Definable obstruction theory

Tomohiro Kawakami¹ and Ikumitsu Nagasaki² ¹Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan ²Department of Mathematics, Kyoto Prefectural University of Medicine,

13 Nishi-Takatsukaso-Cho, Taishogun Kita-ku, Kyoto 603-8334, Japan

Received September 30, 2014

Abstract

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of the standard structure of a real closed field *R*. In this paper, we consider an obstruction theory in the definable category of *N* .

2010 *M athematics Subject Classif ication*. 55N20, 03C64. *Keywords and P hrases*. Obstruction theory, o-minimal, real closed fields.

1 . Introduction.

Obstruction theory addresses several types of problems(see chap. $7 \nvert 2$). Let (X, A) be a *CW* pair and *Y* a topological space. One of these problems is Extension Problem.

Problem 1.1. *Suppose that* $f : A \rightarrow Y$ *is a continuous map. When does f extend to all of X?*

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of the standard structure of a real closed field *R*. General references on o-minimal structures are [3], [5], see also [9]. Examples and constructions of them can be seen in [4], [6], [7].

In this paper, we consider an obstruction theory in the definable category of N . Everything is considered in N , a definable map is assumed to be continuous and $I = \{x \in$ $R|0 \leq x \leq 1$.

Theorem 1.2. *Let* (*X, A*) *be a relative definable CW complex,* $n \geq 1$ *, and Y a de-* *finably connected n-simple definable set. Let* $g: X_n \to Y$ *be a definable map.*

- *(1)* There exists a cellular cocycle θ (*g*) $∈$ $C^{n+1}(X, A, \pi_n(Y))$ *which vanishes if and only if g extend to a definable map* $X_{n+1} \to Y$.
- *(2) The cohomology class* [*θ*(*g*)] *∈ Hⁿ*+1(*X,* $A, \pi_n(Y)$) *vanishes if and only if the restriction* $g|X_{n-1}: X_{n-1} \to Y$ *extend to a definable map* $X_{n+1} \to Y$.

2 . Preliminaries.

Let $X \subset R^n$ and $Y \subset R^m$ be definable sets. A continuous map $f: X \to Y$ is *definable* if the graph of f (\subset $X \times Y$ \subset $R^n \times$ R^m) is a definable set. A definable map f : $X \rightarrow Y$ is a *definable homeomorphism* if there exists a definable map $h: Y \to X$ such that $f \circ h = id_Y, h \circ f = id_X$. A definable subset X of R^n is *definably compact* if for every definable map $f : (a, b)_R \to X$, there

exist the limits $\lim_{x\to a+0} f(x)$, $\lim_{x\to b-0} f(x)$ in *X*, where $(a, b)_R = \{x \in R | a < x <$ *b*[}]*,* −∞ ≤ *a* < *b* ≤ ∞. A definable subset X of R^n is definably compact if and only if X is closed and bounded $([8])$. Note that if *X* is a definably compact definable set and $f: X \to Y$ is a definable map, then $f(X)$ is definably compact.

If R is the field $\mathbb R$ of real numbers, then for any definable subset *X* of \mathbb{R}^n , *X* is compact if and only if it is definably compact. In general, a definably compact definable set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq x \leq \mathbb{R}_{alg}$ $x \leq 1$ is definably compact but not compact.

Recall existence of definable quotient and properties of dimensions of definable sets.

Theorem 2.1. *(Existence of definable quotient (e.g. 10. 2.14 [3])). If X is a definable set and A is a definably compact definable subset of X, then the set obtained by collapsing A to a point exists a definable set.*

Proposition 2.2 (e.g. 4.1.3 [3]). *(1)* $If X \subset Y \subset R^n$, then dim $X \leq \dim Y \leq n$.

(2) If X ⊂ Rⁿ, Y ⊂ R^m are definable sets and there is a definable bijection between X and *Y*, then dim $X = \dim Y$.

Let $(X, A), (Y, B)$ be two pairs of definable sets. Two definable maps $f, h : (X, A) \rightarrow$ (*Y,B*) is *def inably homotopic relative to A* if there exists a definable map *H* : (*X ×* $I, A \times I$ \rightarrow (Y, B) such that $H(x, 0) = f(x)$, $H(x, 1) = g(x)$ for all $x \in X$ and $H(x, t) =$ *f*(*x*)*,*(*x, t*) $∈$ *A* $×$ *I*. The *o*-*minimal homotopy set* $[(X, A), (Y, B)]$ *of* (X, A) *and* (Y, B) is the set of homotopy classes of definable maps from (X, A) to (Y, B) . If $A = \emptyset, B =$ *∅*, then we simply write [*X, Y*] instead of $[(X, A), (Y, B)].$

Let $D^n = \{(x_1, \ldots, x_n) \in R^n | x_1^2 + \cdots +$ $x_n^2 \leq 1$, $S^{n-1} = \{(x_1, \ldots, x_n) \in R^n | x_1^2 + \ldots \}$ $\cdots + x_n^2 = 1$. Then D^n is the closed unit disk of \mathbb{R}^n and \mathbb{S}^{n-1} is the unit sphere of \mathbb{R}^n .

