2 81±4 74±4 83±6 71±13
San 40 40±3 42±3 50±6 66±13 43±34
French 655 626±12 660±21 666±31 721±42 656±49
Han 312 304±10 324±14 332±23 364±25 332±36
Papuan 252 256±9 273±13 267±17 331±34 314±55

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference.
Expected amplitudes were computed according to formulas (2.10) and (2.11). Note that
standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

48



Table 2.4. Amplitudes of weighted LD curves (multiplied by 106) for simulated 90% YRI
/ 10% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 563 587±27 579±26 550±25 600±43 562±96
Yoruba Han 333 353±20 336±15 339±17 381±49 456±128
Yoruba Papuan 289 307±19 303±16 309±18 343±54 426±248
San French 488 522±25 512±22 488±25 519±28 625±89
San Han 276 305±18 291±12 289±16 338±23 464±132
San Papuan 236 266±18 262±13 254±12 306±38 486±186
Yoruba 6 6±1 6±1 7±1 7±3 44±89
San 1 16±15 8±3 10±7 -0±0 -1±1
French 454 473±19 471±18 450±19 481±19 566±55
Han 250 268±13 261±10 264±11 288±23 369±68
Papuan 212 231±14 233±13 243±11 276±35 366±125

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various references. Rows in which only one
reference is listed indicate runs using the admixed population itself as one reference.
Expected amplitudes were computed according to formulas (2.10) and (2.11). Note that
standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.5. Mixture fraction lower bounds on simulated 75% YRI / 25% CEU mixtures.

Ref 10 20 50 100 200

French 24.6±0.3 25.7±0.5 25.7±0.7 27.0±1.0 25.2±1.3
Russian 23.8±0.3 24.9±0.5 24.8±0.7 25.6±0.8 25.3±1.0
Sardinian 21.3±0.3 21.9±0.5 22.0±0.6 23.6±0.9 22.3±1.1
Kalash 14.7±0.2 15.5±0.4 15.5±0.5 16.4±0.6 15.6±0.9
Yoruba 73.6±0.7 74.8±0.4 74.0±0.6 76.2±1.3 73.8±3.4
Mandenka 50.5±0.6 51.2±1.0 50.4±1.4 54.9±2.0 60.8±5.6

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various single references. The first four rows
are European surrogates and give lower bounds on the amount of CEU ancestry (25%); the
last two are African surrogates and give lower bounds on the amount of YRI ancestry
(75%). Note that standard errors shown are ALDER’s jackknife estimates of its own error
on a single simulation (not standard errors from averaging over multiple simulations).
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Table 2.6. Mixture fraction lower bounds on simulated 90% YRI / 10% CEU mixtures.

Ref 10 20 50 100 200

French 10.5±0.4 10.5±0.3 9.9±0.3 10.6±0.4 12.3±1.0
Russian 10.2±0.3 10.0±0.3 9.7±0.3 10.3±0.5 11.8±0.9
Sardinian 9.3±0.3 9.2±0.3 8.7±0.3 9.5±0.4 10.3±1.2
Kalash 7.2±0.3 7.0±0.3 6.8±0.2 7.4±0.4 8.9±0.8
Yoruba 89.1±1.0 89.1±1.1 90.1±1.5 89.4±3.7 98.5±2.0
Mandenka 18.2±2.3 17.3±2.5 19.5±4.8 63.1±25.5 30.7±220.4

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using various single references. The first four rows
are European surrogates and give lower bounds on the amount of CEU ancestry (10%); the
last two are African surrogates and give lower bounds on the amount of YRI ancestry
(90%). Note that standard errors shown are ALDER’s jackknife estimates of its own error
on a single simulation (not standard errors from averaging over multiple simulations).

more accurate, with smaller standard errors. By contrast, we observed that while using a
very small sample size (say 5) for the reference populations does create noticeable noise,
using 20 samples already gives allele frequency estimates accurate enough that adding more
reference samples has only minimal effects on the performance of ALDER. This is similar to
the phenomenon that the precision of f -statistics does not improve appreciably with more
than a moderate number of samples and is due to the inherent variability in genetic drift
among different loci.

2.3.2 Robustness

A challenge of weighted LD analysis is that owing to various kinds of model violation, the
parameters of the exponential fit of an observed curve â(d) may depend on the starting
distance d0 from which the curve is fit. We therefore explored the robustness of the fitting
parameters to the choice of d0 in a few scenarios (Figure 2.6). First, in a simulated 75% /
25% YRI–CEU admixture 50 generations ago, we find that the decay constant and amplitude
are both highly robust to varying d0 from 0.5 to 2.0 cM (Figure 2.6, top). This result is not
surprising because our simulated example represents a true point admixture with minimal
background LD in the admixed population.

In practice, we expect some dependence on d0 due to background LD or longer-term
admixture (either continuously over a stretch of time or in multiple waves). Both of these
will tend to increase the weighted LD for smaller values of d relative to an exact exponential
curve, so that estimates of the decay constant and amplitude will decrease as we increase
the fitting start point d0; the extent to which this effect occurs will depend on the extent of
the model violation. We studied the d0-dependence for two example admixed populations,
HGDP Uygur and HapMap Maasai (MKK). For Uygur, the estimated decay constants and
amplitudes are fairly robust to the start point of the fitting, varying roughly by ±10%
(Figure 2.6, middle). In contrast, the estimates for Maasai vary dramatically, decreasing by
more than a factor of 2 as d0 is increased from 0.5 to 2.0 cM (Figure 2.6, bottom). This
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Table 2.7. Dates of admixture estimated for simulated 75% YRI / 25% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 12±2 18±2 55±3 103±7 258±24
10 10±1 19±2 50±2 105±7 236±24
20 10±1 20±1 52±2 104±5 223±16
50 9±0 20±1 52±1 96±2 186±10
100 10±0 20±0 52±1 101±2 210±9

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 12±2 18±2 58±5 107±11 283±73
10 10±1 19±2 54±3 114±8 219±64
20 10±1 21±1 55±2 115±6 219±46
50 9±0 21±1 54±1 107±5 213±20
100 9±0 21±1 53±1 105±5 216±13

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using varying numbers of admixed samples. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).

Table 2.8. Dates of admixture estimated for simulated 90% YRI / 10% CEU mixtures.

Yoruba–French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 11±2 21±2 52±6 101±17 253±42
10 11±1 19±1 48±4 94±8 241±46
20 11±1 21±1 48±3 102±8 209±30
50 11±0 21±1 48±2 98±5 202±21
100 10±0 20±1 50±1 99±4 185±15

San–Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen
5 14±2 22±3 63±8 110±30 335±91
10 12±1 20±2 54±4 110±15 265±55
20 12±1 21±1 52±4 131±15 234±33
50 11±0 20±1 53±4 122±8 221±23
100 11±0 20±0 53±3 109±5 219±10

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generations ago
and show results from runs of ALDER using varying numbers of admixed samples. Note
that standard errors shown are ALDER’s jackknife estimates of its own error on a single
simulation (not standard errors from averaging over multiple simulations).
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Figure 2.6. Dependence of date estimates and weighted LD amplitudes on fitting start
point. Rows correspond to three test scenarios: Simulated 75% YRI / 25% CEU mixture
50 generations ago with Yoruba–French weights (top); Uygur with Han–French weights
(middle); HapMap Maasai with Yoruba–French weights (bottom). The left panel of each
row shows the weighted LD curve â(d) (blue) with best-fit exponential decay curve (red),
fit starting from d0 = 0.5 cM. Remaining panels show the date estimate (middle) and
amplitude (right) as a function of d0. (We note that our date estimates for Uygur are
somewhat more recent than those in Patterson et al. (2012), most likely because of our
direct estimate of the affine term in the weighted LD curve.)
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Table 2.9. Effect of SNP ascertainment on date estimates.

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 47±12 51±13 56±10 41±10
Uygur French Han 15±2 14±2 13±2 16±2
Hazara French Han 22±2 22±3 23±2 22±3
Melanesian Dai Papuan 93±24 62±15 76±13 70±18
Bedouin French Yoruba 27±3 23±3 23±3 24±3
MbutiPygmy San Yoruba 33±12 33±6 41±14 30±8
BiakaPygmy San Yoruba 39±6 50±14 35±6 36±7

We compared dates of admixture estimated by ALDER on a variety of test triples from the
HGDP using SNPs ascertained as heterozygous in full genome sequences of one French,
Han, San, and Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins
Array (Patterson et al., 2012)). Standard errors are from a jackknife over the 22 autosomes.

behavior is likely due to multiple-wave admixture in the genetic history of the Maasai; indeed,
it is visually evident that the weighted LD curve for Maasai deviates from an exponential
fit (Figure 2.6) and is in fact better-fit as a sum of exponentials. (See Figure 2.7 and
Appendix B.3 for further simulations exploring continuous admixture.)

It is also important to consider the possibility of SNP ascertainment bias, as in any study
based on allele frequencies. We believe that for weighted LD, ascertainment bias could have
modest effects on the amplitude, which depends on F2 distances (Patterson et al., 2012;
Lipson et al., 2012), but will not affect the estimated date. Running ALDER on a suite of
admixed populations in the HGDP under a variety of ascertainment schemes suggests that
admixture date estimates are indeed quite stable to ascertainment (Table 2.9). Meanwhile,
the amplitudes of the LD curves can scale substantially when computed under different SNP
ascertainments, but their relative values are only different for extreme cases of African vs.
non-African test populations under African vs. non-African ascertainment (Table 2.10; cf.
Table 2 of Patterson et al. (2012)).

2.3.3 Admixture test results for HGDP populations

To compare the sensitivity of our LD-based test for admixture to the f -statistic-based 3-
population test, we ran both ALDER and the 3-population test on all triples of populations
in the HGDP. Interestingly, while the tests concur on the majority of the populations they
identify as admixed, each also identifies several populations as admixed that the other does
not (Table 2.11), showing that the tests have differing sensitivity to different admixture
scenarios.

Admixture identified only by ALDER

The 3-population test loses sensitivity primarily as a result of drift since splitting from the
references’ lineages. More precisely, using the notation of Figure 2.1, the 3-population test
statistic f3(C;A′, B′) estimates the sum of two directly competing terms: −αβF2(A

′′, B′′),
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Figure 2.7. Weighted LD curve parameters from coalescent simulations of continuous
admixture. In each simulation the mixed population receives 40% of its ancestry through
continuous gene flow over a period of 0–200 generations ending 40 generations ago. Panels
(A) and (B) show the admixture dates and weighted LD amplitudes computed by ALDER
for each of 11 simulations (varying the duration of mixture from 0 to 200 in increments of
20). Panels (C) and (D) show the curves and exponential fits for mixture durations at the
two extremes. Standard errors shown are ALDER’s jackknife estimates of its own error on
a single simulation.
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Table 2.10. Effect of SNP ascertainment on weighted LD curve amplitudes (multiplied by
106).

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 180±44 171±53 61±11 65±15
Uygur French Han 360±28 304±29 102±7 161±19
Hazara French Han 442±31 436±48 146±10 203±21
Melanesian Dai Papuan 868±277 559±150 207±51 312±91
Bedouin French Yoruba 227±32 196±25 104±11 146±13
MbutiPygmy San Yoruba 64±23 78±14 83±26 82±18
BiakaPygmy San Yoruba 104±19 133±46 90±15 103±22

We compared amplitudes of weighted LD curves fitted on a variety of test triples from the
HGDP using SNPs ascertained as heterozygous in full genome sequences of one French,
Han, San, and Yoruba individual (Panels 1, 2, 4, and 5 of the Affymetrix Human Origins
Array (Patterson et al., 2012)). Standard errors are from a jackknife over the 22 autosomes.

the negative quantity arising from admixture that we wish to detect, and α2F2(A
′′, A) +

β2F2(B
′′, B) + F2(C,C

′), a positive quantity from the “off-tree” drift branches. If the latter
term dominates, the 3-population test will fail to detect admixture regardless of the statistical
power available. For example, Melanesians are only found to be admixed according to the
ALDER test; the inability of the 3-population test to identify them as admixed is likely due
to long off-tree drift from the Papuan branch prior to admixture. The situation is similar
for the Pygmies, for whom we do not have two close references available.

Small mixture fractions also diminish the size of the admixture term−αβF2(A,B) relative
to the off-tree drift, and we believe this effect along with post-admixture drift may be the
reason Sardinians are detected as admixed only by ALDER. In the case of the San, who
have a small amount of Bantu admixture (Pickrell et al., 2012), the small mixture fraction
may again play a role, along with the lack of a reference population closely related to the
pre-admixture San, meaning that using existing populations incurs long off-tree drift.

Admixture identified only by the 3-population test

There are also multiple reasons why the 3-population test can identify admixture when
ALDER does not. For the HGDP European populations in this category (Table 2.11), the
3-population test is picking up a signal of admixture identified by Patterson et al. (2012)
and interpreted there as a large-scale admixture event in Europe involving Neolithic farmers
closely related to present-day Sardinians and an ancient northern Eurasian population. This
mixture likely began quite anciently (e.g. 7,000-9,000 years ago when agriculture arrived
in Europe (Bramanti et al., 2009; Soares et al., 2010; Pinhasi et al., 2012)), and because
admixture LD breaks down as e−nd, where n is the age of admixture, there is nearly no
LD left for ALDER to harness beyond the correlation threshold d0. An additional factor
that may inhibit LD-based testing is that in order to prevent false-positive identifications
of admixture, ALDER typically eliminates reference populations that share LD (and in
particular, admixture history) with the test population, whereas the 3-population test can
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Table 2.11. Results of ALDER and 3-population tests for admixture on HGDP
populations.

Both #LD #f3 Only LD # Only f3 # Neither
Adygei 205 139 BiakaPygmy 81 French 99 Basque
Balochi 123 204 Colombian 5 Han 13 Dai
BantuKenya 30 182 Druze 128 Italian 46 Hezhen
BantuSouthAfrica 27 11 Japanese 1 Orcadian 1 Karitiana
Bedouin 300 63 Kalash 20 Tujia 8 Lahu
Brahui 363 16 MbutiPygmy 77 Tuscan 59 Mandenka
Burusho 450 377 Melanesian 96 Miao
Cambodian 266 158 Pima 489 Naxi
Daur 29 8 San 155 Papuan
Han-NChina 1 77 Sardinian 45 She
Hazara 699 593 Yakut 435 Surui
Makrani 173 163 Yi
Maya 784 124 Yoruba
Mongola 76 385
Mozabite 313 107
Oroqen 68 5
Palestinian 308 64
Pathan 113 348
Russian 158 153
Sindhi 264 366
Tu 22 315
Uygur 428 616
Xibo 101 335

We ran both ALDER and the 3-population test for admixture on each of the 53 HGDP
populations using all pairs of other populations as references. We group the populations
according to whether or not each test methodology produced at least one test identifying
them as admixed; for each population, we list the number of reference pairs with which
with each method (abbreviated “LD” and “f3”) detected admixture. We used a
significance threshold of p < 0.05 after multiple-hypothesis correction.
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use such references.
To summarize, the ALDER and 3-population tests both analyze a test population for

admixture using two references, but they detect signal based on different “genetic clocks.”
The 3-population test uses signal from genetic drift, which can detect quite old admixture
but must overcome a counteracting contribution from post-admixture and off-tree drift. The
LD-based test uses recombination, which is relatively unaffected by small population size-
induced long drift and has no directly competing effect, but has limited power to detect
chronologically old admixtures because of the rapid decay of the LD curve. Additionally, as
discussed above in the context of simulation results, the LD-based test may be better suited
for large data sets, since its power is enhanced more by the availability of many samples.
The tests are thus complementary and both valuable. (See Figure 2.8 and Appendix B.3 for
further exploration.)

2.3.4 Case studies

We now present detailed results for several human populations, all of which ALDER identifies
as admixed but are not found by the 3-population test (Table 2.11). We infer dates of
admixture and in some cases gain additional historical insights.

Pygmies

Both Central African Pygmy populations in the HGDP, the Mbuti and Biaka, show evidence
of admixture (Table 2.11), about 28 ± 4 generations (800 years) ago for Mbuti and 38 ±
4 generations (1100 years) ago for Biaka, estimated using San and Yoruba as reference
populations (Figure 2.9A,C). The intra-population heterogeneity is low, as demonstrated
by the negligible affine terms. In each case, we also generated weighted LD curves with
the Pygmy population itself as one reference and a variety of second references. We found
that using French, Han, or Yoruba as the second reference gave very similar amplitudes,
but the amplitude was significantly smaller with the other Pygmy population or San as the
second reference (Figure 2.9B,D). Using the amplitudes with Yoruba, we estimated mixture
fractions of at least 15.9± 0.9% and 28.8± 1.4% Yoruba-related ancestry (lower bounds) for
Mbuti and Biaka, respectively.

The phylogenetic interpretation of the relative amplitudes is complicated by the fact that
the Pygmy populations, used as references, are themselves admixed, but a plausible coherent
explanation is as follows (see Figure 2.9E). We surmise that a proportion β (bounds given
above) of Bantu-related gene flow reached the native Pygmy populations on the order of 1000
years ago. The common ancestors of Yoruba or non-Africans with the Bantu population are
genetically not very different from Bantu, due to high historical population sizes (branching
at positions X1 and X2 in Figure 2.9E). Thus, the weighted LD amplitudes using Yoruba or
non-Africans as second references are nearly 2α3βF2(A,B)2, where B denotes the admixing
Bantu population. Meanwhile, San and Western (resp. Eastern) Pygmies split from the
Bantu-Mbuti (resp. Biaka) branch toward the middle or the opposite side from Bantu (X3

and X4), giving a smaller amplitude (Figure 2.3).
Our results are in agreement with previous studies that have found evidence of gene

flow from agriculturalists to Pygmies (Quintana-Murci et al., 2008; Verdu et al., 2009; Patin
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Figure 2.8. Coalescent simulations comparing the sensitivities of the 3-population
moment-based test for admixture (f3) and the LD-based test implemented in ALDER. We
varied three parameters: the age of the branch point A′′, the date n of gene flow, and the
fraction α of A ancestry.
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Figure 2.9. Weighted LD curves for Mbuti using San and Yoruba as reference populations
(A) and using Mbuti itself as one reference and several different second references (B), and
analogous curves for Biaka (C, D). Genetic distances are discretized into bins at 0.05 cM
resolution. Data for each curve are plotted and fit starting from the corresponding
ALDER-computed LD correlation thresholds. Different amplitudes of one-reference curves
(B, D) imply different phylogenetic positions of the references relative to the true mixing
populations (i.e., different split points X ′′i ), suggesting a sketch of a putative admixture
graph (E). Relative branch lengths are qualitative, and the true root is not necessarily as
depicted.
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Table 2.12. Amplitudes and dates from weighted LD curves for Sardinian using various
reference pairs.

Ref 1 Ref 2 Weighted LD amplitude Date estimate

CEU YRI 0.00003192 ± 0.00000903 48 ± 10
CHB YRI 0.00001738 ± 0.00000679 34 ± 8
CEU CHB 0.00000873 ± 0.00000454 52 ± 21

Data are shown from ALDER fits to weighted LD curves computed using Sardinian as the
test population and pairs of HapMap CEU, YRI, and CHB as the references. Date
estimates are in generations. We omitted chromosome 8 from the analysis because of
anomalous long-range LD. Curves â(d) were fit for d > 1.2 cM, the extent of LD correlation
between Sardinian and CEU computed by ALDER.

et al., 2009; Jarvis et al., 2012). Quintana-Murci et al. (2008) suggested based on mtDNA
evidence in Mbuti that gene flow ceased several thousand years ago, but more recently, Jarvis
et al. (2012) found evidence of admixture in Western Pygmies, with a local-ancestry-inferred
block length distribution of 3.1 ± 4.6 Mb (mean and standard deviation), consistent with
our estimated dates.

