1	
2	Molecular cloning of motilin and mechanism of motilin-induced gastrointestinal
3	motility in Japanese quail
4	
5	Auvijit Saha Apu ^a , Anupom Mondal ^b , Takio Kitazawa ^c , Shota Takemi ^a , Takafumi Sakai ^b , Ichiro
6	Sakata ^a
7	
8	^a Area of Regulatory Biology, Division of Life Science, Graduate School of Science and
9	Engineering, Saitama University, 255 Shimo-okubo, Sakura- ku, Saitama 338-8570, Japan
10	^b Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and
11	Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
12 13 14	^c Comparative Animal Pharmacology Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
15	
16	
17	
18	Correspondence address:
19	Ichiro Sakata, Ph.D.
20	Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering,
21	Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
22	Phone: +81-48-858-9117; Fax: +81-48-858-3422
23	E-mail: isakata@mail.saitama-u.ac.jp
24	

25 Abstract

26	Motilin, a peptide hormone produced in the upper intestinal mucosa, plays an important
27	role in the regulation of gastrointestinal (GI) motility. In the present study, we first determined the
28	cDNA and amino acid sequences of motilin in the Japanese quail and studied the distribution of
29	motilin-producing cells in the gastrointestinal tract. We also examined the motilin-induced
30	contractile properties of quail GI tracts using an in vitro organ bath, and then elucidated the
31	mechanisms of motilin-induced contraction in the proventriculus and duodenum of the quail.
32	Mature quail motilin was composed of 22 amino acid residues, which showed high homology with
33	chicken (95.4%), human (72.7%), and dog (72.7%) motilin. Immunohistochemical analysis showed
34	that motilin-immunopositive cells were present in the mucosal layer of the duodenum (23.4 \pm 4.6
35	cells/mm ²), jejunum (15.2 \pm 0.8 cells/mm ²), and ileum (2.5 \pm 0.7 cells/mm ²), but were not observed
36	in the crop, proventriculus, and colon. In the organ bath study, chicken motilin induced dose-
37	dependent contraction in the proventriculus and small intestine. On the other hand, chicken ghrelin
38	had no effect on contraction in the GI tract. Motilin-induced contraction in the duodenum was not
39	inhibited by atropine, hexamethonium, ritanserin, ondansetron, or tetrodotoxin. However, motilin-
40	induced contractions in the proventriculus were significantly inhibited by atropine and tetrodotoxin.
41	These results suggest that motilin is the major stimulant of GI contraction in quail, as it is in
42	mammals and the site of action of motilin is different between small intestine and proventriculus.
43	

44	Key words: Japanese quail, motilin, ghrelin, gastroint
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

A A	Vor words. I	managa guail	motilin	abralin	another intertional	motility
44	Rey worus. J	apanese quan	, mounn,	gmenn,	gastronnestmar	mounty

58 1.Introduction

59	Motilin, a 22-amino acid polypeptide that stimulates gastrointestinal (GI) motility (Poitras
60	et al., 1994), was originally purified from pigs in the 1970s (Brown et al., 1972, 1973; Schubert and
61	Brown, 1974). Since its discovery, mRNA and amino acid sequences of motilin have been identified
62	mainly in mammals, including humans, cows, dogs, rabbits, and suncus (Banfield et al., 1992;
63	Huang et al., 1999; Strausberg et al., 2002; Tsutsui et al., 2009). Structural analysis has revealed that
64	the N-terminal amino acid of motilin is necessary for full motilin activity (Poitras et al., 1992).
65	Motilin is produced in the upper small intestine and motilin-producing cells are localized in the
66	crypts and villi of the mucosal layer, but are not present in the muscular layer (Tsutsui et al., 2009).
67	Motilin-producing cells in mammals exist as two types, open-type cells in villi and closed-type cells
68	in crypts (Satoh et al., 1995). Several reports have shown that the specific receptor for motilin (G-
69	protein coupled receptor 38; GPR38) is expressed in the brain, pituitary gland, lung, stomach, and
70	small intestine (Ohshiro et al., 2008; Suzuki et al., 2012; Takeshita et al., 2006; Ter Beek et al.,
71	2008; Yamamoto et al., 2008), indicating that motilin has many physiological functions related to
72	gastrointestinal motility. Moreover, stomach derived peptides like ghrelin belong to the motilin
73	family of peptides, and GPR38 and the ghrelin receptor (growth hormone secretagogue receptor:
74	GHSR) are both highly conserved (Ohno et al., 2010; Poitras and Peeters, 2008).
75	Patterns of gastrointestinal motility differ between the fasted and postprandial states and
76	feature contractions referred to as the migrating motor complex (MMC), observed during the fasted

77	state, which consists of phase I (motor quiescent period), phase II (irregular and low amplitude
78	contraction period), and phase III (regular and high amplitude contraction period) in humans, dogs,
79	and suncus (Itoh et al., 1976; Janssens et al., 1983; Sakahara et al., 2010; Vantrappen et al., 1977).
80	Gastric phase III of the MMC is strongly associated with peak plasma motilin concentrations (Hall
81	et al., 1983; Itoh et al., 1976; Janssens et al., 1983; Vantrappen et al., 1979). Intravenous
82	administration of motilin causes gastric phase III-like contractions (Itoh et al., 1976; Janssens et al.,
83	1983; Kuroda et al., 2015; Wingate et al., 1976) and in vitro studies found that motilin induced
84	dose-dependent gastric contractions in monogastric animals including humans, rabbits, and suncus
85	(Broad et al., 2015; Kitazawa et al., 1994; Mondal et al., 2011; Strunz et al., 1975). Recent studies
86	in suncus have shown that ghrelin is involved in phase II via the vagal afferent nerve and
87	coordination of motilin and ghrelin stimulates phase III contractions (Miyano et al., 2013; Mondal
88	et al., 2012). In addition, motilin-induced gastric contractions are reporteded to be mediated via
89	cholinergic, adrenergic, serotonergic, opioidergic, and nitergic neurons (Mondal et al., 2011).
90	In avian species, it has been reported that the frequency of chicken MMCs is 77–122 min
91	and the duration of phase III is 5–8 min (Clench et al., 1989), indicating that the MMC in chickens
92	is similar to that in mammals. Moreover, in vitro studies using the chicken GI tract show that
93	motilin induces contractions in a dose-dependent manner through both neural and direct smooth
94	muscle pathways (De Clercq et al., 1996; Kitazawa et al., 1995, 1997). However, studies on motilin
95	and GI motility in avian species have been lacking, when compared to those in mammals.

