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Abstract

The ability to switch the physico-chemical properties of conducting polymers opens up new 

possibilities for a range of new applications. Appropriately functionalised materials can 

provide routes to multi-modal switching, for example in response light and/or 

electrochemical stimuli; this capability  is important in the field of bionics, wherein remote 

control of the properties of materials opens new possibilities. For example, the ability  to 

actuate a film via photonic stimuli is particularly interesting as it facilitates the modulation of 

interactions between surface host binding sites and potential guest molecules. In this work, 

we studied two different poly-terthiophenes: one was functionalized with a spiropyran 

photoswitch (pTTh-SP) and the second with a non-photoswitchable methyl acetate moeity 

(pTTh-MA). These substrates were exposed to several cycles of illumination with light of 

different wavelengths and the resulting effect studied with UV-vis spectroscopy, contact angle 

and atomic force microscopy (AFM). The AFM tips were chemically  activated with 

fibronectin (FN) and the adhesion force of the protein to the polymeric surface was measured. 

The pTTh-MA (no SP incorporated) showed a slightly  higher average maximum adhesion 

(0.96 ± 0.14 nN) than the modified pTTh-SP surface (0.77 ± 0.08 nN), but after exposure of 

the pTTh-SP polymer to UV, the average maximum adhesion of the pTTh-MC was 

significantly smaller (0.49 ± 0.06 nN) than both the pTTh-MA and pTTh-SP. These results 

suggest that hydrophobic forces are predominant in determining the protein adhesion to the 

films studied and that this effect can be photonically tuned. By  extension, this further implies 

that it should be possible to obtain a degree of spatial and temporal control of the surface 

binding behaviour of certain proteins with these functionalised surfaces through photo-

activation/deactivation, which, in principle, should facilitate patterned growth behaviour (e.g. 

using masks or directional illumination) or photocontrol of protein uptake and release. 

Keywords: Spiropyran, Conducting Polymer, Polyterthiohene, Atomic Force Microscopy, 

Protein Adhesion, Fibronectin
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Introduction

Switchable surfaces offer control over the material interface via an external stimulus, 

including light, temperature, pH and electrical field, which can be applied either as a ‘one-

off’ or a reversible change [1].  For cell-based applications, switchable materials offer the 

ability  to control interactions at the cell-material interface. In particular, the switching of 

protein adsorption and conformation can be used to modulate cellular proliferation and 

differentiation [1-3]. Light switching in 'once-off' switching materials can promote specific 

biomolecular adhesion to the surface [4], while electrical switching is particularly applicable 

to organic conductors (e.g. CNT, conducting polymers) and shown to enhance cell growth 

and differentiation [5-10]. In biosensing applications, however, the surface adsorption of 

proteins is undesirable and decreases the efficacy  of the device [11-13]. A dynamic material 

that controls both the adsorption and desorption of proteins and living cells opens up several 

possibilities in patterned cell growth, tissue engineering, and biosensing applications [14-16]. 

Polymer-based materials have been designed to take advantage of switchable properties for 

the above applications [17-20].  Polymers can be switched through a variety of external 

stimuli that typically  provide a single pathway to control the interfacial response. A 

developing area in the field of switchable materials is the implementation of multiple stimuli 

via copolymers as this provides increased flexibility in the manner by which the interfacial 

behaviour is controlled.  This in turn is important  for applications wherein both spatial and 

temporal control over surface interactions is desired. For example, a material comprising both 

thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) and photoresponsive 
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spirobenzopyran (SP) enables both control over the spatial direction of cellular growth with 

UV light and the removal of cells via low temperature washing [14]. This strategy  has been 

taken a step further by combining light, temperature, and pH to control tuneable microgels 

comprising a temperature/pH sensitive pNIPAM-allylamine copolymer microgel 

functionalized with the SP photosensitive molecule [21]. In this case, the optical properties of 

the copolymer changed the thermal threshold for volume changes of the microgel, as well as 

a photochromic change when switched. The amine groups in the microgel were pH sensitive 

and reduced swelling capability with an increase in pH.