Sardinians

We detect a very small proportion of Sub-Saharan African ancestry in Sardinians, which
our ALDER tests identified as admixed (Table 2.11; Figure 2.10A). To investigate further,
we computed weighted LD curves with Sardinian as the test population and all pairs of
the HapMap CEU, YRI and CHB populations as references (Table 2.12). We observed an
abnormally large amount of shared long-range LD in chromosome 8, likely do to an extended
inversion segregating in Europeans (Price et al., 2008), so we omitted it from these analyses.
The CEU–YRI curve has the largest amplitude, suggesting both that the LD present is due
to admixture and that the small non-European ancestry component, for which we estimated
a lower bound of 0.6± 0.2%, is from Africa. (For this computation we used single-reference
weighted LD with YRI as the reference, fitting the curve after 1.2 cM to reduce confounding
effects from correlated LD that ALDER detected between Sardinian and CEU. Changing the
starting point of the fit does not qualitatively affect the results.) The existence of a weighted
LD decay curve with CHB and YRI as references provides further evidence that the LD
is not simply due to a population bottleneck or other non-admixture sources, as does the
fact that our estimated dates from all three reference pairs are roughly consistent at about
40 generations (1200 years) ago. Our findings thus confirm the signal of African ancestry
in Sardinians reported in Moorjani et al. (2011). The date, small mixture proportion, and
geography are consistent with a small influx of migrants from North Africa, who themselves
traced only a fraction of their ancestry ultimately to Sub-Saharan Africa, consistent with
the findings of Dupanloup et al. (2004).
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Figure 2.10. Weighted LD curves for HGDP Sardinian using Italian–Yoruba weights (A)
and HapMap Japanese (JPT) using JPT itself as one reference and HapMap Han Chinese
(CHB) as the second reference (B). The exponential fits are performed starting at 1 cM
and 1.2 cM, respectively, as selected by ALDER based on detected correlated LD.
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Japanese

Genetic studies have suggested that present-day Japanese are descended from admixture
between two waves of settlers, responsible for the Jomon and Yayoi cultures (Hammer and
Horai, 1995; Hammer et al., 2006; Rasteiro and Chikhi, 2009). We also observed evidence of
admixture in Japanese, and while our ability to learn about the history was limited by the
absence of a close surrogate for the original Paleolithic mixing population, we were able to
take advantage of the one-reference inference capabilities of ALDER. More precisely, among
our tests using all pairs of HGDP populations as references (Table 2.11), one reference pair,
Basque and Yakut, produced a passing test for Japanese. However, as we have noted, the
reference populations need not be closely related to the true mixing populations, and we
believe that in this case this seemingly odd reference pair arises as the only passing test
because the data set lacks a close surrogate for Jomon.

In the absence of a reference on the Jomon side, we computed single-reference weighted
LD using HapMap JPT as the test population and JPT–CHB weights, which confer the ad-
vantage of larger sample sizes (Figure 2.10B). The weighted LD curve displays a clear decay,
yielding an estimate of 45 ± 6 generations, or about 1,300 years, as the age of admixture.
To our knowledge, this is the first time genome-wide data have been used to date admixture
in Japanese. As with previous estimates based on coalescence of Y-chromosome haplotypes
(Hammer et al., 2006), our date is consistent with the archaeologically attested arrival of the
Yayoi in Japan roughly 2300 years ago (we suspect that our estimate is from later than the
initial arrival because admixture may not have happened immediately or may have taken
place over an extended period of time). Based on the amplitude of the curve, we also obtain
a (likely very conservative) genome-wide lower bound of 41 ± 3% “Yayoi” ancestry using
formula (2.12) (under the reasonable assumption that Han Chinese are fairly similar to the
Yayoi population). It is important to note that the observation of a single-reference weighted
LD curve is not sufficient evidence to prove that a population is admixed, but the existence
of a pair of references with which the ALDER test identified Japanese as admixed, combined
with previous work and the lack of any signal of reduced population size, makes us confident
that our inferences are based on true historical admixture.

Onge

Lastly, we provide a cautionary example of weighted LD decay curves arising from demogra-
phy and not admixture. We observed distinct weighted LD curves when analyzing the Onge,
an indigenous population of the Andaman Islands. However, this curve is only present when
using Onge themselves as one reference; moreover, the amplitude is independent of whether
CEU, CHB, YRI, GIH (HapMap Gujarati), or Great Andamanese is used as the second
reference (Figure 2.11), as expected if the weighted LD is due to correlation between LD
and allele frequencies in the test population alone (and independent of the reference allele
frequencies). Correspondingly, ALDER’s LD-based test does not identify Onge as admixed
using any pair of these references. Thus, while we cannot definitively rule out admixture,
the evidence points toward internal demography (low population size) as the cause of the
elevated LD, consistent with the current census of fewer than 100 Onge individuals.
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Figure 2.11. Weighted LD curves for Onge using Onge itself as one reference and several
different second references.

2.4 Discussion

2.4.1 Strengths of weighted LD for admixture inference

The statistics underlying weighted LD are quite simple, making the formula for the expec-
tation of â(d), as well as the noise and other errors from our inference procedure, relatively
easy to understand. By contrast, local ancestry-based admixture dating methods (e.g., Pool
and Nielsen (2009) and Gravel (2012)) are sensitive to imperfect ancestry inference, and
it is difficult to trace the error propagation to understand the ultimate effect on inferred
admixture parameters. Similarly, the wavelet method of Pugach et al. (2011) uses reference
populations to perform (fuzzy) ancestry assignment in windows, for which error analysis is
challenging.

Another strength of our weighted LD methodology is that it has relatively low require-
ments on the quality and quantity of reference populations. Our theory tells us exactly how
the statistic behaves for any reference populations, no matter how diverged they are from
the true ancestral mixing populations. In contrast, the accuracy of results from clustering
and local ancestry methods is dependent on the quality of the reference populations used in
ways that are difficult to characterize. On the quantity side, previous approaches to admix-
ture inference require a surrogate for each ancestral population, whereas as long as one is
confident that the signal is truly from admixture, weighted LD can be used with only one
available reference to infer times of admixture (as in our analysis of the Japanese) and bound
mixing fractions (as in our Pygmy case study and Pickrell et al. (2012)), problems that were
previously intractable.

Weighted LD also advances our ability to test for admixture. As discussed above, ALDER
offers complementary sensitivity to the 3-population test and allows the identification of
additional populations as admixed. Another formal test for admixture is the 4-population
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test (Reich et al., 2009; Patterson et al., 2012), which is quite sensitive but also has trade-
offs; for example, it requires three distinctly branching references, whereas ALDER and the
3-population test only need two. Additionally, the phylogeny of the populations involved
must be well understood in order to interpret a signal of admixture from the 4-population
test properly (i.e., to determine which population is admixed). Using weighted LD, on the
other hand, largely eliminates the problem of determining the destination or direction of
gene flow, since the LD signal of admixture is intrinsic to a specified test population.

2.4.2 One-reference versus two-reference curves

In practice, it is often useful to compute weighted LD curves using both the one-reference
and two-reference techniques, as both can be used for inferences in different situations. Gen-
erally, we consider two-reference curves to be more reliable for parameter estimation, since
using the test population as one reference is more prone to introduce unwanted signals, such
as recent admixture from a different source, non-admixture LD from reduced population
size, or population structure among samples. In particular, populations with more compli-
cated histories and additional sources of LD beyond the specifications of our model will often
have different estimates of admixture dates with one- and two-reference curves. There is a
small chance that date disagreement can reflect a false-positive admixture signal, but this is
very unlikely if both one- and two-reference curves exist beyond the correlated LD threshold
(see Appendix B.2). Two-reference curves also allow for direct estimation of mixture frac-
tions, although, as discussed above, we prefer instead to use the method of single-reference
bounding.

There are a number of practical considerations that make the one-reference capabilities
of ALDER desirable. Foremost is the possibility that one may not have a good surrogate
available for one of the ancestral mixing populations, as in our Japanese example. Also, while
our method of learning about phylogenetic relationships is best suited to two-reference curves
because of the simpler form of the amplitude in terms of branch lengths, it is often useful
to begin by computing a suite of single-reference curves, both because the data generated
will scale linearly with the number of references available and because observing a range
of different amplitudes gives an immediate signal of the presence of admixture in the test
population.

Overall, then, a sample sequence for applying ALDER to a new data set might be as
follows: (1) test all populations for admixture using all pairs of references from among
the other populations; (2) explore admixed populations of interest by comparing single-
reference weighted LD curves; (3) learn more detail by analyzing selected two-reference
curves alongside the one-reference ones; (4) estimate parameters using one- or two-reference
curves as applicable. Of course, step (1) itself involves the complementary usefulness of both
one- and two-reference weighted LD, since our test for admixture requires the presence of
exponential decay signals in both types of curves.

2.4.3 Effect of multiple-wave or continuous admixture

As discussed in our section on robustness of results, in the course of our data analysis,
we observed that the weighted LD date estimate almost always becomes more recent when

64



the exponential decay curve is fit for a higher starting distance d0. Most likely, this is
because admixtures in human populations have taken place over multiple generations, such
that our estimated times represent intermediate dates during the process. To whatever
extent an admixture event is more complicated than posited in our point-admixture model,
removing low-d bins will lead the fitting to capture proportionately more of the more recent
admixture. By default, ALDER sets d0 to be the smallest distance such that non-admixture
LD signals can be confidently discounted for d > d0 (see Methods (Testing for admixture)
and Appendix B.2), but it should be noted that the selected d0 will vary for different sets
of populations, and in each case the true admixture signal at d < d0 will also be excluded.
Theoretically, this pattern could allow us to learn more about the true admixture history of
a population, since the value of a(d) at each d represents a particular function of the amount
of admixture that took place at each generation in the past. However, in our experience,
fitting becomes difficult for any model involving more than two or three parameters. Thus,
we made the decision to restrict ourselves to assuming a single point admixture, fit for a
principled threshold d > d0, accepting that the inferred date n represents some form of
average value over the true history.

2.4.4 Other possible complications

In our derivations, we have assumed implicitly that the mixing populations and the reference
populations are related through a simple tree. However, it may be that their history is more
complicated, for example involving additional admixtures. In this case, our formulas for
the amplitude of the ALD curve will be inaccurate if, for example, A and A′ have different
admixture histories. However, if our assumptions are violated only by events occurring before
the divergences between the mixing populations and the corresponding references, then the
amplitude will be unaffected. Moreover, no matter what the population history, as long
as A and B are free of measurable LD (so that our assumption of independence of alleles
conditional on a single ancestry is valid), there will be no effect on the estimated date of
admixture.

2.4.5 Conclusions and future directions

In this study, we have shown how linkage disequilibrium (LD) generated by population ad-
mixture can be a powerful tool for learning about history, extending previous work that
showed how it can be used for estimating dates of mixture (Moorjani et al., 2011; Patter-
son et al., 2012). We have developed a new suite of tools, implemented in the ALDER
software package, that substantially increases the speed of admixture LD analysis, improves
the robustness of admixture date inference, and exploits the amplitude of LD as a novel
source of information about history. In particular, (a) we show how admixture LD can be
leveraged into a formal test for mixture that can sometimes find evidence of admixture not
detectable by other methods, (b) we show how to estimate mixture proportions, and (c) we
show that we can even use this information to infer phylogenetic relationships. A limitation
of ALDER at present, however, is that it is designed for a model of pulse admixture between
two ancestral populations. Important directions for future work will be to generalize these
ideas to make inferences about the time course of admixture in the case that it took place
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over a longer period of time (Pool and Nielsen, 2009; Gravel, 2012) and to study multi-way
admixture. In addition, it would be valuable to be able to use the information from admix-
ture LD to constrain models of history for multiple populations simultaneously, either by
extending ALDER itself or by using LD-based test results in conjunction with methods for
fitting phylogenies incorporating admixture (Patterson et al., 2012; Pickrell and Pritchard,
2012; Lipson et al., 2012).

2.5 Software

Executable and C++ source files for our ALDER software package are available online at
the Berger and Reich Lab websites: http://groups.csail.mit.edu/cb/alder/, http:

//genetics.med.harvard.edu/reich/Reich_Lab/Software.html.
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Chapter 3

Admixture Inference Using Moment
Statistics

The recent explosion in available genetic data has led to significant advances in understand-
ing the demographic histories of and relationships among human populations. It is still a
challenge, however, to infer reliable parameter values for complicated models involving many
populations. Here we present MixMapper , an efficient, interactive method for constructing
phylogenetic trees including admixture events using single nucleotide polymorphism (SNP)
genotype data. MixMapper implements a novel two-phase approach to admixture inference
using moment statistics, first building an unadmixed scaffold tree and then adding admixed
populations by solving systems of equations that express allele frequency divergences in terms
of mixture parameters. Importantly, all features of the model, including topology, sources of
gene flow, branch lengths, and mixture proportions, are optimized automatically from the
data and include estimates of statistical uncertainty. MixMapper also uses a new method to
express branch lengths in easily interpretable drift units. We apply MixMapper to recently
published data for HGDP individuals genotyped on a SNP array designed especially for use
in population genetics studies, obtaining confident results for 30 populations, 20 of them
admixed. Notably, we confirm a signal of ancient admixture in European populations—
including previously undetected admixture in Sardinians and Basques—involving a propor-
tion of 20–40% ancient northern Eurasian ancestry.1

3.1 Introduction

The most basic way to represent the evolutionary history of a set of species or populations
is through a phylogenetic tree, a model that in its strict sense assumes that there is no gene
flow between populations after they have diverged (Cavalli-Sforza and Edwards, 1967). In
many settings, however, groups that have split from one another can still exchange genetic
material. This is certainly the case for human population history, during the course of

1The material in this chapter was previously posted to the arXiv in December 2012 as “Efficient moment-
based inference of admixture parameters and sources of gene flow” by Mark Lipson, Po-Ru Loh, Alex Levin,
David Reich, Nick Patterson, and Bonnie Berger (Lipson et al., 2012) and is in revision at Molecular Biology
and Evolution at the time of this writing.
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which populations have often diverged only incompletely or diverged and subsequently mixed
again (Reich et al., 2009; Wall et al., 2009; Laval et al., 2010; Green et al., 2010; Reich
et al., 2010; Gravel et al., 2011; Patterson et al., 2012). To capture these more complicated
relationships, previous studies have considered models allowing for continuous migration
among populations (Wall et al., 2009; Laval et al., 2010; Gravel et al., 2011) or have extended
simple phylogenetic trees into admixture trees, in which populations on separate branches are
allowed to re-merge and form an admixed offspring population (Chikhi et al., 2001; Wang,
2003; Reich et al., 2009; Sousa et al., 2009; Patterson et al., 2012). Both of these frameworks,
of course, still represent substantial simplifications of true population histories, but they can
help capture a range of new and interesting phenomena.

Several approaches have previously been used to build phylogenetic trees incorporating
admixture events from genetic data. First, likelihood methods (Chikhi et al., 2001; Wang,
2003; Sousa et al., 2009) use a full probabilistic evolutionary model, which allows a high level
of precision with the disadvantage of greatly increased computational cost. Consequently,
likelihood methods can in practice only accommodate a small number of populations (Wall
et al., 2009; Laval et al., 2010; Gravel et al., 2011; Sirén et al., 2011). Moreover, the tree
topology must generally be specified in advance, meaning that only parameter values can
be inferred automatically and not the arrangement of populations in the tree. By contrast,
the moment-based methods of Reich et al. (2009) and Patterson et al. (2012) use only
means and variances of allele frequency divergences. Moments are simpler conceptually
and especially computationally, and they allow for more flexibility in model conditions.
Their disadvantages can include reduced statistical power and difficulties in designing precise
estimators with desirable statistical properties (e.g., unbiasedness) (Wang, 2003). Finally, a
number of studies have considered “phylogenetic networks,” which generalize trees to include
cycles and multiple edges between pairs of nodes and can be used to model population
histories involving hybridization (Huson and Bryant, 2006; Yu et al., 2012). However, these
methods also tend to be computationally expensive.

In this work, we introduce MixMapper , a new computational tool that fits admixture trees
by solving systems of moment equations involving the pairwise distance statistic f2 (Reich
et al., 2009; Patterson et al., 2012), which is the average squared allele frequency difference
between two populations. The theoretical expectation of f2 can be calculated in terms of
branch lengths and mixture fractions of an admixture tree and then compared to empirical
data. MixMapper can be thought of as a generalization of the qpgraph package (Patterson
et al., 2012), which takes as input genotype data, along with a proposed arrangement of
admixed and unadmixed populations, and returns branch lengths and mixture fractions that
produce the best fit to allele frequency moment statistics measured on the data. MixMapper ,
by contrast, performs the fitting in two stages, first constructing an unadmixed scaffold tree
via neighbor-joining and then automatically optimizing the placement of admixed popula-
tions onto this initial tree. Thus, no topological relationships among populations need to be
specified in advance.

Our method is similar in spirit to the independently developed TreeMix package (Pick-
rell and Pritchard, 2012). Like MixMapper , TreeMix builds admixture trees from second
moments of allele frequency divergences, although it does so via a composite likelihood max-
imization approach made tractable with a multivariate normal approximation. Procedurally,
TreeMix initially fits a full set of populations as an unadmixed tree, and gene flow edges
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are added sequentially to account for the greatest errors in the fit (Pickrell and Pritchard,
2012). This format makes TreeMix well-suited to handling very large trees: the entire fitting
process is automated and can include arbitrarily many admixture events simultaneously. In
contrast, MixMapper begins with a carefully screened unadmixed scaffold tree to which ad-
mixed populations are added with best-fitting parameter values, an interactive design that
enables precise modeling of particular populations of interest.

We use MixMapper to model the ancestral relationships among 52 populations from the
CEPH-Human Genome Diversity Cell Line Panel (HGDP) (Rosenberg et al., 2002; Li et al.,
2008b) using recently published data from a new, specially ascertained SNP array designed
for population genetics applications (Keinan et al., 2007; Patterson et al., 2012). Previous
studies of these populations have built simple phylogenetic trees (Li et al., 2008b; Sirén et al.,
2011), identified a substantial number of admixed populations with likely ancestors (Patter-
son et al., 2012), and constructed a large-scale admixture tree (Pickrell and Pritchard, 2012).
Here, we add an additional level of quantitative detail, obtaining best-fit admixture param-
eters with bootstrap error estimates for 30 HGDP populations, of which 20 are admixed.
The results include, most notably, a significant admixture event (Patterson et al., 2012) in
the history of all sampled European populations, among them Sardinians and Basques.

3.2 New Approaches

The central problem we consider is: given an array of SNP data sampled from a set of in-
dividuals grouped by population, what can we infer about the admixture histories of these
populations using simple statistics that are functions of their allele frequencies? Methodolog-
ically, the MixMapper workflow (Figure 3.1) proceeds as follows. We begin by computing
f2 distances between all pairs of study populations, from which we construct an unadmixed
phylogenetic subtree to serve as a scaffold for subsequent mixture fitting. The choice of pop-
ulations for the scaffold is done via initial filtering of populations that are clearly admixed
according to the 3-population test (Reich et al., 2009; Patterson et al., 2012), followed by
selection of a subtree that is approximately additive along its branches, as is expected in the
absence of admixture (see Material and Methods and Appendix C.1 for full details).

Next, we expand the model to incorporate admixtures by attempting to fit each popula-
tion not in the scaffold as a mixture between some pair of branches of the scaffold. Putative
admixtures imply algebraic relations among f2 statistics, which we test for consistency with
the data, allowing us to identify likely sources of gene flow and estimate mixture parameters
(Figure 3.2; Appendix C.1). After determining likely two-way admixture events, we further
attempt to fit remaining populations as three-way mixtures involving the inferred two-way
mixed populations, by similar means. Finally, we use a new formula to convert the f2 tree
distances into absolute drift units (Appendix C.2). Importantly, we apply a bootstrap resam-
pling scheme (Efron, 1979; Efron and Tibshirani, 1986) to obtain ensembles of predictions,
rather than single values, for all model variables. This procedure allows us to determine con-
fidence intervals for parameter estimates and guard against overfitting. For a data set on the
scale of the HGDP, after initial setup time on the order of an hour, MixMapper determines
the best-fit admixture model for a chosen population in a few seconds, enabling real-time
interactive investigation.
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Phase 2: Admixture fitting

• Two-way mixture fitting
• Three-way mixture fitting
• Conversion to drift units

Phase 1: Unadmixed scaffold
tree construction

• Unadmixed population filtering
(f3-statistics > 0)

• Unadmixed subset selection
(ranking by f2-additivity)

• Scaffold tree building
(neighbor joining) Bootstrap resampling

Figure 3.1. MixMapper workflow. MixMapper takes as input an array of SNP calls
annotated with the population to which each individual belongs. The method then
proceeds in two phases, first building a tree of (approximately) unadmixed populations and
then attempting to fit the remaining populations as admixtures. In the first phase,
MixMapper produces a ranking of possible unadmixed trees in order of deviation from
f2-additivity; based on this list, the user selects a tree to use as a scaffold. In the second
phase, MixMapper tries to fit remaining populations as two- or three-way mixtures between
branches of the unadmixed tree. In each case MixMapper produces an ensemble of
predictions via bootstrap resampling, enabling confidence estimation for inferred results.

3.3 Results

3.3.1 Simulations

To test the inference capabilities of MixMapper on populations with known histories, we ran
it on two data sets generated with the coalescent simulator ms (Hudson, 2002) and designed
to have similar parameters to our human data. In both cases, we simulated 500 regions of 500
kb each for 25 diploid individuals per population, with an effective population size of 5,000
or 10,000 per population, a mutation rate of 0.5×10−8 per base per generation (intentionally
low so as not to create unreasonably many SNPs), and a recombination rate of 10−8 per base
per generation. Full ms commands can be found in Material and Methods. We ascertained
SNPs present at minor allele frequency 0.05 or greater in an outgroup population and then
removed that population from the analysis.

For the first admixture tree, we simulated six non-outgroup populations, with one of them,
pop6, admixed (Figure 3.3A). Applying MixMapper , no admixtures were detected with the
3-population test, but the most additive subset with at least five populations excluded pop6
(max deviation from additivity 2.0 × 10−4 versus second-best 7.7 × 10−4; see Material and
Methods), so we used this subset as the scaffold tree. We then fit pop6 as admixed, and
MixMapper recovered the correct gene flow topology with 100% confidence and inferred the
other parameters of the model quite accurately (Figure 3.3B; Table 3.1). For comparison, we
also analyzed the same data with TreeMix and again obtained accurate results (Figure 3.3C).

