

研究ノート

和歌山大学地上局 パラボラアンテナの性能評価

Evaluation of the Antennas in Wakayama University Ground Stations

佐藤 奈穂子¹, 森田 克己¹

1和歌山大学宇宙教育研究所

大きさ50 × 50 × 50cm, 重さわずか50kgの超小型衛星「UNIFORM-1」は, 2014年5月24 日の打ち上げ後から1年半以上の期間に渡り成功裏に観測をつづけ, 搭載する可視光カ メラ・熱赤外線カメラを使ってユニークな観測画像を送り続けている。UNIFORM-1で は当初掲げた火災検知を実現するだけでなく, 超小型衛星の持つ機動性を生かした火山 噴火活動の即時観測、および継続的モニタリングも成功させている。またこのような 観測画像を誰でも入手可能なよう, 超小型衛星として日本で初めてFree & Open な形で データ公開を実現した。

キーワード:超小型衛星,地上局

1. 背景

和歌山大学宇宙教育研究所では,電波観測通信施設 に設置された12mパラボラアンテナと3mパラボラア ンテナ,そして,教育学部棟屋上に設置された3mパ ラボラアンテナ(便宜上,こちらを新3mアンテナと 呼ぶ)の整備と運用を行ってきた¹⁻³⁾。12mアンテナ はX-band受信のために,3mアンテナはS-band送受 信のために,新3mアンテナはX-band受信とS-band 送受信の共用アンテナとして整備をされている。本稿 では,これら4つの受信系のアンテナ性能測定の結果 を報告する。具体的には,ビームサイズ,システム雑 音温度,ポインティング較正,天頂問題について議論 する。

2. ビームサイズ

2.1 測定方法

和歌山地上局は,自前のコリメーション設備を持た ないため,太陽を用いてビームサイズの評価を行う。 測定方法は,アンテナで太陽を導入し電波強度を確認 し,追尾を続けながら,太陽の中心から,AZ(方位角) 方向またはEL(高度)方向へ一定のStepでオフセッ トを与えながら,受信強度を測定するものである。

この方法のメリットは,複雑な手続きが必要なコリ メーション設備の準備がなくてもビームサイズを評価 できる事である。一方で,この方法の問題点は,太陽 自体が見かけの大きさ(約0.5 [deg])を持っているた め,それと同等かそれよりも細いビームパターンの評

	国油粉基	測定日	測定領域 [deg]	測定	測定半值幅	計算半値幅†	設計半値幅
	川以奴尔市		例 / E 順 · K [UE g]	step[arcsec]	[deg]	[deg]	[deg]
12mアンテナ	X-band	2014/10/30	$AZ:\pm 1EL:\pm 1$	300	AZ:0.67	AZ:0.45	0.42
					EL:0.68	EL:0.46	0.43
3mアンテナ	S-band	2016/01/26	AZ:±5EL:±5	300	AZ:5.5	AZ:5.4	2.1
					EL:5.1	EL:5.0	3.1
新3mアンテナ	X-band	2016/01/29	AZ:±2EL:±2	300	AZ:1.2	AZ:1.1	0.96
					EL:1.4	EL:1.3	0.80
新3mアンテナ	S-band	2016/01/29	AZ:±5EL:±5	600	AZ:4.0	AZ:4.0	2.1
					EL:3.9	EL:3.9	3.1

表1 太陽の測定結果

†:2章3節を参照

各グラフの縦軸は規格化した信号強度比, 横軸は太陽位置からのオフセット値。 左列は EL方向の測定, 右列は AZ方向の測 定。 上から順に, (a) 12m アンテナ X-band 系, (b) 3m アンテナ S-band 系, (c) 新3m アンテナ X-band 系, (d) 新3m アンテナ S-band 系の測定結果。