We now define relative *CW* complexs in the definable category. To reserve definablity, we consider the case where finitely many cells attached.

Definition 2.3. Let *X* be a definable set and *A* a definable closed subset of *X*. We say that *X is obtained from A by attaching ncells* $\{e_i^n\}_{i=1}^{k_n}$ if the following four conditions satisfy.

(1) For each i , e_i^n is a definable subset of *X*, called an *n*-*cell*.

 (2) $X = A \cup \bigcup_{i=1}^{k_n} e_i^n$.

(3) Letting ∂e_i^n denote the intersection of e_i^n and $A, e_i^n - \partial e_i^n$ is disjoint from $e_j^n - \partial e_j^n$ for $i \neq j$.

(4) For each *i*, there exists a surjective definable map ϕ_i^n : $(D^n, S^{n-1}) \to (e_i^n, \partial e_i^n)$, called the *characteristic map* of e_i^n , such that the restriction of ϕ_i of the interior Int D^n of D^n is a definable homeomorphism onto $e_i^n - \partial e_i^n$. The restriction of the characteristic map of *Sⁿ−*¹ is the *attaching map* of e_i^n .

Definition 2.4. A *relative def ianble CW complex* (*X, A*) is a definable set *X*, a definable closed set *A* and a sequence of definable closed subset X_n , $n = -1, 0, 1, 2, \ldots$ called the *relative n*-*skeleton* such that

(1) $X_{-1} = A$ and X_n is obtained from *Xⁿ−*¹ by attaching *n*-cells.

 (2) $X = \bigcup_{i=-1}^{\dim X} X_i$.

The smallest *n* such that $X = X_n$ is called the *dimension* dim (X, A) of (X, A) . If *A* is a definable *CW* complex, we say that (X, A) is a *definable CW pair*. If $A = \emptyset$, then *X* is called a definable *CW complex*, and X_n is called the *n*-*skeleton* of X.

Remark that in Definition 2.4, the maximum dimension of attaching cells to *A* does not exceed dim *X* and dim $A \leq \dim X$ because Proposition 2.2.

Let *Y* be a definable set and $y_0 \in Y$. The *o*-*minimal homotopy group of dimension n*, $n \geq 1$ (see [1]) is the set $\pi_n(Y, y_0)$ = $[(I^n, \partial I^n), (Y, y_0)] = [(S^n, x_0), (Y, y_0)],$ where ∂I^n denote the boundary of I^n and $x_0 =$ $(0, \ldots, 0, 1)$. We define $\pi_0(Y, y_0)$ as the set of definably connected components of *Y* .

A definable set *Y* is *def inably arcwise connected* if for every two points $x, y \in Y$, there exists a definable map $f: I \to Y$ such that $x = f(0)$ and $y = f(1)$. Note that *Y* is definably connected if and only if it is definably arcwise connected. In this case, for any $y_0, y_1 \in Y$ and $n \geq 1$, $\pi_n(Y, y_0)$ is isomorphic to $\pi_n(Y, y_1)$ and we denote it $\pi_n(Y)$.

For $n \geq 1$, a definably connected definable set is *definably n-connected* if $\pi_i(Y)$ = 0 for each $1 \leq i \leq n$.

Lemma 2.5. *Let Y be a definably connected definable set.* If $\pi_{n-1}(Y) = 0$ *, then for every definable map* $h: S^{n-1} \to Y$, there *exists a definable map* $H : D^n \rightarrow Y$ *with* $H|S^{n-1} = f$.

Proof. For $i \geq 1$, since *Y* is definably connected, $\pi_i(Y) \to [S^i, Y], [h] \to [h]$ is bijective. Thus *h* is definably homotopic to a constant map $C: S^{n-1} \to Y, C(x) =$ *c*. Hence there exists a definable map ϕ : $S^{n-1} \times I \rightarrow Y$ such that $\phi(x, 0) = c, \phi(x, 1) =$ $h(x)$ for all $x \in S^{n-1}$. Collapsing $S^{n-1} \times \{0\}$ to a point, by Theorem 2.1, we have the cone *CSⁿ−*¹ which is definably homeomorphic to D^n and a definable map $H: D^n \to Y$ with $H|S^{n-1} = f$. $H|S^{n-1} = f.$

Proposition 2.6. *If ^Y is definably* (*n[−]* 1)*-connected,* $f : A \rightarrow Y$ *is a definable map,* $\dim(X, A) \leq n$ *and* $n \geq 1$ *, then there exists a* definable map $F: X \to Y$ with $F|A = f$.

Proof. If $i = 0$, then we may assume that $X_0 = A \cup e_1^0 \cup \cdots \cup e_{r_0}^0, e_1^0, \ldots, e_{r_0}^0$ denote the 0-cells of (X, A) . For each e_j^0 , defining the image of e_j^0 , there exists a definable map $f_0: X_0 \to Y$ extending f .

We may assume that $X_i = X_{i-1} \cup e_1^i \cup$ $\cdots ∪e_{r_i}^i, e_1^i, \ldots, e_{r_i}^i$ denote the *i*-cells of (X, A) . By assumption, there exists a definable map *h*_{*j*} : $∂e_j^i$ → *Y*. Since $∂e_j^i$ is definably homeomorphic to *Sⁿ−*¹ and by Lemma 2.5, we have a definable map $H_j: e^i_j \to Y$ with $H_j | \partial e_j^i = h_j$. Using H_j , we obtain a definable map *F* with $F|A = f$.