For the second test, we simulated a complex admixture scenario involving 10 non-
outgroup populations, with six unadmixed and four admixed (Figure 3.3D). In this example,
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AdmixedPop
(α . Parent1 + β . Parent2)

A

MixedDrift = α2a+β2b+c

α

β
b

c

a

Branch2Loc
(Pre-Split / Total)

Branch1Loc (Pre-Split / Total)

AdmixedPop1

B

MixedDrift1A

α1

FinalDrift1B

Branch3Loc
(Pre-Split / Total)

α2

AdmixedPop2
MixedDrift2

Figure 3.2. Schematic of mixture parameters fit by MixMapper . (A) A simple
two-way admixture. MixMapper infers four parameters when fitting a given population as
an admixture. It finds the optimal pair of branches between which to place the admixture
and reports the following: Branch1Loc and Branch2Loc are the points at which the mixing
populations split from these branches (given as pre-split length / total branch length); α is
the proportion of ancestry from Branch1 (β = 1− α is the proportion from Branch2); and
MixedDrift is the linear combination of drift lengths α2a+ β2b+ c. (B) A three-way
mixture: here AdmixedPop2 is modeled as an admixture between AdmixedPop1 and
Branch3. There are now four additional parameters; three are analogous to the above,
namely, Branch3Loc, α2, and MixedDrift2. The remaining degree of freedom is the position
of the split along the AdmixedPop1 branch, which divides MixedDrift into MixedDrift1A
and FinalDrift1B.
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Figure 3.3. Results with simulated data. (A-C) First simulated admixture tree, with
one admixed population. Shown are: (A) the true phylogeny, (B) MixMapper results, and
(C) TreeMix results. (D-F) Second simulated admixture tree, with four admixed
populations. Shown are: (D) the true phylogeny, (E) MixMapper results, and (F) TreeMix
results. In (A) and (D), dotted lines indicate instantaneous admixtures, while arrows
denote continuous (unidirectional) gene flow over 40 generations. Both MixMapper and
TreeMix infer point admixtures, depicted with dotted lines in (B) and (E) and colored
arrows in (C) and (F). In (B) and (E), the terminal drift edges shown for admixed
populations represent half the total mixed drift. Full inferred parameters from MixMapper
are given in Table 3.1.
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Table 3.1. Mixture parameters for simulated data.

AdmixedPop Branch1 + Branch2 # rep α Branch1Loc Branch2Loc MixedDrift
First tree
pop6 pop3 + pop5 500 0.253-0.480 0.078-0.195 / 0.214 0.050-0.086 / 0.143 0.056-0.068
pop6 (true) pop3 + pop5 0.4 0.107 / 0.213 0.077 / 0.145 0.066
Second tree
pop4 pop3 + pop5 500 0.382-0.652 0.039-0.071 / 0.076 0.032-0.073 / 0.077 0.010-0.020
pop4 (true) pop3 + pop5 0.4 0.071 / 0.077 0.038 / 0.077 0.016
pop9 Anc3–7 + pop7 490 0.653-0.915 0.048-0.091 / 0.140 0.013-0.134 / 0.147 0.194-0.216
pop9 (true) Anc3–7 + pop7 0.8 0.077 / 0.145 0.037 / 0.145 0.194
pop10 Anc3–7 + pop7 500 0.502-0.690 0.047-0.091 / 0.140 0.021-0.067 / 0.147 0.151-0.167
pop10 (true) Anc3–7 + pop7 0.6 0.077 / 0.145 0.037 / 0.145 0.150
AdmixedPop2 Mixed1 + Branch3 # rep α2 Branch3Loc
pop8 pop10 + pop2 304 0.782-0.822 0.007-0.040 / 0.040

pop10 + Anc1–2 193 0.578-0.756 0.009-0.104 / 0.148
pop8 (true) pop10 + pop2 0.8 0.020 / 0.039

Mixture parameters inferred by MixMapper for simulated data, followed by true values for
each simulated admixed population. Branch1 and Branch2 are the optimal split points for
the mixing populations, with α the proportion of ancestry from Branch1; topologies are
shown that that occur for at least 20 of 500 bootstrap replicates. The mixed drift
parameters for the three-way admixed pop8 are not well-defined in the simulated tree and
are omitted. The branch “Anc3–7” is the common ancestral branch of pops 3–7, and the
branch “Anc1–2” is the common ancestral branch of pops 1–2. See Figure 3.2 and the
caption of Table 3.2 for descriptions of the parameters and Figure 3.3 for plots of the
results.

pop4 is recently admixed between pop3 and pop5, but over a continuous period of 40 gener-
ations. Meanwhile, pop8, pop9, and pop10 are all descended from older admixture events,
which are similar but with small variations (lower mixture fraction in pop9, 40-generation
continuous gene flow in pop10, and subsequent pop2-related admixture into pop8). In the
first phase of MixMapper , the recently admixed pop4 and pop8 were detected with the 3-
population test. From among the other eight populations, a scaffold tree consisting of pop1,
pop2, pop3, pop5, pop6, and pop7 provided thorough coverage of the data set and was more
additive (max deviation 3.5× 10−4) than the secon-best six-population scaffold (5.4× 10−4)
and the best seven-population scaffold (1.2 × 10−3). Using this scaffold, MixMapper re-
turned very accurate and high-confidence fits for the remaining populations (Figure 3.3E;
Table 3.1), with the correct gene flow topologies inferred with 100% confidence for pop4 and
pop10, 98% confidence for pop9, and 61% confidence for pop8 (fit as a three-way admixture;
39% of replicates placed the third gene flow source on the branch adjacent to pop2, as shown
in Table 3.1). In contrast, TreeMix inferred a less accurate admixture model for this data
set (Figure 3.3F). TreeMix correctly identified pop4 as admixed, and it placed three migra-
tion edges among pop7, pop8, pop9, and pop10, but two of the five total admixtures (those
originating from the common ancestor of pops 3-5 and the common ancestor of pops 9-10)
did not correspond to true events. Also, TreeMix did not detect the presence of admixture
in pop9 or the pop2-related admixture in pop8.
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3.3.2 Application of MixMapper to HGDP data

Despite the focus of the HGDP on isolated populations, most of its 53 groups exhibit signs
of admixture detectable by the 3-population test, as has been noted previously (Patterson
et al., 2012). Thus we hypothesized that applying MixMapper to this data set would yield
significant insights. Ultimately, we were able to obtain comprehensive results for 20 admixed
HGDP populations (Figure 3.4), discussed in detail in the following sections.

3.3.3 Selection of a 10-population unadmixed scaffold tree

To construct an unadmixed scaffold tree for the HGDP data to use in fitting admixtures,
we initially filtered the list of 52 populations (having removed San due to ascertainment
of our SNP panel in a San individual; see Material and Methods) with the 3-population
test, leaving only 20 that are potentially unadmixed. We further excluded Mbuti and Biaka
Pygmies, Kalash, Melanesian, and Colombian from the list of candidate populations due to
external evidence of admixture (Loh et al., 2013).

It is desirable to include a wide range of populations in the unadmixed scaffold tree
to provide both geographic coverage and additional constraints that facilitate the fitting of
admixed populations (see Material and Methods). Additionally, incorporating at least four
continental groups provides a fairer evaluation of additivity, which is roughly equivalent to
measuring discrepancies in fitting phylogenies to quartets of populations. If all populations
fall into three or fewer tight clades, however, any quartet must contain at least two pop-
ulations that are closely related. At the same time, including too many populations can
compromise the accuracy of the scaffold. We required that our scaffold tree include repre-
sentatives of at least four of the five major continental groups in the HGDP data set (Africa,
Europe, Oceania, Asia, and the Americas), with at least two populations per group (when
available) to clarify the placement of admixing populations and improve the geographical
balance. Subject to these conditions, we selected an approximately unadmixed scaffold tree
containing 10 populations, which we found to provide a good balance between additivity and
comprehensiveness: Yoruba, Mandenka, Papuan, Dai, Lahu, Japanese, Yi, Naxi, Karitiana,
and Surúı (Figure 3.4B). These populations constitute the second-most additive (max de-
viation 1.12 × 10−3) of 21 similar trees differing only in which East Asian populations are
included (range 1.12–1.23× 10−3); we chose them over the most-additive tree because they
provide slightly better coverage of Asia. To confirm that modeling these 10 populations as
unadmixed in MixMapper is sensible, we checked that none of them can be fit in a reason-
able way as an admixture on a tree built with the other nine (see Material and Methods).
Furthermore, we repeated all of the analyses to follow using nine-population subsets of the
unadmixed tree as well as an alternative 11-population tree and confirmed that our results
are robust to the choice of scaffold (Figures C.2–C.3; Tables C.1–C.3).

3.3.4 Ancient admixture in the history of present-day European
populations

A notable feature of our unadmixed scaffold tree is that it does not contain any European
populations. Patterson et al. (2012) previously observed negative f3 values indicating admix-
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Figure 3.4. Aggregate phylogenetic trees of HGDP populations with and
without admixture. (A) A simple neighbor-joining tree on the 30 populations for which
MixMapper produced high-confidence results. This tree is analogous to the one given by Li
et al. (2008b, Figure 1B), and the topology is very similar. (B) Results from MixMapper .
The populations appear in roughly the same order, but the majority are inferred to be
admixed, as represented by dashed lines (cf. Pickrell and Pritchard (2012) and Figure 3.5).
Note that drift units are not additive, so branch lengths should be interpreted individually.
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obtained with the TreeMix software, as reported in Pickrell and Pritchard (2012). Figure is
reproduced from Pickrell and Pritchard (2012) with permission of the authors and under
the Creative Commons Attribution License.
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Table 3.2. Mixture parameters for Europeans.

AdmixedPop # repa αb Branch1Loc (Anc. N-Eur.)c Branch2Loc (Anc. W-Eur.)c MixedDriftd

Adygei 500 0.254-0.461 0.033-0.078 / 0.195 0.140-0.174 / 0.231 0.077-0.092
Basque 464 0.160-0.385 0.053-0.143 / 0.196 0.149-0.180 / 0.231 0.105-0.121
French 491 0.184-0.386 0.054-0.130 / 0.195 0.149-0.177 / 0.231 0.089-0.104
Italian 497 0.210-0.415 0.043-0.108 / 0.195 0.137-0.173 / 0.231 0.092-0.109
Orcadian 442 0.156-0.350 0.068-0.164 / 0.195 0.161-0.185 / 0.231 0.096-0.113
Russian 500 0.278-0.486 0.045-0.091 / 0.195 0.146-0.181 / 0.231 0.079-0.095
Sardinian 480 0.150-0.350 0.045-0.121 / 0.195 0.146-0.176 / 0.231 0.107-0.123
Tuscan 489 0.179-0.431 0.039-0.118 / 0.195 0.137-0.177 / 0.231 0.088-0.110

aNumber of bootstrap replicates (out of 500) placing the mixture between the two branches
shown.
bProportion of ancestry from “ancient northern Eurasian” (95% bootstrap confidence
interval).
cSee Figure 3.6A for the definition of the “ancient northern Eurasian” and “ancient western
Eurasian” branches in the scaffold tree; Branch1Loc and Branch2Loc are the points at
which the mixing populations split from these branches (expressed as confidence interval
for split point / branch total, as in Figure 3.2A).
dSum of drift lengths α2a+ (1− α)2b+ c; see Figure 3.2A.

ture in all HGDP Europeans other than Sardinian and Basque. Our MixMapper analysis
uncovered the additional observation that potential trees containing Sardinian or Basque
along with representatives of at least three other continents are noticeably less additive than
four-continent trees of the same size without Europeans: from our set of 15 potentially
unadmixed populations, none of the 100 most additive 10-population subtrees include Eu-
ropeans. This points to the presence of admixture in Sardinian and Basque as well as the
other European populations.

Using MixMapper , we added European populations to the unadmixed scaffold via admix-
tures (Figure 3.6; Table 3.2). For all eight groups in the HGDP data set, the best fit was as
a mixture of a population related to the common ancestor of Karitiana and Surúı (in varying
proportions of about 20–40%, with Sardinian and Basque among the lowest and Russian the
highest) with a population related to the common ancestor of all non-African populations on
the tree. We fit all eight European populations independently, but notably, their ancestors
branch from the scaffold tree at very similar points, suggesting a similar broad-scale his-
tory. Their branch positions are also qualitatively consistent with previous work that used
the 3-population test to deduce ancient admixture for Europeans other than Sardinian and
Basque (Patterson et al., 2012). To confirm the signal in Sardinian and Basque, we applied
f4 ratio estimation (Reich et al., 2009; Patterson et al., 2012), which uses allele frequency
statistics in a simpler framework to infer mixture proportions. We estimated approximately
20–25% “ancient northern Eurasian” ancestry (Table 3.3), which is in very good agreement
with our findings from MixMapper (Table 3.2).

At first glance, this inferred admixture might appear improbable on geographical and
chronological grounds, but importantly, the two ancestral branch positions do not represent
the mixing populations themselves. Rather, there may be substantial drift from the best-fit
branch points to the true mixing populations, indicated as branch lengths a and b in Fig-
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Figure 3.6. Inferred ancient admixture in Europe. (A) Detail of the inferred
ancestral admixture for Sardinians (other European populations are similar). One mixing
population splits from the unadmixed tree along the common ancestral branch of Native
Americans (“Ancient Northern Eurasian”) and the other along the common ancestral
branch of all non-Africans (“Ancient Western Eurasian”). Median parameter values are
shown; 95% bootstrap confidence intervals can be found in Table 3.2. The branch lengths
a, b, and c are confounded, so we show a plausible combination. (B) Map showing a sketch
of possible directions of movement of ancestral populations. Colored arrows correspond to
labeled branches in (A).
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Table 3.3. Mixture proportions for Sardinian and Basque from f4 ratio estimation.

Test pop. Asian pop. American pop. α

Sardinian Dai Karitiana 23.3 ± 6.3
Sardinian Dai Surúı 24.5 ± 6.7
Sardinian Lahu Karitiana 23.1 ± 7.0
Sardinian Lahu Surúı 24.7 ± 7.6
Basque Dai Karitiana 22.8 ± 7.0
Basque Dai Surúı 24.0 ± 7.6
Basque Lahu Karitiana 23.1 ± 7.4
Basque Lahu Surúı 24.7 ± 8.0

To validate the mixture proportions estimated by MixMapper for Sardinian and Basque,
we applied f4 ratio estimation. The fraction α of “ancient northern Eurasian” ancestry was
estimated as α = f4(Papuan, Asian; Yoruba, European) / f4(Papuan, Asian; Yoruba,
American), where the European population is Sardinian or Basque, Asian is Dai or Lahu,
and American is Karitiana or Surúı. Standard errors are from 500 bootstrap replicates.
Note that this calculation assumes the topology of the ancestral mixing populations as
inferred by MixMapper (Figure 3.6A).

ure 3.6A. Unfortunately, these lengths, along with the post-admixture drift c, appear only
in a fixed linear combination in the system of f2 equations (Appendix C.1), and current
methods can only give estimates of this linear combination rather than the individual val-
ues (Patterson et al., 2012). One plausible arrangement, however, is shown in Figure 3.6A
for the case of Sardinian.

3.3.5 Two-way admixtures outside of Europe

We also found several other populations that fit robustly onto the unadmixed tree using
simple two-way admixtures (Table 3.4). All of these can be identified as admixed using the
3-population or 4-population tests (Patterson et al., 2012), but with MixMapper , we are able
to provide the full set of best-fit parameter values to model them in an admixture tree.

First, we found that four populations from North-Central and Northeast Asia—Daur,
Hezhen, Oroqen, and Yakut—are likely descended from admixtures between native North
Asian populations and East Asian populations related to Japanese. The first three are esti-
mated to have roughly 10–30% North Asian ancestry, while Yakut has 50–75%. Melanesians
fit optimally as a mixture of a Papuan-related population with an East Asian population close
to Dai, in a proportion of roughly 80% Papuan-related, similar to previous estimates (Re-
ich et al., 2011; Xu et al., 2012). Finally, we found that Han Chinese have an optimal
placement as an approximately equal mixture of two ancestral East Asian populations, one
related to modern Dai (likely more southerly) and one related to modern Japanese (likely
more northerly), corroborating a previous finding of admixture in Han populations between
northern and southern clusters in a large-scale genetic analysis of East Asia (HUGO Pan-
Asian SNP Consortium, 2009).
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Table 3.4. Mixture parameters for non-European populations modeled as two-way
admixtures.

AdmixedPop Branch1 + Branch2a # repb αc Branch1Locd Branch2Locd MixedDrifte

Daur Anc. N-Eur. + Jap. 350 0.067-0.276 0.008-0.126 / 0.195 0.006-0.013 / 0.016 0.006-0.015
Surúı + Japanese 112 0.021-0.058 0.008-0.177 / 0.177 0.005-0.010 / 0.015 0.005-0.016

Hezhen Anc. N-Eur. + Jap. 411 0.068-0.273 0.006-0.113 / 0.195 0.006-0.013 / 0.016 0.005-0.029
Oroqen Anc. N-Eur. + Jap. 410 0.093-0.333 0.017-0.133 / 0.195 0.005-0.013 / 0.015 0.011-0.030

Karitiana + Japanese 53 0.025-0.086 0.014-0.136 / 0.136 0.004-0.008 / 0.016 0.008-0.026
Yakut Anc. N-Eur. + Jap. 481 0.494-0.769 0.005-0.026 / 0.195 0.012-0.016 / 0.016 0.030-0.041
Melanesian Dai + Papuan 424 0.160-0.260 0.008-0.014 / 0.014 0.165-0.201 / 0.247 0.089-0.114

Lahu + Papuan 54 0.155-0.255 0.003-0.032 / 0.032 0.167-0.208 / 0.249 0.081-0.114
Han Dai + Japanese 440 0.349-0.690 0.004-0.014 / 0.014 0.008-0.016 / 0.016 0.002-0.006

aOptimal split points for mixing populations.
bNumber of bootstrap replicates (out of 500) placing the mixture between Branch1 and
Branch2; topologies are shown that that occur for at least 50 of 500 replicates.
cProportion of ancestry from Branch1 (95% bootstrap confidence interval).
dPoints at which mixing populations split from their branches (expressed as confidence
interval for split point / branch total, as in Figure 3.2A).
eSum of drift lengths α2a+ (1− α)2b+ c; see Figure 3.2A.

3.3.6 Recent three-way admixtures involving western Eurasians

Finally, we inferred the branch positions of several populations that are well known to be
recently admixed (cf. Patterson et al. (2012); Pickrell and Pritchard (2012)) but for which
one ancestral mixing population was itself anciently admixed in a similar way to Europeans.
To do so, we applied the capability of MixMapper to fit three-way admixtures (Figure 3.2B),
using the anciently admixed branch leading to Sardinian as one ancestral source branch.
First, we found that Mozabite, Bedouin, Palestinian, and Druze, in decreasing order of
African ancestry, are all optimally represented as a mixture between an African population
and an admixed western Eurasian population (not necessarily European) related to Sardinian
(Table 3.5). We also obtained good fits for Uygur and Hazara as mixtures between a western
Eurasian population and a population related to the common ancestor of all East Asians on
the tree (Table 3.5).

3.3.7 Estimation of ancestral heterozygosity

Using SNPs ascertained in an outgroup to all of our study populations enables us to compute
accurate estimates of the heterozygosity (over a given set of SNPs) throughout an unadmixed
tree, including at ancestral nodes (see Material and Methods). This in turn allows us to
convert branch lengths from f2 units to easily interpretable drift lengths (see Appendix C.2).

In Figure 3.7C, we show our estimates for the heterozygosity (averaged over all San-
ascertained SNPs used) at the most recent common ancestor (MRCA) of each pair of present-
day populations in the tree. Consensus values are given at the nodes of Figure 3.7A. The
imputed heterozygosity should be the same for each pair of populations with the same
MRCA, and indeed, with the new data set, the agreement is excellent (Figure 3.7C). By
contrast, inferences of ancestral heterozygosity are much less accurate using HGDP data
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Figure 3.7. Ancestral heterozygosity imputed from original Illumina vs.
San-ascertained SNPs. (A) The 10-population unadmixed tree with estimated average
heterozygosities using SNPs from Panel 4 (San ascertainment) of the Affymetrix Human
Origins array (Patterson et al., 2012). Numbers in black are direct calculations for modern
populations, while numbers in green are inferred values at ancestral nodes. (B, C)
Computed ancestral heterozygosity at the common ancestor of each pair of modern
populations. With unbiased data, values should be equal for pairs having the same
common ancestor. (B) Values from a filtered subset of about 250,000 SNPs from the
published Illumina array data (Li et al., 2008b). (C) Values from the Human Origins array
excluding SNPs in gene regions.
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Table 3.5. Mixture parameters for populations modeled as three-way admixtures.

