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Abstract

This paper deals with polynomial invariants of a class of oriented 3-string tangles and the
knots (or links) obtained by applying six different closures. In [1], expressions were given
to compute the Conway polynomials of four of different closures of the composition of
two such 3-string tangles. By using the expressions and results from that reference, and
using an algorithm developed on the basis of Giller’s calculations for 3-string tangles, we
provide new results concerning six closures of 3-braids. Surprisingly, for 3-braids two of
the closures turn out to be affine functions of the four previously defined. Among the
contributions in this paper one finds computational tools to obtain the Conway polyno-
mial of closures of 3-braids in terms of continuous fractions and their expansions. An
interesting feature is that our calculations yield explicit, nonrecursive formulas in the
case of 3-braids, thereby considerably lowering the time required to compute them. As
a byproduct, explicit expressions are also given to obtain both numerators and denomi-
nators of continuous fractions in a nonrecursive way.

Keywords: Conway polynomial, 3-tangle, 3-braid, closure, continued fraction
2010 MSC: 57M25, 57M27, 20F36

1. Introduction

In this article we analyze the relation between the Conway polynomials associated
to six different closures of a certain family of 3-tangles and the ones associated to the
composition s1 · s2 of two of them. An invariant i(S) is defined, for any 3-tangle S with
an orientation described further below, to be the element in F

6 given by

i(S) = (Sc1 , Sc2 , Sc3 , Sc4 , Sc5 , Sc6)T , (1)

where F is the field of fractions of Z[z] and Sci (i = 1, . . . , 6) represents the Conway
polynomial of the knot (or link) obtained by closing S in one of six different ways (shown
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in Figure 8). Moreover, explicit formulas are given to compute the invariant of the 3-
tangle i(S·T ), obtained by juxtaposition of tangles S and T , as a function of the invariants
of i(S) and i(T ). One interesting aspect of the results in this paper is that nonrecursive
expressions are derived to find the polynomial of a number of different closures of a class
of 3-braids. In particular, as shown in [1], given a 3-tangle s a 2 × 2 matrix M∇(s)
which satisfies M∇(s1 · s2) = M∇(s1)M∇(s2) can be assigned. In [2], similar formulas
were given in the case of 2-tangles. Here we apply these results in order to compute
i(T (2a1, . . . , 2an)), where T (2a1, . . . , 2an) is a 3-braid composed of boxes with an even
number of crossings.

The paper is organized as follows. In Section 2 basic notions are recalled, includ-
ing the definition of the Conway polynomial, tangles, rooms and their skein, and some
computations regarding the same polynomial taken from Giller’s seminal work [2]. In
Section 3, a 3-room R′ with a nonstandard orientation is defined and the invariant i is
introduced in terms of the Conway polynomial and six different closures. The results are
then particularized to 3-braids in the skein of R′ in Section 4, where explicit expressions
are given to compute their invariant i in terms of continued fractions. Section 5 gives
explicit, nonrecursive formulas for continued fractions and, building upon the results in
the previous section, for the invariant i of 3-braids. Concluding remarks are presented
in Section 6.

2. Preliminary Recalls

2.1. The Conway polynomial

The Conway polynomial of an oriented link is computed by applying the following
recursive equations to any of its diagrams:

(i) ∇©(z) = 1

(ii) ∇Ll
(z) = ∇Lr

(z) + z∇Ls
(z),

where (Ll, Lr, Ls) is a skein triple, that is, an ordered triple of oriented links which are
identical except at a specific crossing, where they look as illustrated in Figure 1. As is
clear from its definition, the recursive nature of the computations required to find the
Conway polynomial of a given link entails a significant amount of computational com-
plexity: at each “step,” the number of diagrams whose polynomials are to be computed
is doubled until no further crossing can be eliminated.

Ll Lr Ls

Figure 1: Skein triple: An ordered triple (Ll, Lr , Ls) of oriented links all of which are identical except
that they differ at a given crossing, where they look as depicted.
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2.2. Tangles

An n-tangle S is a pair (B3, A), where B3 is the closed unit ball in R
3 and A ⊂ B3

is a one-dimensional, embedded submanifold with nonempty boundary, which contains
n arcs (i.e., subsets homeomorphic to the closed unit interval I = [0, 1]) and satisfies
∂A = A ∩ ∂B3 (cf. e.g. [3] or [4, Chap. 3]). An oriented n-tangle is a tangle (B3, A)
such that each connected component of A is oriented.