Let X be a definably connected definable set and $n \geq 1$. As in the topological setting, $\pi_1(X)$ acts on $\pi_n(X)$. We say that a definably connected definable set *X* is *n*-*simple* if the $\pi_1(X)$ action on $\pi_n(X)$ is tirivial. Since the $\pi_1(X)$ action on $\pi_1(X)$ is $\pi_1(X) \times \pi_1(X) \to \pi_1(X), (h_1, h_2) \mapsto h_1 h_2 h_1^{-1},$ *X* is 1-simple if and only if $\pi_1(X)$ is abelian.

Let *X* be a definable *CW* complex, *A* a definable subcomplex of $X, n \geq 1$ and Y a definably connected *n*-simple definable set. We define the cohomology group $H^n(X, A, \pi_n)$ (Y) as follows. Remark that $[S^n, Y] = \pi_n(Y)$ because *Y* is *n*-simple.

We define the *n*-dimensional chain complex $C_n(X, A)$ to be $H_n(X_n, X_{n-1})$. Let i_{n-1} : $X_{n-1} \to X_n, j_n : (X_n, \emptyset) \to (X_n, X_{n-1})$ be inclusions. As in the topological setting, we have an exact sequence

$$
\cdots \to H_n(X_n, X_{n-1}) \stackrel{\partial'_n}{\to} H_{n-1}(X_{n-1}) \stackrel{i_{n-1}}{\to}^1
$$

$$
H_{n-1}(X_n) \stackrel{j_{n}}{\to} H_{n-1}(X_n, X_{n-1}) \to \dots
$$

The boundary operator $\partial_n : H_n(X_n, X_{n-1})$ *→ Hⁿ−*¹(*Xⁿ−*¹*, Xⁿ−*²) is *j∗n−*¹ *◦ ∂′ n*. We define the *n*-dimensional cochain complex *Cⁿ*(X, A = $Hom_{\mathbb{Z}}(C_n(X, A), \pi_n(Y))$ and the coboundary operator $\delta_n : C^n(X, A) \to C^{n+1}(A)$ $X, A), (\delta f)c = f(\partial c).$

Let (*X, A*) be a relative definable *CW* complex, $n \geq 1$, and Y a definably connected *n*-simple definable set. Let $g: X_n \to$ *Y* be a definable map.

Let e_i^{n+1} be an $(n+1)$ -cell and $\phi_i : (D^{n+1},$ S^{n}) \rightarrow $(e_i^{n+1}, \partial e_i^{n+1}) \subset (X_{n+1}, X_n)$ the characteristic map of e_i^{n+1} . Composing $f_i = \phi_i | S^n$ with $g: X_n \to Y$, we have an element [$g \circ$ f_i \in $[S^n, Y] = \pi_n(Y)$. We define the obstruction cochain $\theta^{n+1}(g) \in C^{n+1}(X, A, \pi_n)$ *Y*)) on the basis of $(n + 1)$ -cells by the formula $\theta^{n+1}(g)(e_i^{n+1}) = [g \circ f_i]$ and extend by linearly.

In the rest of this section, we prove the o-minimal cellular approximation theorem

Theorem 2.7 (O-minimal cellular approximation theorem). *Let* (*X, A*)*,* (Y, B) *be definable CW pairs and* $f : (X, A)$ \rightarrow (Y, B) *a definable map. Then there exists a definable map* $q : (X, A) \rightarrow (Y, B)$ *such that f is definably homotopic to g relative to A and for any nonnegative integer n,* $g(X'_n) \subset Y'_n$, where X'_n (resp. Y'_n) denotes *the union of the n-skeleton* X_n *(resp.* Y_n *) of X (resp. Y) and A (resp. B).*

Lemma 2.8 (O-minimal homotopy $extension lemma [1])$. *Let* X, Z, A *be de* f *inable sets with* $A \subset X$ *closed in* X *. Let* $f: X \rightarrow Z$ *be a definable map and* $H: Y \rightarrow Z$ $f: X \rightarrow Z$ *be a definable map and* $H: A \times I \rightarrow Z$ *a definable homotopy such that* $H(x, 0) = f(x), x \in A$. Then there exists a definable homotopy $F : X \times I \to Z$ such that
 $F(x, 0) = f(x), x \in X$ and $F|A \times I = H$. $F(x, 0) = f(x), x \in X$ *and* $F|A \times I = H$.

By the above lemma, we have the following o-minimal homotopy extension theorem.

Theorem 2.9. Let (X, A) be a definable *CW* pair. Let $f: X \rightarrow Y$ be a definable *CW* pair. Let $f : X \to Y$ be a definable map and $H : A \times I \to Y$ a definable homo*topy with* $H(x, 0) = f(x), x \in A$ *. Then there* $\text{exists} \ a \ \text{definable} \ \text{homotopy} \ F : X \times I \to Y$ *Y such that* $F(x, 0) = f(x), x \in X$ *and* $F|A \times I = H$. *topy with* $H(x, 0) = f(x), x \in A$. Then there exists a definable homotopy $F : X \times I \rightarrow Y$ such that $F(x, 0) = f(x), x \in X$ and

To prove Theorem 2.7, we prepare three claims. claims.