Admixed2 Branch3a # repb α2
c Branch3Locd Drift1Ae Drift1Be Drift2e

Druze Mandenka 330 0.963-0.988 0.000-0.009 / 0.009 0.081-0.099 0.022-0.030 0.004-0.013
Yoruba 82 0.965-0.991 0.000-0.010 / 0.010 0.080-0.099 0.022-0.029 0.005-0.013
Anc. W-Eur. 79 0.881-0.966 0.041-0.158 / 0.232 0.092-0.118 0.000-0.024 0.010-0.031

Palestinian Anc. W-Eur. 294 0.818-0.901 0.031-0.104 / 0.231 0.093-0.123 0.000-0.021 0.007-0.022
Mandenka 146 0.909-0.937 0.000-0.009 / 0.009 0.083-0.097 0.022-0.029 0.001-0.007
Yoruba 53 0.911-0.938 0.000-0.010 / 0.010 0.077-0.098 0.021-0.029 0.001-0.008

Bedouin Anc. W-Eur. 271 0.767-0.873 0.019-0.086 / 0.231 0.094-0.122 0.000-0.022 0.012-0.031
Mandenka 176 0.856-0.923 0.000-0.008 / 0.008 0.080-0.099 0.023-0.030 0.006-0.018

Mozabite Mandenka 254 0.686-0.775 0.000-0.009 / 0.009 0.088-0.109 0.012-0.022 0.017-0.032
Anc. W-Eur. 142 0.608-0.722 0.002-0.026 / 0.232 0.103-0.122 0.000-0.011 0.018-0.035
Yoruba 73 0.669-0.767 0.000-0.008 / 0.010 0.086-0.108 0.012-0.023 0.017-0.031

Hazara Anc. E-Asianf 497 0.364-0.471 0.010-0.024 / 0.034 0.080-0.115 0.004-0.034 0.004-0.013

Uygur Anc. E-Asianf 500 0.318-0.438 0.007-0.023 / 0.034 0.088-0.123 0.000-0.027 0.000-0.009

aOptimal split point for the third ancestry component. The first two components are
represented by a parent population splitting from the (admixed) Sardinian branch.
bNumber of bootstrap replicates placing the third ancestry component on Branch3;
topologies are shown that that occur for at least 50 of 500 replicates.
cProportion of European-related ancestry (95% bootstrap confidence interval).
dPoint at which mixing population splits from Branch3 (expressed as confidence interval for
split point / branch total, as in Figure 3.2A).
eTerminal drift parameters; see Figure 3.2B.
fCommon ancestral branch of the five East Asian populations in the unadmixed tree (Dai,
Japanese, Lahu, Naxi, and Yi).

from the original Illumina SNP array (Li et al., 2008b) because of ascertainment bias (Fig-
ure 3.7B); f2 statistics are also affected but to a lesser degree (Figure 3.8), as previously
demonstrated (Patterson et al., 2012). We used these heterozygosity estimates to express
branch lengths of all of our trees in drift units (Appendix C.2).

3.4 Discussion

3.4.1 Comparison with previous approaches

The MixMapper framework generalizes and automates several previous admixture inference
tools based on allele frequency moment statistics, incorporating them as special cases. Meth-
ods such as the 3-population test for admixture and f4 ratio estimation (Reich et al., 2009;
Patterson et al., 2012) have similar theoretical underpinnings, but MixMapper provides more
extensive information by analyzing more populations simultaneously and automatically con-
sidering different tree topologies and sources of gene flow. For example, negative f3 values—
i.e., 3-population tests indicating admixture—can be expressed in terms of relationships
among f2 distances between populations in an admixture tree. In general, 3-population
tests can be somewhat difficult to interpret because the surrogate ancestral populations
may not in fact be closely related to the true participants in the admixture, e.g., in the
“outgroup case” (Reich et al., 2009; Patterson et al., 2012). The relations among the f2
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Figure 3.8. Comparison of f2 distances computed using original Illumina vs.
San-ascertained SNPs. The heat map shows the log fold change in f2 values obtained
from the original HGDP data (Li et al., 2008b) versus the San-ascertained data (Patterson
et al., 2012) used in this study.
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statistics incorporate this situation naturally, however, and solving the full system recovers
the true branch points wherever they are. As another example, f4 ratio estimation infers
mixture proportions of a single admixture event from f4 statistics involving the admixed
population and four unadmixed populations situated in a particular topology (Reich et al.,
2009; Patterson et al., 2012). Whenever data for five such populations are available, the
system of all f2 equations that MixMapper solves to obtain the mixture fraction becomes
equivalent to the f4 ratio computation. More importantly, because MixMapper infers all
of the topological relationships within an admixture tree automatically by optimizing the
solution of the distance equations over all branches, we do not need to specify in advance
where the admixture took place—which is not always obvious a priori. By using more than
five populations, MixMapper also benefits from more data points to constrain the fit.

MixMapper also offers significant advantages over the qpgraph admixture tree fitting
software (Patterson et al., 2012). Most notably, qpgraph requires the user to specify the entire
topology of the tree, including admixtures, in advance. This requires either prior knowledge
of sources of gene flow relative to the reference populations or a potentially lengthy search
to test alternative branch locations. MixMapper is also faster and provides the capabilities
to convert branch lengths into drift units and to perform bootstrap replicates to measure
uncertainty in parameter estimates. Furthermore, MixMapper is designed to have more
flexible and intuitive input and output and better diagnostics for incorrectly specified models.
While qpgraph does fill a niche of fitting very precise models for small sets of populations,
it becomes quite cumbersome for more than about seven or eight, whereas MixMapper can
be run with significantly larger trees without sacrificing efficiency, ease of use, or accuracy
of inferences for populations of interest.

Finally, MixMapper differs from TreeMix (Pickrell and Pritchard, 2012) in its emphasis
on precise and flexible modeling of individual admixed populations. Stylistically, we view
MixMapper as “semi-automated” as compared to TreeMix , which is almost fully automated.
Both approaches have benefits: ours allows more manual guidance and lends itself to in-
teractive use, whereas TreeMix requires less user intervention, although some care must be
taken in choosing the number of gene flow events to include (10 in the HGDP results shown
in Figure 3.5) to avoid creating spurious mixtures. With MixMapper , we create admixture
trees including pre-selected approximately unadmixed populations together with admixed
populations of interest, which are added on a case-by-case basis only if they fit reliably as
two- or three-way admixtures. In contrast, TreeMix returns a single large-scale admixture
tree containing all populations in the input data set, which may include some that can be
shown to be admixed by other means but are not modeled as such. Thus, these populations
might not be placed well on the tree, which in turn could affect the accuracy of the inferred
admixture events. Likewise, the populations ultimately modeled as admixed are initially
included as part of an unadmixed tree, where (presumably) they do not fit well, which could
introduce errors in the starting tree topology that impact the final results.

Indeed, these methodological differences can be seen to affect inferences for both simu-
lated and real data. For our second simulated admixture tree, MixMapper very accurately
fit the populations with complicated histories (meant to mimic European and Middle East-
ern populations), whereas TreeMix only recovered portions of the true tree and also added
two inaccurate mixtures (Figure 3.3). We believe TreeMix was hindered in this case by
attempting to fit all of the populations simultaneously and by starting with all of them in
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an unadmixed tree. In particular, once pop9 (with the lowest proportion of pop7-related
admixture) was placed on the unadmixed tree, it likely became difficult to detect as ad-
mixed, while pop8’s initial placement higher up the tree was likely due to its pop2-related
admixture but then obscured this signal in the mixture-fitting phase. Finally, the initial tree
shape made populations 3-10 appear to be unequally drifted. Meanwhile, with the HGDP
data (Figures 3.4 and 3.5), both methods fit Palestinian, Bedouin, Druze, Mozabite, Uygur,
and Hazara as admixed, but MixMapper analysis suggested that these populations are bet-
ter modeled as three-way admixed. TreeMix alone fit Brahui, Makrani, Cambodian, and
Maya—all of which the 3-population test identifies as admixed but we were unable to place
reliably with MixMapper—while MixMapper alone confidently fit Daur, Hezhen, Oroqen,
Yakut, Melanesian, and Han. Perhaps most notably, MixMapper alone inferred widespread
ancient admixture for Europeans; the closest possible signal of such an event in the TreeMix
model is a migration edge from an ancestor of Native Americans to Russians. We believe
that, as in the simulations, MixMapper is better suited to finding a common, ancient admix-
ture signal in a group of populations, and more generally to disentangling complex admixture
signals from within a large set of populations, and hence it is able to detect admixture in
Europeans when TreeMix does not.

To summarize, MixMapper offers a suite of features that make it better suited than
existing methods for the purpose of inferring accurate admixture parameters in data sets
containing many specific populations of interest. Our approach provides a middle ground
between qpgraph, which is designed to fit small numbers of populations within almost no
residual errors, and TreeMix , which generates large trees with little manual intervention
but may be less precise in complex admixture scenarios. Moreover, MixMapper ’s speed and
interactive design allow the user to evaluate the uncertainty and robustness of results in
ways that we have found to be very useful (e.g., by comparing two- vs. three-way admixture
models or results obtained using alternative scaffold trees).

3.4.2 Ancient European admixture

Due in part to the flexibility of the MixMapper approach, we were able to obtain the notable
result that all European populations in the HGDP are best modeled as mixtures between a
population related to the common ancestor of Native Americans and a population related
to the common ancestor of all non-African populations in our scaffold tree, confirming and
extending an admixture signal first reported by Patterson et al. (2012). Our interpretation
is that most if not all modern Europeans are descended from at least one large-scale an-
cient admixture event involving, in some combination, at least one population of Mesolithic
European hunter-gatherers; Neolithic farmers, originally from the Near East; and/or other
migrants from northern or Central Asia. Either the first or second of these could be related
to the “ancient western Eurasian” branch in Figure 3.6, and either the first or third could
be related to the “ancient northern Eurasian” branch. Present-day Europeans differ in the
amount of drift they have experienced since the admixture and in the proportions of the
ancestry components they have inherited, but their overall profiles are similar.

Our results for Europeans are consistent with several previously published lines of evi-
dence (Pinhasi et al., 2012). First, it has long been hypothesized, based on analysis of a few
genetic loci (especially on the Y chromosome), that Europeans are descended from ancient

85



admixtures (Semino et al., 2000; Dupanloup et al., 2004; Soares et al., 2010). Our results
also suggest an interpretation for a previously unexplained frappe analysis of worldwide hu-
man population structure (using K = 4 clusters) showing that almost all Europeans contain
a small fraction of American-related ancestry (Li et al., 2008b). Finally, sequencing of an-
cient DNA has revealed substantial differentiation in Neolithic Europe between farmers and
hunter-gatherers (Bramanti et al., 2009), with the former more closely related to present-day
Middle Easterners (Haak et al., 2010) and southern Europeans (Keller et al., 2012; Skoglund
et al., 2012) and the latter more similar to northern Europeans (Skoglund et al., 2012),
a pattern perhaps reflected in our observed northwest-southeast cline in the proportion of
“ancient northern Eurasian” ancestry (Table 3.2). Further analysis of ancient DNA may
help shed more light on the sources of ancestry of modern Europeans (Der Sarkissian et al.,
2013).

One important new insight of our European analysis is that we detect the same signal of
admixture in Sardinian and Basque as in the rest of Europe. As discussed above, unlike other
Europeans, Sardinian and Basque cannot be confirmed to be admixed using the 3-population
test (as in Patterson et al. (2012)), likely due to a combination of less “ancient northern
Eurasian” ancestry and more genetic drift since the admixture (Table 3.2). The first point
is further complicated by the fact that we have no unadmixed “ancient western Eurasian”
population available to use as a reference; indeed, Sardinians themselves are often taken to be
such a reference. However, MixMapper uncovered strong evidence for admixture in Sardinian
and Basque through additivity-checking in the first phase of the program and automatic
topology optimization in the second phase, discovering the correct arrangement of unadmixed
populations and enabling admixture parameter inference, which we then verified directly with
f4 ratio estimation. Perhaps the most convincing evidence of the robustness of this finding
is that MixMapper infers branch points for the ancestral mixing populations that are very
similar to those of other Europeans (Table 3.2), a concordance that is most parsimoniously
explained by a shared history of ancient admixture among Sardinian, Basque, and other
European populations. Finally, we note that because we fit all European populations without
assuming Sardinian or Basque to be an unadmixed reference, our estimates of the “ancient
northern Eurasian” ancestry proportions in Europeans are larger than those in Patterson
et al. (2012) and we believe more accurate than others previously reported (Skoglund et al.,
2012).

3.4.3 Future directions

It is worth noting that of the 52 populations (excluding San) in the HGDP data set, there
were 22 that we were unable to fit in a reasonable way either on the unadmixed tree or as
admixtures. In part, this was because our instantaneous-admixture model is intrinsically
limited in its ability to capture complicated population histories. Most areas of the world
have surely witnessed ongoing low levels of inter-population migration over time, especially
between nearby populations, making it difficult to fit admixture trees to the data. We also
found cases where having data from more populations would help the fitting process, for
example for three-way admixed populations such as Maya where we do not have a sampled
group with a simpler admixture history that could be used to represent two of the three
components. Similarly, we found that while Central Asian populations such as Burusho,
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Pathan, and Sindhi have clear signals of admixture from the 3-population test, their ances-
try can likely be traced to several different sources (including sub-Saharan Africa in some
instances), making them difficult to fit with MixMapper , particularly using the HGDP data.
Finally, we have chosen here to disregard admixture with archaic humans, which is known
to be a small but noticeable component for most populations in the HGDP (Green et al.,
2010; Reich et al., 2010). In the future, it will be interesting to extend MixMapper and
other admixture tree-fitting methods to incorporate the possibilities of multiple-wave and
continuous admixture.

In certain applications, full genome sequences are beginning to replace more limited
genotype data sets such as ours, but we believe that our methods and SNP-based inference
in general will still be valuable in the future. Despite the improving cost-effectiveness of
sequencing, it is still much easier and less expensive to genotype samples using a SNP array,
and with over 100,000 loci, the data used in this study provide substantial statistical power.
Additionally, sequencing technology is currently more error-prone, which can lead to biases in
allele frequency-based statistics (Pool et al., 2010).We expect that MixMapper will continue
to contribute to an important toolkit of population history inference methods based on SNP
allele frequency data.

3.5 Material and Methods

3.5.1 Model assumptions and f-statistics

We assume that all SNPs are neutral, biallelic, and autosomal, and that divergence times
are short enough that there are no double mutations at a locus. Thus, allele frequency
variation—the signal that we harness—is governed entirely by genetic drift and admixture.
We model admixture as a one-time exchange of genetic material: two parent populations
mix to form a single descendant population whose allele frequencies are a weighted average
of the parents’. This model is of course an oversimplification of true mixture events, but it
is flexible enough to serve as a first-order approximation.

Our point-admixture model is amenable to allele frequency moment analyses based on
f -statistics (Reich et al., 2009; Patterson et al., 2012). We primarily make use of the statistic
f2(A,B) := ES[(pA − pB)2], where pA and pB are allele frequencies in populations A and
B, and ES denotes the mean over all SNPs. Expected values of f2 can be written in terms
of admixture tree parameters as described in Appendix C.1. Linear combinations of f2
statistics can also be used to form the quantities f3(C;A,B) := ES[(pC − pA)(pC − pB)] and
f4(A,B;C,D) := ES[(pA − pB)(pC − pD)], which form the bases of the 3- and 4-population
tests for admixture, respectively. For all of our f -statistic computations, we use previously
described unbiased estimators (Reich et al., 2009; Patterson et al., 2012).

3.5.2 Constructing an unadmixed scaffold tree

Our MixMapper admixture-tree-building procedure consists of two phases (Figure 3.1), the
first of which selects a set of unadmixed populations to use as a scaffold tree. We be-
gin by computing f3 statistics (Reich et al., 2009; Patterson et al., 2012) for all triples of
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populations P1, P2, P3 in the data set and removing those populations P3 with any nega-
tive values f3(P3;P1, P2), which indicate admixture. We then use pairwise f2 statistics to
build neighbor-joining trees on subsets of the remaining populations. In the absence of
admixture, f2 distances are additive along paths on a phylogenetic tree (Appendix C.1;
cf. Patterson et al. (2012)), meaning that neighbor-joining should recover a tree with leaf-
to-leaf distances that are completely consistent with the pairwise f2 data (Saitou and Nei,
1987). However, with real data, the putative unadmixed subsets are rarely completely ad-
ditive, meaning that the fitted neighbor-joining trees have residual errors between the in-
ferred leaf-to-leaf distances and the true f2 statistics. These deviations from additivity are
equivalent to non-zero results from the 4-population test for admixture (Reich et al., 2009;
Patterson et al., 2012). We therefore evaluate the quality of each putative unadmixed tree
according to its maximum error between fitted and actual pairwise distances: for a tree T
having distances d between populations P and Q, the deviation from additivity is defined
as max{|d(P,Q)− f2(P,Q)| : P,Q ∈ T}. MixMapper computes this deviation on putatively
unadmixed subsets of increasing size, retaining a user-specified number of best subsets of
each size in a “beam search” procedure to avoid exponential complexity.

Because of model violations in real data, trees built on smaller subsets are more additive,
but they are also less informative; in particular, it is beneficial to include populations from
as many continental groups as possible in order to provide more potential branch points for
admixture fitting. MixMapper provides a ranking of the most additive trees of each size as
a guide from which the user chooses a suitable unadmixed scaffold. Once the rank-list of
trees has been generated, subject to some constraints (e.g., certain populations required), the
user can scan the first several most additive trees for a range of sizes, looking for a balance
between coverage and accuracy. This can also be accomplished by checking whether removing
a population from a proposed tree results in a substantial additivity benefit; if so, it may be
wise to eliminate it. Similarly, if the population removed from the tree can be modeled well
as admixed using the remaining portion of the scaffold, this provides evidence that it should
not be part of the unadmixed tree. Finally, MixMapper adjusts the scaffold tree that the
user ultimately selects by re-optimizing its branch lengths (maintaining the topology inferred
from neighbor-joining) to minimize the sum of squared errors of all pairwise f2 distances.

Within the above guidelines, users should choose the scaffold tree most appropriate for
their purposes, which may involve other considerations. In addition to additivity and overall
size, it is sometimes desirable to select more or fewer populations from certain geographical,
linguistic, or other categories. For example, including a population in the scaffold that is
actually admixed might not affect the inferences as long as it is not too closely related to
the admixed populations being modeled. At the same time, it can be useful to have more
populations in the scaffold around the split points for an admixed population of interest
in order to obtain finer resolution on the branch positions of the mixing populations. For
human data in particular, the unadmixed scaffold is only a modeling device; the populations
it contains likely have experienced at least a small amount of mixture. A central goal in
building the scaffold is to choose populations such that applying this model will not interfere
with the conclusions obtained using the program. The interactive design of MixMapper
allows the user to tweak the scaffold tree very easily in order to check robustness, and in our
analyses, conclusions are qualitatively unchanged for different scaffolds (Figures C.2–C.3;
Tables C.1–C.3).
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3.5.3 Two-way admixture fitting

The second phase of MixMapper begins by attempting to fit additional populations indepen-
dently as simple two-way admixtures between branches of the unadmixed tree (Figure 3.1).
For a given admixed population, assuming for the moment that we know the branches from
which the ancestral mixing populations split, we can construct a system of equations of f2
statistics that allows us to infer parameters of the mixture (Appendix C.1). Specifically, the
squared allele frequency divergence f2(M,X ′) between the admixed population M and each
unadmixed population X ′ can be expressed as an algebraic combination of known branch
lengths along with four unknown mixture parameters: the locations of the split points on
the two parental branches, the combined terminal branch length, and the mixture fraction
(Figure 3.2A). To solve for the four unknowns, we need at least four unadmixed populations
X ′ that produce a system of four independent constraints on the parameters. This condition
is satisfied if and only if the data set contains two populations X ′1 and X ′2 that branch from
different points along the lineage connecting the divergence points of the parent populations
from the unadmixed tree (Appendix C.1). If the unadmixed tree contains n > 4 populations,
we obtain a system of n equations in the four unknowns that in theory is dependent. In
practice, the equations are in fact slightly inconsistent because of noise in the f2 statistics
and error in the point-admixture model, so we perform least-squares optimization to solve
for the unknowns; having more populations helps reduce the impact of noise.

Algorithmically, MixMapper performs two-way admixture fitting by iteratively testing
each pair of branches of the unadmixed tree as possible sources of the two ancestral mixing
populations. For each choice of branches, MixMapper builds the implied system of equations
and finds the least-squares solution (under the constraints that unknown branch lengths are
nonnegative and the mixture fraction α is between 0 and 1), ultimately choosing the pair
of branches and mixture parameters producing the smallest residual norm. Our procedure
for optimizing each system of equations uses the observation that upon fixing α, the system
becomes linear in the remaining three variables (Appendix C.1). Thus, we can optimize
the system by performing constrained linear least squares within a basic one-parameter
optimization routine over α ∈ [0, 1]. To implement this approach, we applied MATLAB’s
lsqlin and fminbnd functions with a few auxiliary tricks to improve computational efficiency
(detailed in the code).