2.3. Rooms and their skeins

The material in this subsection is adapted from [2]. Let P be an ordered set of n
points in the interior of D2, the closed unit disk in R

2, and let S ⊂ P . The triple
R = (D2 × I, P, S) is called an n-room. The points in P × {0} are called left ports

and those in P × {1} right ports; the ports in S × {0, 1} are said to be positively

oriented and those in (P \ S)× {0, 1} are called negatively oriented. An illustration of
an n-room is shown in Figure 2. An n-room (D2 × I, P, S) is said to have the standard

orientation if S = P , that is, if its ports are all positively oriented.

(  )a (  )b

D2 D2
× I

S

P

“left” “right”

Figure 2: An n-room (D2 × I, P, S). (a) The disk D2 with the set P of interior points and the subset S

which defines the positively oriented ports. (b) The n-room with its left and right ports and lines tagged
by arrows to show their orientations.

An oriented n-tangle S = (B3, A) is called an inhabitant of an n-room R if there
exists a homeomorphism ϕ : B3 −→ D2 × I, with ϕ(∂A) = P × {0, 1}, such that for
each arc a ⊂ A: (i) ϕ maps ∂a into exactly one left and one right port, both with the
same orientation; and (ii) the orientation of a coincides with the one induced by R in
the obvious way. The skein S(R) of a room R is the set of all inhabitants of R. For
any inhabitant S ∈ S(R), the connections from left to right ports made by the arcs of
S determine a unique permutation π(S) in the symmetric group Sn; namely, if a ⊂ A is
such an arc and ϕ(∂a) = {(pi, 0), (pj , 1)}, then π(S)(i) = j. As with knots and links, it
is convenient to work with planar projections of n-rooms and their skein. Accordingly,
n-rooms and their inhabitants are represented, as in Figure 3, by diagrams drawn under
the same conventions as when passing from a knot or link to one of its diagrams, basically
by representing D2 × I by a rectangle, by drawing strands in general position, by using
arrows to indicate orientations and fractured lines to signify under-passes.

Given a room R and inhabitants S, T ∈ S(R), one writes S = T if there exists an
ambient isotopy carrying S into T , keeping ∂(D2×I) fixed. The set S(R) is endowed with
a binary operation called juxtaposition (or concatenation) which maps inhabitants
S and T of R to the inhabitant S · T defined as in Figure 4.
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(  )a (  )b ( )c

Rstd

Figure 3: Planar representation of 3-rooms. (a) A 3-room with two positively and one negatively oriented
ports, denoted R′. (b) The same room shown with an inhabitant in its skein. (c) The 3-room, denoted
Rstd, with the so called standard orientation, i.e., all ports positively oriented.

SS TT =

Figure 4: Inhabitants S and T of a room R and their juxtaposition S · T , again an inhabitant of R.

2.4. The skein vector space of the standard 3-room

Let R be any 3-room and let F represent the fraction field of Z[z]. One writes
V (R) for the free vector space over F generated by S(R), and N(R) for the subspace
generated by the elements of the form Sl − Sr − zSs, where (Sl, Sr, Ss) ∈ S(R)3 is a
skein triple. The quotient space V (R)/N(R) is denoted by L(R). As per a customary
abuse of notation, one uses the same symbol S to denote an inhabitant S ∈ S(R), the
corresponding vector S ∈ V (R) and the class of S in L(S). A left F-algebra structure
is defined on L(R) by extending the juxtaposition “·” to all of L(R), that is, by setting
S · (T + αU) = S · T + α(S · U) for S, T, U ∈ L(R) and α ∈ F. It is worth recalling that,
for n ∈ N, Fn admits a structure of vector space over F in a natural way.