96	In the present study, we determined the sequence of motilin in Japanese quail and localized
97	motilin-producing cells. We also examined the effects of motilin on gastrointestinal contractions
98	and its mechanisms of action in vitro.
99	
100	
101	
102	

103 **2.** Materials and Methods

104 2.1Drugs used

105	Chicken motilin (Peptide Institute Inc., Osaka, Japan); chicken ghrelin (provided by the
106	Asubio Pharma Co., Ltd., Japan); acetylcholine chloride (ACh) (Sigma-Aldrich Co. LLC., USA);
107	atropine sulfate (Merck, San Diego, CA, USA); hexamethonium chloride (Wako, Osaka, Japan);
108	tetrodotoxin (TTX) (Wako); ondansetron (Hikari Pharmaceutical, Imado, Japan); and ritanserin
109	(Tocris Bioscience, Ellisville, USA) were all used in the present study. Ritanserin was dissolved in
110	ethanol, and other drugs were dissolved in distilled water. The final concentration of ethanol was
111	0.01% v/v and there was no effect on GI contractions.
112	
113	2.2Animals
114	The experiments were performed using male Japanese quails weighing 70-90 g (at 5 weeks
115	of age), purchased from a commercial source (Motoki Co. Ltd., Honcho, Tokorozawa City, Saitama,
116	Japan). All procedures were performed in accordance with the guidelines of the Saitama University
117	Committee on Animal Research.
118	
119	2.3Cloning of quail motilin cDNA

- 120 Total RNA was extracted from the duodenum by ISOGEN (Nippon Gene Co., Ltd., Tokyo, Japan)
- according to the manufacturer's instructions. Trace DNA contamination was removed by DNase

122	digestion (Promega, Madison, WI, USA) and cDNA was synthesized from 1 µg of DNase-treated
123	total RNA using Thermoscript [®] Reverse Transcriptase (Invitrogen, CA, USA), with Oligo-dT
124	Anchor primer (#12577-011, Invitrogen, Carlsbad, CA, USA). PCR primers used for cloning of
125	quail motilin mRNA were designed by using the predicted turkey motilin mRNA sequence
126	(GenBank RefSeq record XM 010724334.1) with NCBI/Primer-BLAST. The following primers
127	were designed to amplify quail motilin (fragment size: 335 bp): sense primer, 5'-
128	CCGGTTTGCTCCTGGTGTA-3' and antisense primer, 5'-CTGCTGGTATCAGTCAGCGT-3'.
129	PCR amplifications were performed using AmpliTaq Gold (Roche Molecular Systems, NJ, USA).
130	Amplification reactions were carried out using a Thermal Cycler (Bio-Rad, Hercules, California,
131	USA). Initial template denaturation was programmed for 10 min at 95°C, and the cycle profile was
132	then programmed as follows: 30 s at 94°C (denaturation), 1 min at 57°C (annealing and extension),
133	running of 40 cycles of the profile, and final extension for 10 min at 60°C. Amplicon size and
134	specificity were confirmed by 2% agarose gel electrophoresis. The PCR product was cloned into
135	pGEM-T Easy vector (Promega, Madison, WI) and sequencing was performed by Eurofins
136	Genomics K.K (Tokyo, Japan).
137	

138 2.4Tissue preparation

Animals were sacrificed by deep anesthesia with sodium pentobarbital (100 mg/kg, i.p.),
after which approximately 1.5 cm of crop, proventriculus, duodenum, jejunum, ileum, and colon

142	fixative solution and incubated for 16 h. The tissue blocks were dehydrated with an ascending
143	ethanol series and xylene, and embedded in Paraplast Plus (McCormick Scientific, St Louis, MO).
144	Serial sections (10 μ m thick) were made with a microtome and mounted on slides coated with
145	silane (ShinEtsu Chemicals, Tokyo, Japan).
146 147	2.4.11mmunohistochemistry
148	Immunohistochemical detection of quail motilin cells using rabbit anti-pig motilin serum
149	was carried out by the avidin-biotin-peroxidase complex (ABC) method. The sections were
150	deparaffinized with xylene and rehydrated through descending ethanol concentrations. They were
151	then treated with 0.5% sodium metaperiodate for 15 min at room temperature, to block endogenous
152	peroxidase and washed with distilled water. The sections were further treated with 1% sodium
153	thiosulfate for 10 min. After being washed with distilled water, the sections were incubated with
154	TNBS (0.4% Triton X-100 and 1% bovine serum albumin in PBS) for 2 h. Incubation was
155	conducted for 16 h in a humidity chamber with anti-motilin serum (Tsutsui et al., 2009) diluted
156	1:8000 in TNBS. After being washed with PBS, the sections were then incubated for 30 min with
157	biotin-conjugated anti-rabbit IgG serum (Vector, Burlingame, CA, USA) diluted 1:300 in TNBS,
158	and again washed with PBS. Finally, the sections were incubated for 30 min with ABC solution
159	(Vectastain ABC kit) prepared according to the manufacturer's instructions. After being washed
160	with PBS for 10 min, the sections reacted with 0.02% 3,3'-diaminobenzidine tetrachloride (DAB)

were removed. Each part of the GI tract was opened along its longitudinal axis in Bouin's-Hollande

9

161	mixed with 0.006% hydrogen peroxide (H_2O_2) in 0.05 M Tris-HCl, pH 7.6, for 4–5 min to detect
162	immunostaining. Sections were washed with PBS and Millipore water (Millipore, Tokyo, JAPAN),
163	then dehydrated with a graded ethanol series, cleared in xylene, mounted with Entellan (Merck,
164	Darmstadt, Germany), and viewed under a light microscope (BX60, Olympus, Tokyo, Japan). All
165	incubations were carried out in a humidity chamber at room temperature. For the antigen absorption
166	test, the anti-pig motilin serum (1:8000 dilution) was incubated with chicken motilin (0, 5, 10, and
167	20 µg/ml) overnight at room temperature. After centrifugation at 15000 rpm for 10 min, the
168	supernatant was used for immunohistochemistry.
169	
170	2.4.2Morphometric analysis
171	Digital photographs were taken under a light microscope (BX60, OLYMPUS) with a digital
172	camera (DP70, Olympus, Japan), and the number of motilin cells in each section was counted. The
173	area of the mucosal layer in each section was also measured using an image analysis program,
174	Image J (National Institutes of Health, Bethesda, MD). Motilin cell density was calculated as the
175	number of immunopositive mucosal cells per unit area (cells/mm ²).
176	
177	2.50rgan bath study
178	Quails were anesthetized by pentobarbital sodium (100 mg/kg BW) and different sections
179	of the GI tract (crop, proventriculus, duodenum, jejunum, ileum, and colon) were removed through

180	a midline incision and immediately placed into freshly prepared Krebs solution. The mesenteric
181	attachments and fatty tissues were removed, and luminal contents were flushed out using Krebs
182	solution. Each tissue was cut into segments of 15–20 mm in length. The crop and proventriculus
183	were also removed and mounted along their longitudinal axes in organ baths (10 ml), containing
184	warm (37°C) Krebs solution, to measure longitudinal muscle contraction. The composition of the
185	Krebs solution was as follows (mM): NaCl, 118; KCl, 4.75; MgSO ₄ , 1.2; NaH ₂ PO ₄ , 1.2; CaCl ₂ , 2.5;
186	NaHCO ₃ , 25; and glucose, 11.5; pH 7.2. The temperature of the Krebs solution was maintained at
187	$37 \pm 0.5^{\circ}$ C and the solution was aerated continuously with a mixture of 95% O ₂ and 5% CO ₂ .
188	Mechanical activity of the GI preparations was monitored with an isometric force transducer (UM-
189	203, Iwashiya Kishimoto Medical Industrials, Kyoto, Japan) and software (PicoLog for Windows,
190	Pico Technology Ltd., St. Neots, UK). Initial load was set at 1.0 g for each preparation. The
191	experiments commenced after stabilization for 45 min. To normalize contractions, 10 ⁻⁴ M ACh was
192	added to the organ bath twice, before the cumulative administration of motilin. We confirmed that
193	10^{-4} M ACh showed the maximum contraction. To examine the effects of motilin, each GI section
194	was treated with chicken motilin (10^{-11} to 10^{-6} M) cumulatively in the organ bath and the evoked
195	responses were recorded. Similarly, GI contractions were recorded following administration of
196	cumulative doses of 10^{-11} to 10^{-6} M chicken ghrelin. It was reported that even though a high dose of
197	ghrelin did not stimulate contraction of stomach preparations, ghrelin administration of 10 ⁻¹¹ -10 ⁻⁷ M
198	following pretreatment with a low dose of motilin (10 ⁻¹⁰ M) induced gastric contraction in a dose-