Claim 2.10. Let (Z, C) be a definable *CW* pair. For any definable map $g: D^q \to$ Z *with* $g(S^{q-1}) \subset \overline{Z^{q-1}}$, there exists a defin*able map* $g' : D^q \to Z$ *such that* $g \simeq g'$ *rel* able map $g' : D^q \to Z$ such that $g \simeq g'$ rel
 S^{q-1} and $g'(D^q) \subset \overline{Z^q}$, where $\overline{Z^{q-1}} = Z^q \cup C$.

Proof. Let n be the maximum dimension of cells not contained in *C*. We may sion of cells not contained in *C*. We may assume that $n > q$ and proceed by induction on the number of such *n*-cells. Let ϕ : (D^n, S^{n-1}) → $(Z, \overline{Z^{n-1}})$ be the characteristic map of an *n*-cell *e*. Let D_1^n , (D_2^n) be the closed ball of center 0 with radius $\frac{1}{3}$, $(\frac{2}{3})$, respectively. Put $U = \phi(D^n - D_1^n) \cup (Z - n)$ *e*)*, V* = *ϕ*(Int *D*ⁿ₂)*, z*₀ = *ϕ*(0)*,* where Int *D*ⁿ₂ denotes the interior of D_2^n . Then $U \cup V = Z$. Taking a refinement of D^q , every simplex $|s|$ of it is contained in $g^{-1}(U)$ or $g^{-1}(V)$. Let $E_1 = \bigcup_{|s| \cap g^{-1}(z_0) \neq \emptyset} |s|, E_2 = \bigcup_{|s| \cap g^{-1}(z_0) = \emptyset} |s|.$ Then $g(E_1)$ ⊂ V , $g(E_1 \cap E_2)$ ⊂ $V - \{z_0\}$. Thus we have a definable map $\phi^{-1} \circ g : E_1 \cap$ $E_2 \to \text{Int } D_2^n - \{0\}.$ Since Int $D_2^n - \{0\}$ is definably homotopy equivalent to *Sⁿ−*¹ and S^{n-1} is $(n-2)$ -connected, there exists a definable map $h : E_1 \rightarrow \text{Int } D_2^n - \{0\}$ with *h*² E_1 *→ Int* $D_2^n - \{0\}$ with $h|E_1 \cap E_2 = \phi^{-1} \circ g$. Define a definable homotopy h_t : $E_1 \rightarrow \text{Int } D_2^n$ by $h_t(x) =$ $E_1 = \bigcup_{|s|\cap g^{-1}(z_0)\neq \emptyset}|s|, E_2 = \bigcup_{|s|\cap g^{-1}(z_0)=\emptyset}|s|.$
Then $g(E_1) \subset V$, $g(E_1 \cap E_2) \subset V - \{z_0\}.$
Thus we have a definable map $\phi^{-1} \circ g : E_1 \cap E_2 \to \text{Int } D_2^n - \{0\}.$ Since Int $D_2^n - \{0\}$ is definably homotopy equivalent **E.8** (O-minimal homotopy $(-1 + \beta^2 - \alpha) = \alpha + \beta + \gamma$ is definable homotopy between $\phi^{-1} \circ \rho$ and h relations that $A \subseteq X$ definable homotopy between $\phi^{-1} \circ \rho$ and h relations that ϕ^{-1} and ϕ^{-1} . Let a definable h

 $(1-t)\phi^{-1} \circ g(x) + th(x)$. Then h_t is a definable homotopy between $\phi^{-1} \circ g$ and *h* relative to $E_1 \cap E_2$. Define a definable homotopy $h'_t : D^q \to Z$ by $h'_t | E_1 = \phi^{-1} \circ a, h'_t | E_2 = a | E_2$. Then h'_t is a definable ho $g, h'_t | E_2 = g | E_2$. Then h'_t is a definable homotopy between *g* and h'_1 relative to S^{q-1} and $h'_{1}(D^{q}) \subset Z - \{z_{0}\}$. Taking a definable retraction $r : Z - \{z_0\} \to Z - e, h'_1 \simeq r \circ$ h'_1 rel S^{q-1} : $D^q \to Z - \{z_0\}$. Let $g'' = r \circ h'_1$. retraction $r : Z - \{z_0\} \to Z - e$, $h'_1 \cong r \circ h'_1$ rel $S^{q-1} : D^q \to Z - \{z_0\}$. Let $g'' = r \circ h'_1$.
Then $g \simeq g''$ rel $S^{q-1} : D^q \to Z, g''(D^q) \subset$ $Z - e$. By the inductive hypothesis, there $Z - e$. By the inductive hypothesis, there exists a definable map g' such that $g'' \simeq$ g' rel S^{q-1} : $D^q \to Z - e, g'(D^q) \subset \overline{Z^q}$.

