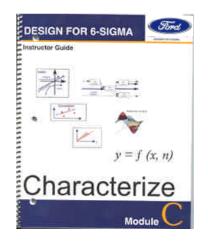
How to Use Tools to Enable Lean Product Development

1


Kevin Otto

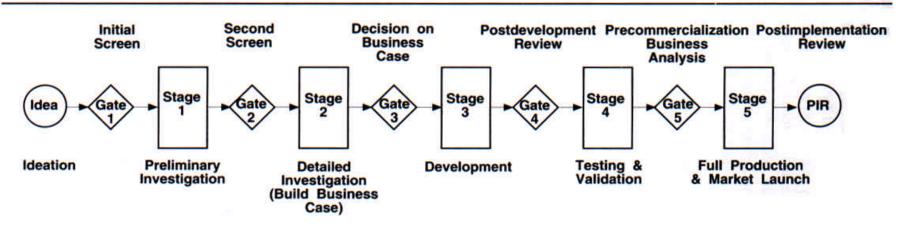
- Product Genesis Inc. (www.productgenesis.com)
 - Complete outsourced R&D
 - Vice President, Leveraged Development
- Product Development Systems and Solutions Inc. (www.pdssinc.com)
 - Focus on R&D improvement
 - Principle Consultant
 - TDFSS, DFSS Master Black Belt
- Massachusetts Institute of Technology
 - Previously Associate Professor of Mech. Eng.
 - Center for Innovation in Product Development

My Perspective...

- What does "lean" mean for product development?
 - Value stream mapping right data
 - Flow flow of correct decisions
 - No rework stop undoing made decisions
- Great. How do I do it?
 - All the process mapping, restructuring, teaming
 - Start enabling your engineers to provide options
 - Stop your engineers from providing simply single-point designs, requirements,

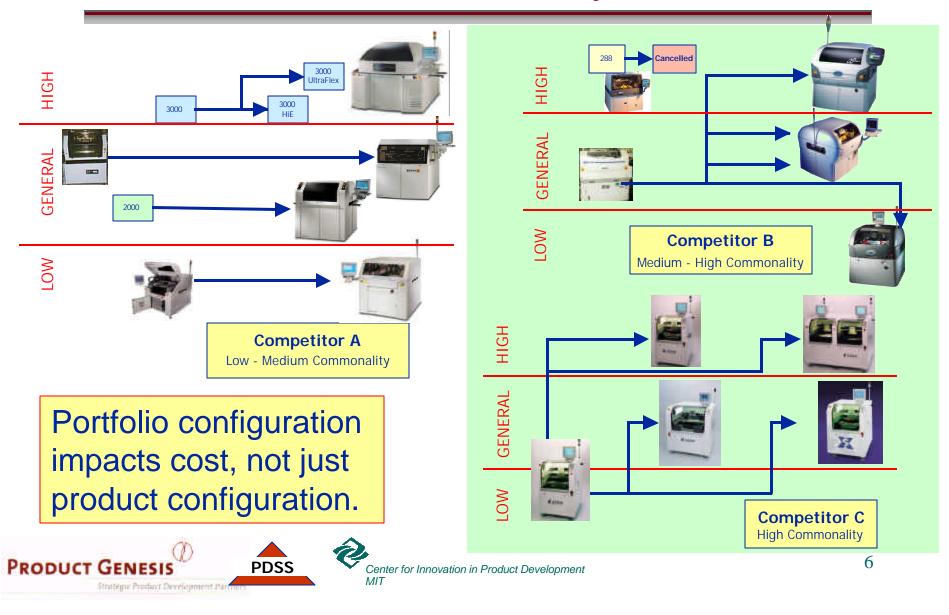
Part of the Value

- The cost of fixing a single defect:
- \$35 during the design phase
- \$177 before procurement
- \$368 before production
- \$17,000 before shipment
- \$690,000 on customer site