199	dependent manner (Mondal et al., 2012). Therefore, based on the previously published report, we
200	selected the dose of motilin and ghrelin concentrations to determine the coordinated effects of motilin
201	and ghrelin in quail GI tract. Moreover, to determine the coordinative effects, chicken ghrelin at
202	doses of 10 ⁻¹¹ to 10 ⁻⁶ M was also cumulatively administered to the organ bath following
203	pretreatment with 10^{-10} M chicken motilin. The amplitude of contractions among all preparations
204	was normalized by a standard contraction with ACh (10^{-4} M) and expressed as a relative contraction
205	(%), and concentration response curves were constructed. To elucidate the mechanism of motilin
206	action, chicken motilin (10^{-11} to 10^{-7} M) was administered in the absence or presence of antagonists
207	in quail proventriculus and duodenum and expressed as a percentage of the ACh (10^{-4} M)
208	contractions.
209	
210	2.6Statistical analysis
211	All values were expressed as mean \pm standard error of the mean (SEM). Statistical analyses
212	were performed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA). Significance of
213	differences between the values was determined at $p < 0.05$ by using one-way analysis of variance
214	(ANOVA) followed by Tukey's post-hoc test for multiple comparisons and Student's t-test for
215	control vs. antagonist treatment experiments.
216	

218 **3.Results**

219 3.1Cloning of quail motilin cDNA

220	Quail motilin cDNA was cloned from mRNA of the duodenum and its sequence was
221	determined (Fig. 1). The deduced amino acid sequence of quail mature motilin was 22 amino acids.
222	Similar to motilin precursors in mammals, an endoproteinase cleavage site was present in quail
223	motilin at Lys ²³ -Lys ²⁴ (Fig. 2). Mature quail motilin showed high sequence homology with other
224	avian species, including chicken (95.4%) and turkey (90.9%), and moderate homology with
225	mammalian species, including humans (72.7%), dogs (72.7%), and suncus (68.1%). Mature quail
226	motilin differs in one amino acid (position 10) from chicken motilin, two amino acids (position 10
227	and 19) from turkey motilin, seven amino acids (position 2, 4, 7, 8, 9, 10, and 18) from Suncus
228	motilin, six amino acids (position 4, 7, 9, 10, 13, and 14) from dog motilin, and six amino acids
229	from human motilin (position 4, 7, 8, 9, 10, and 12). Nine amino acids (1–9) of the N-terminal
230	region (FVPFFTQSD) of quail motilin were fully conserved with that of the chicken and turkey
231	(Fig. 2).
232	
233	3.2Localization of motilin immunopositive (motilin-ip) cells in the GI tract of quail

Motilin-ip cells were observed in the mucosal layer of the duodenum (Fig. 3A), jejunum (Fig. 3B), and ileum (Fig. 3C), but were not observed in the crop, proventriculus, and colon. The motilin cell density was most abundant in the duodenum $(23.4 \pm 4.6 \text{ cells/mm}^2)$ and gradually

237	decreased in the jejunum (15.2 \pm 0.8 cells/mm ²) and ileum (2.5 \pm 0.7 cells/mm ²) (Fig. 3D). Open-
238	and closed-type motilin-ip cells were also observed in these regions and the percentage of open-type
239	motilin cells among all immunopositive cells was 69.3% in the duodenum, 67.1% in the jejunum,
240	and 72.5% in the ileum. The immunoreactivities completely disappeared on using the antiserum that
241	absorbed with chicken motilin (Supplemental Fig. 2).
242	
243	3.3Effects of chicken motilin in the GI tract of quail
244	Motilin-induced contractions in the crop and colon were reflected by weak responses,
245	which were 27.3 \pm 5.8% and 35.1 \pm 6.0%, respectively (Fig 4 A, B). In the duodenum, motilin-
246	induced contraction from the 10 ⁻¹⁰ M treatment increased in a dose-dependent manner to reach
247	maximum contraction of $71.0 \pm 9.7\%$ (Fig. 4C). In the jejunum and ileum, motilin-induced
248	contraction was also observed from the 10^{-10} M treatment and reached a maximum of $81.7 \pm 11.6\%$
249	and 74.1 \pm 13.7%, respectively (Figs. 4 D, 4E). On the other hand, contractile activity in the
250	proventriculus reached a maximum of $46.2 \pm 13.6\%$ (Fig. 4F). Suncus (shrew) motilin induced no
251	contractions in the proventriculus or intestines (Supplemental Fig. 1).
252	
253	3.4Effects of chicken ghrelin and co-administration of chicken motilin and ghrelin on the GI
254	tract of quail
255	Cumulative administration of chicken ghrelin (10 ⁻¹¹ to 10 ⁻⁶ M) showed mild contractile

256	responses in the duodenum and proventriculus; however, this was not significant (Figs. 5A, 5B). In
257	addition, administration of ghrelin induced no marked contractile responses in the crop, jejunum,
258	ileum, or colon (data not shown). Pretreatment with chicken motilin (10^{-10} M) with cumulative
259	administration of chicken ghrelin (10^{-11} to 10^{-6} M) showed no additive effects in the duodenum or
260	proventriculus (Figs. 5C, 5D). Co-administration of motilin and ghrelin also showed no synergistic
261	or additive effects in the crop, jejunum, ileum, or colon (data not shown).
262	
263	3.5Mechanism of chicken motilin-induced contraction in the duodenum of quail
264	To elucidate the neural pathways of motilin-induced contraction in the duodenum, atropine
265	(a muscarinic receptor antagonist), hexamethonium (a nicotinic receptor antagonist), ritanserin (a 5-
266	HT2A [5-hydroxytryptamine 2A] receptor antagonist), ondansetron (a 5-HT3 receptor antagonist),
267	and TTX (a selective inhibitor of Na^+ channel conductance) were administered as pre-treatments,
268	prior to motilin administration (Figs. 6A–C). None of the antagonists or inhibitors blocked motilin-
269	induced duodenal contractions.
270	
271	3.6Mechanism of chicken motilin-induced contraction in the proventriculus of quail
272	In the proventriculus, treatment with atropine reduced baseline contractions, but did not
273	affect spontaneous contractions (data not shown). Pretreatment with atropine (10 ⁻⁶ M) significantly
274	inhibited motilin-induced contractions at concentrations of 10^{-8} and 10^{-7} M motilin (Fig. 7A).