When designing a material with bi-modal switching capabilities, the incorporation of 

photoswitchability is often attractive as it  enables fast, non-invasive, and highly controllable 

switching with spatial resolution. Photocleavable groups that are actively switched via 

specific wavelengths of light have previously been used to inhibit or facilitate cell adhesion 

[4]. This type of switching induces an irreversible change but despite this, it is useful for 

surface patterning or release of molecules (e.g. drug delivery) [22]. The second common 

optical switching mechanism is photoisomerisation wherein the molecule undergoes 

heterolytic bond cleavage producing an isomer that will have a different polarity  to the 

original molecule. SP is a commonly used in this regard as it undergoes a heterolytic cleavage 

of the spiro carbon-oxygen bond to create an open ringed structure that has two resonance 

merocyanine-like and quinoidal-like MC forms. SP has been studied in combination with 

temperature responsive pNIPAM polymers to produce photosensitive copolymer materials 

[22-24]. They have also been incorporated as a copolymer with methyl methacrylate to 

produce a photosensitive poly(spiropyran-co-methyl methacrylate) material that upon 

switching from the SP to MC form can induce the detachment of platelets and mesenchymal 

stem cells  [25]. The SP molecule has also been incorporated into materials such as self-
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assembled monolayers [26], bilayers [27], polymers [28], and more recently  organic 

conducting polymers [29-30]. 

A novel organic conducting polymer, a polyterthiophene with SP attached to the polymer 

backbone, has recently been synthesized to produce a photosensitive conductive polymer 

[29a]. The SP was covalently bound to the alkoxyterthiophene monomer units to produce the 

polymer poly(2-(3,3"-dimethylindoline-6'-nitrobenzospiropyranyl)ethyl 4,4"-didecyloxy-2,2':

5',2"-terthiophene-3-acetate). Electrical switching of the polythiophene backbone showed 

good reversibility  and stability and additional photoswitching of the SP moiety  was possible 

using optical stimulus. Figure 1A shows the chemical structure of the polymer and reversible 

transition between the SP and MC forms as a function of UV/visible light switching. While 

the effect  of both light and electrical switching on the redox properties and SP-to-MC 

conversion was investigated, the material was not exploited to demonstrate control over the 

physical interactions of proteins or living cells.  

In this study, we focused on the effect of optical stimulation on the poly(2-(3,3"-

dimethylindoline-6'-nitrobenzospiropyranyl)ethyl 4,4"-didecyloxy-2,2':5',2"-terthiophene-3-

acetate) (termed pTTh-SP) polymer described in our above study [29a] to investigate the 

ability  to control fibronectin (FN) protein adhesion, which is an important interaction within 

extracellular matrix for mediating cell adhesion. In order to support cell adhesion and 

signalling via α5β1 integrin binding receptors to RGD sites within FN, the protein must be in 

the appropriate conformation whilst possessing adhesion to the substrate. FN binding to cell 

integrin receptors triggers the formation of actin stress fibres that promotes cell adhesion and 

proliferation. Subsequent cell signalling is modulated through a continuum of mechanical 
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forces (i.e. mechanotransduction) and thus is dependent on the strength of FN adhesion to a 

surface. 

Materials and Methods

The molecules used for this study (pTTh-MA and pTTh-SP) were synthesized and then 

electro-polymerised according to the procedure previously  reported [29a]. The electrodes 

selected were the optically transparent ITO (Indium Tin Oxide) coated glass (Delta 

Technologies, Limited, resistivity  Rs=4-8 Ω). Absorbance spectra were recorded using a 

Shimadzu UV-1800 spectrophotometer. The polymers were washed in acetonitrile after the 

polymerisation in order to remove the excess of electrolyte and the absorbance spectra 

measured. The absorbance spectra was then measured for the pTTh-SP exposed to UV (254 

nm) light for 5 min, and then once exposed to visible light (full spectrum) for 5 min. The 

pTTh-SP was then exposed to UV light for 15 min and the absorbance spectra measured. All 

light switching was performed at room temperature. 

Four different freshly polymerised films (stored at -0.4 V) were subjected to 5 cycles of 

exposure to UV light (254 nm, 15 min) and 5 cycles of exposure to visible light (full 

spectrum, 15 min). After each exposure, contact angles were obtained for each film in 

triplicate. 

The functionalization precursors 3-ethoxydimethylsilylamine propyl (3-EDSPA) and 

gluteraldehyde (GAH) were obtained from Sigma Aldrich. Human plasma fibronectin (FN) 

was obtained from Sigma Aldrich. Phosphate buffer saline (PBS) was prepared at pH 7 in 

Milli-Q water (18.2MΩ). The tip is functionalized using an aminosilanization method to 

covalently bind the protein to the tip. Silicon nitride tips are used for this method due to the 
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availability of silicon oxide groups on the surface. The tips were initially prepared with a 

plasma cleaner to remove any  impurities or functionalized groups on the surface. Once 

cleaned the tips were immediately functionalized to minimise contaminants on the surface.  