3.5.4 Three-way admixture fitting

MixMapper also fits three-way admixtures, i.e., those for which one parent population is
itself admixed (Figure 3.2B). Explicitly, after an admixed population M1 has been added
to the tree, MixMapper can fit an additional user-specified admixed population M2 as a
mixture between the M1 terminal branch and another (unknown) branch of the unadmixed
tree. The fitting algorithm proceeds in a manner analogous to the two-way mixture case:
MixMapper iterates through each possible choice of the third branch, optimizing each im-
plied system of equations expressing f2 distances in terms of mixture parameters. With two
admixed populations, there are now 2n+ 1 equations, relating observed values of f2(M1, X

′)
and f2(M2, X

′) for all unadmixed populations X ′, and also f2(M1,M2), to eight unknowns:
two mixture fractions, α1 and α2, and six branch length parameters (Figure 3.2B). Fixing
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α1 and α2 results in a linear system as before, so we perform the optimization using MAT-
LAB’s lsqlin within fminsearch applied to α1 and α2 in tandem. The same mathematical
framework could be extended to optimizing the placement of populations with arbitrarily
many ancestral admixture events, but for simplicity and to reduce the risk of overfitting, we
chose to limit this version of MixMapper to three-way admixtures.

3.5.5 Expressing branch lengths in drift units

All of the tree-fitting computations described thus far are performed using pairwise distances
in f2 units, which are mathematically convenient to work with owing to their additivity along
a lineage (in the absence of admixture). However, f2 distances are not directly interpretable
in the same way as genetic drift D, which is a simple function of time and population size:

D ≈ 1− exp(−t/2Ne) ≈ 2 · FST ,

where t is the number of generations and Ne is the effective population size (Nei, 1987).
To convert f2 distances to drift units, we apply a new formula, dividing twice the f2-length
of each branch by the heterozygosity value that we infer for the ancestral population at
the top of the branch (Appendix C.2). Qualitatively speaking, this conversion corrects
for the relative stretching of f2 branches at different portions of the tree as a function of
heterozygosity (Patterson et al., 2012). In order to infer ancestral heterozygosity values
accurately, it is critical to use SNPs that are ascertained in an outgroup to the populations
involved, which we address further below.

Before inferring heterozygosities at ancestral nodes of the unadmixed tree, we must first
determine the location of the root (which is neither specified by neighbor-joining nor in-
volved in the preceding analyses). MixMapper does so by iterating through branches of the
unadmixed tree, temporarily rooting the tree along each branch, and then checking for con-
sistency of the resulting heterozygosity estimates. Explicitly, for each internal node P , we
split its present-day descendants (according to the re-rooted tree) into two groups G1 and
G2 according to which child branch of P they descend from. For each pair of descendants,
one from G1 and one from G2, we compute an inferred heterozygosity at P (Appendix C.2).
If the tree is rooted properly, these inferred heterozygosities are consistent, but if not, there
exist nodes P for which the heterozygosity estimates conflict. MixMapper thus infers the
location of the root as well as the ancestral heterozygosity at each internal node, after which
it applies the drift length conversion as a post-processing step on fitted f2 branch lengths.

3.5.6 Bootstrapping

In order to measure the statistical significance of our parameter estimates, we compute boot-
strap confidence intervals (Efron, 1979; Efron and Tibshirani, 1986) for the inferred branch
lengths and mixture fractions. Our bootstrap procedure is designed to account for both the
randomness of the drift process at each SNP and the random choice of individuals sampled
to represent each population. First, we divide the genome into 50 evenly-sized blocks, with
the premise that this scale should easily be larger than that of linkage disequilibrium among
our SNPs. Then, for each of 500 replicates, we resample the data set by (a) selecting 50 of
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these SNP blocks at random with replacement; and (b) for each population group, selecting
a random set of individuals with replacement, preserving the number of individuals in the
group.

For each replicate, we recalculate all pairwise f2 distances and present-day heterozygosity
values using the resampled SNPs and individuals (adjusting the bias-correction terms to
account for the repetition of individuals) and then construct the admixture tree of interest.
Even though the mixture parameters we estimate—branch lengths and mixture fractions—
depend in complicated ways on many different random variables, we can directly apply the
nonparametric bootstrap to obtain confidence intervals (Efron and Tibshirani, 1986). For
simplicity, we use a percentile bootstrap; thus, our 95% confidence intervals indicate 2.5 and
97.5 percentiles of the distribution of each parameter among the replicates.

Computationally, we parallelize MixMapper ’s mixture-fitting over the bootstrap repli-
cates using MATLAB’s Parallel Computing Toolbox.

3.5.7 Evaluating fit quality

When interpreting admixture inferences produced by methods such as MixMapper , it is
important to ensure that best-fit models are in fact accurate. While formal tests for goodness
of fit do not generally exist for methods of this class, we use several criteria to evaluate the
mixture fits produced by MixMapper and distinguish high-confidence results from possible
artifacts of overfitting or model violations.

First, we can compare MixMapper results to information obtained from other methods,
such as the 3-population test (Reich et al., 2009; Patterson et al., 2012). Negative f3 values
indicate robustly that the tested population is admixed, and comparing f3 statistics for
different reference pairs can give useful clues about the ancestral mixing populations. Thus,
while the 3-population test relies on similar data to MixMapper , its simpler form makes it
useful for confirming that MixMapper results are reasonable.

Second, the consistency of parameter values over bootstrap replicates gives an indication
of the robustness of the admixture fit in question. All results with real data have some amount
of associated uncertainty, which is a function of sample sizes, SNP density, intra-population
homogeneity, and other aspects of the data. Given these factors, we place less faith in
results with unexpectedly large error bars. Most often, this phenomenon is manifested in
the placement of ancestral mixing populations: for poorly fitting admixtures, branch choices
often change from one replicate to the next, signaling unreliable results.

Third, we find that results where one ancestral population is very closely related to the
admixed population and contributes more than 90% of the ancestry are often unreliable.
We expect that if we try to fit a non-admixed population as an admixture, MixMapper
should return a closely related population as the first branch with mixture fraction α ≈ 1
(and an arbitrary second branch). Indeed, we often observe this pattern in the context
of verifying that certain populations make sense to include in the scaffold tree. Further
evidence of overfitting comes when the second ancestry component, which contributes only
a few percent, either bounces from branch to branch over the replicates, is located at the
very tip of a leaf branch, or is historically implausible.

Fourth, for any inferred admixture event, the two mixing populations must be contem-
poraneous. Since we cannot resolve the three pieces of terminal drift lengths leading to
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admixed populations (Figure 3.2A) and our branch lengths depend both on population size
and absolute time, we cannot say for sure whether this property is satisfied for any given
mixture fit. In some cases, however, it is clear that no realization of the variables could
possibly be consistent: for example, if we infer an admixture between a very recent branch
and a very old one with a small value of the total mixed drift—and hence the terminal drift
c—then we can confidently say the mixture is unreasonable.

Finally, when available, we also use prior historical or other external knowledge to guide
what we consider to be reasonable. Sometimes, the model that appears to fit the data best
has implications that are clearly historically implausible; often when this is true one or more
of the evaluation criteria listed above can be invoked as well. Of course, the most interesting
findings are often those that are new and surprising, but we subject such results to an extra
degree of scrutiny.

3.5.8 Data set and ascertainment

We analyzed a SNP data set from 934 HGDP individuals grouped in 53 populations (Rosen-
berg et al., 2002; Li et al., 2008b). Unlike most previous studies of the HGDP samples,
however, we worked with recently published data generated using the new Affymetrix Axiom
Human Origins Array (Patterson et al., 2012), which was designed with a simple ascertain-
ment scheme for accurate population genetic inference (Keinan et al., 2007). It is well known
that ascertainment bias can cause errors in estimated divergences among populations (Clark
et al., 2005; Albrechtsen et al., 2010), since choosing SNPs based on their properties in
modern populations induces non-neutral spectra in related samples. While there do exist
methods to correct for ascertainment bias (Nielsen et al., 2004), it is much more desirable
to work with a priori bias-free data, especially given that typical SNP arrays are designed
using opaque ascertainment schemes.

To avoid these pitfalls, we used Panel 4 of the new array, which consists of 163,313 SNPs
that were ascertained as heterozygous in the genome of a San individual (Keinan et al.,
2007). This panel is special because there is evidence that the San are approximately an
outgroup to all other modern-day human populations (Li et al., 2008b; Gronau et al., 2011).
Thus, while the Panel 4 ascertainment scheme distorts the San allele frequency spectrum, it
is nearly neutral with respect to all other populations. In other words, we can think of the
ascertainment as effectively choosing a set of SNPs (biased toward San heterozygosity) at
the common ancestor of the remaining 52 populations, after which drift occurs in a bias-free
manner. We excluded 61,369 SNPs that are annotated as falling between the transcription
start site and end site of a gene in the UCSC Genome Browser database (Fujita et al., 2011).
Most of the excluded SNPs are not within actual exons, but as expected, the frequency
spectra at these “gene region” loci were slightly shifted toward fixed classes relative to other
SNPs, indicative of the action of selection (Figure 3.9). Since we assume neutrality in all of
our analyses, we chose to remove these SNPs.

3.5.9 Simulations

Our first simulated tree was generated using the ms (Hudson, 2002) command
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Figure 3.9. Comparison of allele frequency spectra within and outside gene
regions. We divided the Panel 4 (San-ascertained) SNPs into three groups: those outside
gene regions (101,944), those within gene regions but not in exons (58,110), and those
within coding regions (3259). Allele frequency spectra restricted to each group are shown
for the Yoruba population. Reduced heterozygosity within exon regions is evident, which
suggests the action of purifying selection. (Inset) We observe the same effect in the genic,
non-coding spectrum; it is less noticeable but can be seen at the edge of the spectrum.
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ms 350 500 -t 50 -r 99.9998 500000 -I 7 50 50 50 50 50 50 50 -n 7 2 -n 1 2

-n 2 2 -ej 0.04 2 1 -es 0.02 6 0.4 -ej 0.06 6 3 -ej 0.04 8 5 -ej 0.08 5 4 -ej

0.12 4 3 -ej 0.2 3 1 -ej 0.3 1 7 -en 0.3 7 1.

After ascertainment, we used a total of 95,997 SNPs.
Our second simulated tree was generated with the command

ms 550 500 -t 50 -r 99.9998 500000 -I 11 50 50 50 50 50 50 50 50 50 50 50 -n

11 2 -n 1 2 -n 2 2 -em 0.002 4 3 253.8 -em 0.004 4 3 0 -es 0.002 8 0.2 -en

0.002 8 2 -ej 0.02 8 2 -ej 0.02 4 5 -ej 0.04 2 1 -ej 0.04 5 3 -es 0.04 12 0.4

-es 0.04 9 0.2 -em 0.042 10 9 253.8 -em 0.044 10 9 0 -ej 0.06 12 7 -ej 0.06

9 7 -ej 0.06 14 10 -ej 0.06 13 10 -ej 0.08 7 6 -ej 0.12 6 3 -ej 0.16 10 3 -ej

0.2 3 1 -ej 0.3 1 11 -en 0.3 11 1.

After ascertainment, we used a total of 96,258 SNPs. When analyzing this data set in
TreeMix , we chose to fit a total of five admixtures based on the residuals of the pairwise
distances (maximum of approximately 3 standard errors) and our knowledge that this is the
number in the true admixture tree (in order to make for a fair comparison).

3.5.10 Software

Source code for the MixMapper software is available at http://groups.csail.mit.edu/

cb/mixmapper/.
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Appendix A

Supporting Information for
Compression-Accelerated Search

A.1 CaBLAST

This section describes our compressive implementation of BLAST (Altschul et al., 1990),
herein called CaBLAST (Compression-accelerated BLAST). The algorithm is schematically
depicted in Figure 1.2.

A.1.1 Preprocessing phase

Conceptually, the preprocessing phase of CaBLAST (Fig. 1.2A) views the original database
as an incoming stream of DNA, reading it base by base (with distinct sequences from the
database processed in any order) while building four main data structures: the unique
database and list of link pointers with corresponding edit scripts—together forming
the compressed output of the preprocessing phase—along with a table of seed 10-mer
locations used internally during preprocessing. As sequence data is processed, it is either:

(a) aligned to existing sequence data in the unique database and represented using a link
pointer and edit script; or

(b) added to the unique database (with information about its origin), in which case its
10-mers are added to the table of seeds.

Thus, the unique database roughly contains non-redundant data from the original database,
while redundant data is represented using link pointers and edit scripts. For convenience,
we refer to the link pointers and edit scripts together as the links table.

The main algorithmic challenge in preprocessing is to efficiently identify redundancy
within the original database: as we process incoming data, we need to quickly determine
whether it aligns well to any part of the unique database being built. We do so by using
the seed 10-mer table to rapidly identify seed matches which we then attempt to extend to
longer alignments, similar to BLAT (Kent, 2002).

While the overall approach is fairly straightforward, a few important subtleties arise.
First, because both matches stored in the links table and sequence data saved to the unique
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database are likely to consist of sequence fragments rather than complete entries from the
original database, it is necessary for the purpose of maintaining search accuracy to lengthen
saved fragments so that they overlap (see below for further discussion). Our implementation
stores an overlap of 100 bases at transitions between adjacent fragments. The overlap results
in an overhead cost per fragment; consequently, we only apply link replacement to alignments
of length at least 300 during preprocessing.

Additionally, repetitive genomic elements create anomalously high numbers of matches
to a small number of (low-complexity) 10-mer seeds that would substantially reduce per-
formance. Our current implementation circumvents this problem by capping the number of
locations stored for a given seed at 500; in practice, aligning regions typically contain at least
some seeds that are not of low-complexity and thus the loss of compression is negligible.

We now describe the algorithm more explicitly. The preprocessing phase maintains two
pointers that keep track of progress through the incoming data stream:

• a current base pointer to the current location being processed; and

• a last-fragment pointer to the end of the sequence fragment most recently aligned
or copied to the unique database,

and proceeds as follows:

1. Initialize unique database by copying first 10,000 bases of original database; set current
base pointer and last-fragment pointer to end of initial region. Initialize table of seed
locations with all 10-mers occurring in the copied region. Initialize links table as empty.

2. (Begin loop.) Advance current base pointer one base. Look up 10-mer seed ending at
current pointer position, along with its reverse complement, in table of seed locations.

3. For each seed match from table, attempt to extend match (as detailed in next subsec-
tion). If extended match of length at least 300 is found:

(a) Augment links table with link to match and edit script allowing reconstruction
(details below).

(b) Augment unique database with copy of original sequence data preceding alignment
that is unaccounted for in unique database: specifically, bases from last-fragment
pointer (minus 100 bases) to start of current alignment (plus 100 bases).

(c) Augment table of seed locations with locations (in the unique database) of all
10-mers occuring in the copied region.

(d) Move current base pointer and last-fragment pointer to end of alignment and go
back to step 2.

4. If 10,000 bases have been processed with no alignments found, copy 10,000-base chunk
to unique database, augment table of seed locations accordingly, move both pointers
to end of chunk, and go back to step 2. Otherwise, go back directly to step 2.
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A.1.2 Details of alignment extension during preprocessing

CaBLAST must rapidly check if a 10-mer seed match extends to an alignment of length
300 or more, allowing only a limited amount of mutation in any chunk of consecutive bases.
With this intuition, the algorithm attempts extension in each direction by hopping between
matching 4-mers. The extension procedure alternates between the following two steps:

1. Attempt ungapped extension. Scan forward along both sequences looking for the next
4-mer match assuming no gaps. When no 4-mer match is found within 10 bases or
when there is less than 50% sequence identity between one 4-mer match and the next,
move on to step 2.

2. Attempt gapped extension by local dynamic programming on the next 25 bases of each
sequence. Tentatively extend the alignment by taking the path through the dynamic
programming table containing the most matching bases. Along this path, identify
matching 4-mers and extend the alignment to each successive 4-mer match that occurs
within 10 bases of the previous and with at least 50% identity in between (as in step
1). If no acceptable 4-mer match is found, quit. Otherwise, restart step 1 after the
last successful extension to a 4-mer match.

The final alignment is accepted as a match if it has length at least 300 and sequence identity
exceeding a user-specified threshold (70-90%) in every 100-base window of the alignment.

A.1.3 Edit script compression

Upon identifying a suitable alignment between a sequence fragment and a reference section of
the unique database, the sequence data contained in the fragment is compressed by encoding
the fragment as a pointer to the original sequence along with a string containing a series
of edits that can be applied to the reference segment to produce the aligned fragment. As
high sequence identity between the aligned fragments can be assumed from the alignment
step, edits can be treated efficiently as islands of difference surrounded by regions of exact
matching.

For each differing island, we store a character indicating whether the modification is an
insertion (i) or substitution/deletion (s). We then indicate the number of bases (encoded in
octal) since the previous edit, counting along the reference segment, and finally the sequence
to insert or substitute. Note here that deletions are treated as substitutions of dashes for
the reference bases. Thus, for the following pair of aligned sequences (reference on top,
substitutions/deletions in red, insertions in blue for clarity):

GTTCACTTATGTATTC--ATATGATTTTGGCAA

GTTCACG--TGTATATTTATATAATTTTGGCAA

we generate the following edit script (every other command in green for clarity):

s6G--s10ATi2TTs6A

We precede each edit script by a 0 or 1, indicating whether the pair of aligned sequences is
same-strand or reverse complemented, and also delineating the end of an edit script: on disk,
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all the edits are concatenated into a single file. The full character set used by the edit scripts
thus consists of 16 characters (0–7, A, C, G, T, N, –, i, s) allowing a 4-bit-per-character
encoding.

We store pointers in a separate file. Each link pointer contains 20 bytes of information:
the start index of the aligned fragment within its originating sequence (4 bytes), the start
index of the reference fragment within the unique database (4 bytes), the start index of the
edit script within the scripts file (4 bytes), and the lengths of the two aligned sequences (2
bytes each). (Some of this information can be deduced from the edit scripts, but since we
build a data structure containing this information for use during search, we included it all in
the links table files so as to truly be searching the compressed data without decompressing.)

A.1.4 Choice of parameters

Many constants appear in the above description of our implementation. We did not attempt
to optimize all of the various parameters as we intended CaBLAST simply to be a working
prototype rather than a recipe for best performance, but the rough rationale and engineering
trade-offs involved in each are as follows.

We chose 10,000 bases as the maximum chunk size in order to be large enough to make the
impact of link overhead minimal, while small enough to be able to decode hit regions within
chunks without an excessive amount of decoding of extraneous regions. The 10,000-base
limit also conveniently fit within a 2-byte integer.

We set the overlap of consecutive fragments to 100 bases so that a hit spanning consec-
utive fragments would likely be picked up as a hit to at least one of them; 100 bases was
sufficient for this at typical search sensitivity thresholds for BLAST and BLAT. We then
lower-bounded usable fragment lengths by 300 bases to reduce the impact of the overhead
cost of overlaps.

As for the alignment extension parameters, all were chosen to strike a reasonable balance
between preprocessing speed and gap extension sensitivity. The basic idea is to run dynamic
programming on a limited scale in order to detect gaps but give up when further alignment
extension seems improbable, so as not to slow down the preprocessing. The parameters
reported are simply the ones we tried initially which performed adequately for this purpose.

Finally, the percentage identity requirement on 100-base windows of alignments repre-
sents a more significant trade-off between search sensitivity and compression; we discuss this
in detail later in this supplement.

A.1.5 Runtime of preprocessing

Algorithmically, the runtime of the CaBLAST preprocessing phase is in between linear and
quadratic (with an extremely small constant factor) in the database size depending on the
amount of structure in the database. This phase has to be run only once to create the
searchable unique database plus links table; there is no need to run it for subsequent searches.
The quadratic scaling arises on unstructured sequence data because at each position, the
expected number of seed matches found roughly equals the current size of the unique database
divided by the number of different seeds—in our 10-mer implementation, close to one million.
When the original database contains significant regions of similarity, however, the runtime
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is closer to linear: in such situations, alignment extension (which takes time only linear in
the alignment length) accounts for most of the bases processed; seed matches need only be
looked up at the small fraction of positions between alignments. The upshot is that the
runtime performance of preprocessing is highly data-dependent.

In practice, we did not take pains to optimize our code for speed and were satisfied being
able to complete runs on a standard workstation in a convenient amount of time for testing
(a few minutes for 750MB of closely-related microbial sequences and under an hour for 1GB
worth of more divergent fly genomes). We are confident that this runtime could be reduced
substantially if desired, either by code optimization or by increasing seed lengths to reduce
the rate of seed match lookups (at the cost of finding slightly fewer alignments).