Claim 2.11. For any definable map $f : (\overline{X^q}, \overline{X^{q-1}}) \to (Y, \overline{Y^{q-1}})$, there exists a definable map $g : (\overline{X^q}, \overline{X^{q-1}}) \to (Y, \overline{Y^{q-1}})$ such that $f \simeq g$ rel $\overline{X^{q-1}}$ and $g(\overline{X^q}) \subset \overline{Y^q}$. $(\overline{X^q}, \overline{X^{q-1}}) \rightarrow (Y, Y^{q-1}),$ there exists a de*finable map* $q: (\overline{X^q}, \overline{X^{q-1}}) \rightarrow (Y, \overline{Y^{q-1}})$ *such that* $f \simeq q$ *rel* $\overline{X^{q-1}}$ *and* $q(\overline{X^q}) \subset \overline{Y^q}$ *.*

Proof. Let *e* be a *q*-cell not contained in *A*. Since $f(\overline{e})$ is definably compact, there exists a finite subcomlex *Z* of *Y* with $f(\overline{e})$ ⊂ *Z*. Put $C = Z \cap \overline{Y}^{q-1}$. Then $f(e^r) \subset C$, where e^r denotes the boundary of e . Let where e^r denotes the boundary of e . Let $\phi: (D^q, S^{q-1}) \to (\overline{e}, e^r)$ be the characteristic
map of e. Applying Claim 2.10 to $f \circ \phi$: map of *e*. Applying Claim 2.10 to $f \circ \phi$: $(D^q, S^{q-1}) \rightarrow (Z, C)$, there exists a definable map g' such that $f \circ \phi \cong g'$ rel S^{q-1} , $(D^q, S^{q-1}) \rightarrow (Z, C)$, there exists a definable map g' such that $f \circ \phi \simeq g'$ rel S^{q-1} ,
 $g'(D^q) \subset \overline{Z}^q$. Then $g = g' \circ \phi$ is the required map.

Claim 2.12. For any definable map f :
 $(X, A) \rightarrow (Y, B)$, there exists a definable ho- $(X, A) \rightarrow (Y, B)$, there exists a definable ho $motopy H_q: (X, A) \times [0, 1]_R \rightarrow (Y, B) \text{ such}$ *that:*

 (1) $H_0(x,t) = f(x)$ *for all* $x \in X$ *.* (2) $H_q(x, 0) = H_{q+1}(x, 0)$ *for all* $x \in X$ *.* (1) $H_0(x,t) = f(x)$ for all $x \in X$.

(2) $H_q(x,0) = H_{q+1}(x,0)$ for all $x \in X$.

(3) $H_q(x,t) = (x,t)$ for all $(x,t) \in \overline{X}^q \times$ $[0,1]_R$. (4) *H*_q(\overline{X} ^q \times {1}) $\subset \overline{Y}$ *.*

Proof. Let $H_0(x,t) = f(x)$ for $(x,t) \in$ $X \times [0,1]_R$. Assume we have H_{q-1} . Since $H_{q-1}(\overline{X}^{q-1} \times \{1\}) \subset \overline{Y}^{q-1}$ and by Claim 2.11, there exists a definable homotopy H'_q 2.11, there exists a definable homotopy H'_{q} rel $\overline{X}^{q-1} : (\overline{X}^q, \overline{X}^{q-1}) \times [0,1]_R \longrightarrow (\overline{Y}^q, \overline{Y}^{q-1})$ such that $H_q'|\overline{X}^q \times \{0\} = H_{q-1}|\overline{X}^q \times \{1\}, H_q'$ *X*^{*q*} \times {1}) *⊂ Y*^{*q*}. By Lemma 2.8, there exists a definable homotopy $H_q: X \times [0,1]_R \to Y$

such that $H_q|X\times\{0\} = H_{q-1}|X\times\{1\}, H_q|\overline{X}^q$ \times [0, 1]_{*R*} = *H'*_{*q*}, and *H_q* satisfies (1)-(4).

Proof of Theorem 2.7. Let $q = \dim X$. By Claim 2.12, we have a definable homotopy H_q . Then the definable map $q:(X,A)$ \rightarrow (*Y, B*) defined by $g(x) = H_q(x, 1)$ is the required map. required map.

3 . Proof of Theorem 1.2.

Lemma 3.1. Let *i* be the inclusion $X_n \to$ X_{n+1} *and* $x_0 \in X_n$ *. Then* $i_* : \pi_1(X_n, x_0) \to$ $\pi_1(X_{n+1}, x_0)$ *is surjective if* $n = 1$ *and an isomorphism* $n > 1$.

Proof. Let $n \geq 1$ and $\alpha : S^1 \to X_{n+1}$ a definable map. By Theorem 2.7, there exists a definable map $\alpha' : S^1 \to X_1 \subset X_n$ such that α is definably homotopic to α' . Since i ^{*}([*α[']*]) = [*α*], i ^{*} is surjective.