275	Pretreatment with TTX (1	$10^{-6} \mathrm{M}$	significantly	blocked	motilin-induced	contraction in the
-----	--------------------------	----------------------	---------------	---------	-----------------	--------------------

- proventriculus at concentrations of 10^{-8} and 10^{-7} M motilin (Fig. 7B). On the other hand,
- 277 pretreatment with ritanserin and ondansetron did not inhibit motilin-induced contractions in the
- 278 proventriculus (data not shown).
- 279
- 280

4.Discussion

282	In the present study, we first determined the sequence of the mRNA coding region of quail
283	motilin and localized motilin-producing cells in the GI tract of quail. The N-terminal amino acid of
284	motilin is quite important and capable of effecting full activity, using cell lines that over-express the
285	motilin receptor (GPR38) (Poitras et al., 1992). The deduced amino acid sequence revealed that the
286	first nine amino acids were identical to those of chicken and turkey motilin, but showed low
287	homology with N-terminal amino acids of mammalian motilin. In the present study, we observed
288	that chicken motilin stimulated contractions in the proventriculus and duodenum; however, suncus
289	motilin induced no contractions in those tissues, suggesting that the N-terminal region of quail
290	motilin is also important for specific binding of quail GPR38. Immunohistochemical analysis
291	showed that motilin-ip cells were scattered along the mucosal layer of the duodenum, jejunum, and
292	ileum and existed as open- and closed-type cells. Motilin-producing cells have been observed in
293	abundance in the upper intestine of humans (Kishimoto et al., 1981; Polak et al., 1975; Sjolund et
294	al., 1983), pigs (Pearse et al., 1974; Polak et al., 1975), rabbits (Satoh et al., 1995), and suncus
295	(Kitamura et al., 1990; Tsutsui et al., 2009). In addition, both open- and closed-type motilin-
296	producing cells exist in mammals. These results suggest that tissue production of motilin in the
297	quail occurs mainly in the upper small intestine, as it does in mammals, and luminal conditions in
298	the small intestine are important for the release of motilin in quail.
299	The present study demonstrated that motilin stimulates contractions in the duodenum and

300	proventriculus of quail. Similar region-specific variations in motilin-induced contractions have also
301	been reported in chickens, with the strongest responses being observed in the small intestine (De
302	Clercq et al., 1996; Kitazawa et al., 1995). In addition to motilin, we examined the effects of ghrelin
303	on GI contraction and observed that ghrelin had no significant effects in quail. In the quail GI tract,
304	ghrelin did not induce any significant contraction (Kitazawa et al., 2009), which was consistent
305	with our results. On the other hand, ghrelin has been observed to induce gastric contractions in
306	rodents, which genetically, are motilin-knockout animals (Depoortere et al., 2005; Masuda et al.,
307	2000; Zheng et al., 2009). Ghrelin also stimulates gastric contractions in humans (Tack et al., 2006).
308	Recent studies in suncus (which are suitable motilin-producing animals for GI motility research)
309	revealed that ghrelin induces gastric contractions in vitro under the influence of low doses of
310	motilin, and motilin also induces strong gastric contractions under the influence of ghrelin in vivo
311	(Kuroda et al., 2015; Mondal et al., 2012). Moreover, motilin is not involved in contraction of the
312	small intestines (Janssens et al., 1983). Altogether, the present results suggest that the sites of action
313	of motilin and the mechanisms of motilin-induced gastric contractions are different between
314	mammals and birds.
315	The mechanisms of motilin-induced contractions in the stomach shows differences even
316	among mammalian species (Boivin et al., 1997; Mizumoto et al., 1993; Mondal et al., 2011; Van
317	Assche et al., 1997). In the dog and suncus, motilin induces gastric contractions through neural
318	pathways (Mizumoto et al., 1993; Mondal et al., 2011). In humans and rabbits, gastric contraction

319	induced by high doses of motilin is mediated through direct stimulation of smooth muscle; whereas
320	low doses of motilin exert its effects via a neural pathway (Broad et al., 2015; Coulie et al., 1998;
321	Dass et al., 2003; De Smet et al., 2009; Depoortere et al., 2003; Jarvie et al., 2007; Sanger, 2012;
322	Van Assche et al., 1997). On the other hand, motilin-induced contractile activity in the small
323	intestine of the rabbit, cat, dog, and human has been reported to interact directly with smooth
324	muscle (Adachi et al., 1981; Boivin et al., 1997; Depoortere et al., 1993; Depoortere et al., 1990;
325	Kitazawa et al., 1994; Poitras et al., 1987; Strunz et al., 1975). We found that atropine and TTX
326	pretreatments failed to suppress completely motilin-induced contractions in the duodenum but
327	decreased approximately 50% of the contractions in the proventriculus of quails. This finding
328	suggests that motilin induced proventricular contractions via the neural and smooth muscle direct
329	pathways. On the other hand, motilin induced duodenal contractions via direct stimulation of
330	smooth muscles. These results indicate that mechanisms of motilin-induced contractions differ
331	among various regions of the GI tract of quail. In chickens, it has shown that GPR38 mRNA
332	expression levels were different in different regions of the GI tract (Kitazawa et al., 2013).
333	Moreover, GPR38 expression is localized in the myenteric plexus and muscle layers of the human
334	stomach and small intestine (Broad et al., 2012; Takeshita et al., 2006; Ter Beek et al., 2008). Our
335	recent study in suncus showed that GPR38 mRNA expression is also higher in the upper corpus
336	than in other regions of the GI tract, and expression levels of GPR38 mRNA are consistent with
337	responses to motilin (manuscript in submission). Our findings suggest therefore, that response

differences in the GI tract may be linked to the expression levels and/or localization of GPR38mRNA in the GI tract of quail.

340	The MMC occurs during the fasted state in mammals, and phase III of the MMC has been
341	observed at approximately 90-120 min intervals (Takahashi, 2013). Biological and physiological
342	relevance of the MMC is thought to be important for the mechanical clearance of remnants of
343	indigestible food (Itoh, 1997; Vantrappen et al., 1977) and dysfunction of the MMC can lead to
344	functional dyspepsia or other GI motility disorders (Gu et al., 1998; Kusano et al., 1997; Takahashi,
345	2013). Interestingly, the MMC cycle is highly conserved in humans, dogs, and suncus even though
346	body weight and length of the GI tract vary widely (Itoh, 1997; Kuroda et al., 2015), suggesting that
347	the 90–120 min cycle of the MMC is a primitive phenomenon. In chickens, similar MMC cycles
348	have been observed using a myoelectric recording system (Clench et al., 1989), indicating that an
349	ultradian MMC cycle might be conserved in mammals and birds. For a deeper understanding of the
350	biological and physiological significance of motilin, in vivo observations of GI contractions
351	associated with the MMC would be necessary to examine further the effects of motilin in quail.
352	In summary, the mRNA sequence of quail motilin and distribution of motilin-producing
353	cells have been demonstrated in the present study. Motilin stimulated contractions in the
354	proventriculus and duodenum in a dose-dependent manner in vitro. In addition, we demonstrated
355	that motilin induced contractions in the proventriculus occur via both neural pathways and direct
356	stimulation of smooth muscle, whereas motilin induced duodenal contractions occur only through

- 357 direct stimulation of smooth muscle. Further studies to determine expression levels and distribution
- of GPR38 mRNA within the GI tract is necessary for a better understanding of the mechanisms of
- 359 motilin-induced GI contraction in quail.