A.1.6 Search phase

The search phase of CaBLAST (Fig. 1.2B) applies the procedure below given a query along
with coarse and final E-value thresholds:

1. Coarse BLAST. BLAST the query against the unique database to find hits passing the
coarse E-value threshold.

2. Link-tracing. For each hit in the unique database, check the links table for other
sequence segments outside the unique database that align to the hit region; recover
original sequence segments corresponding to the hit by local decompression using stored
edit scripts. Extend these segments by 50 bases on each side (in case the linked regions
admit longer alignments to the query than the initial hit).

3. Fine BLAST. Re-BLAST against the expanded hits using the final E-value threshold.

A.1.7 Trade-off between compression and accuracy

The percent identity threshold per 100-base window, used during preprocessing to decide
whether an alignment qualifies as a link, is of interest because it represents a trade-off
between compression and accuracy: relaxing the threshold allows greater database reduction
and hence search speedup, but also increases the risk of overlooking alignments during search,
due to greater differences between original sequence fragments and their representatives in
the unique database. To quantify this trade-off, we ran the CaBLAST preprocessing phase
with 100-base identity thresholds ranging from 70-90% on microbial datasets (as discussed in
the main text) as well as Drosophila subtrees. As expected, accuracy improves while search
speedup decreases as the similarity threshold is made stricter (Fig. 1.9). The best parameter
choice thus depends on the target application; in our computations we used 80% for the fly
genomes and 85% for the microbial datasets.

A.2 CaBLAT

We applied our compressive framework to BLAT in a manner directly analogous to our use of
BLAST in the coarse and fine search phases. Specifically, we perform the same preprocessing
phase as before to create a unique database and links table.
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We then call BLAT directly on the unique database for the coarse search, parse the
output (in tab-delimited psl format), perform link-tracing, and regenerate likely hit regions
of the original library using the edit scripts from the links table, and finally call BLAT’s
internal ffFind() (“fuzzyfind”) and scoreAli() routines on these regions to match BLAT’s
alignment and scoring. Note that BLAT by default uses a simple score threshold based on
matches and mismatches between query and target as opposed to BLAST’s E-value; thus,
we used BLAT’s minIdentity parameter for coarse and fine search thresholding. In our
tests we used the default value of 90 for the final threshold and 80 for the coarse threshold.

A minor technical difference is that BLAT appears to perform slightly better when se-
quence chunks in the unique database are stored as separate entries, whereas BLAST per-
forms better when all sequences in the unique database are concatenated into one large
sequence. We tuned our implementations accordingly. Additionally, BLAT’s fuzzyfind algo-
rithm which we used for fine alignment was noticeably more efficient when given hit regions
cropped closer to the aligning fragments, so we padded hit regions by only 10 bases during
CaBLAT link-tracing.

A.3 Simulated BLAST/BLAT queries

We generated simulated BLAST and BLAT queries by sampling genomic fragments from
the genomic library being tested (e.g., for the melanogaster subgroup, we took from the
melanogaster subgroup; for bacteria genera we sampled from the appropriate genus) and then
applying random perturbations. More precisely, we randomly selected sequence fragments
of random lengths up to 200, after which we replaced a random percentage (0-100%) of the
bases in each fragment with random bases. Finally, we rejected a small proportion of these
fragments (2% or less), typically from low-complexity regions of the genomes, that aligned to
anomalously large numbers of sequence regions and would otherwise have skewed our results.

A.4 Simulated genomes

To simulate clades of recently-diverged species, we used INDELible v1.03 (Fletcher and Yang,
2009), a tool for simulating genome evolution. We used default evolutionary parameters both
for the phylogenetic birth-death model and for base-level mutation (JC base substitution
probabilities, a geometric indel length distribution, and insertion and deletion rates of 0.08
and 0.12, respectively, relative to the substitution rate).

A.4.1 Fairly testing CaBLAT vs. BLAT

Before performing search, BLAT by default processes the search database indexing k-mers;
the time taken by this step can account for a significant amount of BLAT’s runtime. For a
given query set, we therefore ran BLAT (resp. CaBLAT) on the query set (10,000 simulated
queries) followed by a second run on a set containing all queries twice. This does not change
the size of the compiled data structure. As initialization time is independent of the number
of queries, the difference in times between the two runs gives the time taken for search alone.
(To avoid timing discrepancies due to caching of previous files in memory after access, we
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also preceded this procedure by running the query once first, ignoring the results.) We report
the average of five runs.

A.5 Implementation and testing

We implemented CaBLAST and CaBLAT in C++ using the NCBI C++ Toolkit (Version
7.0.0, May 2011) and version 34 of the BLAT source tree, respectively, both for reference
runs and in direct calls during the CaBLAST and CaBLAT coarse and fine search phases.
Source code is available online at cast.csail.mit.edu.

We performed tests on the microbial datasets on a 3.33 GHz Intel Xeon X5680 CPU with
12 MB L3 cache and 48 GB RAM. We ran tests on the fly and simulated datasets on a 3.0
Ghz Intel Xeon CPU with 2 MB L2 cache and 24 GB RAM.
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Appendix B

Supporting Information for
Admixture Inference Using Linkage
Disequilbrium

B.1 Derivations of weighted LD formulas

B.1.1 Expected weighted LD using two diverged reference popu-
lations

We now derive equation (2.6) for the expected weighted LD (with respect to random drift)
using references A′ and B′ in place of A and B, retaining the notation of Figure 2.1. Let
A′ and B′ have allele frequencies pA′(·) and pB′(·), and let δ′(·) := pA′(·) − pB′(·) denote
the allele frequency divergences with which we weight the LD z(x, y), giving the two-site
statistic

a(d) := z(x, y)δ′(x)δ′(y).

(For brevity, we drop the binning procedure of averaging over SNP pairs (x, y) at distance
|x − y| ≈ d here.) The value of the random variable z(x, y) is affected by sampling noise
as well as genetic drift between A and B, while the random variables δ′(x) and δ′(y) are
outcomes of genetic drift between A′ and B′. These random variables are uncorrelated
conditional on the allele frequencies of x and y in A′′ and B′′. We also assume that x and y
are distant enough to have negligible background LD and hence the drifts at the two sites
are independent. We then have

E[a(d)] = E[z(x, y)δ′(x)δ′(y)]

= E[E[z(x, y)δ′(x)δ′(y) | pA′′(x), pB′′(x), pA′′(y), pB′′(y)]]

= E[2αβδ(x)δ(y)δ′(x)δ′(y)e−nd]

= 2αβe−ndF2(A
′′, B′′)2,

where in the last step the relation E[δ(x)δ′(x)] = E[δ(y)δ′(y)] = F2(A
′′, B′′) follows from the

fact that the intersection of the drift paths δ(·) and δ′(·) is the branch between A′′ and B′′

(Reich et al., 2009).
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B.1.2 Expected weighted LD using one diverged reference popu-
lation

Using the admixed population C as one reference and a population A′ as the other, we have
pC(·) = αpA(·) + βpB(·) (assuming negligible post-admixture drift), giving weights

δA′C(·) = pA′(·)− αpA(·)− βpB(·) = αδA′A(·) + βδA′B(·),

where δPQ denotes the allele frequency difference between populations P and Q. Arguing as
above, the expected weighted LD is given by

E[a(d)] = E[2αβδ(x)δ(y)δA′C(x)δA′C(y)e−nd].

To complete the calculation, we compute

E[δ(·)δA′C(·)] = αE[δ(·)δA′A(·)] + βE[δ(·)δA′B(·)].

For the first term, the intersection of the A–B and A′–A drift paths is the A–A′′ branch,
so E[δ(·)δA′A(·)] = −F2(A,A

′′) with the negative sign arising because the paths traverse
this branch in opposite directions. For the second term, the intersection of the A–B and
A′–B drift paths is the A′′–B branch (traversed in the same direction), so E[δ(·)δA′B(·)] =
F2(B,A

′′). Combining these results gives equation (2.8). (Note that a slight subtlety arises
now that we are using population C in our weights: sites x and y can exhibit admixture
LD at appreciable distances, so δA′C(x) and δA′C(y) are not independent. However, only the
portions of δA′C(x) and δA′C(y) arising from post-admixture drift are correlated, and this
drift is negligible for typical scenarios we study in which admixture occurred 200 or fewer
generations ago.)

B.1.3 Bounding mixture fractions using one reference

We now establish our claim in the main text that the estimator α̂ given in equation (2.12) for
the mixture fraction α is a lower bound when the reference population A′ is diverged from
A. Equation (2.12) gives a correct estimate when A′ = A but becomes an approximation
when there is genetic drift between A and A′ or between C and C ′. (For accuracy, in this
section we relax our usual assumption of negligible drift from C to C ′.)

Rearranging equation (2.12), we have by definition

2α̂

1− α̂
:=

â0
F2(A′, C ′)2

. (B.1)

From equation (2.7), the amplitude â0 is in truth given by

â0 = 2αβ(−αF2(A,A
′′) + βF2(B,A

′′))2e−n/2Ne ,

where we have included the post-admixture drift multiplier e−n/2Ne from the C–C ′ branch.
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It follows that

â0
(−αβF2(A,A′′) + β2F2(B,A′′))2

=
2α

β
e−n/2Ne <

2α

1− α
. (B.2)

We claim that F2(A
′, C ′)2 > (−αβF2(A,A

′′) + β2F2(B,A
′′))2, in which case combining

(B.1) and (B.2) gives α̂/(1− α̂) < α/(1− α) and hence α̂ < α. Indeed, we have

F2(A
′, C ′) > F2(A

′′, C)

= α2F2(A,A
′′) + β2F2(B,A

′′)

> −αβF2(A,A
′′) + β2F2(B,A

′′).

Squaring both sides appears to give our claim, but we must be careful because it is possible
for the final expression to be negative. We will assume A′ is closer to A than B, i.e.,
F2(A,A

′′) < F2(B,A
′′). Then, if α < β, the final expression is clearly positive. If α > β, we

have α2F2(A,A
′′) > αβF2(A,A

′′) and so

F2(A
′, C ′) > α2F2(A,A

′′) + β2F2(B,A
′′) > αβF2(A,A

′′)− β2F2(B,A
′′).

Thus, squaring the inequality is valid in either case, establishing our bound. From the above
we also see that the accuracy of the bound depends on the sizes of the terms that are lost
in the approximation—αF2(A,A

′′), F2(A
′, A′′) and F2(C,C

′)—relative to the term that is
kept, β2F2(B,A

′′). In particular, aside from the bound being tighter the closer A′ is to A, it
is also more useful when the reference A′ comes from the minor side α < 0.5.

B.1.4 Affine term from population substructure

In the above, we have assumed that population C is homogeneously admixed; i.e., an allele
in any random admixed individual from C has a fixed probability α of having ancestry from
A and β of having ancestry from B. In practice, many admixed populations experience
assortative mating such that subgroups within the population have varying amounts of each
ancestry. Heterogeneous admixture among subpopulations creates LD that is independent
of genetic distance and not broken down by recombination: intuitively, knowing the value of
an allele in one individual changes the prior on the ancestry proportions of that individual,
thereby providing information about all other alleles (even those on other chromosomes).
This phenomenon causes weighted LD curves to exhibit a nonzero horizontal asymptote, the
form of which we now derive.

We model assortative mating by taking α to be a random variable rather than a fixed
probability, representing the fact that individuals from different subpopulations of C have
different priors on their A ancestry. As before we set β := 1 − α and we now denote by ᾱ
and β̄ the population-wide mean ancestry proportions; thus, µx = ᾱpA(x) + β̄pB(x). We
wish to compute the expected diploid covariance E[z(x, y)], which we saw in equation (2.2)
splits into four terms corresponding to the LD between each copy of the x allele and each
copy of the y allele.

Previously, the cross-terms cov(X1, Y2) and cov(X2, Y1) vanished because a homoge-
neously mixed population does not exhibit inter-chromosome LD. Now, however, writing
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cov(X1, Y2) = E[(X1 − µx)(Y2 − µy)] as an expectation over individuals from C in the usual
way, we find if we condition on the prior α for A ancestry,

E[(X1 − µx)(Y2 − µy) | p(A ancestry) = α]

= E[X1 − µx | p(A ancestry) = α] · E[Y2 − µy | p(A ancestry) = α]

= (αpA(x) + βpB(x)− µx)(αpA(y) + βpB(y)− µy)
= ((α− ᾱ)pA(x) + (β − β̄)pB(x))((α− ᾱ)pA(y) + (β − β̄)pB(y))

= ((α− ᾱ)pA(x)− (α− ᾱ)pB(x))((α− ᾱ)pA(y)− (α− ᾱ)pB(y))

= (α− ᾱ)2δ(x)δ(y).

That is, subpopulations with different amounts of A ancestry make nonzero contributions
to the covariance. We can now compute cov(X1, Y2) by taking the expectation of the above
over the whole population (i.e., over the random variable α):

cov(X1, Y2) = E[(α− ᾱ)2δ(x)δ(y)] = var(α)δ(x)δ(y) (B.3)

and likewise for cov(X2, Y1).

To compute the same-chromosome covariance terms, we split into two cases according to
whether or not recombination has occurred between x and y since admixture. In the case
that recombination has not occurred—i.e., the ancestry of the chromosomal region between
x and y can be traced back as one single chunk to the time of admixture, which occurs with
probability e−nd—the region from x to y has ancestry from A with probability α and from
B with probability β. Thus,

E[(X1 − µx)(Y1 − µy) | no recomb, p(A ancestry) = α]

= αE[(X1 − µx)(Y1 − µy) | A ancestry] + βE[(X1 − µx)(Y1 − µy) | B ancestry]

= α(pA(x)− µx)(pA(y)− µy) + β(pB(x)− µx)(pB(y)− µy)
= α(β̄pA(x)− β̄pB(x))(β̄pA(y)− β̄pB(y)) + β(ᾱpB(x)− ᾱpa(x))(ᾱpB(y)− ᾱpA(y))

= (αβ̄2 + βᾱ2)δ(x)δ(y).

Taking the expectation over the whole population,

E[(X1 − µx)(Y1 − µy) | no recomb] = (ᾱβ̄2 + β̄ᾱ2)δ(x)δ(y) = ᾱβ̄δ(x)δ(y) (B.4)

as without assortative mating.

In the case where there has been a recombination, the loci are independent conditioned
upon the ancestry proportion α, as in our calculation of the cross-terms; hence,

E[(X1 − µx)(Y1 − µy) | recomb] = var(α)δ(x)δ(y), (B.5)

and this occurs with probability 1− e−nd.
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Combining equations (B.3), (B.4), and (B.5), we obtain

E[z(x, y)] = E[(X − µx)(Y − µy)]
= 2 var(α)δ(x)δ(y) + 2e−ndᾱβ̄δ(x)δ(y) + 2(1− e−nd)var(α)δ(x)δ(y)

= (e−nd(2ᾱβ̄ − 2 var(α)) + 4 var(α))δ(x)δ(y).

Importantly, our final expression for E[z(x, y)] still factors as the product of a d-dependent
term—now an exponential decay plus a constant—and the allele frequency divergences
δ(x)δ(y). As it is the product δ(x)δ(y) that interacts with our various weighting schemes,
the formulas that we have derived for the weighted LD curve E[a(d)]—equations (2.4), (2.6),
(2.7), and (2.8)—retain the same factors involving F2 distances and change only in the
replacement of 2αβe−nd with e−nd(2ᾱβ̄ − 2 var(α)) + 4 var(α).

B.2 Testing for admixture

Here we provide details of the weighted LD-based test for admixture we implement in
ALDER. The test procedure is summarized in the main text; we focus here on technical
aspects not given explicitly in Methods.

B.2.1 Determining the extent of LD correlation

The first step of ALDER estimates the distance to which LD in the test population is corre-
lated with LD in each reference population. Such correlation suggests shared demographic
history that can confound the ALD signal, so it is important to determine the distance to
which LD correlation extends and analyze weighted LD curves â(d) only for d greater than
this threshold. Our procedure is as follows. We successively compute LD correlation for
SNP pairs (x, y) within distance bins dk < |x − y| < dk+1, where dk = kr for some bin
resolution r (0.05 cM by default). For each SNP pair (x, y) within a bin, we estimate the
LD (i.e., sample covariance between allele counts at x and y) in the test population and the
LD in the reference population. We then form the correlation coefficient between the test
LD estimates and reference LD estimates over all SNP pairs in the bin. We jackknife over
chromosomes to estimate a standard error on the correlation, and we set our threshold after
the second bin for which the correlation is insignificant (p > 0.05). To reduce dependence
on sample size, we then repeat this procedure with successively increasing resolutions up to
0.1 cM and set the final threshold as the maximum of the cutoffs obtained.

B.2.2 Determining significance of a weighted LD curve

To define a formal test for admixture based on weighted LD, we need to estimate the sig-
nificance of an observed weighted LD curve â(d). This question is statistically subtle for
several reasons. First, the null distribution of the curve â(d) is complex. Clearly the test
population C should not be admixed under the null hypothesis, but as we have discussed,
shared demography—particularly bottlenecks—can also produce weighted LD. We circum-
vent this issue by using the pre-tests described in the next section and assume that if the
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test triple (C;A′, B′) passes the pre-tests, then under the null hypothesis, non-admixture
demographic events have negligible effect on weighted LD beyond the correlation threshold
computed above. Even so, the â(d) curve still cannot be modeled as random white noise:
because SNPs contribute to multiple bins, the curve typically exhibits noticeable autocorre-
lation. Finally, even if we ignore the issue of colored noise, the question of distinguishing a
curve of any type—in our case, an exponential decay—from noise is technically subtle: the
difficulty is that a singularity arises in the likelihood surface when the amplitude vanishes,
which is precisely the hypothesis that we wish to test (Davies, 1977).

In light of these considerations, we estimate a p-value using the following procedure,
which we feel is well-justified despite not being entirely theoretically rigorous. We perform
jackknife replicates of the â(d) curve computation and fitting, leaving out one chromosome
in each replicate, and estimate a standard error for the amplitude and decay constant of
the curve using the usual jackknife procedure. We obtain a “z-score” for the amplitude
and the decay constant by dividing each by its estimated standard error. Finally, we take
the minimum (i.e., less-significant) of these z-scores and convert it to a p-value assuming it
comes from a standard normal; we report this p-value as our final significance estimate.

Our intuition for this procedure is that checking the “z-score” of the decay constant
essentially tells us whether or not the exponential decay is well-determined: if the â(d) curve
is actually just noise, then the fitting of jackknife replicates should fluctuate substantially. On
the other hand, if the â(d) curve has a stable exponential decay constant, then we have good
evidence that â(d) is actually well-fit by an exponential—and in particular, the amplitude
of the exponential is nonzero, meaning we are away from the singularity. In this case the
technical difficulty is no longer an issue and the jackknife estimate of the amplitude should
in fact give us a good estimate of a z-score that is approximately normal under the null.
The “z-score” for the decay constant certainly is not normally distributed—in particular, it
is always positive—but taking the minimum of these two scores only makes the test more
conservative.

Perhaps most importantly, we have compelling empirical evidence that our z-scores are
well-behaved under the null. We applied our test to nine HGDP populations that neither
ALDER nor the 3-population test identified as admixed; for each test population, we used as
references all populations with correlated LD detectable to no more than 0.5 cM. These test
triples thus comprise a suite of approximately null tests. We computed Q-Q plots for the
reported z-scores and observed that for z > 0 (our region of interest), our reported z-scores
follow the normal distribution reasonably well, generally erring slightly on the conservative
side (Figure B.1). These findings give strong evidence that our significance calculation
is sufficiently accurate for practical purposes; in reality, model violation is likely to exert
stronger effects than the approximation error in our p-values, and although our empirical
tests cannot probe the tail behavior of our statistic, for practical purposes the precise values
of p-values less than, say, 10−6 are generally inconsequential.

B.2.3 Pre-test thresholds

To ensure that our test is applicable to a given triple (C;A′, B′), we need to rule out the possi-
bility of demography producing non-admixture-related weighted LD. We do so by computing
weighted LD curves for C with weights A′–B′, A′–C, and B′–C and fitting an exponential
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Figure B.1. Q-Q plots comparing ALDER z-scores to standard normal on null examples.
We show results from nine HGDP populations that neither ALDER nor the 3-population
test found to be admixed. We are interested in values of z > 0; the Q-Q plots show that
these values follow the standard normal reasonably well, tending to err on the conservative
side.
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A’ B’C

shared
bottleneck

Figure B.2. Non-admixture-related demography producing weighted LD curves. The test
population is C and references are A′ and B′; the common ancestor of A′ and C experienced
a recent bottleneck from which C has not yet recovered, leaving long-range LD in C that is
potentially correlated to all three possible weighting schemes (A′–B′, A′–C, and B′–C).

to each curve. To eliminate the possibility of a shared ancestral bottleneck between C and
one of the references, we check that the three estimated amplitudes and decay constants are
well-determined; explicitly, we compute a jackknife-based standard error for each parameter
and require the implied p-value for the parameter being positive to be less than 0.05. If so,
we conclude that whatever LD is present is due to admixture, not other demography, and
we report the p-value estimate defined above for the significance of the A′–B′ curve as the
p-value of our test.