Assume $n \geq 2$ and $i_*(\alpha) = 0$. Then α : $S^1 \to X_{n+1}$ is null homotopic and there exists a definable map $H: S^1 \times [0, 1]_R \to X_{n+1}$ such that $H(-,0) = \alpha$, $H(-,1) = c$, where *c* denotes a constant map. By Theorem 2.7 and since $S^1 \times [0,1]_R$ is a 2-dimensional definable set, there exists a definable map *H′* : $S^1 \times [0,1]_R \rightarrow X_2$ such that *H* is definably homotopic to *H'* relative to $S^1 \times \{0, 1\}$. Thus $[\alpha] = 0$ and *i*, is injective $[\alpha] = 0$ and i_* is injective.

Lemma 3.2. *If* $k \le n, n > 1$ *and* $x_0 \in$ X_n *, then* $\pi_k(X_{n+1}, X_n, x_0) = 0$ *.*

Proof. Consider an exact sequence $\cdots \rightarrow \pi_k(X_n, x_0) \rightarrow \pi_k(X_{n+1}, x_0) \rightarrow$ $\pi_k(X_{n+1}, X_n, x_0) \to \pi_{k-1}(X_n, x_0) \to$ $\pi_{k-1}(X_{n+1}, x_0) \rightarrow \ldots$ We prove that i_{*k} : $\pi_k(X_n, x_0) \to \pi_k(X_{n+1}, x_0)$ is surjecitve and i_{*k-1} : $\pi_{k-1}(X_n, x_0) \to \pi_{k-1}(X_{n+1}, x_0)$ is injective.

Let $\alpha: S^k \to X_{n+1}$ be a definable map. Then by Theorem 2.7, there exists a definable map $\alpha' : S^k \to X_k$ such that α is definably homotpic to α' . Then $i_{*k} : \pi_k(X_n, x_0) \to$ $\pi_k(X_{n+1,x_0})$ is surjective.

Assume $i_{*k-1}([\alpha]) = 0$. Then $\alpha : S^{k-1} \to$ X_{n+1} is null homotopic and there exists a definable map $H : \overline{S}^{k-1} \times [0,1]_R \rightarrow X_{n+1}$ such that $H(-,0) = \alpha$, $H(-,1) = c$. By

Theorem 2.7 and since $S^{k-1} \times [0, 1]$ is a *k*dimensional definable set, there exists a definable map $H' : S^{k-1} \times [0,1]_R \to X_k \subset X_n$ such that *H* is definably homotopic to *H′* relative to $S^{k-1} \times \{0,1\}$. Thus $[\alpha] = 0$ and *i∗k−*¹ is injective.

By the above results and exactness, we have the lemma. \Box

The following is the o-minimal relative Hurewicz theorem.

Theorem 3.3 (5.4 [1]). Let (X, A, x_0) *be a definable pointed pair and* $n > 2$ *. Suppose that* $\pi_r(X, A, x_0) = 0$ *for any* $1 \leq r \leq$ *n −* 1*. Then the o-minimal Hurewicz homomorphism* h_n : $\pi_n(X, A, x_0) \to H_n(X, A)$ *is surjective and its kernel is the subgroup generated by* $\{\beta_{[u]}([f])[f]^{-1}|[u]\in \pi_1(A, x_0), [f]\in$ $\pi_n(X, A, x_0)$. In particular, h_n is an iso*morphism for* $n \geq 3$ *.*

 $Put \pi_{n+1}^+(X_{n+1}, X_n) = \pi_{n+1}(X_{n+1}, X_n)$ $\ker h_n$. Let $g: X_n \to Y$ be a definable map and π : $\pi_{n+1}(X_{n+1}, X_n) \to \pi_{n+1}^+(X_{n+1}, X_n)$ denote the projection.

Lemma 3.4. *There exits a factorization* $\overline{g_* \circ \partial} : \pi_{n+1}^+(X_{n+1}, X_n) \to \pi_n(Y)$ *such that* $\pi \circ \overline{g_* \circ \partial} = g_* \circ \partial$.

Proof. If $\alpha \in \pi_1(X_n)$, then $\partial(\alpha x) =$ $a\partial x$. Since *Y* is *n*-simple, for any $z \in \pi_n(X_n)$, $g_*(\alpha z) = g_*(\alpha)g_*(z) = g_*(z).$

By Lemma 3.4, we can define the composition map $C_{n+1}(X, A) = H_{n+1}(X_{n+1}, X_n) \stackrel{h^{-1}}{\rightarrow}$

 $\pi_{n+1}^+(X_{n+1}, X_n) \to^{\mathfrak{g}_*\circ\partial} \beta \pi_n(Y)$, where $h : \pi_{n+1}^+(X_n)$ X_{n+1} , X_n) \rightarrow $H_{n+1}(X_{n+1}, X_n)$ denotes the Hurewicz isomorphism. This composition map defines another cochain in $Hom_{\mathbb{Z}}(C_{n+1})$ *X, A*), $\pi_n(Y)$ which we again denote by θ^{n+1} *g*).

