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Abstract

The feedback stabilization of periodic orbits (induction of limit cycle) via PI-like
control is proposed as plausible tool for scale-down studies. An isothermal continuous
stirred tank bioreactor (CSTB), with nonideal mixing, is studied. Kinetics is assumed
to be governed by Haldane law. The Ready-to-use equations for selecting the control
gains are given. Thus, osccilatory behavior with arbitrary frequency and amplitude
can be induced into the PI-controlled CSTB.
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I. Introduction

Dynamical analysis of reacting systems is now a classical topic in chemical en-
gineering.14 From its study, oscillatory behavior has been found in reactions which
has been atributed to kinetics18 or the reactor con¯guration.2,19 Concerning kinetics,
among others, results have been reported on reactions isothermal forced,20 autocatal-
ityc (self-oscillating)18,3,21 and electrochemical.9 In regard reactors, the most studied
has been the non-isothermal stirred-tank (see results in14,2,19,4;6,13). Oscillations in
reactors has already been explained in terms of feedback6,13 or recycling7 intercon-
nections.

Currently, the reasearch goal of studying oscillatory behavior in reacting systems
is about industry applications. In particular, scienti¯c e®orts are directed onto scale-
down analyisis of biological reactors. The underlying idea is to reproduce phenomena
from production-scale to laboratory- or pilot-salce reactors. Several studies have been
done in this sense but two research directions can be identi¯ed in open literature:

² Construct novel bioreactor con¯guration. This can be performed in mixing de-
signs (see15 for an experimental setup) or connected bioreactors (see12 for nu-
merical simulation). First case, mixing designs, aims to emulate conditions in
production-scale reactors (°uctuating conditions). Whereas the connected re-
actors confuguration search to di®erent conditions (each in a respective reactor
corresponding, for example, to oxygen-rich and oxygen-poor conditions). In
both mixing-design and copupled-reactors, the prupose is to emulate °uctating
conditions species concentration, related to mixing-time-dependent phenomena,
and scale-down is suitably studied by modi¯ng stirres. The drawback of con-
structing reactors con¯gurations is to perform experimental runs with unpre-
dictable results (increasing cost of scale-down studies).

² Control structure. Studies are devoted to (i) tracking of oscillatory (arbitrary)
signals and (ii) analysis of oscillations induction due to existence of homoclinic
orbits (see13 and references therein). Since proportional-integral controller (PI)
is the mostly used in industry to control reactors, the e®orts are devoted to
study PI-like controlled reactors. Two drawbacks are found in tracking. On the
one hand, tracking does not exploit the dynamic nature of the reactor, and as
a consequence, since the idea in tracking is to compensate (destroy) the reactor
dynamics, large control e®ort is often required to track the osicllatory signal.
The second disadvantage is that a PI-like controller is, by its nature, restricted
to track high frequency oscillations. Concerning oscillation induction, the atten-
tion is payed on existence of chaotic attractors6 or bifurcation.16 Teh problem
in thescale-down context is to propose algorithms to induce periodic oscillations
with di®erent ferquencies and amplitudes. Actually, chaotic behavior cannot be
exploited in this direction because of choas implies wide-band oscillatory beav-
ior. Additionally, bifurcation an¶alisis cannot also be used due to it involves
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existence of oscillatory behavior. That is, ready-to-use equations towards scale-
down analysis cannot currently be found either chaos or bifurcation.

Substrate gradients can be found in production-scale bioreactors,1 and can be
seen as substrate °uctuations around cells into the bioreactor. Henceforth, the in-
duction of oscillatory behavior into bioreactor in lab- or pilot-scale bioreactor can be
used to understand kinetic e®ect (physiological responses) from such °uctuations.5 In
this contribution, ready-to-use equations towards scale-down are derived for a class
of biological reactor. The underlying idea is, by exploiting dynamical properties of
a PI-like controlled bioreactor, to induce periodic oscillatory behavior with arbitrary
frequency an amplitude. The PI-controller does not perform tracking; indeed biore-
actor stabilizability is used. Thus, the substrate oscillation into the bioreactor lies
in the physical domain of the PI-controlled bioreactor. The class of system includes
Cholette's reactors (i.e., an isothermal CSTB) with nonideal mixing and Haldane
reaction rate. Haldane kinetics involves inhibitory e®ects at high substrate concen-
tration. Some studies on Cholette's reactor show that: (i) it can be stabilized by
PI-like control17 and (ii) it is a®ected by nonideal mixing.11 Then, the contribution
raises from practical problem: scale-down analysis.

The problem is addressed from theory of dynamical system.8 The analysis is
done on a 2-dimensional smooth system (the PI-controlled bioreactor) with form
_x = f (x; u), where x is a real scalar that represents the suctrate concentration and u
is the control command. The purpose is to study the existence of periodic orbits at
domain ­ of the pair (x; u) 2 R+ £ R near equilibrium the point (x¤; u¤) 2 ­. The
control gains are found such that oscillatory behavior is induced into the PI-controlled
bioreactor by using its dynamical properties. In this manner, a guideline is provided
to study oscillatory phenomena at bioreactor in the context of the scale-down analysis.

The model and basic assumptions are shown in Section 2. The stability of the
PI-controlled bioreactor is also discussed. In Section 3, we give few basic preliminaries
on the dynamical systems theory; which are used in main results. The main results
are contained in Section 4 and, ¯nally, the text is closed with concluding remarks.

II. Model and stabilization

A. Reactor dynamics
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