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Abstract
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closed field R. In this paper, we consider an obstruction theory in the definable category of
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1. Introduction.

Obstruction theory addresses several types

of problems(see chap. 7 [2]). Let (X, A) be
a C'W pair and Y a topological space. One
of these problems is Extension Problem.

Problem 1.1. Suppose that f : A — Y
18 a continuous map. When does f extend
to all of X ¢

Let N = (R, +,-,<,...) be an o-minimal
expansion of the standard structure of a real
closed field R. General references on o-mini-
mal structures are [3], [5], see also [9]. Exam-
ples and constructions of them can be seen
in [4], [6], [7].

In this paper, we consider an obstruction
theory in the definable category of N'. Ev-
erything is considered in NV, a definable map
is assumed to be continuous and I = {z €
R0 <z <1},

Theorem 1.2. Let (X, A) be a relative
definable CW complex, n > 1, and Y a de-

finably connected n-simple definable set. Let

g: X, =Y be a definable map.

(1) There exists a cellular cocycle 6(g) €
C" Y (X, A, m,(Y)) which vanishes if
and only if g extend to a definable map
XnJrl —Y.

(2) The cohomology class [0(g)] € H" (X,
A, 7, (Y)) wanishes if and only if the
restriction g|X,_1 : X1 — Y extend
to a definable map X, 1 — Y.

2 . Preliminaries.

Let X C R" and Y C R™ be defin-
able sets. A continuous map f : X — Y is
de finable if the graph of f (C X xY C R" X
R™) is a definable set. A definable map f :
X — Y is a definable homeomorphism if
there exists a definable map h : Y — X such
that foh = idy,ho f = idx. A definable
subset X of R" is definably compact it for
every definable map f : (a,b)g — X, there
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exist the limits lim, 440 f(2), im0 f(x)
in X, where (a,b)g = {z € Rla < z <
b},—o0 < a < b < oco. A definable sub-
set X of R" is definably compact if and only
if X is closed and bounded ([8]). Note that
if X is a definably compact definable set and
f: X — Y is a definable map, then f(X) is
definably compact.

If R is the field R of real numbers, then
for any definable subset X of R, X is com-
pact if and only if it is definably compact.
In general, a definably compact definable set
is not necessarily compact. For example, if
R = Ralgy then [O, 1]Ralg = {LL’ S Ralg|0 <
x < 1} is definably compact but not com-
pact.

Recall existence of definable quotient and
properties of dimensions of definable sets.

Theorem 2.1. (Ezistence of definable

quotient (e.g. 10. 2.14 [3])). If X is a de-
finable set and A is a definably compact de-
finable subset of X, then the set obtained by
collapsing A to a point exists a definable set.

Proposition 2.2 (e.g. 4.1.3 [3]). (1)
If X CY C R", thendimX <dimY <n.

(2) If X C R",Y C R™ are definable sets
and there is a definable bijection between X
and Y, then dim X = dimY .

Let (X, A), (Y, B) be two pairs of defin-
able sets. Two definable maps f,h: (X, A) —
(Y, B) is definably homotopic relative to A
if there exists a definable map H : (X X
I, AxI) — (Y, B) such that H(z,0) = f(z),
H(z,1) = g(z) for all z € X and H(z,t) =
f(z),(z,t) € A x I. The o-minimal homo-
topy set [(X, A), (Y, B)]of (X, A) and (Y, B)
is the set of homotopy classes of definable
maps from (X, A) to (Y,B). If A=0,B =
0, then we simply write [X,Y] instead of
(X, 4), (Y, B)].

Let D" = {(x1,...,7,) € R"|2? + -+ +
2 < 1} 8" = {(z4,...,2,) € R"|2? +
-+ 22 = 1}. Then D" is the closed unit
disk of R™ and S is the unit sphere of R".

We now define relative C'W complexs in
the definable category. To reserve definablity,
we consider the case where finitely many cells
attached.

Definition 2.3. Let X be a definable set
and A a definable closed subset of X. We say
that X is obtained from A by attaching n-
cells {e*} | if the following four conditions
satisty.

(1) For each i, e!" is a definable subset of
X, called an n-cell.

(2) X = AuUk e,

(3) Letting Oe!* denote the intersection of
e and A, ef — de}' is disjoint from e} — de’f
for i # j.