Specializing the present discussion to the standard 3-room, let B = {Σ1, . . . , Σ6}
be the set of inhabitants of Rstd depicted in Figure 5. The group of permutations
{π(Σ1), . . . , π(Σ6)} associated with the elements of B clearly equals S3. Moreover, B
was shown in [2] to be a basis of L(Rstd), so every element in L(Rstd) admits a unique
expression as a linear combination of elements in B.

Σ1 Σ2 Σ3

Σ4 Σ5 Σ6

Figure 5: Six elements in S(Rstd) whose set of associated permutations equals Sn, and whose images in
L(Rstd) form a basis.

4



2.5. The c6 closure of inhabitants of Rstd

Inhabitants of Rstd give rise to oriented knots or links by an operation, referred to
as closure, which consists in connecting left ports with right ports, in a way that is
consistent with the orientations, via arcs external to the room Rstd. Many such closures
exist, of course, but one that is especially useful and particularly simple is the one in
which the ith left port is connected to the ith right one without introducing additional
crossings, as illustrated in Figure 6. The designation “c6,” the significance of which shall
become evident below, obeys the fact that five other closures are defined in order to
obtain invariants for inhabitants of a 3-room with a nonstandard orientation.

S

c6

Figure 6: The c6 closure of an inhabitant of Rstd.

Given S ∈ S(Rstd), let c6(S) be the oriented knot (or link) obtained by closing S
via c6. To shorten the notation, the Conway polynomial of c6(S) shall be denoted by
Sc6 , i.e., Sc6 = ∇(c6(S)). Every element in L(Rstd) determines an element in the dual
space L(Rstd)

∗ as follows. Regard B = {Σ1, . . . ,Σ6} as a subset of L(Rstd), and for each
S,X ∈ B, set S∗(X) = (X · S)c6 = ∇(c6(X · S)). Since B is a basis of L(Rstd), S

∗

extends by linearity to a mapping S∗ : L(Rstd) −→ Z[z] ⊂ F, which belongs to L(Rstd)
∗.

Let M be the 6× 6 matrix whose entries are defined by Mij = Σ∗
i (Σj), i, j ∈ {1, . . . , 6}.

It was shown in [2] that detM = −(z2+4) 6= 0, soM is nonsingular, and that its entries
are given by:

M =

















0 0 0 z 1 1
0 0 1 1 + z2 z z
0 1 0 1 + z2 z z
z 1 + z2 1 + z2 3z2 + z4 2z + z3 2z + z3

1 z z 2z + z3 1 + z2 z2

1 z z 2z + z3 z2 1 + z2

















.

As a consequence of the invertibility of M , B∗ = {Σ∗
1, . . . ,Σ

∗
6} is a basis of the dual

L(Rstd)
∗. Therefore α =

∑6
i=1 Σ

∗
i ⊗ Σi may be regarded as an automorphism α :

L(Rstd) −→ L(Rstd) such that α(S) =
∑6

i=1 Σ
∗
i (S)Σi. Given that (S ·X)c6 = (X · S)c6

for every S,X ∈ L(Rstd), it was shown in [2] that ϕ(S, T ) = (S · T )c6 actually defines a
bilinear ϕ mapping on L(Rstd) × L(Rstd). Since frequent use of (multi)linear mappings
shall be made below, vectors in L(Rstd) will be represented, unless otherwise specified,
as “column” vectors whose entries are the corresponding components in the basis B.
Given a vector x represented as a column vector, xT denotes its transpose, regarded
as a “row” vector. Using these conventions one has α(S) = (Σ∗

1(S), . . . ,Σ
∗
6(S))

T and
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α(T ) = (Σ∗
1(T ), . . . ,Σ

∗
6(T ))

T and hence, in terms of these vectors, one of the results in
[2] states that ϕ has matrix M−1, i.e.,

(S1 · S2)
c6 = ϕ(S1, S2) = α(S1)

TM−1α(S2). (2)

The interest of this expression is that the Conway polynomial of the c6 closure of S1 ·S2

may be expressed as a function of α and M−1.