We are aware of one demographic scenario in which the ALDER test could potentially
return a finding of admixture when the test population is not in fact admixed. As illustrated
in Figure B.2, this would occur when A′ and C have experienced a shared bottleneck and C
has subsequently had a further period of low population size. We do not believe that we have
ever encountered such a false positive admixture signal, but to guard against it, we note that
if it were to occur, the three decay time constants for the reference pairs A′–B′, A′–C, and
B′–C would disagree. Thus, along with the test results, ALDER returns a warning whenever
the three best-fit values of the decay constant do not agree to within 25%.

B.2.4 Multiple-hypothesis correction

In determining statistical significance of test results when testing a population using many
pairs of references, we apply a multiple-hypothesis correction that takes into account the
number of tests being run. Because some populations in the reference set may be very
similar, however, the tests may not be independent. We therefore compute an effective
number nr of distinct references by running PCA on the allele frequency matrix of the
reference populations; we take nr to be the number of singular values required to account
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for 90% of the total variance. Finally, we apply a Bonferroni correction to the p-values from
each test using the effective number

(
nr

2

)
of reference pairs.

B.3 Coalescent simulations

Here we further validate and explore the properties of weighted LD with entirely in silico
simulations using the Markovian coalescent simulator MaCS (Chen et al., 2009). These
simulations complement the exposition in the main text in which we constructed simulated
admixed chromosomes by piecing together haplotype fragments from real HapMap individ-
uals.

B.3.1 Effect of divergence and drift on weighted LD amplitude

To illustrate the effect of using reference populations with varying evolutionary distances
from true mixing populations, we performed a set of four simulations in which we varied
one reference population in a pair of dimensions: (1) time depth of divergence from the true
ancestor, and (2) drift since divergence. In each case, we simulated individuals from three
populations A′, C ′, and B′, with 22% of C ′s ancestry derived from a pulse of admixture
40 generations ago from B, where A′ and B′ diverged 1000 generations ago. We simulated
5 chromosomes of 100 Mb each for 20 diploid individuals from each of A′ and B′ and 30
individuals from C ′, with diploid genotypes produced by randomly combining pairs of haploid
chromosomes. We assumed an effective population size of 10,000 and set the recombination
rate to 10−8. We set the mutation rate parameter to 10−9 to have the same effect as using
a mutation rate of 10−8 and then thinning the data by a factor of 10 (as it would otherwise
have produced an unnecessarily large number of SNPs). Finally, we set the MaCS history
parameter (the Markovian order of the simulation, i.e., the distance to which the full ancestral
recombination graph is maintained) to 104 bases.

For the first simulation (Figure 2.2A), we set the divergence of A′ and C ′ to be immedi-
ately prior to the gene flow event, altogether resulting in the following MaCS command:

macs 140 1e8 -i 5 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 60 -em 0.001 3 2

10000 -em 0.001025 3 2 0 -ej 0.001025 1 3 -ej 0.025 2 3

For the second simulation (Figure 2.2B), we increased the drift along the A′ terminal branch
by reducing the population size by a factor of 20 for the past 40 generations:

-en 0 1 0.05 -en 0.001 1 1

For the third and fourth simulations (Figure 2.2C,D), we changed the divergence time of A′

and C ′ from 41 to 520 generations, half the distance to the root:

-ej 0.001025 1 3 -> -ej 0.013 1 3

We computed weighted LD curves using A′–B′ references (Figure 2.2), and the results
corroborate our derivation and discussion of equation (2.6). In all cases, the estimated date
of admixture is within statistical error of the simulated 40-generation age. The amplitude of
the weighted LD curve is unaffected by drift in A′ but is substantially reduced by the shorter
distance F2(A

′′, B′′) in the latter two simulations. Increased drift to A′ does, however, make
the weighted LD curves in the right two panels somewhat noisier than the left two.
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B.3.2 Validation of pre-test criteria in test for admixture

To understand the effects of the pre-test criteria stipulated in our LD-based test for admix-
ture, we simulated a variety of population histories with and without mixture. In each case
we used the same basic parameter settings as above, except we set the root of each tree to
be 4000 generations ago and we simulated 10 chromosomes for each individual instead of 5.

Scenario 1

True admixture 40 generations ago; reference A′ diverged 400 generations ago (similar to
Figure 2.2C). All pre-tests pass and the our test correctly identifies admixture.

Scenario 2

True admixture 40 generations ago; reference A′ diverged 41 generations ago (similar to
Figure 2.2A). Because of the proximity of the admixed population C ′ and the reference A′,
the test detects long-range correlated LD and concludes that using A′ as a reference may
produce unreliable results.

Scenario 3

True admixture 40 generations ago; contemporaneous gene flow (of half the magnitude) to
the lineage of the reference population A′ as well. Again, the pre-test detects long-range
correlated LD and concludes that A′ is an unsuitable reference.

Scenario 4

No admixture; A and C simply form a clade diverging at half the distance to the root (similar
to Figure 2.2C without the gene flow). The test finds no evidence for admixture; weighted
LD measurements do not exhibit a decay curve.

Scenario 5

No admixture; A and C diverged 40 generations ago. As above, the test finds no decay in
weighted LD. In this scenario the pre-test does detect substantial correlated LD to 1.95 cM
because of the proximity of A and C.

Scenario 6

No admixture; same setup as Scenario 4 with addition of recent bottleneck in population
C (100-fold reduced population size for the past 40 generations). Here, the test finds no
weighted LD decay in the two-reference curve and concludes that there is no evidence for
admixture. It does, however, detect decay curves in both one-reference curves (with A–C and
B–C weights); these arise because of the strong bottleneck-induced LD within population
C.
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Scenario 7

No admixture; shared bottleneck: A and C diverged 40 generations ago and their common
ancestor underwent a bottleneck of 100-fold reduced population size for the preceding 40
generations. In this case the pre-test detects an enormous amount of correlated LD between
A and C and deems A an unsuitable reference.

B.3.3 Sensitivity comparison of 3-population test and LD-based
test for admixture

Here we compare the sensitivities of the allele frequency moment-based 3-population test
(Reich et al., 2009; Patterson et al., 2012) and our LD-based test for admixture. We simulated
a total of 450 admixture scenarios in which we varied three parameters: the age of the branch
point A′′ (1000, 2000, and 3000 generations), the date n of gene flow (20 to 300 in increments
of 20), and the fraction α of A ancestry (50% to 95% in increments of 5%), as depicted in
Figure 2.8. In each case we simulated 40 admixed individuals, otherwise using the same
parameter settings as in the scenarios above. Explicitly, we ran the commands:

macs 160 1e8 -i 10 -h 1e4 -t 0.00004 -r 0.0004 -I 3 40 40 80 -em tMix 3 2

migRate -em tMixStop 3 2 0 -ej tSplit 1 3 -ej 0.1 2 3

where tMix and tSplit correspond to n and the age of A′′, while migRate and tMixStop

produce a pulse of gene flow from the B′ branch giving C ′ a fraction α of A ancestry.
We then ran both the 3-population test (f3) and the ALDER test on C ′ using A′ and B′

as references (Figure 2.8). The results of these simulations show clearly that the two tests do
indeed have complementary parameter ranges of sensitivity. We first observe that the f3 test
is essentially unaffected by the age of admixture (up to the 300 generations we investigate
here). As discussed in the main text, its sensitivity is constrained by competition between the
admixture signal of magnitude αβF2(A

′′, B′′) and the “off-tree drift” arising from branches
off the lineage connecting A′ and B′ (Reich et al., 2009)—in this case, essentially the quantity
α2F2(A

′′, C ′). Thus, as the divergence point A′′ moves up the lineage, the threshold value of
α below which the f3 test can detect mixture decreases.

The ALDER tests behave rather differently, exhibiting a drop-off in sensitivity as the
age of admixture increases, with visible noise near the thresholds of sufficient sensitivity.
The difference between the f3 and ALDER results is most notable in the bottom panels of
Figure 2.8, where the reference A′ is substantially diverged from C ′. In this case, ALDER
is still able to identify small amounts of admixture from the B′ branch, whereas the f3 test
cannot. Also notable are the vertical swaths of failed tests centered near α = 0.9, 0.75, and
0.65 for A′′ respectively located at distances 0.75, 0.5, and 0.25 along the branch from the
root to A′. This feature of the results arises because the amplitude of the single-reference
weighted LD curve with A′–C ′ weights vanishes near those values of α (see equation (2.8) and
Figure 2.3), causing the ALDER pre-test to fail. (The two-reference weighted LD exhibits
a clear decay curve, but the pre-test is being overly conservative in these cases.) Finally,
we also observe that for the smallest choice of mixture age (20 generations), many ALDER
tests fail. In these cases, the pre-test detects long-range correlated LD with the reference B′

and is again overly conservative.
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B.3.4 Effect of protracted admixture on weighted LD

The admixture model that we analyze in this manuscript treats admixture as occurring
instantaneously in a single pulse of gene flow; however, in real human populations, admixture
typically occurs continuously over an extended period of time. Here we explore the effect of
protracted admixture on weighted LD curves by simulating scenarios involving continuous
migration. We used a setup nearly identical to the simulations above for comparing the
f3 and ALDER tests, except here we modified the migration rate and start and end times
to correspond to 40% B ancestry that continuously mixed into population C over a period
of 0–200 generations ending 40 generations ago. We varied the duration of admixture in
increments of 20 generations.

For each simulation, we used ALDER to compute the two-reference weighted LD curve
and fit an exponential decay. In each case the date of admixture estimated by ALDER
(Figure 2.7A) falls within the time interval of continuous mixture, as expected (Moorjani
et al., 2011). For shorter durations of admixture spanning up to 50 generations or so,
the estimated date falls very near the middle of the interval, while it is downward biased for
mixtures extending back to hundreds of generations. The amplitude of the fitted exponential
also exhibits a downward bias as the mixture duration increases (Figure 2.7B). This behavior
occurs because unlike the point admixture case, in which the weighted LD curve follows a
simple exponential decay (Figure 2.7C), continuous admixture creates weighted LD that is
an average of exponentials with different decay constants (Figure 2.7D).

B.4 FFT computation of weighted LD

In this note we describe how to compute weighted LD (aggregated over distance bins) in
time

O(m(S +B logB)),

where m is the number of admixed individuals, S is the number of SNPs, and B is the
number of bins needed to span the chromosomes. In contrast, the direct method of computing
pairwise LD for each individual SNP pair requires O(mS2) time. In practice our approach
offers speedups of over 1000x on typical data sets. We further describe a similar algorithm
for computing the single-reference weighted LD polyache statistic that runs in time

O(m2(S +B logB))

with the slight trade-off of ignoring SNPs with missing data.

Our method consists of three key steps: (1) split and factorize the weighted LD product;
(2) group factored terms by bin; and (3) apply fast Fourier transform (FFT) convolution. As
a special case of this approach, the first two ideas alone allow us to efficiently compute the
affine term (i.e., horizontal asymptote) of the weighted LD curve using inter-chromosome
SNP pairs.
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B.4.1 Two-reference weighted LD

We first establish notation. Say we have an S ×m genotype array {cx,i} from an admixed
population. Assume for now that there are no missing values, i.e.,

cx,i ∈ {0, 1, 2}

for x indexing SNPs by position on a genetic map and i = 1, . . . ,m indexing individuals.
Given a set of weights wx, one per SNP, we wish to compute weighted LD of SNP pairs
aggregated by inter-SNP distance d:

R(d) :=
∑
|x−y|≈d
x<y

D2(x, y)wxwy =
1

2

∑
|x−y|≈d

D2(x, y)wxwy

where D2 is the sample covariance between genotypes at x and y, the diploid analog of the
usual LD measure D:

D2(x, y) :=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)

m∑
i=1

cx,i

m∑
j=1

cy,j

=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy, (B.6)

where we have defined

sx :=
m∑
i=1

cx,i.

Substituting for D2(x, y), we have

R(d) =
1

2

∑
|x−y|≈d

(
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy

)
wxwy

=

 m∑
i=1

1

2(m− 1)

∑
|x−y|≈d

cx,iwx · cy,iwy

− 1

2m(m− 1)

∑
|x−y|≈d

sxwx · sywy. (B.7)

We have thus rewritten R(d) as a linear combination of m+ 1 terms of the form∑
|x−y|≈d

f(x)f(y).

(The sum over i consists of m such terms, and the final term accounts for one more.)

In general, sums of the form ∑
|x−y|≈d

f(x)g(y)

can be efficiently computed by convolution if we first discretize the genetic map on which
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the SNP positions x and y lie. For notational convenience, choose the distance scale such
that a unit distance corresponds to the desired bin resolution. We will compute∑

bxc−byc=d

f(x)g(y). (B.8)

That is, we divide the chromosome into bins of unit distance and aggregate terms f(x)g(y) by
the distance between the bin centers of x and y. Note that this procedure does not produce
exactly the same result as first subtracting the genetic positions and then binning by |x−y|:
with our approach, pairs (x, y) that map to a given bin can have actual distances that are
off by as much as one full bin width, versus half a bin width with the subtract-then-bin
approach. However, we can compensate simply by doubling the bin resolution.

To compute expression (B.8), we write

∑
bxc−byc=d

f(x)g(y) =
B∑
b=0

∑
bxc=b

∑
byc=b−d

f(x)g(y)

=
B∑
b=0

∑
bxc=b

f(x)

 ∑
byc=b−d

g(y)

 . (B.9)

Writing

F (b) :=
∑
bxc=b

f(x), G(b) :=
∑
bxc=b

g(x),

expression (B.9) becomes
B∑
b=0

F (b)G(b− d) = (F ? G)(d),

a cross-correlation of binned f(x) and g(y) terms.

Computationally, binning f and g to form F and G takes O(S) time, after which the
cross-correlation can be performed in O(B logB) time with a fast Fourier transform. The
full computation of the m+ 1 convolutions in equation (B.7) thus takes O(m(S +B logB))
time. In practice we often have B logB < S, in which case the computation is linear in the
data size mS.

One additional detail is that we usually want to compute the average rather than the
sum of the weighted LD contributions of the SNP pairs in each bin; this requires normalizing
by the number of pairs (x, y) that map to each bin, which can be computed in an analogous
manner with one more convolution (setting f ≡ 1, g ≡ 1). Finally, we note that our
factorization and binning approach immediately extends to computing weighted LD on inter-
chromosome SNP pairs (by putting all SNPs in a chromosome in the same bin), which allows
robust estimation of the horizontal asymptote of the weighted LD curve.
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Missing Data

The calculations above assumed that the genotype array contained no missing data, but in
practice a fraction of the genotype values may be missing. The straightforward non-FFT
computation has no difficulty handling missing data, as each pairwise LD term D2(x, y) can
be calculated as a sample covariance over just the individuals successfully genotyped at both
x and y. Our algebraic manipulation runs into trouble, however, because if k individuals
have a missing value at either x or y, then the sample covariance contains denominators of
the form 1/(m− k − 1) and 1/(m− k)(m− k − 1)—and k varies depending on x and y.

One way to get around this problem is simply to restrict the analysis to sites with no
missing values at the cost of slightly reduced power. If a fraction p of the SNPs contain
at least one missing value, this workaround reduces the number of SNP pairs available to
(1− p)2 of the total, which is probably already acceptable in practice.

We can do better, however: in fact, with a little more algebra (but no additional com-
putational complexity), we can include all pairs of sites (x, y) for which at least one of the
SNPs x, y has no missing values, bringing our coverage up to 1− p2.

We will need slightly more notation. Adopting eigenstrat format, we now let our
genotype array consist of values

cx,i ∈ {0, 1, 2, 9}

where 9 indicates a missing value. (Thus, {cx,i} is exactly the data that would be contained
in a .geno file.) For convenience, we write

c
(0)
x,i :=

{
cx,i if cx,i ∈ {0, 1, 2}
0 otherwise.

That is, c
(0)
x,i replaces missing values with 0s. As before we set

sx :=
∑

i:cx,i 6=9

cx,i =
m∑
i=1

c
(0)
x,i

to be the sum of all non-missing values at x, which also equals the sum of all c
(0)
x,i because

the missing values have been 0-replaced. Finally, define

kx := #{i : cx,i = 9}

to be the number of missing values at site x.

We now wish to compute aggregated weighted LD over pairs (x, y) for which at least one
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of kx and ky is 0. Being careful not to double-count, we have:

R(d) :=
∑
|x−y|≈d
x<y

kx=0 or ky=0

D2(x, y)wxwy

=
1

2

∑
|x−y|≈d

kx=0 and ky=0

D2(x, y)wxwy +
∑
|x−y|≈d

kx=0 and ky 6=0

D2(x, y)wxwy

=
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]
D2(x, y)wxwy, (B.10)

where the shorthand I[·] denotes a {0, 1}-indicator.
Now, for a pair of sites (x, y) where x has no missing values and y has ky missing values,

D2(x, y) =
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i −

1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy.

(B.11)
Indeed, we claim the above equation is actually just a rewriting of the standard covariance
formula (B.6), appropriately modified now that the covariance is over m− ky values rather
than m:

• In the sum
∑m

i=1 cx,ic
(0)
y,i , missing values in y have been 0-replaced, so those terms vanish

and the sum effectively consists of the desired m− ky products cx,icy,i.

• Similarly, sy is equal to the sum of the m− ky non-missing cy,i values.

• Finally, sx−
∑m

i=1 I[cy,i = 9]cx,i represents the sum of cx,i over individuals i successfully
genotyped at y, written as the sum sx over all m individuals minus a correction.

Substituting (B.11) into expression (B.10) for R(d) and rearranging, we have

R(d) =
∑
|x−y|≈d

I[kx = 0]

1 + I[ky = 0]

(
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i

− 1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy

)
wxwy

=
m∑
i=1

∑
|x−y|≈d

(I[kx = 0]cx,iwx) ·
(

1

1 + I[ky = 0]

(
c
(0)
y,i +

I[cy,i = 9]sy
m− ky

)
wy

m− ky − 1

)

−
∑
|x−y|≈d

(I[kx = 0]sxwx) ·
(

sywy
(1 + I[ky = 0])(m− ky)(m− ky − 1)

)
.

The key point is that we once again have a sum of m + 1 convolutions, each of the form∑
|x−y|≈d f(x)g(y), and thus can compute them efficiently as before.
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B.4.2 One-reference weighted LD

When computing weighted LD using the admixed population itself as a reference with one
other reference population, a polyache statistic must be used to obtain an unbiased estimator
(Figure 2.4). The form of the polyache causes complications in our algebraic manipulation;
however, if we restrict our attention to SNPs with no missing data, the computation can still
be broken into convolutions quite naturally, albeit now requiring O(m2) FFTs rather than
O(m).

As in the two-reference case, the key idea is to split and factorize the weighted LD
formula. We treat the terms in the polyache separately and observe that each term takes
the form of a constant factor multiplied by a product of sub-terms of the form Sr,s, pA(x),
or pA(y). We can use convolution to aggregate the contributions of such a term if we can
factor it as a product of two pieces, one depending only on x and the other only on y. Doing
so is easy for some terms, namely those that involve only pA(x), pA(y), Sr,0, and S0,s, as the
latter two sums depend only on x and y, respectively.

The terms involving Sr,s with both r and s nonzero are more difficult to deal with but
can be written as convolutions by further subdividing them. In fact, we already encountered
S1,1 =

∑m
i=1 cx,icy,i in our two-reference weighted LD computation: the trick there was to

split the sum into its m components, one per admixed individual, each of which could then
be factored into x-dependent and y-dependent parts and aggregated via convolution.

Exactly the same decomposition works for all of the polyache terms except the one
involving S2

1,1. For this term, we write

S2
1,1 =

m∑
i=1

cx,icy,i

m∑
j=1

cx,jcy,j =
m∑
i=1

m∑
j=1

cx,icx,j · cy,icy,j,

from which we see that splitting the squared sum into m2 summands allows us to split
the x- and y-dependence as desired. The upshot is that at the expense of O(m2) FFTs
(and restricting our analysis to SNPs without missing data), we can also accelerate the
one-reference weighted LD computation.
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Appendix C

Supporting Information for
Admixture Inference Using Moment
Statistics

C.1 f-statistics and population admixture

Here we include derivations of the allele frequency divergence equations solved by MixMap-
per to determine the optimal placement of admixed populations. These results were first
presented in Reich et al. (2009) and Patterson et al. (2012), and we reproduce them here for
completeness, with slightly different emphasis and notation. We also describe in the final
paragraph (and in more detail in Material and Methods) how the structure of the equations
leads to a particular form of the system for a full admixture tree.

Our basic quantity of interest is the f -statistic f2, as defined in Reich et al. (2009), which
is the squared allele frequency difference between two populations at a biallelic SNP. That
is, at SNP locus i, we define

f i2(A,B) := (pA − pB)2,

where pA is the frequency of one allele in population A and pB is the frequency of the allele
in population B. This is the same as Nei’s minimum genetic distance DAB for the case of
a biallelic locus (Nei, 1987). As in Reich et al. (2009), we define the unbiased estimator
f̂ i2(A,B), which is a function of finite population samples:

f̂ i2(A,B) := (p̂A − p̂B)2 − p̂A(1− p̂A)

nA − 1
− p̂B(1− p̂B)

nB − 1
,

where, for each of A and B, p̂ is the the empirical allele frequency and n is the total number
of sampled alleles.