(4) For each i, there exists a surjective
definable map ¢7 : (D", S™ 1) — (e?*,de?),
called the characteristic map of e, such
that the restriction of ¢; of the interior Int D"
of D™ is a definable homeomorphism onto
el — Oe'. The restriction of the character-
istic map of S ! is the attaching map of

Definition 2.4. A relative defianble
CW complex (X, A) is a definable set X, a
definable closed set A and a sequence of de-
finable closed subset X,,, n = —1,0,1,2,...
called the relative n-skeleton such that

(1) X 1 = A and X, is obtained from
X,_1 by attaching n-cells.

The smallest n such that X = X, is
called the dimension dim(X, A) of (X, A).
If A is a definable CW complex, we say that
(X,A) is a definable CW pair. If A = 0,
then X is called a definable CW complex,
and X, is called the n-skeleton of X.

Remark that in Definition 2.4, the maxi-
mum dimension of attaching cells to A does
not exceed dim X and dim A < dim X be-
cause Proposition 2.2.

Let Y be a definable set and yy € Y. The
o-minimal homotopy group of dimension
n, n > 1 (see [1]) is the set m,(Y,y0) =
[(In> a]n% (Y> yO)] = [(Snv xO)a (K yﬂ)]v where
OI™ denote the boundary of I™ and xy =
(0,,...,0,1). We define my(Y, yo) as the set
of definably connected components of Y.

A definable set Y is definably arcwise
connected if for every two points z,y € Y,
there exists a definable map f : I — Y such
that x = f(0) and y = f(1). Note that Y is
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definably connected if and only if it is defin-
ably arcwise connected. In this case, for any
Yo,y1 € Y andn > 1, m,(Y, yo) is isomorphic
to m,(Y,y1) and we denote it m,(Y).

For n > 1, a definably connected defin-
able set is de finably n-connected if m;(Y) =
0 for each 1 <4 <n.

Lemma 2.5. Let Y be a definably con-
nected definable set. If m,_1(Y) = 0, then
for every definable map h : S"~' —'Y, there
exists a definable map H : D™ — Y with
H|S™ 1 = f.

Proof. For ¢+ > 1, since Y is defin-
ably connected, m(Y) — [S,Y],[h] — [h]
is bijective. Thus h is definably homotopic
to a constant map C' : S"! — YV, C(z) =
c. Hence there exists a definable map ¢ :
S 1x T — Y such that ¢(z,0) = ¢, ¢(z,1) =
h(x) for all z € S"~1. Collapsing S"~1 x {0}
to a point, by Theorem 2.1, we have the cone
CS™! which is definably homeomorphic to
D™ and a definable map H : D" — Y with
H|S™ 1 = f. O

Proposition 2.6. IfY is definably (n —
1)-connected, f: A —Y is a definable map,
dim(X,A) <n andn > 1, then there ezists
a definable map F : X — Ywith F|A = f.

Proof. If « = 0, then we may assume
that Xo = AUe{U---Uel e}, ..., el denote
the O-cells of (X, A). For each ¢, defining
the image of 62, there exists a definable map
fo: Xo — Y extending f.

We may assume that X; = X; ; Ue} U
-Uel e, ...
By assumption, there exists a definable map
hj : 0e; — Y. Since d¢} is definably home-
omorphic to S"7! and by Lemma 2.5, we
have a definable map H; : ¢} — Y with
Hj|0¢; = hj. Using H;, we obtain a de-
finable map F' with F|A = f. ]

Let X be a definably connected defin-
able set and n > 1. As in the topologi-
cal setting, m(X) acts on m,(X). We say
that a definably connected definable set X
is n-simple if the m1(X) action on 7, (X) is
tirivial. Since the 71 (X) action on 7 (X) is

.. denote the i-cells of (X, A).

7T1(X)><7T1(X> — 7T1(X), (hl, hg) — hthhl_l,
X is 1-simple if and only if 71 (X) is abelian.

Let X be a definable CW complex, A
a definable subcomplex of X, n > 1 and Y
a definably connected n-simple definable set.
We define the cohomology group H"(X, A, m,
(Y)) as follows. Remark that [S™, Y] = m,(Y)
because Y is n-simple.