361 **References**

- 362 Adachi, H., Toda, N., Hayashi, S., Noguchi, M., Suzuki, T., Torizuka, K., Yajima, H., Koyama, K.,
- 1981. Mechanism of the excitatory action of motilin on isolated rabbit intestine. Gastroenterology80, 783-788.
- 365 Banfield, D.K., MacGillivray, R.T., Brown, J.C., McIntosh, C.H., 1992. The isolation and
- 366 characterization of rabbit motilin precursor cDNA. Biochim Biophys Acta 1131, 341-344.
- Boivin, M., Pinelo, L.R., St-Pierre, S., Poitras, P., 1997. Neural mediation of the motilin motor
- effect on the human antrum. Am J Physiol 272, G71-76.
- Broad, J., Mukherjee, S., Samadi, M., Martin, J.E., Dukes, G.E., Sanger, G.J., 2012. Regional- and
- agonist-dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists.
 Br J Pharmacol 167, 763-774.
- 372 Broad, J., Takahashi, N., Tajimi, M., Sudo, M., Goralczyk, A., Parampalli, U., Mannur, K.,
- 373 Yamamoto, T., Sanger, G.J., 2015. RQ-00201894: A motilin receptor agonist causing long-lasting
- facilitation of human gastric cholinergically-mediated contractions. J Pharmacol Sci 130, 60-65.
- Brown, J.C., Cook, M.A., Dryburgh, J.R., 1972. Motilin, a gastric motor activity-stimulating
- polypeptide: final purification, amino acid composition, and C-terminal residues. Gastroenterology62, 401-404.
- Brown, J.C., Cook, M.A., Dryburgh, J.R., 1973. Motilin, a gastric motor activity stimulating
- polypeptide: the complete amino acid sequence. Can J Biochem 51, 533-537.
- 380 Clench, M.H., Pineiro-Carrero, V.M., Mathias, J.R., 1989. Migrating myoelectric complex
- demonstrated in four avian species. Am J Physiol 256, G598-603.
- Coulie, B., Tack, J., Peeters, T., Janssens, J., 1998. Involvement of two different pathways in the
 motor effects of erythromycin on the gastric antrum in humans. Gut 43, 395-400.
- Dass, N.B., Hill, J., Muir, A., Testa, T., Wise, A., Sanger, G.J., 2003. The rabbit motilin receptor:
 molecular characterisation and pharmacology. Br J Pharmacol 140, 948-954.
- 386 De Clercq, P., Depoortere, I., Macielag, M., Vandermeers, A., Vandermeers-Piret, M.C., Peeters,
- 387 T.L., 1996. Isolation, sequence, and bioactivity of chicken motilin. Peptides 17, 203-208.
- 388 De Smet, B., Mitselos, A., Depoortere, I., 2009. Motilin and ghrelin as prokinetic drug targets.
- 389 Pharmacol Ther 123, 207-223.
- 390 Depoortere, I., De Winter, B., Thijs, T., De Man, J., Pelckmans, P., Peeters, T., 2005. Comparison of
- the gastroprokinetic effects of ghrelin, GHRP-6 and motilin in rats in vivo and in vitro. Eur JPharmacol 515, 160-168.
- 393 Depoortere, I., Peeters, T.L., Vandermeers, A., Vandermeers-Piret, M.C., Christophe, J., Vantrappen,
- G., 1993. Purification and amino acid sequence of motilin from cat small intestine. Regulatorypeptides 49, 25-32.
- Depoortere, I., Peeters, T.L., Vantrappen, G., 1990. The erythromycin derivative EM-523 is a potent
 motilin agonist in man and in rabbit. Peptides 11, 515-519.
- 398 Depoortere, I., Thijs, T., Thielemans, L., Robberecht, P., Peeters, T.L., 2003. Interaction of the
- 399 growth hormone-releasing peptides ghrelin and growth hormone-releasing peptide-6 with the
- 400 motilin receptor in the rabbit gastric antrum. J Pharmacol Exp Ther 305, 660-667.
- 401 Gu, C., Ke, M., Wang, Z., 1998. Temporal and spatial relationship of pylorus to antroduodenal
- 402 motility in functional dyspepsia. Chin Med J (Engl) 111, 906-909.
- 403 Hall, K.E., Greenberg, G.R., El-Sharkawy, T.Y., Diamant, N.E., 1983. Vagal control of migrating
- 404 motor complex-related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Can J
 405 Physiol Pharmacol 61, 1289-1298.
- 406 Huang, Z., Depoortere, I., De Clercq, P., Peeters, T., 1999. Sequence and characterization of cDNA

- 407 encoding the motilin precursor from chicken, dog, cow and horse. Evidence of mosaic evolution in408 prepromotilin. Gene 240, 217-226.
- 409 Itoh, Z., 1997. Motilin and clinical application. Peptides 18, 593-608.
- 410 Itoh, Z., Honda, R., Hiwatashi, K., Takeuchi, S., Aizawa, I., Takayanagi, R., Couch, E.F., 1976.
- 411 Motilin-induced mechanical activity in the canine alimentary tract. Scand J Gastroenterol Suppl 39,
- **412** 93-110.
- Janssens, J., Vantrappen, G., Peeters, T.L., 1983. The activity front of the migrating motor complex
- of the human stomach but not of the small intestine is motilin-dependent. Regulatory peptides 6,363-369.
- 416 Jarvie, E.M., North Laidler, V.J., Corcoran, S., Bassil, A., Sanger, G.J., 2007. Differences between
- the abilities of tegaserod and motilin receptor agonists to stimulate gastric motility in vitro. Br J
- 418 Pharmacol 150, 455-462.
- 419 Kishimoto, S., Polak, J.M., Buchan, A.M., Verhofstad, A.A., Steinbusch, H.W., Yanaihara, N.,
- 420 Bloom, S.R., Pearse, A.G., 1981. Motilin cells investigated by the use of region-specific antisera.
- 421 Virchows Arch B Cell Pathol Incl Mol Pathol 36, 207-218.
- 422 Kitamura, N., Yamada, J., Watanabe, T., Yamashita, T., 1990. An immunohistochemical study on the
- 423 distribution of endocrine cells in the gastrointestinal tract of the musk shrew, Suncus murinus.
- 424 Histol Histopathol 5, 83-88.
- Kitazawa, T., Ichikawa, S., Yokoyama, T., Ishii, A., Shuto, K., 1994. Stimulating action of KW-5139
 (Leu13-motilin) on gastrointestinal motility in the rabbit. Br J Pharmacol 111, 288-294.
- 427 Kitazawa, T., Maeda, Y., Kaiya, H., 2009. Molecular cloning of growth hormone secretagogue-
- 428 receptor and effect of quail ghrelin on gastrointestinal motility in Japanese quail. Regulatory
- 429 peptides 158, 132-142.
- 430 Kitazawa, T., Taneike, T., Ohga, A., 1995. Excitatory action of [Leu13]motilin on the
- 431 gastrointestinal smooth muscle isolated from the chicken. Peptides 16, 1243-1252.
- 432 Kitazawa, T., Taneike, T., Ohga, A., 1997. Functional characterization of neural and smooth muscle
- 433 motilin receptors in the chicken proventriculus and ileum. Regulatory peptides 71, 87-95.
- 434 Kitazawa, T., Yoshida, A., Tamano, T., Teraoka, H., Kaiya, H., 2013. Age-dependent reduction of
- ghrelin- and motilin-induced contractile activity in the chicken gastrointestinal tract. Peptides 43,88-95.
- 437 Kuroda, K., Hequing, H., Mondal, A., Yoshimura, M., Ito, K., Mikami, T., Takemi, S., Jogahara, T.,
- 438 Sakata, I., Sakai, T., 2015. Ghrelin Is an Essential Factor for Motilin-Induced Gastric Contraction in
- 439 Suncus murinus. Endocrinology 156, 4437-4447.
- 440 Kusano, M., Sekiguchi, T., Kawamura, O., Kikuchi, K., Miyazaki, M., Tsunoda, T., Horikoshi, T.,
- 441 Mori, M., 1997. Further classification of dysmotility-like dyspepsia by interdigestive
- 442 gastroduodenal manometry and plasma motilin level. Am J Gastroenterol 92, 481-484.
- 443 Masuda, Y., Tanaka, T., Inomata, N., Ohnuma, N., Tanaka, S., Itoh, Z., Hosoda, H., Kojima, M.,
- Kangawa, K., 2000. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys
 Res Commun 276, 905-908.
- 446 Miyano, Y., Sakata, I., Kuroda, K., Aizawa, S., Tanaka, T., Jogahara, T., Kurotani, R., Sakai, T.,
- 2013. The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-inducedgastric contraction in suncus. PLoS One 8, e64777.
- 449 Mizumoto, A., Sano, I., Matsunaga, Y., Yamamoto, O., Itoh, Z., Ohshima, K., 1993. Mechanism of
- 450 motilin-induced contractions in isolated perfused canine stomach. Gastroenterology 105, 425-432.
- 451 Mondal, A., Kawamoto, Y., Yanaka, T., Tsutsui, C., Sakata, I., Oda, S.I., Tanaka, T., Sakai, T., 2011.
- 452 Myenteric neural network activated by motilin in the stomach of Suncus murinus (house musk
- 453 shrew). Neurogastroenterol Motil 23, 1123-1131.
- 454 Mondal, A., Xie, Z., Miyano, Y., Tsutsui, C., Sakata, I., Kawamoto, Y., Aizawa, S., Tanaka, T., Oda,