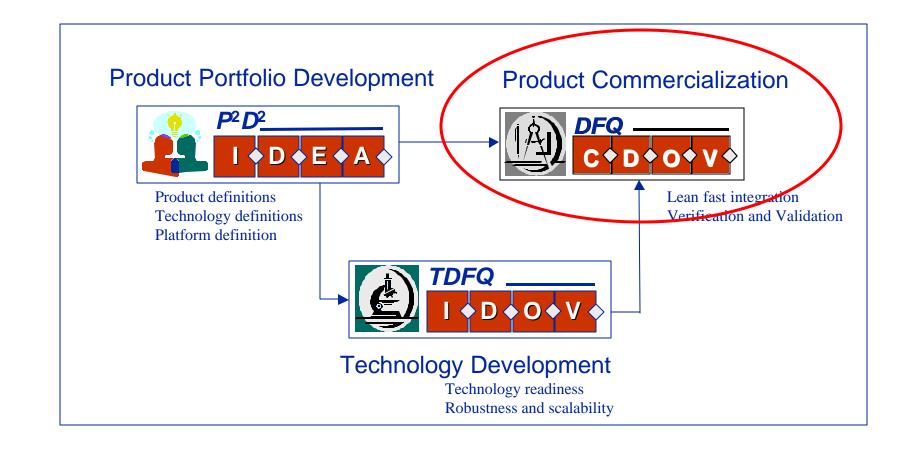

Mr. Hiroshi Hamada, President of Ricoh

Source: European Community Quarterly Review, Third Quarter 1996

R&D - Typical Phase Gate Development

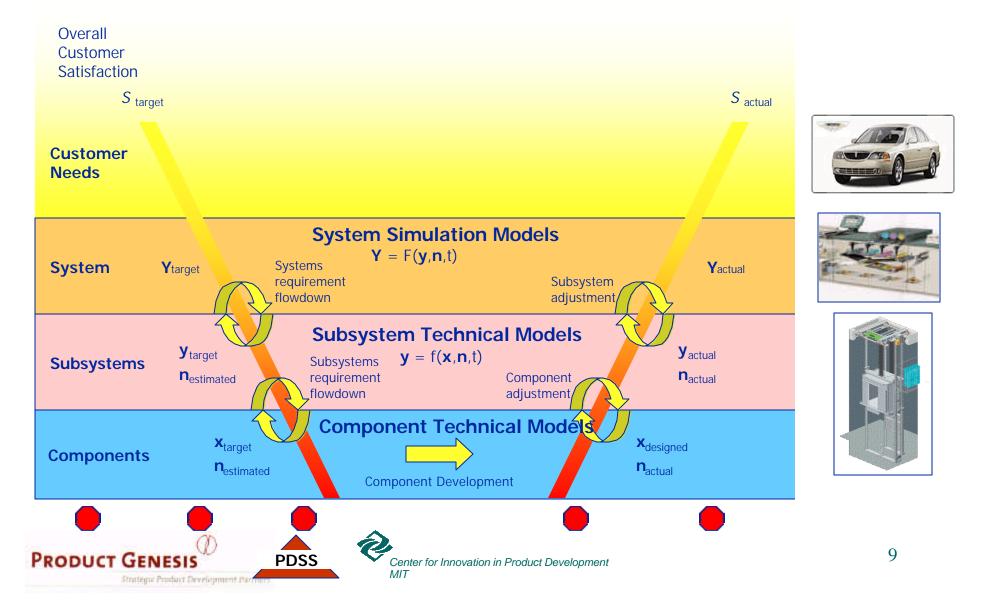


But really, there are three distinct activities happening


- 1. Product Portfolio Definition and Launch Planning
- 2. Technology Development
- 3. Product Commercialization