We define the n-dimensional chain com-
plex C,, (X, A) tobe H,(X,,, X,—1). Let i, 4 :
X1 — Xna]n : (Xn,w) — (Xnan—1> be
inclusions. As in the topological setting, we
have an exact sequence

ol Tan—1

g Hn(Xna Xn—l) - Hn—l(Xn—l) l;

Hy (X)) 58 Hy (X, Xot) — -

The boundary operator 9,, : H, (X, X,,—1)
— H, 1(Xyo1, Xp—2) 18 Jun—1 0 0,. We de-
fine the n-dimensional cochain complex C™(
X,A) = Homgz(Ch(X,A),m,(Y)) and the
coboundary operator 6, : C"(X, A) — C"(
X, A), (5f)c = f(ac)

Let (X, A) be a relative definable CW
complex, n > 1, and Y a definably con-
nected n-simple definable set. Let g : X,, —
Y be a definable map.

Let €' be an (n+1)-cell and ¢; : (D™,
S™) — (eftt, del ) C (X114, X,,) the char-
acteristic map of /"', Composing f; = ¢;|S™
with g : X,, = Y, we have an element [g o
fil € [S™,Y] = m,(Y). We define the ob-
struction cochain "*!(g) € C"™1 (X, A, 7, (
Y')) on the basis of (n + 1)-cells by the for-
mula 0" (g)(e?™) = [g o f;] and extend by
linearly.

In the rest of this section, we prove the
o-minimal cellular approximation theorem

Theorem 2.7 (O-minimal cellular
approximation theorem). Let (X, A),
(Y, B) be definable CW pairs and f : (X, A)
— (Y, B) a definable map. Then there ex-
ists a definable map g : (X, A) — (Y, B)
such that f is definably homotopic to g rela-
tive to A and for any nonnegative integer n,
g(X]) C Y/ where X| (resp. Y,) denotes
the union of the n-skeleton X,, (resp. Y,) of
X (resp. Y) and A (resp. B).
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Lemma 2.8 (O-minimal homotopy
extension lemma [1]). Let X, Z, A be de-
finable sets with A C X closed in X. Let
f X — Z be a definable map and H
A x I — Z a definable homotopy such that
H(z,0) = f(x),x € A. Then there exists a
definable homotopy F' : X x I — Z such that
F(z,0) = f(z),x € X and F|[Ax I = H.

By the above lemma, we have the follow-
ing o-minimal homotopy extension theorem.

Theorem 2.9. Let (X, A) be a definable
CW pair. Let f : X — Y be a definable
map and H : A x I — Y a definable homo-
topy with H(x,0) = f(x),x € A. Then there
exists a definable homotopy F' : X x [ —
Y such that F(z,0) = f(z),z € X and
FIAxI=H.

To prove Theorem 2.7, we prepare three
claims.

Claim 2.10. Let (Z,C) be a definable
CW pair. For any definable map g : D? —
Z with g(STY) C Za1, there exists a defin-
able map g’ : D — Z such that g ~ g' rel
S9=L and ¢ (D) C Z4, where Z1—1 = Z1UC.

Proof. Let n be the maximum dimen-
sion of cells not contained in C'. We may
assume that n > ¢ and proceed by induc-
tion on the number of such n-cells. Let ¢ :
(D", S™1) — (Z,Z" 1) be the characteris-
tic map of an n-cell e. Let D}, (D¥) be the
closed ball of center 0 with radius 3, (3),
respectively. Put U = ¢(D™ — D}) U (Z —
e),V = ¢(Int DY), zp = ¢(0), where Int DY
denotes the interior of D}. Then UUV = Z.
Taking a refinement of D?, every simplex |s|
of it is contained in g~ (U) or g~ (V). Let
Er = Using=1(z0)2015]; B2 = Ujsing-1(z0)=0l$]-
Then g(El) cV, g(E1 N EQ) cV-— {Zo}
Thus we have a definable map ¢ 1og: E1N
Ey — Int Dy — {0}. Since Int Dj — {0} is
definably homotopy equivalent to S™~! and
S™=1is (n — 2)-connected, there exists a de-
finable map h : By — Int D} — {0} with
h|E; N Ey = ¢! og. Define a definable
homotopy h; : Ey — Int DY by h(z) =

