Lean Aircraft Initiative Plenary Workshop

SUPPLIER INTEGRATION INTO DESIGN AND DEVELOPMENT

October 16, 1996

Presented by: Kirk Bozdogan John Deyst Dave Hoult MIT

Outline

Focus on integrative research: Supplier Integration into Design and Development

- Joint with Product Development and Supplier Relations Focus Teams
- Part of longer-term research on technology supply chain management

• Report on interim findings

- Research overview: Kirk Bozdogan
- JDAM Case Study: John Deyst
- F119 Engine Nozzle Case Study: Dave Hoult
- Summary and next steps: Kirk Bozdogan

Lessons from Auto Industry

Early supplier integration key to efficient product development (shorter cycle time, lower cost, higher quality, enhanced competitive advantage)

- Early supplier involvement in design
- Supplier participation IPPTs
- High design content by suppliers
- Joint engineering problemsolving

- Reduction in design change traffic
- More efficient coordination; fosters innovation
- Up-front design/process integration; improved producibility
- Reduction in rework cycle

Key Enablers

- Pre-sourcing; long-term commitments
- Target costing
- Supplier-capability-enhancing investments
- Strong communications links

Defense Aircraft Industry Moving in Same Direction

Source: MIT Product Development Survey (1993-94)

LEANAIRCRAFT *Farly Supplier Involvement in IPPTs* **INITIATIVE** Impacts Producibility and Cost

Early Supplier Involvement in IPPTs in Military Product Development Programs vs. Cost-Related Requirements Changes Primarily Driven by Producibility Problems during Dem/Val and EMD Phase

Note: Early supplier involvement before Miliestone 1: during requirements definition and concept exploration & definition; before demonstration & validation

Source: MIT Product Development Survey (1993-94)

Major Hypothesis

- Early supplier integration into IPPTs is a critical enabler of "architectural innovation" in product development
- Architectural innovation"*: Major modification of how components in a system are linked together, resulting in significant new benefits for entire value stream including changes in:
 - Physical system form and structure
 - Functional interfaces
 - System configuration; relationships among components
 - Materials
 - Manufacturing processes
 - Tooling
 - Assembly methods

Innovation Framework*

Impact of Innovation on:		Existing Technology	
ents		Further Exploited	Replaced
Linkages Among Compone	Unchanged	Incremental (e.g., 286,386,486 processors)	Modular (e.g.,analog to digital telephone, electronic engine controls in diesel engines)
	Changed	Architectural (e.g., Front wheel drive cars; small copiers)	Radical (e.g., jet engine,microprocessor, radar)

*Framework draws on Henderson and Clark (1990)

LEANAIRCRAFT INITIATIVE

Architectural Innovation Concept Extended

Intra-Organizational Perspective

- Concept originally developed in context of single product development organization
- Emphasis on impact of architectural innovation upon firm's technological capability
- Narrow focus on new system configuration (how components are linked together)

Inter-Organizational Perspective

- First-time application of concept here in interorganizational context (over supplier web)
- Emphasis on value chain (prime-key suppliers-subtiers)
- Broader focus on enablers & incentive systems for integration of specialized knowledge bases over supplier web

Evolution of Supplier Role *in Product Development**

Increasing Supplier Integration

*Extends general idea expressed in Virag and Stoller (SAE, 1996)

Focus on Two Case Studies

- **JDAM case study -- John Deyst**
- F119 Engine Nozzle Case Study Dave Hoult

JDAM Tail Kit

Figure 3-1: The JDAM Tail Kit

JDAM (Smart Munition)

Guidance kit that attaches to 1,000 or 2,000 lb. bombs

- Tail fairing/structure
- Actuator subsystem and fins
- IMU/GPS guidance control unit
- Battery
- Wire harness assembly
- Strakes
- Container

Six "Live or Die" Requirements

- 1. Low unit cost (target of \$40K)
- 2. Adverse weather capability
- 3. Multiple aircraft compatibility
- 4. Aircraft carrier suitability
- 5. In-flight re-targeting
- 6. Warhead compatibility

Program Factors

- Long term program
- Strong price competition
- Contractor configuration control
- Long term warranty
- Joint government/prime-contractor/supplier teams

Team Formation Factors

- Protection of trade secrets
- Allowance for commercial pricing strategy
- Preferred supplier program
- Supplier training
- Open communications with many informal links
- Shared win strategy

Architectural Innovation Through Supplier Involvement

- Program created strong incentives for cost reduction
- Architectural innovation was key to cost reductions
- Supplier knowledge base necessary for
 - Architectural innovation
 - Design for manufacturing and assembly
- Shared goals allowed give and take on workshare

LEANAIRCRAFT INITIATIVE

Architectural Innovation in the GCU

- Single battery design to supply both 28v and 100v
- Change from SEM-E module configuration to a highly integrated mission computer design resulted in:
 - Elimination of a circuit module
 - Reduced heat management requirements
 - Inherent EMI shielding
 - Reductions in wire harness assemblies and connectors
 - Better DFM/DFA
 - More economical/efficient workshare structure
 - Greater vibration tolerance
 - Reduced parts count/increased reliability

LEANAIRCRAFT Architectural Innovation in the **INITIATIVE** GCU (cont.)

- Front end receiver functions moved to antenna module
 - Reduced cost for antenna/receiver combination
- Overall cost reduction of 40%-60% in GCU
- Cost reduction impact on other areas (e.g. heat, power, volume, etc.)