Screen Printer Industry

Effective Research & Development



Tools & Best Practices

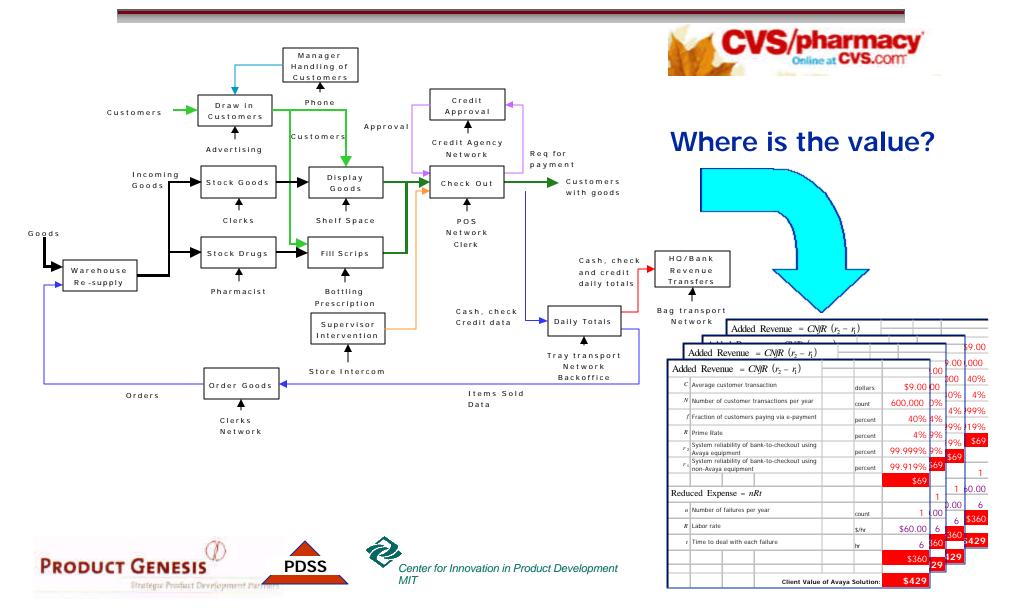
- You generate increased value through a unique set of design & statistical tools...
- Tools that are focused on developing...
 - the right DATA within each Phase of Product Development!
 - the right DATA to enable clarity in decision making
 - the right DATA to reduce risk though identification & management during Gate Reviews