(1—t)¢p~tog(x)+th(x). Then hy is a defin-
able homotopy between ¢~! o g and h rel-
ative to E; N Ey. Define a definable ho-
motopy h} : D! — Z by W|E, = ¢ 1o
g, h}|Fy = g|F5. Then R} is a definable ho-
motopy between g and R/ relative to S9!
and h}(D?) C Z — {z}. Taking a definable
retraction r : Z — {2} - Z —e, ki = ro
By rel S971: DY — Z—{z}. Let ¢" = rohj.
Then g = ¢" rel S91 . DI — Z ¢"(D?) C
Z — e. By the inductive hypothesis, there
exists a definable map ¢’ such that ¢” =
g rel S D1 Z —e ¢ (D) CZ4. O

Claim 2.11. For any definable map f :
(X9, X971 — (Y, Y1), there exists a de-
finable map g : (X9, X971) — (Y, Y1) such
that f ~ g rel X9=1 and g(X7) C Y1.

Proof. Let e be a g-cell not contained in
A. Since f(€) is definably compact, there ex-
ists a finite subcomlex Z of Y with f(e) C
Z. Put C = ZnY"". Then f(e") C C,
where e” denotes the boundary of e. Let
¢ : (D577 — (€,e") be the characteristic
map of e. Applying Claim 2.10 to f o ¢ :
(D7, 5971 — (Z,C), there exists a defin-
able map ¢’ such that f o ¢ v ¢ rel S971,
¢'(D9) € Z". Then g = ¢' 0 ¢ is the required
map. ]

Claim 2.12. For any definable map f :
(X, A) = (Y, B), there exists a definable ho-
motopy H, : (X, A) x [0,1]g — (Y, B) such
that:

(1) Ho(x,t) = f(z) for all x € X.

(2) Hy(x,0) = Hy1(x,0) for allz € X.

(3) Hy(x,t) = (x,t) for all (z,t) € X" x
[07 1]R . o

(4) Hy(X" x {1}) C V.

Proof. Let Hy(x,t) = f(x) for (z,t) €
X X [0,1]g. Assume we have H, ;. Since
Hq_l(yq_l x {1}) C Y and by Claim
2.11, there exists a definable homotopy H;
rel X7 (XL XY < [0, 1] = LY
such that H[’]|7q x {0} = H, 1| X" x {1}, H(
X"x{1}) c Y". By Lemma 2.8, there exists
a definable homotopy H, : X x [0,1]g = Y
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such that H,|Xx{0} = H, ,|Xx {1}, H,| X"
x [0,1]gr = H;, and H, satisfies (1)-(4). O

Proof of Theorem 2.7. Let ¢ = dim X.
By Claim 2.12, we have a definable homo-
topy H,. Then the definable map ¢ : (X, A)
— (Y, B) defined by g(x) = H,(z,1) is the
required map. O]

3. Proof of Theorem 1.2.

Lemma 3.1. Leti be the inclusion X,, —
Xpi1 and xg € X,,. Then iy : m (X, z9) —
1 (Xnt1,T0) 18 surjective if n = 1 and an
1somorphism n > 1.

Proof. Let n>1and o : St — X,11 a
definable map. By Theorem 2.7, there exists
a definable map o' : S' — X; C X, such
that « is definably homotopic to o/. Since
i.([/]) = [a], i, is surjective.

Assume n > 2 and i.([a]) = 0. Then « :
S — X, is null homotopic and there ex-
ists a definable map H : S* x [0, 1] — X,,11
such that H(—,0) = o, H(—,1) = ¢, where
¢ denotes a constant map. By Theorem 2.7
and since S' x [0, 1]y is a 2-dimensional de-
finable set, there exists a definable map H' :
St x 0,1z — X, such that H is definably
homotopic to H' relative to S*x {0, 1}. Thus
[a] = 0 and i, is injective. O

Lemma 3.2. Ifk < n,n > 1 and xy €
X, then m(Xi1, Xn, xo) = 0.

Proof. Consider an exact sequence
e — Wk(Xn,l‘o) — Wk(XnJrl,l’o) —
7Tk<Xn+1, Xn, 513'0) — 7Tk,1<Xn, .To) —
Tk—1(Xnt1,20) — ... We prove that i, :
(X, o) = mk(Xpy1, xo) is surjecitve and
Gek—1 * Tr—1(Xn, xo) = mr_1(Xnt1,T0) 18 in-
jective.

Let o : S¥ — X,.1 be a definable map.
Then by Theorem 2.7, there exists a defin-
able map o : S¥ — X, such that « is defin-
ably homotpic to /. Then i,y : 7, (X, 29) —
T (Xnt1.2,) 18 surjecitve.