- 455 S., Sakai, T., 2012. Coordination of motilin and ghrelin regulates the migrating motor complex of
- gastrointestinal motility in Suncus murinus. Am J Physiol Gastrointest Liver Physiol 302, G12071215.
- 458 Ohno, T., Mochiki, E., Kuwano, H., 2010. The roles of motilin and ghrelin in gastrointestinal 459 motility. Int J Pept 2010.
- 459 motility. Int J Pept 2010.
- 460 Ohshiro, H., Nonaka, M., Ichikawa, K., 2008. Molecular identification and characterization of the
- dog motilin receptor. Regulatory peptides 146, 80-87.
- 462 Pearse, A.G., Polak, J.M., Bloom, S.R., Adams, C., Dryburgh, J.R., Brown, J.C., 1974.
- Enterochromaffin cells of the mammalian small intestine as the source of motilin. Virchows Arch BCell Pathol 16, 111-120.
- Poitras, P., Gagnon, D., St-Pierre, S., 1992. N-terminal portion of motilin determines its biological
 activity. Biochem Biophys Res Commun 183, 36-40.
- 467 Poitras, P., Lahaie, R.G., St-Pierre, S., Trudel, L., 1987. Comparative stimulation of motilin
- 468 duodenal receptor by porcine or canine motilin. Gastroenterology 92, 658-662.
- 469 Poitras, P., Miller, P., Gagnon, D., St-Pierre, S., 1994. Motilin synthetic analogues and motilin
- 470 receptor antagonists. Biochem Biophys Res Commun 205, 449-454.
- 471 Poitras, P., Peeters, T.L., 2008. Motilin. Curr Opin Endocrinol Diabetes Obes 15, 54-57.
- 472 Polak, J.M., Pearse, A.G., Heath, C.M., 1975. Complete identification of endocrine cells in the
- gastrointestinal tract using semithin-thin sections to identify motilin cells in human and animalintestine. Gut 16, 225-229.
- 475 Sakahara, S., Xie, Z., Koike, K., Hoshino, S., Sakata, I., Oda, S., Takahashi, T., Sakai, T., 2010.
- 476 Physiological characteristics of gastric contractions and circadian gastric motility in the free-
- 477 moving conscious house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol
 478 299, R1106-1113.
- 479 Sanger, G.J., 2012. Motilin receptor neuropharmacology: revised understanding. Curr Opin
- 480 Pharmacol 12, 641-646.
- 481 Satoh, M., Sakai, T., Koyama, H., Shiba, Y., Itoh, Z., 1995. Immunocytochemical localization of
 482 motilin-containing cells in the rabbit gastrointestinal tract. Peptides 16, 883-887.
- 483 Schubert, H., Brown, J.C., 1974. Correction to the amino acid sequence of porcine motilin. Can J
- 484 Biochem 52, 7-8.
- Sjolund, K., Sanden, G., Hakanson, R., Sundler, F., 1983. Endocrine cells in human intestine: an
 immunocytochemical study. Gastroenterology 85, 1120-1130.
- 487 Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S., Wagner,
- 488 L., Shenmen, C.M., Schuler, G.D., Altschul, S.F., Zeeberg, B., Buetow, K.H., Schaefer, C.F., Bhat,
- 489 N.K., Hopkins, R.F., Jordan, H., Moore, T., Max, S.I., Wang, J., Hsieh, F., Diatchenko, L., Marusina,
- 490 K., Farmer, A.A., Rubin, G.M., Hong, L., Stapleton, M., Soares, M.B., Bonaldo, M.F., Casavant,
- 491 T.L., Scheetz, T.E., Brownstein, M.J., Usdin, T.B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S.S.,
- 492 Loquellano, N.A., Peters, G.J., Abramson, R.D., Mullahy, S.J., Bosak, S.A., McEwan, P.J.,
- 493 McKernan, K.J., Malek, J.A., Gunaratne, P.H., Richards, S., Worley, K.C., Hale, S., Garcia, A.M.,
- 494 Gay, L.J., Hulyk, S.W., Villalon, D.K., Muzny, D.M., Sodergren, E.J., Lu, X., Gibbs, R.A., Fahey, J.,
- Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Young, A.C.,
- 496 Shevchenko, Y., Bouffard, G.G., Blakesley, R.W., Touchman, J.W., Green, E.D., Dickson, M.C.,
- 497 Rodriguez, A.C., Grimwood, J., Schmutz, J., Myers, R.M., Butterfield, Y.S., Krzywinski, M.I.,
- 498 Skalska, U., Smailus, D.E., Schnerch, A., Schein, J.E., Jones, S.J., Marra, M.A., 2002. Generation
- and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl
- 500 Acad Sci U S A 99, 16899-16903.
- 501 Strunz, U., Domschke, W., Mitznegg, P., Domschke, S., Schubert, E., Wunsch, E., Jaeger, E.,
- 502 Demling, L., 1975. Analysis of the motor effects of 13-norleucine motilin on the rabbit, guinea pig,