The tips were placed into the 3-EDSPA solution at  room temperature for 1 h. The tips were 

then removed, washed consecutively with toluene and then in PBS solution. The tips were 

then immersed in the GAH solution for 1 h and then rinsed with PBS solution. The tips were 

finally immersed in the FN solution for 1 h, then rinsed and refrigerated in PBS solution until 

use. The AFM parameters for the force measurements were set to 500 nm for the z-distance, 

0.5 Hz scan rate, 1 s dwell toward the surface, and 1 nN trigger force. Single point force 

spectroscopy  measurements were performed with 5 consecutive measurements at one point, 

with a rest of 3 s, across 5 different  points on the sample surface. 25 force curves were 

performed by 3 individual tips on 3 samples for measurements on pTTh-MA and pTTh-SP 

(total number of force curves 228 and 200 on pTTh-MA and pTTh-SP, respectively). 

The modified polymers were switched using optical stimulation to measure protein adhesion 

on the SP and MC form. The polymer was irradiated with UV light (wavelength 254 nm) for 

10 min in order to switch it from pTTh-SP to pTTh-MC in PBS solution. The polymer was 

then exposed to room light for 10 min to switch from pTTh-MC to pTTh-SP. Force 

spectroscopy  measurements were performed with 5 consecutive measurements at one point, 

with a rest of 3 s, across 5 different  points on the sample surface. 25 force curves were 

performed on the polymer after the light  stimulation was applied and 4 samples with 4 

individual tips were used (total number of force curves 200 and 150 for SP and MC form 

respectively). 
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Contact angle experiments on the polymer surfaces were obtained with a First Ten Ångstroms 

FTA200 analyser at room temperature and environment humidity, using water as the probe 

liquid. The pTTh-SP polymer was initially electrically stimulated at a constant -0.4 V after 

polymerisation in 0.1 M  TBAP electrolyte (acetonitrile solvent) in order to guarantee the 

higher concentration possible of the SP isomer, subjected to the illumination cycles as 

previously  described and then analysed with the contact  angle. Six freshly synthesised 

samples of pTTh-MA were washed in acetonitrile to remove the excess of electrolyte. Three 

of them were electrically  stimulated at  -0.4V and the other three were kept at 0.9V and then 

tested with the contact angle analyser.

Results and Discussion

UV-Vis Spectra

The UV-vis absorbance spectra for the switching pTTh-SP is shown in Figure 1B.  The fully 

switched, oxidised pTTh-SP polymer was initially measured (blue). The polymer was then 

switched to the MC form by  exposure to UV light (red) and then switched back to the SP 

form again (green). The polymer was switched to MC a final time (purple). The absorbance 

spectra shows a shift with the optical stimulation, indicating that the polymer is undergoing 

photoisomerisation.

Contact Angle Measurements

The optical stimulation was shown to induce a change in the wettability of the pTTh-SP 

functionalized polymer, as demonstrated by the contact angle measurements. As a control, 
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optical stimulation did not produce any effect  on the SP-free pTTh-MA polymer. Figure 1C 

displays the average contact angle measurement as the polymer is optically switched from 

SP to MC form five times. The measurements show a stable, reversible change of the contact 

angle of the polymer. The SP form is the more hydrophobic form (an average contact angle of 

100.0 ± 5.6°), and the MC form is more hydrophilic (an average contact angle of 84.3 ± 2.5°). 

The hydrophobic nature of SP has previously been related to its chemical structure [24, 31] 

and similarly  confirmed using contact angle measurements [25]. The weaker hydrophobicity 

of the MC form is attributed to its zwitterionic structure that forms due to cleavage of the 

spiro carbon-oxygen bond and results in the heterolysis of the nitrogen and oxygen (Figure 

1A) [31]. Furthermore, the contact angle measurements demonstrated that the change in 

wettability was reversible upon cycling of the optical switching and agrees with a previous 

study on the reversible optical switching properties of the SP [32]. 

Protein Adhesion

The interaction of FN with the polymer was measured using AFM force spectroscopy, as 

depicted in Figure 2A.  In these measurements, a chemically  functionalized FN tip is brought 

into contact, and then withdrawn from, the polymer surface whilst measuring the tip-sample 

adhesive forces as a function of optical stimulation.  A typical force curve on the pTTh-MA 

polymer with no SP incorporated and without optical stimulation shows a large peak upon 

retraction of the tip, indicating the presence of an adhesive interaction between the FN and 

polymer (Figure 2B). The strength of protein adhesion is given as the peak maximum (Figure 