Assume 7,1 ([a]) = 0. Then o : S¥1 —
X,v1 is null homotopic and there exists a
definable map H : S*! x [0,1]p — X,
such that H(—,0) = a,H(—,1) = ¢. By

Theorem 2.7 and since S¥~1 x [0,1] is a k-
dimensional definable set, there exists a de-
finable map H' : S*~! x [0,1]z — X} C X,
such that H is definably homotopic to H’
relative to S*=* x {0,1}. Thus [a] = 0 and
1xk_1 1S injective.

By the above results and exactness, we
have the lemma. O]

The following is the o-minimal relative
Hurewicz theorem.

Theorem 3.3 (5.4 [1]). Let (X, A, z)
be a definable pointed pair and n > 2. Sup-
pose that 7. (X, A,x0) =0 for any 1 < r <
n — 1. Then the o-minimal Hurewicz homo-
morphism hy, @ m,(X, A, x9) — Hp(X, A) is
surjective and its kernel is the subgroup gen-
erated by { B (L)1) |[ul € m (A,z0), [f] €
(X, A, x0)}.  In particular, h, is an iso-
morphism for n > 3.

Put 7T;+1 (Xng1, Xn) = T (Xpga, X))/
ker h,. Let g : X,, — Y be a definable map
and 7 : 1 (Xpg1, Xn) = Ty (X1, Xn)
denote the projection.

Lemma 3.4. There ewits a factorization
900 : w1 (Xns1, Xn) — m(Y) such that

To0g,00d=g,00.

Proof. If a € m(X,), then d(ax) =
adx. Since Y is n-simple, for any z € 7,(X,,),
g:(az) = gu(a)g.(2) = g«(2). O
By Lemma 3.4, we can define the compo-
sition map Cy11(X, A) = Hp,11(Xpa1, Xi) I£>l

T (Xs1, Xn) 937 B, (Y), where b @, (
X1, Xpn) — Hy1(Xpa1, X,) denotes the
Hurewicz isomorphism. This composition
map defines another cochain in Homgz(C,41(
X, A), m,(Y)) which we again denote by 6" *(
9)-

Proposition 3.5. The two definitions of
6" (g) coincide.

Proof. For an (n + 1)-cell et let ¢;
(D™ S™) — (X,41, X,,) be the character-
istic map of e'"!. We define a map (¢; Vu)o
q : (D",8" p) — (Xni1, X, o) as the
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(D™, 8™ p) —

diVu

(DI, 8"V I, p)and amap D"V I "5
X,+1, where u is a definable path in X, to

the base point zy. Then (¢; V u) o ¢ is de-
finably homotopic to the characteristic map
¢;. Hence h((¢; V u) o q) is the generator
of I;—[nH(XnH,Xn) represented by the cell
n+

el ™ and (¢; V u) o ¢ represents the element

h=t(elth) in 7rn+1(Xn+1,X ). By definition,
I((¢iVu)oq) € m,(X,,) is represented by the
composition of the map g : S™ — S™V I ob-
tained by restricting the map ¢ to the bound-
ary and the attaching map f; = ¢;|S™ to-
gether with a definable path u to x¢: 9((¢; V
u)oq) = (fiVu)og:S™ — X,. By the sec-
ond definition, 6(g)(ef™") = go (f;Vu)og =
(gio fi V gowu)ogq. Moreover this is equal
to [fi] € [9™, Y] = m,(Y), which is the first
definition of §(g) (). O

composition of a map ¢ :

Theorem 3.6. The obstruction cohain
0"+ (g) is a cocycle.

Proof. Consider the following commu-
tative diagram.

7Tn+2(Xn+27Xn+1) — Hn+2<Xn+27Xn+1)

\ !
Tn41(Xnt1) - Hy1(Xoga)
I 1
7rn+l(Xn+l>Xn) — Hn-l—l(Xn-l-laXn)

} +0(g)
T (X) Ay Hn(Y,)

The unlableled horizontal arrows are the
Hurewicz maps and the unlableled vertical
arrows are obtained from homotopy or ho-
mology exact sequences of the pair (X2,
Xn—i—l) and (Xn—i-laXn)-

The composition of the bottom two ver-
tical maps on the left are zero because they
occur in the homotopy exact sequence of the
pair (X,41, X,). Since d0(g) is the composi-
tion of all the right vertical maps, 66"+ (g)(x)
= 0""1(g)(0x) = 0. Thus 6""!(g) is a cocy-
cle. O

By a way to similar to the topological
category, we have the following proposition.