3. The 3-room R
′, its associated closures and the invariant i

Another interesting 3-room to study is R′, shown in Figure 3(a), for which formulas
may be derived to compute its various closures. Notice that the closure c6 is equally
applicable to R′ since it obviously respects the orientations. For R′ one defines, as in the
case of Rstd, the bilinear form ψ(S, T ) = (S · T )c6. To obtain similar formulas for the
Conway polynomial of this closure one uses the trick used in [2], namely, reformulate the
problem in terms of the c6 closure of the standard room, thus allowing one to still use
the matrix M . This is achieved by embedding S, T into Rstd, with crossings added in
order to render the orientations compatible, as shown in Figure 7. One thereby obtains
inhabitants σ and τ of Rstd. It is easy to see that ψ(S, T ) = ϕ(σ, τ).

S T

σ τ

Figure 7: Transformation of inhabitants S, T of R′ into inhabitants σ, τ of Rstd by addition of crossings.

For R′ one defines six closures, all of which respect the port orientations, indicated
in Figure 8. Note that c5 is defined in terms of the c6 closure of S · E, where E is the
3-tangle that represents a “180◦ twist to the front” of the three strands. Thus, Sc5 =
(S ·E)c6 . At first glance, c5 may appear somewhat artificial, all the more that, unlike the
other closures, it introduces additional crossings. Nevertheless, it arises naturally when
computing α(σ) and α(τ). As before, given S ∈ S(R′), ci(S) denotes the ci closure of S,
whereas Sci = ∇(ci(S)) (i = 1, . . . , 6) denotes the Conway polynomial of its closure. For
any inhabitant S ∈ S(R′), one defines i(S) to be the vector in F

6 given by

i(S) = (Sc1 , Sc2 , Sc3 , Sc4 , Sc5 , Sc6)T .

Owing to the properties of the Conway polynomial, i is an invariant of S. The previ-
ously described embedding actually allows one to use the matrix M−1 to find explicit
expressions for i(S). To see how this is achieved, define mappings f, g, h : F6 −→ F

6 to
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S

S SS

SS

c1 c2 c3

c4 c5 c6

E

Figure 8: The six closures c1, . . . , c6 for the 3-room R′. The additional crossings required to define c5
equal a 3-braid referred to in this paper as E.

be given by

f(x) = (x2, x1, x4, x3, x6 + zx4 − zx5 + zx1, x5)
T

g(x) = (x6, x4, x1, x5 − zx3 + zx6 + zx2, x2,

x3 + zx1 + zx4 − zx5 + z2x3 − z2x6
)T

h(x) =
(

x6, x4 + zx6, x1 + zx6, zx2 +
(

−z − z3
)

x3 +
(

1 + z2
)

x5

+
(

z + z3
)

x6, x2 + zx5 − z2x3 + z2x6, x3 + zx4 + zx1 + z2x6
)T
.

It is easily checked that these three mappings are isomorphisms. Note that for S ∈ S(R′)
and the associated σ ∈ S(Rstd) (cf. Figure 7), one has α(σ) = g(i(S)). The definitions
of f and h are motivated in a similar way. In turn, consider the bilinear forms ψN , ψE :
F
6 × F

6 −→ F defined by

ψN (x, y) = g(x)TM−1h(y) and ψE(x, y) = ψN (x, f(y)). (3)

In a nutshell, given tangles S and T , and recalling that E is the tangle occurring in
the definition of c5 (cf. Figure 8), the relevance of the functions just defined is that f
maps i(S) to the invariant i(S ·E) of the juxtaposition S ·E, whereas ψN determines the
Conway polynomial of the c6 closure of S ·T . As an immediate byproduct, the c5 closure
of S · T is given by ψE , which is defined in terms of g and ψN . These observations are
formalized in the following result.

Proposition 1. Given inhabitants S, T ∈ S(R′), one has:

(i) i(S ·E) = f ◦ i(S);

(ii) (S · T )c6 = ψN (i(S), i(T )); and

(iii) (S · T )c5 = ψE(i(S), i(T )) = ψN (i(S), f(i(T ))).