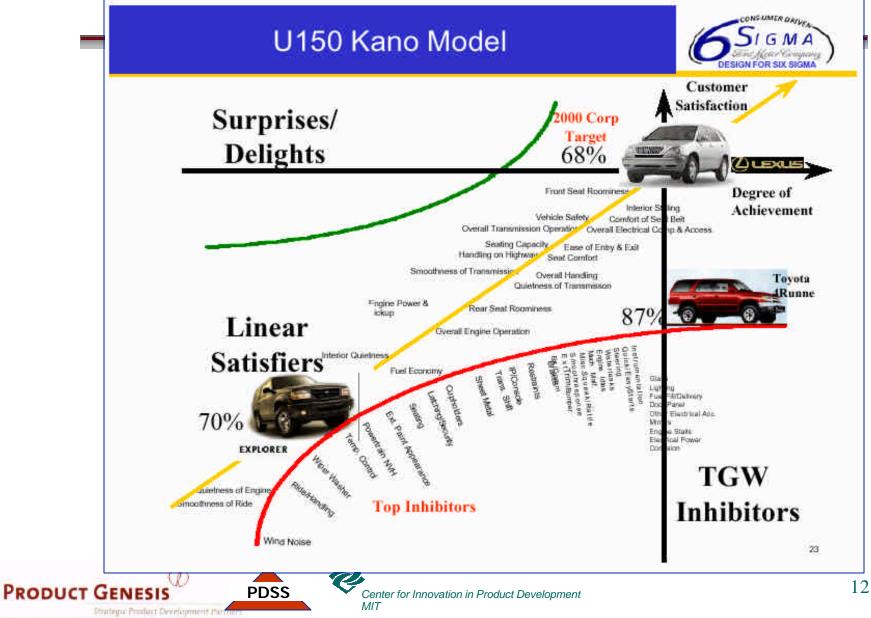
Working the Systems Vee

CTF Metrics - Scorecards

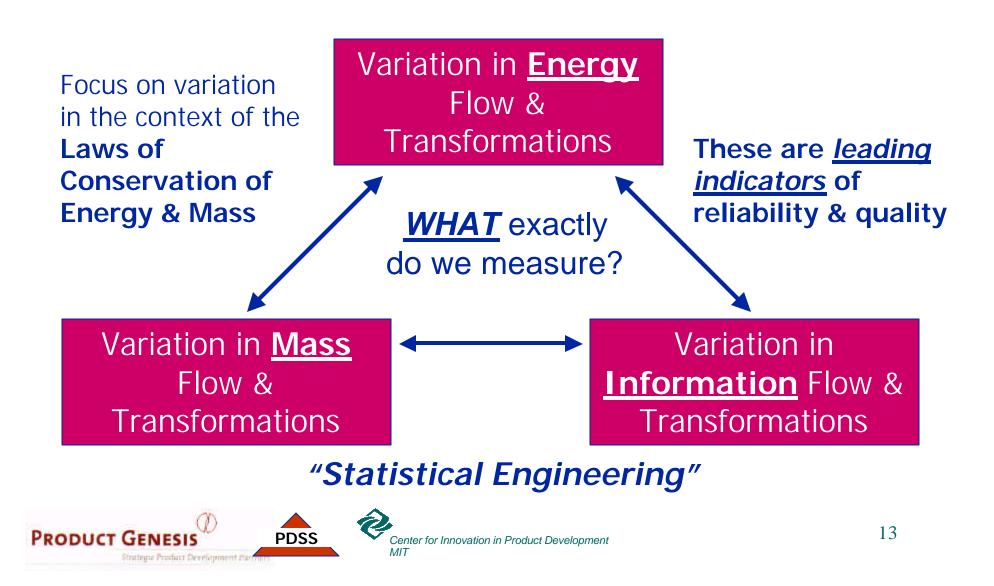
CTF	Outp	ut (Y))										
							ES	timates Bas	sed on Mea	in Condition	of x's and r	n's Listed Be	IOW
Performance		-	Transfer Function		Specificatio	n	Predic	ted Perform	nance Capa	bility		6 ^o Score	
Character, stie	c Units	Y/N	Formula (enter below)	Target	USL	LSL	mean: ^µ	s.d.: ^σ	Short/Long	Confidence	Z	^σ -shift	DPM
Voltage	V	Y	2	2	2.1	1.9	2	0.008654			11.55	0.00	0.0

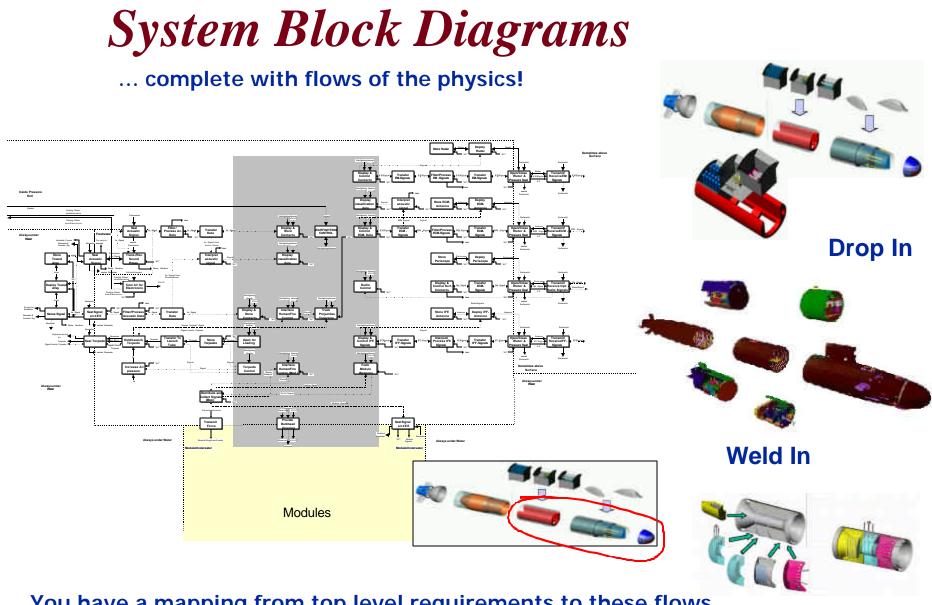
						x's, I	nput Cor	ntrol Fac	tors						
	Variables		Rai	nge	Contribution	to Variability	Specit	ication	Sam	nple/Databa	se Statistic	S		6 ^σ Score	
Ν	o Characteristic	Units	Min	Max	Sensitivity	%	USL	LSL	mean: ^µ	s.d.: ^σ	Short/Long	Confidence	Z	^σ -shift	DPM
	1 X1	ohms	20	500	0	0.00%			20	0.04899			-408.25		100000.0
	2 X2	ohms	2	50	-0.3108194	32.03%			6.433029	0.015758			-408.25		100000.0
	3 X3	ohms	2	50	0.4176437	32.04%			4.788771	0.01173			-408.25		100000.0
	4 X4	volts	1.2	30	0	0.00%			30	0.03873			-774.60		100000.0
	5 X5	ohms	2	50	0	0.00%			2	0.004899			-408.25		100000.0
	6 X6	ohms			0.7444038	32.04%			2.686714				-408.25		100000.0
	71	amp			-10.449776	3.89%			0	0.000163			0.00		933192.8
	8														
	9														
	10									T					
	11														
	12														
	13														
	14	I													