- rat, and human alimentary tract in vitro. Gastroenterology 68, 1485-1491.
- 504 Suzuki, A., Ishida, Y., Aizawa, S., Sakata, I., Tsutsui, C., Mondal, A., Kanako, K., Sakai, T., 2012.
- 505 Molecular identification of GHS-R and GPR38 in Suncus murinus. Peptides 36, 29-38.
- 506 Tack, J., Depoortere, I., Bisschops, R., Delporte, C., Coulie, B., Meulemans, A., Janssens, J.,
- Peeters, T., 2006. Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55,
 327-333.
- 509 Takahashi, T., 2013. Interdigestive migrating motor complex -its mechanism and clinical
- 510 importance. J Smooth Muscle Res 49, 99-111.
- 511 Takeshita, E., Matsuura, B., Dong, M., Miller, L.J., Matsui, H., Onji, M., 2006. Molecular
- 512 characterization and distribution of motilin family receptors in the human gastrointestinal tract. J
- 513 Gastroenterol 41, 223-230.
- 514 Ter Beek, W.P., Muller, E.S., van den Berg, M., Meijer, M.J., Biemond, I., Lamers, C.B., 2008.
- 515 Motilin receptor expression in smooth muscle, myenteric plexus, and mucosa of human inflamed 516 and noninflamed intestine. Inflamm Bowel Dis 14, 612-619.
- 517 Tsutsui, C., Kajihara, K., Yanaka, T., Sakata, I., Itoh, Z., Oda, S., Sakai, T., 2009. House musk
- shrew (Suncus murinus, order: Insectivora) as a new model animal for motilin study. Peptides 30,318-329.
- 520 Van Assche, G., Depoortere, I., Thijs, T., Janssens, J.J., Peeters, T.L., 1997. Concentration-
- 521 dependent stimulation of cholinergic motor nerves or smooth muscle by [Nle13]motilin in the
- isolated rabbit gastric antrum. Eur J Pharmacol 337, 267-274.
- Vantrappen, G., Janssens, J., Hellemans, J., Ghoos, Y., 1977. The interdigestive motor complex of
 normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59, 1158-
- 524 normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest 59, 1158-525 1166.
- 526 Vantrappen, G., Janssens, J., Peeters, T.L., Bloom, S.R., Christofides, N.D., Hellemans, J., 1979.
- 527 Motilin and the interdigestive migrating motor complex in man. Dig Dis Sci 24, 497-500.
- 528 Wingate, D.L., Ruppin, H., Green, W.E., Thompson, H.H., Domschke, W., Wunsch, E., Demling, L.,
- 529 Ritchie, H.D., 1976. Motilin-induced electrical activity in the canine gastrointestinal tract. Scand J
- 530 Gastroenterol Suppl 39, 111-118.
- 531 Yamamoto, I., Kaiya, H., Tsutsui, C., Sakai, T., Tsukada, A., Miyazato, M., Tanaka, M., 2008.
- Primary structure, tissue distribution, and biological activity of chicken motilin receptor. Gen Comp
 Endocrinol 156, 509-514.
- 534 Zheng, J., Ariga, H., Taniguchi, H., Ludwig, K., Takahashi, T., 2009. Ghrelin regulates gastric phase
- 535 III-like contractions in freely moving conscious mice. Neurogastroenterol Motil 21, 78-84.
- 536
- 537

539 Figure legen	ds
------------------	----

540	Fig. 1. Mult	tiple alignment	of nucleotide sequenc	es encoding a motilin	precursor from the human,
	0	1 0	1	6	1

- 541 dog, suncus, turkey, chicken, and quail. Completely conserved regions between species are
- 542 indicated by an asterisk (*). The nucleotide sequence has been deposited in the

543 DDBJ/EMBL/GenBank databases with the Accession No. LC146647.1.

544

chicken, and quail nucleotide sequences. Completely conserved regions between species are

547 indicated by an asterisk (*). Conservation between groups with strongly similar properties is

- 548 indicated by two dots (:). Conservation between groups with weakly similar properties is indicated
- 549 by a single dot (.). Mature motilin peptide is indicated by a double-headed arrow. A dibasic cleavage
- site (KK) was also found in the predicted quail motilin sequence (underlined). The amino acid

551 sequence of quail motilin (BAU80773.1) was aligned with those of human (AAI12315.1), dog

552 (NP 001300735.1), Suncus (BAI66099.1), turkey (XP 010722636.1), and chicken

- 553 (NP 001292058.1) motilins.
- 554

Fig. 3. Photomicrographs of motilin immunopositive (motilin-ip) cells in the intestine of quail.

- 556 Motilin-ip cells (arrowheads) stained by immunohistochemistry were present in the duodenum (A),
- 557 jejunum (B), and ileum (C). Insets show high magnification of motilin cells. Two types of cell, the
- open- and closed-type, were present in the mucosa. Histogram showing the densities (cells/mm²) of

559	motilin-ip cells in the GI tract (D). The density of motilin cells in the duodenum and jejunum was
560	significantly higher than that in the ileum. MU indicates mucosa. Scale Bars are 100 μ m in (A), (B),
561	and (C), and 10 µm in insets. Densities of motilin cells in different tissues of the quail GI tract were
562	compared by one-way ANOVA followed by Tukey's post-hoc test. ** $p < 0.01$, *** $p < 0.001$; $n = 3$.
563 564	Fig. 4. Motilin-induced contractile activity in different isolated parts of the GI tract of quail. Left:
565	traces showing the representative contractile response to Acetylcholine (ACh) (10^{-4} M) in the
566	isolated crop (A), colon (B), and duodenum (C). Center: responses to cumulative administration of
567	chicken motilin $(10^{-11}-10^{-6} \text{ M})$ in the isolated crop (A), colon (B), and duodenum (C). Right:
568	motilin-induced concentration-response curve of isolated crop (A), colon (B), and duodenum (C).
569	Concentration-response curve to cumulative doses of motilin $(10^{-11}-10^{-6} \text{ M})$ in the jejunum (D),
570	ileum (E), and proventriculus (F) are also shown. Arrowheads indicate timing of administration of
571	motilin and numbers indicate concentration of chicken motilin (-Log M). Each value represents the
572	mean \pm SEM (n = 4). Significance of differences was determined using one-way ANOVA followed
573	by Tukey's post-hoc test (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ vs. 10 ⁻¹¹ M motilin treatment).
574	
575	Fig. 5. Effects of chicken ghrelin and co-administration of chicken motilin and chicken ghrelin on
576	different parts of the GI tract of quail in vitro. Contractile responses to chicken ghrelin in isolated
577	duodenum (A) and proventriculus (B). Representative contractile responses of the coordinative
578	effects of motilin and ghrelin in the isolated duodenum (C) and proventriculus (D). Arrowheads

indicate timing of administration. Each value represents the mean \pm SEM (n = 3). <u>The statistical</u>

- 580 <u>analysis was performed using one-way ANOVA followed by Tukey's post-hoc test.</u>
- 581

582	Fig. 6. Effects of cholinergic, serotonergic receptor antagonists, and tetrodotoxin on motilin-
583	induced contraction in the duodenum of Japanese quail. Pre-treatment with atropine (10^{-6} M) and
584	hexamethonium (200 μ M) effected no changes in motilin-induced contraction in the duodenum (A).
585	Pre-treatment with ritanserin (10^{-7} M) and ondansetron (10^{-5} M) had no effect on motilin-induced
586	contractile activity (B). Tetrodotoxin (10^{-6} M) also had no effect on the motilin-induced contraction
587	in the duodenum (C). Each value represents the mean \pm SEM (n = 4). <u>Student's <i>t</i>-test was used to</u>
588	compare differences on the same dose between control vs. antagonist treatment.
589	
590	Fig. 7. Effects of atropine and tetrodotoxin on motilin-induced contraction in the proventriculus of
591	Japanese quail. Concentration-response curve showing significant inhibition of motilin-induced
592	contraction by pre-treatment with atropine (10^{-6} M) (A). Pre-treatment with tetrodotoxin (10^{-6} M)
593	also significantly reduced motilin-induced contractile activity in the proventriculus (B). Each value
594	represents the mean \pm SEM (n = 4). <u>Asterisk denotes statistical significance between control and</u>
595	antagonist treatment. * p < 0.05, **p < 0.01.
506	

- 596
- 597 Supplemental Fig. 1. Effects of suncus motilin on contractions of the proventriculus, duodenum,

598 jejunum, and ileum in quail. Suncus motilin induced no contractions in the proventriculus (A),

599 duodenum (B), jejunum (C), and ileum (D). Each value represents the mean \pm SEM (n = 4).