We can also think of f i2(A,B) itself as the outcome of a random process of genetic history.
In this context, we define

F i
2(A,B) := E((pA − pB)2),

the expectation of (pA − pB)2 as a function of population parameters. So, for example, if B
is descended from A via one generation of Wright-Fisher genetic drift in a population of size
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N , then F i
2(A,B) = pA(1− pA)/2N .

While f̂ i2(A,B) is unbiased, its variance may be large, so in practice, we use the statistic

f̂2(A,B) :=
1

m

m∑
i=1

f̂ i2(A,B),

i.e., the average of f̂ i2(A,B) over a set of m SNPs. As we discuss in more detail in Text C.2,
F i
2(A,B) is not the same for different loci, meaning f̂2(A,B) will depend on the choice of

SNPs. However, we do know that f̂2(A,B) is an unbiased estimator of the true average
f2(A,B) of f i2(A,B) over the set of SNPs.

The utility of the f2 statistic is due largely to the relative ease of deriving equations for
its expectation between populations on an admixture tree. The following derivations are
borrowed from (Reich et al., 2009). As above, let the frequency of a SNP i in population X
be pX . Then, for example,

E(f i2(A,B)) = E((pA − pB)2)

= E((pA − pP + pP − pB)2)

= E((pA − pP )2) + E((pP − pB)2) + 2E((pA − pP )(pP − pB))

= E(f i2(A,P )) + E(f i2(B,P )),

since the genetic drifts pA − pP and pP − pB are uncorrelated and have expectation 0. We
can decompose these terms further; if Q is a population along the branch between A and P ,
then:

E(f i2(A,P )) = E((pA − pP )2)

= E((pA − pQ + pQ − pP )2)

= E((pA − pQ)2) + E((pQ − pP )2) + 2E((pA − pQ)(pQ − pP ))

= E(f i2(A,Q)) + E(f i2(Q,P )).

Here, again, E(pA − pQ) = E(pQ − pP ) = 0, but pA − pQ and pQ − pP are not independent;
for example, if pQ − pP = −pP , i.e. pQ = 0, then necessarily pA − pQ = 0. However, pA − pQ
and pQ − pP are independent conditional on a single value of pQ, meaning the conditional
expectation of (pA − pQ)(pQ − pP ) is 0. By the double expectation theorem,

E((pA − pQ)(pQ − pP )) = E(E((pA − pQ)(pQ − pP )|pQ)) = E(E(0)) = 0.

From E(f i2(A,P )) = E(f i2(A,Q)) +E(f i2(Q,P )), we can take the average over a set of SNPs
to yield, in the notation from above,

F2(A,P ) = F2(A,Q) + F2(Q,P ).

We have thus shown that f2 distances are additive along an unadmixed-drift tree. This
property is fundamental for our theoretical results and is also essential for finding admixtures,
since, as we will see, additivity does not hold for admixed populations.
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Figure C.1. Schematic of part of an admixture tree. Population C is derived from
an admixture of populations A and B with proportion α coming from A. The f2 distances
from C ′ to the present-day populations A′, B′, X ′, Y ′ give four relations from which we are
able to infer four parameters: the mixture fraction α, the locations of the split points A′′

and B′′ (i.e., r and s), and the combined drift α2a+ (1− α)2b+ c.

Given a set of populations with allele frequencies at a set of SNPs, we can use the
estimator f̂2 to compute f2 distances between each pair. These distances should be additive
if the populations are related as a true tree. Thus, it is natural to build a phylogeny using
neighbor-joining (Saitou and Nei, 1987), yielding a fully parameterized tree with all branch
lengths inferred. However, in practice, the tree will not exactly be additive, and we may
wish to try fitting some population C ′ as an admixture. To do so, we would have to specify
six parameters (in the notation of Figure C.1): the locations on the tree of A′′ and B′′; the
branch lengths f2(A

′′, A), f2(B
′′, B), and f2(C,C

′); and the mixture fraction. These are the
variables r, s, a, b, c, and α.

In order to fit C ′ onto an unadmixed tree (that is, solve for the six mixture parameters),
we use the equations for the expectations F2(C

′, Z ′) of the f2 distances between C ′ and each
other population Z ′ in the tree. Referring to Figure C.1, with the point admixture model,
the allele frequency in C is pC = α pA + (1− α) pB. So, for a single locus, using additivity,

E(f i2(A
′, C ′)) = E((pA′ − pC′)2)

= E((pA′ − pA′′ + pA′′ − pC + pC − pC′)2)

= E((pA′ − pA′′)2) + E((pA′′ − α pA − (1− α) pB)2) + E((pC − pC′)2)

= E(f i2(A
′, A′′)) + α2E(f i2(A

′′, A))

+(1− α)2E(f i2(A
′′, B)) + E(f i2(C,C

′)).

123



Averaging over SNPs, and replacing E(f2(A
′, C ′)) by the estimator f̂2(A

′, C ′), this becomes

f̂2(A
′, C ′) = F2(A

′, X ′′)− r + α2a

+(1− α)2(r + F2(X
′′, Y ′′) + s+ b) + c

=⇒ f̂2(A
′, C ′)− F2(A

′, X ′′) = (α2 − 2α)r + (1− α)2s+ α2a

+(1− α)2b+ c+ (1− α)2F2(X
′′, Y ′′).

The quantities F2(X
′′, Y ′′) and F2(A

′, X ′′) are constants that can be read off of the neighbor-
joining tree. Similarly, we have

f̂2(B
′, C ′)− F2(B

′, Y ′′) = α2r + (α2 − 1)s+ α2a+ (1− α)2b+ c+ α2F2(X
′′, Y ′′).

For the outgroups X ′ and Y ′, we have

f̂2(X
′, C ′) = α2(c+ a+ r + F2(X

′, X ′′))

+(1− α)2(c+ b+ s+ F2(X
′′, Y ′′) + F2(X

′, X ′′))

+2α(1− α) (c+ F2(X
′, X ′′))

= α2r + (1− α)2s+ α2a+ (1− α)2b+ c

+(1− α)2F2(X
′′, Y ′′) + F2(X

′, X ′′)

and

f̂2(Y
′, C ′) = α2r + (1− α)2s+ α2a+ (1− α)2b+ c+ α2F2(X

′′, Y ′′) + F2(Y
′, Y ′′).

Assuming additivity within the neighbor-joining tree, any population descended from A′′

will give the same equation (the first type), as will any population descended from B′′ (the
second type), and any outgroup (the third type, up to a constant and a coefficient of α).
Thus, no matter how many populations there are in the unadmixed tree—and assuming
there are at least two outgroups X ′ and Y ′ such that the points X ′′ and Y ′′ are distinct—
the system of equations consisting of E(f2(P,C

′)) for all P will contain precisely enough
information to solve for α, r, s, and the linear combination α2a+ (1−α)2b+ c. We also note
the useful fact that for a fixed value of α, the system is linear in the remaining variables.

C.2 Heterozygosity and drift lengths

One disadvantage to building trees with f2 statistics is that the values are not in easily
interpretable units. For a single locus, the f2 statistic measures the squared allele frequency
change between two populations. However, in practice, one needs to compute an average
f2 value over many loci. Since the amount of drift per generation is proportional to p(1 −
p), the expected frequency change in a given time interval will be different for loci with
different initial frequencies. This means that the estimator f̂2 depends on the distribution
of frequencies of the SNPs used to calculate it. For example, within an f2-based phylogeny,
the lengths of non-adjacent edges are not directly comparable.

In order to make use of the properties of f2 statistics for admixture tree building and
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still be able to present our final trees in more directly meaningful units, we will show now
how f2 distances can be converted into absolute drift lengths. Again, we consider a biallelic,
neutral SNP in two populations, with no further mutations, under a Wright-Fisher model of
genetic drift.

Suppose populations A and B are descended independently from a population P , and
we have an allele with frequency p in P , pA = p + a in A, and pB = p + b in B. The (true)
heterozygosities at this locus are hiP = 2p(1− p), hiA = 2pA(1− pA), and hiB = 2pB(1− pB).

As above, we write ĥiA for the unbiased single-locus estimator

ĥiA :=
2nAp̂A(1− p̂A)

nA − 1
,

ĥA for the multi-locus average of ĥiA, and H i
A for the expectation of hiA under the Wright-

Fisher model (and similarly for B and P ).

Say A has experienced tA generations of drift with effective population size NA since the
split from P , and B has experienced tB generations of drift with effective population size
NB. Then it is well known that H i

A = hiP (1 −DA), where DA = 1 − (1 − 1/(2NA))tA , and
H i
B = hiP (1−DB). We also have

H i
A = E(2(p+ a)(1− p− a))

= E(hiP − 2ap+ 2a− 2ap− 2a2)

= hiP − 2E(a2)

= hiP − 2F i
2(A,P ),

so 2F i
2(A,P ) = hiPDA. Likewise, 2F i

2(B,P ) = hiPDB and 2F i
2(A,B) = hiP (DA + DB).

Finally,

H i
A +H i

B + 2F i
2(A,B) = hiP (1−DA) + hiP (1−DB) + hiP (DA +DB) = 2hiP .

This equation is essentially equivalent to one in Nei (1987), although Nei interprets his
version as a way to calculate the expected present-day heterozygosity rather than estimate
the ancestral heterozygosity. To our knowledge, the equation has not been applied in the
past for this second purpose.

In terms of allele frequencies, the form of hiP turns out to be very simple:

hiP = pA + pB − 2pApB = pA(1− pB) + pB(1− pA),

which is the probability that two alleles, one sampled from A and one from B, are different
by state. We can see, therefore, that this probability remains constant in expectation after
any amount of drift in A and B. This fact is easily proved directly:

E(pA + pB − 2pApB) = 2p− 2p2 = hiP ,

where we use the independence of drift in A and B.

Let ĥiP := (ĥiA + ĥiB + 2f̂ i2(A,B))/2, and let hP denote the true average heterozygosity in
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P over an entire set of SNPs. Since ĥiP is an unbiased estimator of (hiA +hiB + 2f i2(A,B))/2,

its expectation under the Wright-Fisher model is hiP . So, the average ĥP of ĥiP over a set
of SNPs is an unbiased (and potentially low-variance) estimator of hP . If we have already
constructed a phylogenetic tree using pairwise f2 statistics, we can use the inferred branch
length f̂2(A

′, P ) from a present-day population A to an ancestor P in order to estimate ĥP
more directly as ĥP = ĥA + 2f̂2(A,P ). This allows us, for example, to estimate heterozy-
gosities at intermediate points along branches or in the ancestors of present-day admixed
populations.

The statistic ĥP is interesting in its own right, as it gives an unbiased estimate of the
heterozygosity in the common ancestor of any pair of populations (for a certain subset of
the genome). For our purposes, though, it is most useful because we can form the quotient

d̂A :=
2f̂2(A,P )

ĥP
,

where the f2 statistic is inferred from a tree. This statistic d̂A is not exactly unbiased, but
by the law of large numbers, if we use many SNPs, its expectation is very nearly

E(d̂A) ≈ E(2f̂2(A,P ))

E(ĥP )
=
hPDA

hP
= DA,

where we use the fact that DA is the same for all loci. Thus d̂ is a simple, direct, nearly
unbiased moment estimator for the drift length between a population and one of its ancestors.
This allows us to convert branch lengths from f2 distances into absolute drift lengths, one
branch at a time, by inferring ancestral heterozygosities and then dividing.

For a terminal admixed branch leading to a present-day population C ′ with heterozygosity
ĥC′ , we divide twice the inferred mixed drift c1 = α2a + (1 − α)2b + c (Figure 3.2) by the
heterozygosity ĥ∗C′ := ĥC′ + 2c1. This is only an approximate conversion, since it utilizes a

common value ĥ∗C′ for what are really three disjoint branches, but the error should be very
small with short drifts.

An alternative definition of d̂A would be 1− ĥA/ĥP , which also has expectation (roughly)
DA. In most cases, we prefer to use the definition in the previous paragraph, which allows
us to leverage the greater robustness of the f2 statistics, especially when taken from a multi-
population tree.

We note that this estimate of drift lengths is similar in spirit to the widely-used statistic
FST . For example, under proper conditions, the expectation of FST among populations that
have diverged under unadmixed drift is also 1 − (1 − 1/(2Ne))

t (Nei, 1987). When FST is
calculated for two populations at a biallelic locus using the formula (ΠD − ΠS)/ΠD, where
ΠD is the probability two alleles from different populations are different by state and ΠS

is the (average) probability two alleles from the same population are different by state (as
in Reich et al. (2009) or the measure G′ST in Nei (1987)), then this FST is exactly half of

our d̂. As a general rule, drift lengths d̂ are approximately twice as large as values of FST
reported elsewhere.
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Figure C.2. Alternative scaffold tree with 11 populations used to evaluate
robustness of results to scaffold choice. We included Mbuti Pygmy, who are known to
be admixed, to help demonstrate that MixMapper inferences are robust to deviations from
additivity in the scaffold; see Tables C.1–C.3 for full results. Distances are in drift units.

C.3 Robustness of MixMapper HGDP results to scaf-

fold choice
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Figure C.3. Summary of mixture proportions α inferred with alternative
9-population scaffold trees. We ran MixMapper for all 20 admixed test populations
using nine different scaffold trees obtained by removing each population except Papuan one
at a time from our full 10-population scaffold. (Papuan is needed to maintain continental
representation.) For each test population and each scaffold, we recorded the median
bootstrap-inferred value of α over all replicates having branching patterns similar to the
primary topology. Shown here are the means and standard deviations of the nine medians.
In all cases, α refers to the proportion of ancestry from the first branch as in Tables 3.2–3.5.
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Table C.1. Mixture parameters for Europeans inferred with an alternative scaffold tree.

AdmixedPop # repa αb Branch1Loc (Anc. N-Eur.)c Branch2Loc (Anc. W-Eur.)c MixedDriftd

Adygei 488 0.278-0.475 0.035-0.078 / 0.151 0.158-0.191 / 0.246 0.078-0.093
Basque 273 0.221-0.399 0.055-0.111 / 0.153 0.164-0.194 / 0.244 0.108-0.124
French 380 0.240-0.410 0.054-0.108 / 0.152 0.165-0.192 / 0.245 0.093-0.106
Italian 427 0.245-0.426 0.047-0.103 / 0.152 0.155-0.188 / 0.246 0.095-0.110
Orcadian 226 0.214-0.387 0.061-0.131 / 0.153 0.174-0.197 / 0.244 0.098-0.116
Russian 472 0.296-0.490 0.047-0.093 / 0.151 0.165-0.197 / 0.246 0.080-0.095
Sardinian 390 0.189-0.373 0.045-0.104 / 0.152 0.160-0.190 / 0.245 0.110-0.125
Tuscan 413 0.238-0.451 0.039-0.096 / 0.152 0.153-0.191 / 0.245 0.093-0.111

Mixture parameters inferred by MixMapper for modern-day European populations using an
alternative unadmixed scaffold tree containing 11 populations: Yoruba, Mandenka, Mbuti
Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and Pima (see Figure C.2). The
parameter estimates are very similar to those obtained with the original scaffold tree
(Table 3.2), with α slightly higher on average. The bootstrap support for the branching
position of “ancient northern Eurasian” plus “ancient western Eurasian” is also somewhat
lower, with the remaining replicates almost all placing the first ancestral population along
the Pima branch instead. However, this is perhaps not surprising given evidence of
European-related admixture in Pima; overall, our conclusions are unchanged, and the
results appear quite robust to perturbations in the scaffold. See Figure 3.2A and the
caption of Table 3.2 for descriptions of the parameters.
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Table C.2. Mixture parameters for other populations modeled as two-way admixtures
inferred with an alternative scaffold tree.

AdmixedPop Branch1 + Branch2 # rep α Branch1Loc Branch2Loc MixedDrift
Daur Anc. N-Eur. + She 264 0.225-0.459 0.005-0.052 / 0.151 0.002-0.014 / 0.016 0.014-0.024

Anc. N-Eur. + Miao 213 0.235-0.422 0.005-0.049 / 0.151 0.002-0.008 / 0.008 0.014-0.024
Hezhen Anc. N-Eur. + She 257 0.230-0.442 0.005-0.050 / 0.151 0.002-0.010 / 0.016 0.012-0.034

Anc. N-Eur. + Miao 217 0.214-0.444 0.005-0.047 / 0.151 0.002-0.008 / 0.008 0.013-0.037
Oroqen Anc. N-Eur. + She 336 0.284-0.498 0.010-0.052 / 0.151 0.003-0.015 / 0.016 0.017-0.036

Anc. N-Eur. + Miao 149 0.271-0.476 0.007-0.046 / 0.151 0.002-0.008 / 0.008 0.018-0.039
Yakut Anc. N-Eur. + Miao 246 0.648-0.864 0.004-0.018 / 0.151 0.005-0.008 / 0.008 0.032-0.043

Anc. E-Asian. + Pima 71 0.917-0.973 0.008-0.020 / 0.045 0.022-0.083 / 0.083 0.028-0.042
Anc. N-Eur. + She 161 0.664-0.865 0.004-0.018 / 0.151 0.003-0.017 / 0.017 0.030-0.043

Melanesian Dai + Papuan 331 0.168-0.268 0.009-0.011 / 0.011 0.167-0.204 / 0.246 0.089-0.115
Lahu + Papuan 78 0.174-0.266 0.005-0.034 / 0.034 0.167-0.203 / 0.244 0.089-0.118

Han Karitiana + She 167 0.007-0.025 0.026-0.134 / 0.134 0.001-0.006 / 0.016 0.000-0.004
She + Surui 54 0.971-0.994 0.001-0.006 / 0.016 0.017-0.180 / 0.180 0.000-0.003
Anc. N-Eur. + She 65 0.021-0.080 0.004-0.105 / 0.152 0.001-0.007 / 0.016 0.000-0.003
Pima + She 82 0.009-0.033 0.022-0.085 / 0.085 0.001-0.007 / 0.016 0.000-0.004

Mixture parameters inferred by MixMapper for non-European populations fit as two-way
admixtures using an alternative unadmixed scaffold tree containing 11 populations:
Yoruba, Mandenka, Mbuti Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and
Pima (see Figure C.2). The results for the first four populations are very similar to those
obtained with the original scaffold tree, except that α is now estimated to be roughly 20%
higher. Melanesian is fit essentially identically as before. Han, however, now appears nearly
unadmixed, which we suspect is due to the lack of an appropriate northern East Asian
population related to one ancestor (having removed Japanese). See Figure 3.2A and the
caption of Table 3.2 for descriptions of the parameters; branch choices are shown that that
occur for at least 50 of 500 bootstrap replicates. The “Anc. East Asian” branch is the
common ancestral branch of the four East Asian populations in the unadmixed tree.
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Table C.3. Mixture parameters for populations modeled as three-way admixtures inferred
with an alternative scaffold tree.

Admixed2 Branch3a # repb α2
c Branch3Locd Drift1Ae Drift1Be Drift2e

Druze Mandenka 309 0.958-0.984 0.004-0.009 / 0.009 0.088-0.102 0.021-0.029 0.005-0.013
Palestinian Mandenka 249 0.907-0.935 0.008-0.009 / 0.009 0.087-0.100 0.022-0.030 0.001-0.008

Anc. W. Eurasian 92 0.822-0.893 0.050-0.122 / 0.246 0.102-0.126 0.000-0.019 0.011-0.023
Bedouin Mandenka 303 0.852-0.918 0.006-0.009 / 0.009 0.086-0.101 0.022-0.030 0.007-0.019
Mozabite Mandenka 339 0.684-0.778 0.006-0.009 / 0.009 0.095-0.112 0.010-0.021 0.018-0.032

Yoruba 50 0.673-0.778 0.005-0.010 / 0.010 0.093-0.111 0.010-0.020 0.018-0.031
Hazara Anc. East Asian 390 0.350-0.464 0.009-0.023 / 0.045 0.084-0.119 0.001-0.033 0.004-0.012
Uygur Anc. East Asian 390 0.312-0.432 0.007-0.022 / 0.045 0.091-0.124 0.000-0.027 0.000-0.009

Mixture parameters inferred by MixMapper for populations fit as three-way admixtures
using an alternative unadmixed scaffold tree containing 11 populations: Yoruba,
Mandenka, Mbuti Pygmy, Papuan, Dai, Lahu, Miao, She, Karitiana, Surúı, and Pima (see
Figure C.2). In all cases one parent population splits from the (admixed) Sardinian branch
and the other from Branch3. All the parameters are quite similar to those obtained with
the original scaffold with only some relative changes in bootstrap support among
alternative topologies. See Figure 3.2B and the caption of Table 3.2 for further descriptions
of the parameters; branch choices are shown that that occur for at least 50 of the 390
bootstrap replicates having the majority branch choices for the two-way Sardinian fit. The
“Anc. East Asian” branch is the common ancestral branch of the four East Asian
populations in the unadmixed tree.
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