Control factors (x)

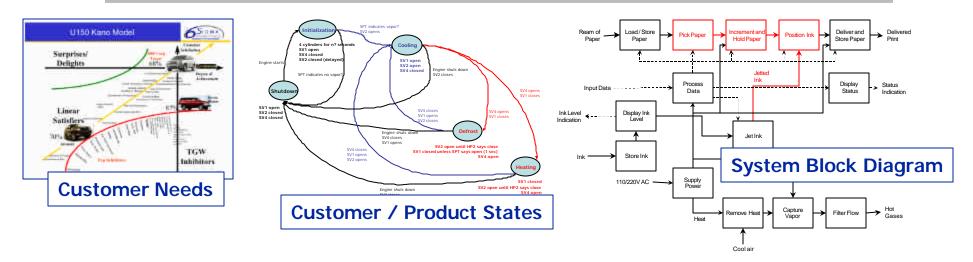


Control factor Variability


Start with the Customer's System



Develop Quality & Predictability through the Identification & Measurement of Critical Functions...


You have a mapping from top level requirements to these flows

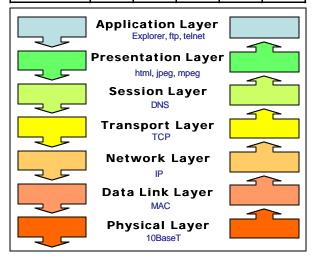
Center for Innovation in Product Development MIT

Bolt On 14

Potential FMEA and RCA

Item				с		0		D			Deenershille	Action R	esu	lts	
Function	Potential Failure Mode	Potential Effect(s) of Failure	S e v	l a s s	Potential Cause(s) of Failure	c c u r	Current Design Controls	0	R P N	Recommended Action(s)	Responsibility and Target Completion Date	Actions Taken	S e v	OD ce ct ue rc	R t P N
	••								0						0
										l					

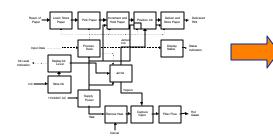
FMEA everything: business plan, requirements, concept, schedule, ... This generates requirements to metrics to models to ...



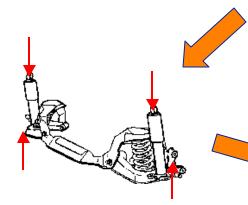
Center for Innovation in Product Development

Interface Definition

- Each module has
 - Flows at boundary
 - Attachments
- These require definition
 - Fixed standards
 - Exchange standards
- Incorporate robustness at the interface!
 - Scalable parameters
 - Robustness parameters


	Paper Handling	Cartridge	Print Handling	Electronics	Air Handling
Paper Handling	х	Aligned paper	Paper advance	Paper position	
Cartridge		Х	Jetted Ink	Cartridge position	Ink heat
Print Handling			Х	Paper position	Ink heat
Electronics	Paper advance	Ink commands		Х	12 V
Air Handling		Cool air	Cool air	Cool air	х