Proposition 3.7. If X is a definable
CW complex, then X x I is a definable CW

complex.

Theorem 3.8. Let (X, A) be a relative
definable CW complex, Y a definably con-
nected n-simple definable set and g : X,, —
Y a definable map.

(1) 0" (g) = 0 if and only if there exists
a definavble map g : X,,11 — Y extending g.

(2) (6" (g)] = 0 if and only if there ex-
ists a definavble map g : X,11 — Y extend-
ing g’anl-

Lemma 3.9. Let fo, fi : X,, = Y be de-
finable maps such that fo|X,_1 is definably
homotopic to fi|X,_1. Then there exists a
difference cochain d € C™(X, A, m,(Y)) such
that 5d = 0" (fo) — 0" 1(f1).

Proof. Let X = X xI,A= AxI. Then
(X, A) is a relative definable CW complex

with X% = Xi x 0IU X1y x I. Take a
definable homotopy H between f; and f;.
Hence a definable map X,, — Y is obtained
from fy, f1 : X,, = Y and a definable ho-
motopy G = H| X,y x I : X,y x I —
Y. Thus we have the cocycle 0(fy, G, f1) €
C"Y(X, A, 7,(Y)) which obstructs finding
an extension of fo UG U fi to X,41. we
define the difference cochain d(fy, G, f1) €
C™(X, A, m,(Y)) by restricting to cells of the
form e"x I, that is d( fo, G, f1)(e) = (—1)"*!
0(fo, G, f1)(el x I) for each n-cell e of X.
Since 0( fo, G, f1) is a cocycle, 0 = (80( fo, G,
e x 1) = 0(fo, G, f)(O((ef 7 x 1)) =
0(fo, G, f1)(0(ef T X I)+(=1)"1(0( fo, G, f1)
(e x {1}) = 0(fo, G, fi)(ef ™ x {0})) =
(— 1) (3(d(fo, G i) ) +O( ) (e ) -
0(fo)(e;™")). Thus od = 0"+ (fo) ="' (f1).
O

Proposition 3.10. Let fy: X, = Y be
a definable map, G : X,,_1 X I =Y a defin-
able homotopy such that G(—,0) = fo| X1
and d € C"(X, A, m,(Y)). Then there ex-
ists a definable map f1 : X, — Y such that
G(—, 1) = f1|Xn—1 and d = d(f(), G, fl)

To prove Proposition 3.10, we need the
following lemma.



Definable obstruction theory

Lemma 3.11. For any definable map f :
D" x {0yUS™ 1t x I —Y and for any defin-
able homotopy class o € [0(D"x1),Y], there
exists a definable map F : 0(D" x I) — Y
such that F|D™ x {0} US"™ ! x I = f and
[F] = [a].

Proof. Take a definable map K : 9(D"x
I) — Y with [K] = [a]. Let D = D" x{0}U
S™=1 x I. Then D is definably contractible
and K|D and f are null homotopic. Thus
K|D and f are definably homotopic. Ap-
plying Theorem 2.7 to (0(D™ x I), D), there
exists an extension H : 9(D" x [) x I =Y.
Hence F' = H(—, 1) is the required definable
map. ]

Proof of Proposition 3.10. Let e’ be an
n-cell of X,, and ¢ : (D™, 8" 1) — (X,,, X,_1)
the characteristic map of el’. Applying
Lemma 3.11 to f = food;UGo(¢;|S™ 1 xidy)
and o = d(el), we have a definable map F;.
We define f; : X, — Y on the n-cells by

fi(¢i(x)) = Fi(z,1). Thend(fo, G, fi)(e}) =
d(el). O

Proof of Theorem 3.8. We now prove
that if g : X,, = Y and 6(g) is a coboundary
dd, then g|X,,_1 extneds to X,. Applying
Proposition 3.10 to g, d and the stationary
homotopy ((z,t) +— g¢(z)) from ¢|X, 1 to
itself, there exists a definable map ¢’ : X,, —
Y such that ¢'|X,-1 = ¢g|X,—1 and dd =
0(g) — 0(¢'). Since 0(¢') = 0, ¢' extends to
X1, O
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