2B, vertical arrow), which is on the order of nanonewtons (~ 1 nN). This type of adhesion is 

typically due to the interaction of several proteins on the tip, involving both intra and inter-

protein interactions, and their subsequent detachment from the surface. Inter-protein 
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interactions may include electrostatic, hydrophobic and hydrogen bonding, while inter-

protein  interactions include unfolding of the protein or adhesion between proteins, all of 

which may  contribute to the strength or energy (integral of area under peak) of protein 

adhesion. The pTTh-MA showed a slightly higher average maximum adhesion (0.96 ± 0.14 

nN) than the modified pTTh-SP surface (0.77 ± 0.08 nN), as displayed in Figure 2C. After 

exposure of the pTTh-SP polymer to UV, the average maximum adhesion of the pTTh-MC 

was significantly smaller (0.49 ± 0.06 nN) than both the pTTh-MA and pTTh-SP. When 

comparing the change in surface energy  (contact  angle) and adhesion, both parameters show 

a decrease in the order of pTTh-MA > SP > MC, suggesting that an increase in hydrophilicity 

(or conversely a decrease in hydrophobicity) correlates with a decrease in protein adhesion. 

Based on this correlation, it appears that hydrophobic interactions may be the dominant 

forces involved in protein adhesion. The increased hydrophobicity  of the pTTh-MA is due to 

its neutral backbone, in addition to the presence of polar decyloxy and acetate groups. This is 

in contrast to the pTTh-SP where the nitro groups will contribute to hydrophilicity. The 

reduction in hydrophobicity of the MC form is attributed to the zwitterionic nature of the MC 

molecule, which has previously been shown to also reduce protein adhesion [33-34]. 

Zwitterionic surfaces are believed to be resistant to non-specific protein adhesion due to 

hydration layer(s) bound through solvation of charged terminal groups, as well as hydrogen 

bonding around molecular chains [35]. This switch to the more hydrophilic MC form with 

zwitterionic species may  either diminish the extent of hydrophobic interactions and/or play a 

role in actually deterring protein adhesion. 

Figure 3A displays the reversibility in protein adhesion as the polymer is switched between 

the SP and MC forms. Representative force curves on pTTh-SP demonstrate a much higher 

adhesion force (larger peaks) compared to pTTh-MC, clearly indicating a reversible effect of 
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the optical stimulus on protein adhesion. Figure 3B shows the average maximum adhesion 

force of the SP and MC forms as they are reversibly switched over 2 cycles.  The initial SP 

form (electrically stimulated to ensure complete conversion to the SP form) was measured to 

have a mean of 0.91 ± 0.04 nN (mean ± s.d., n=50). The first switch to pTTh-MC with UV 

light reduced the mean maximum adhesion to 0.31 ± 0.01 nN (mean ± s.d., n=75). The first 

switch back to pTTh-SP with visible light measured an increase in the mean maximum 

adhesion to 0.67 ± 0.03 (mean ± s.d., n=150) and the second switch to pTTh-MC with UV 

light decreased the mean again to 0.46 ± 0.01 (mean ± s.d., n=75). The reversibility  of the 

protein adhesion exhibits a small amount of hysteresis as the switching is performed over 

multiple cycles. In particular, the average adhesion force of the SP does not return to its initial 

value (27% reduction in the average adhesion force) after switching back from the MC form, 

suggesting that not all of the MC isomers undergo switching back to the SP form. As the 

force measurements are not performed simultaneously during the optical switching (i.e. only 

before or after switching is performed), the measurements may be susceptible to time–

dependent (e.g. ‘lag’ time) changes in the SP-to-MC conversion. 

A previous study using a copolymer of nitrobenzospiropyran and methyl methacrylate has 

shown that the amount of adsorbed fibrinogen protein on SP surfaces and those surfaces 

already in the MC form is almost comparable, even though the MC form results in a 

significant decrease in contact angle (increased hydrophilicity) [25]. In the same study, 

however, it was shown that the amount of adsorbed fibrinogen on SP surfaces significantly 

decreases when those same surfaces are exposed to UV irradiation, suggesting that the 

physical movement associated with the molecular switching, rather than a change in surface 

energy, is primarily responsible for inducing protein detachment. This detachment of the 

fibrinogen was also related to the ability to induce detachment of platelet cells [25]. The AFM 
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force spectroscopy  measurements in our study are analogous to the situation where the direct 

measurement of protein adhesion is made on surfaces already  in the SP and MC form, thus 

limiting any  effects to only  the static properties of the surfaces.  Therefore, contrary  to the 

above study, we observe a significant difference in protein adhesion between the PTTh-MA, 

SP and MC forms that correlates with a change in their surface energy. Specifically, the 

protein adhesion decreases with an increase in hydrophilicity.  Conversely, UV irradiation of 

a spiropyran–poly(N-isopropylacrylamide) copolymer prior to low temperature washing was 

shown to promote the adhesion of CHO-K1 cells, suggesting an attractive interaction 

between the zwitterionic isomer and cell membrane that also has zwitterionic groups,  

although the surface energies, switching mechanisms of the copolymer, or influence on 

protein adhesion were not addressed in the study  [14]. The findings from the above different 

studies highlight the potential complexities and differences in underlying mechanisms for 

controlling protein and cell interactions using optical stimulation, particularly in dual stimuli 

systems where the photosensitive SP is combined with another polymer constituent that may 

be electroactive, temperature sensitive or simply of different surface chemistry.