Proposition 3.5. *The two definitions of* $\theta^{n+1}(q)$ *coincide.*

Proof. For an $(n + 1)$ -cell e_i^{n+1} , let ϕ_i : $(D^{n+1}, S^n) \rightarrow (X_{n+1}, X_n)$ be the characteristic map of e_i^{n+1} . We define a map $(\phi_i \vee u) \circ$ $q: (D^{n+1}, S^n, p) \to (X_{n+1}, X_n, x_0)$ as the composition of a map $q:(D^{n+1},S^n,p) \rightarrow$ $(D^{n+1} \vee I, S^n \vee I, p)$ and a map $D^{n+1} \vee I \stackrel{\phi_i \vee u}{\rightarrow}$ X_{n+1} , where *u* is a definable path in X_n to the base point x_0 . Then $(\phi_i \vee u) \circ q$ is definably homotopic to the characteristic map ϕ_i . Hence $h((\phi_i \vee u) \circ q)$ is the generator of $H_{n+1}(X_{n+1}, X_n)$ represented by the cell e_i^{n+1} and $(\phi_i \vee u) \circ q$ represents the element $h^{-1}(e_i^{n+1})$ in $\pi_{n+1}^+(X_{n+1}, X_n)$. By definition, $∂((\phi_i ∨ u) ∘ q) ∈ π_n(X_n)$ is represented by the composition of the map $\overline{q}: S^n \to S^n \vee I$ obtained by restricting the map *q* to the boundary and the attaching map $f_i = \phi_i | S^n$ together with a definable path *u* to x_0 : $\partial ((\phi_i \vee$ *u*) \circ *q*) = (*f*_i \vee *u*) \circ \overline{q} : *S*^{*n*} → *X*_{*n*}. By the second definition, $\theta(g)(e_i^{n+1}) = g \circ (f_i \vee u) \circ \overline{q} =$ $(g_i \circ f_i \vee g \circ u) \circ \overline{q}$. Moreover this is equal to $[f_i] \in [\tilde{S}^n, Y] = \pi_n(Y)$, which is the first definition of $\theta(a)(e^{n+1})$. definition of $\theta(g)(e_i^{n+1})$.

Theorem 3.6. *The obstruction cohain* $\theta^{n+1}(q)$ *is a cocycle.*

Proof. Consider the following commutative diagram.

$$
\begin{array}{ccc}\n\pi_{n+2}(X_{n+2}, X_{n+1}) & \to & H_{n+2}(X_{n+2}, X_{n+1}) \\
\downarrow & & \downarrow & \\
\pi_{n+1}(X_{n+1}) & \to & H_{n+1}(X_{n+1}) \\
\downarrow & & \downarrow & \\
\pi_{n+1}(X_{n+1}, X_n) & \to & H_{n+1}(X_{n+1}, X_n) \\
\downarrow & & \downarrow \theta(g) \\
\pi_n(X_n) & \xrightarrow{g_*} & H_n(Y_n)\n\end{array}
$$

The unlableled horizontal arrows are the Hurewicz maps and the unlableled vertical arrows are obtained from homotopy or homology exact sequences of the pair $(X_{n+2},$ X_{n+1}) and (X_{n+1}, X_n) .

The composition of the bottom two vertical maps on the left are zero because they occur in the homotopy exact sequence of the pair (X_{n+1}, X_n) . Since $\delta\theta(g)$ is the composition of all the right vertical maps, $\delta \theta^{n+1}(q)(x)$ $= \theta^{n+1}(q)(\partial x) = 0$. Thus $\theta^{n+1}(q)$ is a cocycle. \Box

By a way to similar to the topological category, we have the following proposition.

Proposition 3.7. *If X is a definable* CW *complex, then* $X \times I$ *is a definable* CW *complex.*

Theorem 3.8. *Let* (*X, A*) *be a relative definable CW complex, Y a definably connected n*-simple definable set and $q: X_n \rightarrow$ *Y a definable map.*

 (1) $\theta^{n+1}(q) = 0$ *if and only if there exists a definavble map* $\tilde{g}: X_{n+1} \to Y$ *extending g.* (2) $[\theta^{n+1}(q)] = 0$ *if and only if there exists a definavble map* $\tilde{g}: X_{n+1} \to Y$ *extend* $ing g|X_{n-1}$.

Lemma 3.9. *Let* $f_0, f_1 : X_n \to Y$ *be definable maps such that* $f_0|X_{n-1}$ *is definably homotopic to* $f_1|X_{n-1}$ *. Then there exists a difference cochain* $d \in C^n(X, A, \pi_n(Y))$ *such that* $\delta d = \theta^{n+1}(f_0) - \theta^{n+1}(f_1)$ *.*