600

602

- 601 Supplemental Fig. 2. Specificity of anti-pig motilin antibody by antigen absorption test in quail
- the anti-pig motilin incubated without chicken motilin (A) but not observed with chicken motilin

duodenum. Motilin-ip cells (arrowheads) stained by immunohistochemistry were observed when

- 604 5 μg/ml (B), 10 μg/ml (C), and 20 μg/ml (D). Negative control (E) and positive control (F) are also
- shown. MU indicates mucosa. Scale bars are $100 \mu m$.

Figure1	Human	CGCCCTCCAAGATGGTATCCCGTAAGGCTGTGGCTGCTCTGCTGGTGGTGCATGCA			
3	Dog	TGCTCCCTAGGATGGTGTCCCGAAAGGCCGTGGCTGCTCTGCTGGTGGTGCACGTGGCTG			
	Suncus	GTCCCGCAAAGCCATGGCAATGCTGCTGCTGCACATGGCCA			
	Turkey	AGACTCTTGCGATGGTTTCGAAGAAGGCGGCGGCCGGTTTGCTCCTGGTGTACGTGATGG			
	Chicken	AGACTCTTGCAATGGCTTCGAAGAAGGCGGTGTCCGGTTTGCTCCTGCTGTACGTGATGT			
	Quail	CCGGTTTGCTCCTGGTGTACGTGATGT			
	-	* **** * ** *			
	Human	CCATGCTGGCCTCCCAGACGGAAGCCTTCGTCCCCATCTTCACCTATGGCGAACTCCAGA			
	Dog	CCATGCTGGCCTCCCAGACAGAAGCCTTCGTTCCCATCTTCACCCACAGTGAGCTCCAGA			
	Suncus	CCATGCTGGCCTCACAGATCGAAGCCTTCATGCCCATCTTCACCTATGGCGAACTTCAAA			
	Turkey	CAGTGCTGGCAGAACAGGCTGAAGGCTTTGTGCCCTTCTTCACCCAGAGCGACATCCAGA			
	Chicken	CAGTGCTGGCAGAACAGGCTGAAGGCTTTGTGCCCTTCTTCACCCAGAGCGACATCCAGA			
	Quail	CAGTGCTGGCAGAACAGGCTGAGGGCTTTGTGCCCTTCTTCACCCAGAGTGACTTCCAGA			
	~	* ****** *** ** * *** * ********* * * ** *			
	Human	GGATGCAGGAAAAGGAACGGAATAAAGGGCAAAAGAAATCCCTGAGTGTATGGCAGAGGT			
	Dog	AGATTCGGGAAAAGGAGCGCAACAAAGGGCAAAAGAAGTCCTTGATCTTACAGAAGAAGT			
	Suncus	AGATGCAGGAGAAGGAGCAAAACAAAGGCCAGAAGAAATCTCTGGGTGTGCAGCGCAGAG			
	Turkey	AAATGCAGGAAAAGGAGGAGGATCAAAAGGGCAGAAGAAATCCCTGACCTCTCTGCAGCAGC			
	Chicken	AAATGCAGGAAAAGGAGAGAGAAACAAAGGACAGAAGAAATCCCTGACACCTCTGCAGCAGCAGC			
	Quail	AAATGCAGGAAAAGGAGGAGGAACAAAGGGCAGAAGAAATCCCCTGACCCCTCTGCAGCAGCAGC			
	guurr	** * *** ***** * ***** ** ***** ** **			
	Human	CTGGGGAGGAAGGTCCTGTAGACCCTGCGGAGCCCATCAGGGAAGAAGAAAACGAAATGA			
	Dog	CTGAGGAAGTGGGGCCTCTGGACTCTGTGGAGCCCACAGAGGAAGAAGAAAACCAAGTTA			
	Suncus	CCGAGGAATCAGCCCCCTGGGGCCTTGGGGGACCCCACAGATGGAGAAGAAAGCCCCCATGA			
	Turkey				
	Chicken				
	Ouail				
	Quall	* ** * * * * * * ** *			
	Human	ͲϹϪϪႺϹͲႺϪϹͲႺϹͲϹϹͲϹͲϹϾϪϪϪͲͲႺϹϪϪͲϾϪϾϾϪͲϾϪϪϹͲϹϹϪϾϪϹϪϾϹͲϾϾϪϪϪϪϾͲ			
	Dog	ͲϹϪϪϾͲͲϾϪϹͲϾϹͲϾϹͲϾͲϾϾϪϪϪͲͲϾϾϪϪͲϾϪϪϾϪͲϾϪϪϾϒͲϾ			
	Suncus				
	Turkey				
	Chicken	ΤCCASCIAGCIGICCOCCTCACAGCIGGCOCCIGACAGCIGGCOCCIGGCAGCAGCAGCAGCIGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA			
	Ousil				
	Quall				
	Uuman	<u>გლლოლიალია გლლოლიალიალიალიალილიიი გლლალიალიალია</u>			
	Dog				
	Superio				
	Turkov				
	Chicken				
	Quall				
		<u>, , , , , , , , , , , , , , , , , , , </u>			

Figure2	Human	MVSRKAVAALLVVHAAAMLASQTEAFVPIFTYGELQRMQEKERNKGQ <u>KK</u> SLSVWQRSGEE
0	Dog	$MVSRKAVAALLVVHVAAMLASQTEAFVPIFTHSELQKIREKERNKGQ\overline{KK}SLILQKKSEEV$
	Suncus	MLLLVHMATMLASQIEAFMPIFTYGELQKMQEKEQNKGQKKSLGVQRRAEES
	Turkey	MVSKKAAAGLLLVYVMAVLAEQAEGFVPFFTQSDIQKMQEKERIKGQKKSLTSLQQLEEE
	Chicken	MASKKAVSGLLLLYVMSVLAEQAEGFVPFFTQSDIQKMQEKERNKGQKKSLTPLQQLEED
	Quail	MSVLAEQAEGFVPFFTQSDFQKMQEKERNKGQKKSLTPLQQLEEE
		::**.* *.*:*** .::*::***: *** ** ** :: *
		Mature motilin

Human	GPVDPAEPIREEENEMIKLTAPLEIGMRMNSRQLEKYPATLEGLLSEMLPQHAAK
Dog	GPLDSVEPTEEEENQVIKLTAPVEIGMKMNSRQLEKYWAALEELLSEVLLTPQNDK-
Suncus	GPLGLGDPTDGEESPMIKLTAPVEIGIWMNSRQLEKYWAALEELLSPAPLSTRNETE
Turkey	GFSEQSG-ADIEGMKTIQLAVPVRAGTWLILRQLEKYQGVLEKLLTEVLQDTPNAD-
Chicken	DFSEQPG-ADVDGIKTIQLAVPVRAGMWLILRQLEKYQGVLEKLLTEVLQDTPNAD-
Quail	GFSERSD-AGIDRMKTIQPAVPARAGMWLILRQLEKYQGVLEKLLTEVLQDTPNAD-
	: *:::* . * : ***** ..** **:

·: :.* . * : ***** ..** **:

Motilin

Ghrelin

Figure6

Duodenum

Fig. 6

A. Atropine

B. Tetrodotoxin (TTX)

Supplementary Figure1 Click here to download Supplementary Material: Supplimentary Figure 1.eps Supplementary Material Click here to download Supplementary Material: Supplemenatal Fig. 2.eps