価が難しい事が上げられる。また、感度の低いアンテ ナでは太陽の受かる S/Nよりも深いビームパターンを 測定できないという短所もある。

2.2 測定結果

太陽を測定した結果と観測緒元を表1に示す。表1に は、測定を行った範囲と測定Stepを示す。周波数帯 はX-bandは8 GHz帯を、S-bandは2 GHz帯を用いた。 いずれもUNIFORM-1衛星の受信で使用している周波 数である。測定結果として、測定半値幅(FWHM: Full Width of Half Maximum)の値を示す。設計半値 幅は、それぞれのアンテナで計算される設計ビームパ ターンの半値幅を表す。具体的には、ビームサイズを θ [rad]、パラボラ直径D [m]、波長 λ [m]とすると、

 $\theta = 1.2 \times \lambda \angle D$

の式で求められる。計算半値幅については,2章3節 を参照。なお,測定には,スペクトルアナライザを用 いた。また,測定結果の詳細を図1に示す。

2.3 議論

測定結果のAZ/EL比については、どの受信系でも 半値幅がほぼ一致しており丸いアンテナパターンが期 待される。但し、3mアンテナS-band系にのみついて は、多少の偏りがみられる。これは、焦点支持機構や パラボラ自体のゆがみに起因すると考えるが、衛星運 用を行う上では問題ないと考える。

測定値と設計値の差は、太陽の見かけの大きさに起 因すると考えられる。太陽およびアンテナのビームパ ターンを理想的な正規分布と仮定し、測定データを、 太陽とアンテナパターンの二乗和の平方根で近似でき るとすると、太陽の見かけの大きさ0.5 [deg]を用い て、アンテナの半値幅が計算できる(表1参照)。この 計算を用いると、12mアンテナX-band系の半値幅は AZ:0.45 [deg], EL:0.46 [deg]と計算でき、設計上 の計算値0.43 [deg]と良く一致する。一方で、この影 響は、半値幅が大きい場合にはあまり当てはまらない。 3m/新3mアンテナS-band系では、太陽の大きさの影 響はほぼ見られない。これらの系では、想定の半値幅 より大きい事がわかった。

また,これらの測定において,太陽の受信 S/Nが十 分ではない。特に3m アンテナ S-band 系の S/N は,ピー クで4 [dB] 程度しかない。この事から,今回の測定結 果からは、サイドローブについての議論を行う事がで きなかった。

3. システム雑音温度

3.1 測定方法

システム雑音温度は、大気による吸収やシステム内 部の熱雑音等の観測を邪魔するノイズの評価を行うた めのパラメータである。値が低いほど高性能のアンテ ナとなる。電波天文においては、このシステム雑音温 度を用いて、受信電波の強度をアンテナ温度(単位 [K(ケルビン)])に変換して扱うことを慣例としている。

和歌山局でのシステム雑音温度の測定は, R-Sky法 を採用する⁴⁾。これは, 給電部の前にアブソーバー(電 波吸収体)を置いた時のアンテナ温度(R)と, 天頂 を向けた時のアンテナ温度(SKY)とを測定し, 比 較する事により得られる。SKYでのアンテナ温度を 宇宙背景放射(約3[K])とみなし, Rでの受信温度を室 温(約300[K])として, 受信機内部の熱雑音を温度 で評価する。

この方法のメリットは、ノイズソース等の人工ノイ ズ源を必要としない点である。一方で、この方法のデ メリットとしては、フィードの形状により、アブソー バーで視野を塞ぎきれない場合がある。なお、電波天 文と無線工学とでは、システム雑音温度の定義が異な る事があるので、注意が必要である。

3.2 測定結果

表2に測定結果を示す。

	システム雑音温度	測定日
12m:X-band	557 [K]	2016/01/25
3m:S-band	795 [K]	2016/01/25
新3m:X-band	387 [K]	2016/01/28
新3m:S-band	557 [K]	2016/01/28

表2 システム雑音温度測定結果

3.3 議論

一般的に,システム雑音温度は観測周波数が高くなると悪化する傾向にあり,この測定でもその傾向がみられる。

また、今回の測定を行った和歌山局の3m・新3mア

ンテナは、S-band受信系が、物理的にS-band送信系 と同じハードウェアを共有している。そのため、フィー ドとLNA(Low Noise Amplifier:低雑音増幅器)の 間に共用器が挿入されており、その分システム雑音が 悪化している。