Proof. Let $\hat{X} = X \times I$, $\hat{A} = A \times I$. Then (\hat{X}, \hat{A}) is a relative definable *CW* complex with $\bar{X}^k = X_k \times \partial I \cup X_{k-1} \times I$. Take a definable homotopy H between f_0 and f_1 . Hence a definable map $\hat{X}_n \to Y$ is obtained from $f_0, f_1 : X_n \to Y$ and a definable homotopy $G = H|X_{n-1} \times I : X_{n-1} \times I \rightarrow$ *Y*. Thus we have the cocycle $\theta(f_0, G, f_1) \in$ $C^{n+1}(\hat{X}, \hat{A}, \pi_n(Y))$ which obstructs finding an extension of $f_0 \cup G \cup f_1$ to \hat{X}_{n+1} . we define the difference cochain $d(f_0, G, f_1) \in$ $C^n(X, A, \pi_n(Y))$ by restricting to cells of the form $e^n \times I$, that is $d(f_0, G, f_1)(e_i^n) = (-1)^{n+1}$ $\theta(f_0, G, f_1)(e_i^n \times I)$ for each *n*-cell e_i^n of *X*. Since $\theta(f_0, G, f_1)$ is a cocycle, $0 = (\delta \theta(f_0, G, f_1))$ f_1))($e_i^{n+1} \times I$) = $\theta(f_0, G, f_1)$ ($\partial((e_i^{n+1} \times I))$) = $\theta(f_0, G, f_1)(\partial(e_i^{n+1} \times I)+(-1)^{n+1}(\theta(f_0, G, f_1))$ $(e_i^{n+1} \times \{1\}) - \theta(f_0, G, f_1)(e_i^{n+1} \times \{0\}) =$ $(-1)^{n+1}(\delta(d(f_0, G, f_1))(e_i^{n+1})+\theta(f_1)(e_i^{n+1}) \theta(f_0)(e_i^{n+1})$. Thus $\delta d = \theta^{n+1}(f_0) - \theta^{n+1}(f_1)$.

Proposition 3.10. *Let* $f_0: X_n \to Y$ *be a definable map,* $G: X_{n-1} \times I \rightarrow Y$ *a definable homotopy such that* $G(-, 0) = f_0|X_{n-1}$ and $d \in C^n(X, A, \pi_n(Y))$. Then there ex*ists a definable map* $f_1: X_n \to Y$ *such that* $G(-, 1) = f_1 | X_{n-1}$ *and* $d = d(f_0, G, f_1)$ *.*

To prove Proposition 3.10, we need the following lemma.

Lemma 3.11. *For any definable map f* : $D^n \times \{0\} \cup S^{n-1} \times I \to Y$ *and for any definable homotopy class* $\alpha \in [\partial(D^n \times I), Y]$ *, there exists a definable map F* : *∂*(*Dⁿ × I*) *→ Y such that* $F|D^n \times \{0\} \cup S^{n-1} \times I = f$ *and* $[F]=[\alpha]$ *.*

Proof. Take a definable map $K : \partial(D^n \times$ $I) \rightarrow Y$ with $[K] = [\alpha]$. Let $D = D^n \times \{0\} \cup$ $S^{n-1} \times I$. Then *D* is definably contractible and *K|D* and *f* are null homotopic. Thus $K|D$ and f are definably homotopic. Applying Theorem 2.7 to $(\partial (D^n \times I), D)$, there exists an extension $H : \partial (D^n \times I) \times I \to Y$. Hence $F = H(-, 1)$ is the required definable map.

Proof of Proposition 3.10. Let e_i^n be an n -cell of X_n and $\phi: (D^n, S^{n-1}) \to (X_n, X_{n-1})$ the characteristic map of e_i^n . Applying Lemma 3.11 to $f = f_0 \circ \phi_i \cup G \circ (\phi_i | S^{n-1} \times id_I)$ and $\alpha = d(e_i^n)$, we have a definable map F_i . We define $f_1: X_n \to Y$ on the *n*-cells by $f_1(\phi_i(x)) = F_i(x, 1)$. Then $d(f_0, G, f_1)(e_i^n) =$ $d(e_i^n)$.

Proof of Theorem 3.8. We now prove that if $g: X_n \to Y$ and $\theta(g)$ is a coboundary *δd*, then *g|Xⁿ−*¹ extneds to *Xn*. Applying Proposition 3.10 to *g*, *d* and the stationary homotopy $((x, t) \mapsto g(x))$ from $g|X_{n-1}$ to itself, there exists a definable map $g' : X_n \to$ *Y* such that $g' | X_{n-1} = g | X_{n-1}$ and $\delta d =$ $\theta(g) - \theta(g')$. Since $\theta(g') = 0$, *g'* extends to X_{n+1} .

References

[1] E. Baro and M. Otero, *On o-minimal*

homotopy groups, Q. J. Math. 61 (2010), 275–289.

- [2] J.F. Davis and P. Kirk, *Lecture notes in algebraic topology*, Graduate Studies in Mathematics, 35, American Mathematical Society, Providence, RI, (2001).
- [3] L. van den Dries, *Tame topology and ominimal structures*, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [4] L. van den Dries, A. Macintyre and D. Marker, *The elementary theory of restricted analytic field with exponentiation*, Ann. of Math. 140 (1994), 183– 205.
- [5] L. van den Dries and C. Miller, *Geometric categories and o-minimal structures*, Duke Math. J. 84 (1996), 497-540.
- [6] L. van den Dries and P. Speissegger, *The real field with convergent generalized power series*, Trans. Amer. Math. Soc. 350 (1998), 4377–4421.
- [7] C. Miller, *Expansion of the field with power functions*, Ann. Pure Appl. Logic 68, (1994), 79–94.
- [8] Y. Peterzil and C. Steinhorn, *Definable compactness and definable subgroups of o-minimal groups*, J. London Math. Soc. 59 (1999), 769–786.
- [9] M. Shiota, *Geometry of subanalytic and semialgebraic sets*, Progress in Math. 150 (1997), Birkhäuser.