Generate y=f(x) Relationships



Function	У	WT	Flow (M, E, or I)	Element (Part)
Insulate air	Cooling Time	5	Heat (E)	Sidewall, Mouth, Lid
Contain Coffee	% Volume Lost	5	Coffee (M)	Side, Lid
Contain Coffee	Delta Height	5	Coffee (M)	Sidewall
Import surface	Base Width	5	Surface (M)	Base
Stabilize Forces	Moment about Base	5	Forces (E)	Base
Insulate hand	Boundary Temp.	4	Heat (E)	Sidewall
Hold Coffee	Cup Volume	3	Coffee (M)	Sidewall
Hold Coffee	Cup Diameter	3	Coffee (M)	Sidewall
Insulate air	Coffee Temp	2	Heat (E)	Sidewall, Mouth, Lid
	11	^		O:-III M4I-

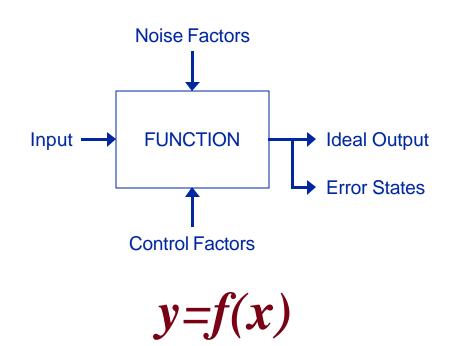
flows

x's and n's

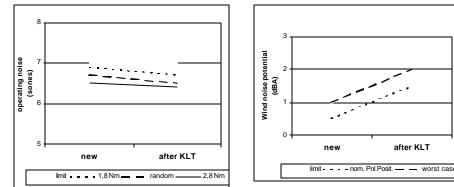
Now go model or experiment

Function	У	WТ	Flow (M, E, or I)			x,n			
Insulate air	Cooling Time	5	Heat (E)	A out	A _{in}	r _{out}	r _{in}	k _{cup}	h ii
				h _{out}	T _{coff}	T _{air}	m coff	C _{p,coff}	
•	•	•	•	•					<u> </u>

Y



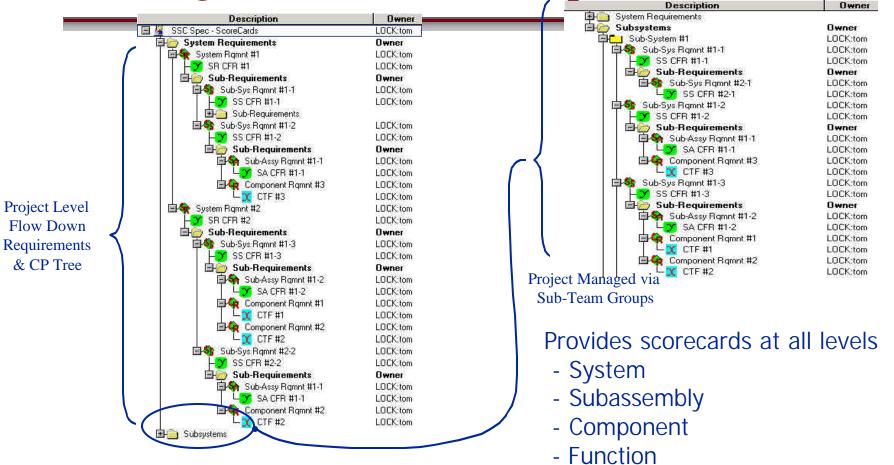
Center for Innovation in Product Development MIT


Y

Robust Design on Subsystems

Function	у	WT	Flow (M, E, or I)			x,n			
Insulate air	Cooling Time	5	Heat (E)	A out	A _{in}	r _{out}	r _{in}	k _{cup}	h in
				h _{out}	T _{coff}	T _{air}	m _{coff}	C _{p,coff}	
:	:	÷	:	÷					