一方で、3mと新3mアンテナでのS-band系の性能 に違いがみられる。これは、これらの半値幅に違いが ある事を含めて調査が必要である。

なお,12mアンテナX-band系のフィード以外は, いずれも,アブソーバーをかざす上で,構造上に多少 の漏れが発生する可能性も否定できない。

4. ポインティング精度

4.1 12mアンテナポインティング較正

12mパラボラアンテナで高い周波数で安定した受信 を実現するために、ポインティング精度の評価と向 上を行うTpointというソフトを導入している。Tpoint によりポインティング特性をモデルフィッティングで 解析し、その結果を用いる事によりポインティング精 度向上が実現する。現在、経緯台式の12mアンテナ駆 動システムで、ポインティング補正が適用可能な12個 のパラメータを表3に示す。これらのパラメータは、

(観測値) = (理論値) - ⊿ (補正)

の式により補正を行い,それぞれ表4の補正式で補 正値が計算される。

実際のポインティングデータ取得は、晴れた夜に恒 星を用いて行う。ポインティング専用の口径50mm光 学望遠鏡を12mパラボラの鏡面の中心に設置し、アン テナ焦点部に設置したグリッドを用いてポインティン グのズレを測定し、その記録をMapping Fileとして保 存する。Mapping FileをTpointへ読み込む事により、

補正パラメータを取得する。なお,12mアンテナの駆動システムは,天体シミュレーションソフトと連動した恒星の導入と追尾が可能となっている。毎回,一晩で約20個程度の天体を観測し,補正値を導出している。

4.2 3m アンテナ・新3m アンテナのポインティング

3mアンテナ・新3mアンテナの駆動システムにも, 12mアンテナと同様なTpointパラメータによる補正 機能が装備されている。しかし、口径3mの小さな アンテナにおいて、光学望遠鏡の設置やそれによる Tpoint補正パラメータの取得は難しい。

表3 Tpointが使用可能なパラメーター覧

	概要
IE	Index error in elevation
IA	Index error in azimuth
СА	Non-perpendicularity of elevation and pointing axes
AN	NS misalignment of azimuth axis
AW	EW misalignment of azimuth axis
NPAE	Non-perpendicularity of azimuth and elevation axes
ACES	Az centering error (sin component)
ACEC	Az centering error (cos component)
ECES	EL centering error (sin component)
ECEC	EL centering error (cos component)
TF	Tube flexure-sin ζ law
TX	Tube flexure-tan ζ law

表4 Tpointパラメータの補正式

	補正式
IE	$\bigtriangleup E = +IE$
IA	$\bigtriangleup A = -IA$
CA	$\triangle A = -CA \text{ secE}$
AN	ightarrow A = - AN sinA tanE ightarrow E = - AN cosA
AW	$\triangle A = -AW \cos A \tan E$ $\triangle E = +AW \sin A$
NPAE	$\bigtriangleup A = - NPAE tanE$
ACES	$\triangle A = - ACES sinA$
ACEC	$\triangle A = +ACEC \cos A$
ECES	ightarrow E =+ECES sinE
ECEC	$\triangle E = +ECES \cos E$
TF	$\triangle E = -TF \cos E$
TX	$\triangle E = -TX \cot E$

現状での3mアンテナ・新3mアンテナのポインティ ング較正は、ある日の太陽(できれば南中時)を観 測した時のAZ・ELオフセット値のみを用いて行う。 実際にオフセットを反映させる方法は、「同期」を用 いる方法と、「Tpoint parameter」を用いる方法の2種 類がある。

4.3 12m アンテナのオフセット焦点ポインティング

12mアンテナを用いた,NOAA衛星等の1~2 GHz 帯での実験観測等を行う場合について記述する。

12mアンテナの焦点にはUNIFORM-1衛星用の X-bandフィードが設置されているため,他周波数

(1.4GHz) 用のフィードは, 焦点からオフセットした場所に設置する事になる。さまざまな制約等により, 現在, 焦点より AZ 方向にオフセットした場所に設置している。