During the adhesive interaction of the FN, the maximum extension length, or elongation, of 

the protein(s) is given as the distance on the x-axis (i.e. tip-sample separation distance) where 

the protein eventually detaches from the surface and the force returns to zero (Figure 2B, 

horizontal arrow). Histograms showing the distribution of the protein extension lengths did 

not show any  significant difference between the SP and MC forms of the polymer (Figure 4). 

Mean peak distribution values for the pTTh-SP (Figure 4A) and pTTh-MC (Figure 4B) were 

24.9 ± 0.8 nm and 21.9 ± 2.3 nm, respectively. These extension lengths, which are 

significantly smaller than the theoretical and experimentally  observed 160-180 nm contour 

length of FN in its extended conformation [36-39], indicate that the protein interaction is 
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occurring over a distance more closely  related to the average dimensions of FN in its compact 

conformation (i.e. ≈  20 nm  x 15 nm) [36]. These extension lengths of ≈ 25 nm for the pTTh-

SP and pTTh-MC are also much shorter than the distribution of extension lengths, 60 nm, 

120 nm and 160-175 nm, observed in our recent AFM  study on FN interactions with the 

conducting polymer, polypyrrole, doped with glycosaminoglycans (GAGs) such as 

chondroitin sulfate, hyaluronic acid and dextran sulfate [40]. In this case, the presence of the 

GAGs, which are large, highly negatively charged polyelectrolytes, dramatically increases 

the surface hydrophilicity  (contact angles of <22°) [41] and causes the FN to adopt a more 

extended conformation during its interaction with the polymer [40]. It well-known that the 

wettability of a surface is important for controlling the conformation of FN. On hydrophobic 

surfaces, FN adopts a compact, ‘pretzel’ conformation that is stabilized by intermolecular 

bonds but can be disrupted by interacting surface groups of hydrophilic and negatively 

charged surfaces, causing the protein to adopt an extended conformation [42]. Hence, for the 

hydrophobic pTTh-SP and pTTh-SP polymers (CA = 85-100°), the observed extension 

lengths suggest that the FN protein retains its compact conformation during adhesive 

interactions with the surface.  

Conclusion

The switchable nature of the copolymer in this study and its effect on protein adhesion as 

well as conformation suggest a potential use in priority-driven cellular adhesion to control 

cell growth, spatially and directionally. This has been demonstrated previously for controlling 

cell detachment [14] but the ability  to resolve reversible, protein interactions with resolution 

comparable to the nanoscale, as done in this study and others [40], provides significant 
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insight into the possibilities of exerting fine, molecular level control over cellular 

interactions. 
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Figure 1: (A) (left  structure) Spiropyran covalently bound to alkoxyterthiophene monomer 

units to produce the polymer poly(2-(3,3"-dimethylindoline-6'-nitrobenzospiropyranyl)ethyl 

4,4"-didecyloxy-2,2':5',2"-terthiophene-3-acetate) (termed pTTh-SP) and (right structure) 

after light switching to the zwitter-ionic isomer in open form (termed pTTh-MC). (B) UV-vis 

spectra of initial pTTh-SP (blue), UV stimulated 5 min (red), white light stimulated 5 min 
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(green) and UV stimulated 15 min (purple). (C) Contact angle measurements on polymer as it 

is optically switched, measured on 4 individual films, cycled 5 times. Error bars are standard 

deviation.

 

Figure 2: (A) Schematic diagram of AFM tip functionalized with FN interacting with a 

chromophoric surface stimulated with UV light (wavelength 254 nm).  (B) Example force 

curve analysis, extension (red) and retraction (blue) curves. (C) Average adhesion forces for 
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as-grown pTTh-MA (n=228), SP (n=200) and MC form (n=150). Error bars are standard 

error.
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Figure 3: (A) Representative force curves during optical switching. Maximum force 2.4 nN, 

maximum tip-sample separation 100 nm. (B) Average adhesion forces during optical 

switching (n = 50, 75, 150, 75). Error bars are standard error. 

 

Figure 4. Distribution of extension length for SP (A) and MC (B), N=180 and N=198 
respectively. Red curves are individual gaussian fits.