L12	NA	NB	NC	ND	NE	NF	NG	NH	Nı	NJ	Nĸ	Y1	\mathbf{Y}_2	 \mathbf{Y}^n
1	1	1	1	1	1	1	1	1	1	1	1			
2	1	1	1	1	1	2	2	2	2	2	2			
3	1	2	2	2	2	1	1	1	2	2	2			
4	1	2	1	2	2	1	2	2	1	1	2			
5	1	1	2	1	2	2	1	2	1	2	1			
6	1	1	2	2	1	2	2	1	2	1	1			
7	2	2	2	2	1	1	2	2	1	2	1			
8	2	2	2	1	2	2	2	1	1	1	2			
9	2	1	1	2	2	2	1	2	2	1	1			
10	2	1	2	1	1	1	1	2	2	1	2			
11	2	2	1	2	1	2	1	1	1	2	2			
12	2	2	1	1	2	1	2	1	2	2	1	l		


... only then do reliability tests at the system level

Center for Innovation in Product Development MIT

after KLT

Cognition Corp's Six Sigma Cockpit: Linking Critical Relationships

Cognition Corporation

ĺ.	DFSS	Critcial Pa	iram	eter Ma	anagem	ent	Syste	em Rea	uirem e	nt &	Syst	em Lev	el CFR	Scol	e Cai	rd					
Project Name:	SSC Spec - ScoreCa	rds)	Proj	ect ID#:	SSC-	Spec-	SC1.0	_				1	Date:	3/1/2	002	1
System Requirement	System Level CFR (Y)	Owner	T#F		ement Targ	et Value Upper			odel Predi CGI-DMP:	NW SCOUL	1	10.000	ion Capabi CGI-PCP:	lity Pre	diction		Validat CGI-VTD:	000004405	st Data	8 8	
	2 500		1	Limit	Nominal	Limit	Nominal	Mean	Std. Dev.	Ср	Cpk	Mean	Std. Dev.	Ср	Cpk	Mean	Std. Dev.	Ср	Cpk	cov	/ s
System Rqmnt #1	SR CFR #1	tom	N			1						1	li i								Γ
System Rqmnt #2	SRCFR#2	tom	N	-		.+			-			-		1	-	1		1 H		1	T

Reinforce Data Based Gate Progression

Scorecards help determine Phase advancement (Rank & Risk Assessment)

Gate 1	Rank	Ris	sk	Gate 2	Rank	Ri	sk	Gate 3	Rank	Ris	k	Gate 4	Rank	R	lisk
ltem	Score			ltem	Score			ltem	Score			Item	Score		
Strategy	95			FMEA	95			Noise Char.	95			System Stress Testing	95		
Bus. Case	88			DOE & Models	88			Robust Design	88			Reliability Assessment	88		
Concept Engineering	91			System Arch	91			Integration Plan	91			Capability Analysis	91		
СРМ	91			Flexibility	91			Analytical & Exp. Sensitivity	91			Process CPM	91		
DFQ Score	91.2			DFQ Score	91.2			DFQ Score	91.2			DFQ Score	91.2		

Areas to become Proficient

A	Overview & Exercise	Lean Development Process & Project Mgt.	VOC Gathering & KJ Methods	System Architecting	QFD & Reqts Document Methods	Planning Systems Integration: Design Flexibility and Risk	Pugh Process: Concept Evaluation & Selection
В	FMEA & Top-down functional RCA	DFMA Design for Lean Production	Critical Parameter Mgt.	Hypothesis Testing & Confidence Intervals	ANOVA Measurement System Analysis	Model Maturity Assessment	Monte Carlo Simulation
С	Regression	Basic DOE	Advanced DOE	Robust Design & Dynamic Methods	Tolerance Optimization	RSM & Multiple Y Optimization	Technology & Process Capability
D	Reliability Modeling	System Variation Stress Tests	HALT Tests	ALT tests & Warrantee Guarantee	Production & Supply Chain CPM	Statistical Process Control	DMAIC & Lean Production Methods Overview

This Generates Results

- ROI's conservatively > 10X are typical
- Shorter time to market
- Improved Gate Decision Making
- Quality improvements
- Clarity of process