Mission Computer Architecture Innovation

Original Mission Computer Design Concept

Mission Computer Design for the Low Cost GCU

LEANAIRCRAFT INITIATIVE

Benefits

Benefits To	Key Benefits
Government	 AUPP reduction (\$68K → \$15K) Development time reduction (46 mo. → 30 mo.) Procurement cycle length reduction (15 yrs → 10 yrs) Warranty length increase (5 yrs → 20 yrs) Program office staff decrease (70 people → 40 people) No degradation on accuracy
Prime Contractor	 Increased design flexibility and configuration control Reduced MIL-SPECS (87 → 0) Reduced SOW (137 pgs → 2 pgs) Reduced proposal length (1000+ pgs → 15 pgs) Reduced government-mandated contract terms (243 reports → 15) Long term stable program
Suppliers	 Protection of trade secrets Relaxed requirements for pricing data Elimination of MIL-SPECS Training program Long term business relationship (Preferred Suppliers Program)

F119 Engine Nozzle: Introduction

SR101696-21 ©1996 Massachusetts Institute of Technology

Case Study Profile: Key Issue

• The key issue of the F119 Nozzle

- High exhaust temperature (4300°F)
- Thermal cycling of nozzle (Fatigue)
- High tolerance requirements (to prevent leaks)

• Very tight coupling between:

- (A) Design
- (B) Manufacturing process
- (C) Materials
- Each of the ABCs impact the others strongly

Case Study Profile: 1980s

- Prime responsible for all design and engineering
- Role of suppliers: build-to-print
- Went through four generations of design; each one a separate invention (different materials, design, technology, processes)
- Traditional design/development process did not deliver optimal product

Case Study Profile: 1990s

- New material technology driving design and manufacturing/assembly process
- Co-located design teams (prime,key potential suppliers); supplier downselect
- Prime adopted new design approach based on make/buy
- Joint design/development with selected suppliers; design control by prime
- IPT approach; concurrent engineering
- Electronic integration with suppliers
- Not-to-compete agreement with suppliers (until Lot X)

Case Study Profile: Organization

F119 Nozzle Team

Case Study Profile: The Players

- Pratt + Whitney, West Palm Beach Prime for F119 Engine
- Key supplier of convergent-divergent component of nozzle
- Tool supplier next door to key supplier, makes stamping tooling

LEANAIRCRAFT Case Study Profile: Information Flows & Knowledge Integration

Case Study Profile: The Story

- Pratt & Whitney make-buy decision
 - not to invest in new capital equipment
- Selection of Key Supplier because of its welding capability for convergent nozzle component
- Pratt & Whitney agrees not to compete with Key Supplier (until Lot X)
- Virtually no investment risk by suppliers

Architectural Innovation

- The IPT jointly agrees to rivet rather than weld the nozzle assembly, based on
 - Tool supplier's stamping experience
 - Key supplier's riveting experience
 - Prior sharing of this information with P&W
- Result: New way of linking components together; new manufacturing and assembly process; much improved product

Riveting idea originated from key supplier and its tool supplier

SR101696-30 ©1996 Massachusetts Institute of Technology

Benefits

Benefits To:	Key Benefits	
Program	Substantial risk reduction	
U	 Major cost reduction (more than 5-fold reduction in unit cost) 	
Prime	 Significant improvement in cost performance Significant savings of capital investment Control of new process by prime through proprietary technology 	
Key Supplier	 Repeat business in future; incentivized by not-to- compete agreementnozzle is a wear part Enhanced capability for similar future programs 	
Tool Supplier	 Develops new technical capability Transfers technology to automotive practice, gaining new business (from .020" tolerance to .002" tolerance) 	

Link to LEM

Early supplier integration into design and development key enabler of major enterprise-wide overarching practices

- Implement integrated product and process development
- Develop relationships based on mutual trust and commitment
- Assure seamless information flow
- Identify and optimize enterprise flow
- Optimize capability and utilization of people
- Make decisions at lowest possible level
- Nurture a learning environment

Key Lessons

- Follow proactive "make-buy" strategy based on understanding of core competency over entire value chain
- Integrate specialized knowledge bases over supplier web (key suppliers, subtiers)
- Facilitate early integration of key suppliers in design and development
- Retain flexibility in defining system architecture
- Develop incentive mechanisms for mutual gain, both internally and externally

Summary

- Early supplier integration into design and development can yield potentially significant benefits
- Major source of benefits: Enabling "architectural innovation" in product development
- Requires proactive integration of core competency of suppliers into design process
- Innovative government acquisition and oversight practices essential
- Current and future research aimed at helping industry in this journey (e.g., define best practices, metrics, enablers, benefits, formal analytical methods)

Next Steps (Joint PD and SR)

- Identify strategies and systematic methods for cycle time reduction and risk management
 - Key characteristics
 - Design structure matrix
 - Software factories (continuing)
 - Dynamic modeling of design process
 - Reducing DOD product development time
- Technology supply chain design and management
 - Strategic make-buy decisions
 - Concurrent design of product development, technology supply chains and production supplier networks
 - Parts obsolescence and diminishing manufacturing resources
- Information infrastructure requirements and approaches
 - Vertical design/process integration information requirements
 - Structured methods (function/design/process decomposition; data flow management)