この場合、フィードが焦点よりオフセットしてい るため、ポインティングにもズレが生じる。その補 正値は、ある日の太陽を用いた観測によりAZ方向の ポインティングのズレを使って求める。NOAA衛星 等の衛星追尾が必要な場合、ELに応じたAZの補正 を、位置推算表に反映させる必要がある。そのため の専用のソフトを開発した。なお、補正式は、

⊿_{AZ}(EL) = 補正値 × cos(EL)

により計算される。この式においては、 \triangle_{AZ} が位置推算表のAZ値へ加減すべき値で、ELの関数である。補正値は、仮想的なEL = 0 [deg]の時の \triangle_{AZ} の値として定義した。

なお,2015年12月24日時点での補正値は,-4500 [arcsec]であった。その後,オフセットフィードは取 り外している。

5. 天頂問題

5.1 12mアンテナ天頂問題

経緯台式の架台を採用するアンテナが衛星追尾を 行う場合,理論的に天頂付近で衛星追尾が不可能な 領域が発生する。これを天頂問題と呼ぶ。

アンテナで天頂問題が起きるパスの条件は、衛星 の見かけの最大速度がAZ軸の追尾速度を超える高度 として計算できる。12mアンテナの最大駆動速度は3 [deg/sec]で、軌道高度600 [km]のUNIFORM-1衛星 を追尾する場合、パス中の最大高度 \geq 77 [deg]で天 頂問題が発生すると計算される。天頂問題の発生の 様子は、衛星がそのパスの最大高度となる時刻前後 から始まり、長い時は1分程度追尾が不可能となる。 その間は、スペクトルアナライザで確認できる電波 強度は低下し、復調器のLockが外れる。

実際のUNIFORM-1衛星運用においては、最大高度 \geq 約60 [deg]のパスで発生しており、その発生時

間も想定よりも長い場合がある。さらに詳細な調査 が必要である。

5.2 衛星運用における3mアンテナ天頂問題

3m array a

実際のUNIFORM-1衛星運用においては、最大高 度 = 89.7 [deg]のパス(Pass No. 211)においてLock が外れたのが1秒程度という実績がある。この事から、 衛星運用において、 $3m ext{m} ext{r} ext{y}$ 」は、ほ ぼ天頂問題は留意する必要が無いと考えられた。

ところが、衛星が自由回転状態にある場合に、天 頂付近で、原因不明の復調器のLockが外れる事象が 報告されている。これは、最大高度 \geq 約60 [deg]の パスで頻発している。発生時のスペクトルアナライ ザを確認すると、電波強度は十分のため、S-band系 受信機の入力レベルオーバーも疑われた。しかし、 衛星の姿勢制御時は、問題なくLockがかかっていた ため、さらなる原因追究が必要である。

6. まとめ

和歌山地上局に設置されたアンテナの,性能を評価した。具体的には,ビームサイズ,システム雑音 温度,ポインティング較正,天頂問題について議論 した。

参考文献

- 小谷朋美,佐藤奈穂子,森田克己,平松崇,山浦秀作,秋山演亮,"和歌山大学における地上局システムの構築と UNIFORM-1 号機の運用",第58回宇宙科学技術連合講 演会,2014.11.
- 2) 佐藤奈穂子,小谷朋美,森田克己,宮田喜久子,山浦秀作, 秋山演亮,"UNIFORM 和歌山地上局における通信系機 器開発及び初期運用性能評価",第58回宇宙科学技術連 合講演会,2014.11.
- 3) 佐藤奈穂子,森田克己,堂野哲生,小谷朋美,宮田喜久 子,山浦秀作,秋山演亮,"和歌山地上局UNIFORM 1 衛星受信アンテナの性能評価-12mアンテナの指向精度 およびビームパターンの測定と評価-",宇宙・航行エ レクトロニクス研究会 (SANE), 2014.2.19
- M. L. Kutner and, B. L. Ulich: "Recommendations for calibration of millimeter-wavelength spectral line data", Astrophysical Journal, 250, 341 - 348 (1981).