Proof of (i). As may be checked by inspecting diagrams of closures of S ·E, the claim
is trivial except for the fifth component of f ◦ i(S), which corresponds to the c5 closure
of S ·E. For the latter case one has
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∇









S

EE









= ∇









S

E









+ z∇









S

E









= ∇









S

E









− z∇









S

E









+z∇





S





=









S

E









+ z∇









S

E









−z∇









S

E









+ z∇





S





= ∇









S









+ z∇





S





−z∇









S

E









+ z∇





S





= Sc6 + zSc1 − zSc5 + zSc4,

as required.
(Sketch of) Proof of (ii). Let σ, τ the inhabitants of S(Rstd) related to S, T as in Fig-
ure 7. Since (σ·τ)c6 = ψN (i(σ), i(τ)), the proof boils down to showing that i(σ) = g(i(S))
and i(τ) = h(i(T )), where g and h are the linear mappings defined above. This can be
achieved by computing the Conway polynomials of the six closures for σ and τ , then
expressing each polynomial as a linear combination of σc1 , . . . , σc6 and τc1 , . . . , τc6 , re-
spectively, and finally checking that the coefficients of the linear combination correspond
with the definitions of g and h. The required calculations, which follow a pattern similar
to the one in the proof of (i), are straightforward yet lengthy, and are therefore omitted.
Proof of (iii). One has, by definition, (S ·T )c5 = (S ·(T ·E))c6 whereas, by (i), i(T ·E) =
f ◦ i(T ). Using (ii), it follows that (S · T )c5 = ψN (i(S), i(T ·E)) = ψN (i(S), f ◦ i(T )) =
ψE(S, T ).
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3.1. Computation of i for juxtaposed 3-tangles

Certainly, a desirable property of an invariant such as i would be its computability in
practical terms. In particular, in an attempt to use a “divide and conquer” strategy, one
would wish to be able to compute i(S ·T ) as a function of i(S) and i(T ). As it turns out,
this is the case for i. But, as shown in [1], even more is true for its first four components
arranged in matrix form. To see this in more detail consider, for a given S ∈ S(R′), the
2× 2 matrix with entries taken from the components of i(S) arranged as follows

M∇(S) =

(

Sc3 Sc4

Sc1 Sc2

)

. (4)

One has

Proposition 2. [1] For any S, T ∈ S(R′), M∇(S · T ) =M∇(S)M∇(T ).

Combining Propositions 1 and 2 one obtains the following immediate corollary. It
allows one to compute i(S · T ) in terms of i(S) and i(T ), but simple inspection of the
definitions of ψN and ψE indicate that the situation for i is less fortunate than for M∇.
Indeed, while M∇ is actually a group homomorphism from (S(R′), ‘·’) to the multiplica-
tive group M2×2(F), there is no evident way to endow F

6 with a multiplicative structure
⋆ so as to have “i(S ·T ) = i(S)⋆ i(T ).” As discussed below, however, explicit expressions
shall be obtained for the subclass of S(R′) consisting of 3-braids.

Corollary 3. For S, T ∈ S(R′) one has i(S ·T ) = η(i(S), i(T )), where η : F6×F
6 −→ F

6

is the bilinear mapping defined by

η(x, y) = (x1y3 + x2y1, x1y4 + x2y2, x3y3 + x4y1, x3y4 + x4y2,

ψE(x, y), ψN (x, y))T .

4. Computations for 3-braids

4.1. Definition of braids and their diagrams

An n-braid is a set of n oriented strands traversing a box steadily from the left to
the right (cf. [5]; and some parts of this section are adapted from [6]). For example, the
six inhabitants Σ1, . . . ,Σ6 of Rstd shown in Figure 5 are all 3-braids. Every 3-braid may
be regarded as a 3-tangle, but the converse need not hold; for instance, the 3-tangle in
Figure 3 is not a 3-braid. A braid diagram, viewed as a planar representation of a braid,
is uniquely determined by a finite sequence of integers a1, . . . , an, in which case it is
denoted by T (a1, . . . , an). Pictorially, T (a1, . . . , an) represents one of the two diagrams
of Figure 9, according to whether n is odd or even. In Figure 9, each box contains
an integer ai representing |ai| crossings; the sign convention is taken so that alternating
diagrams, for which no consecutive under- or over-passes are found as each of its strands
is traversed from left to right, correspond to integers ai with semi-definite sign. In other
words, for an alternating braid diagram T (a1, . . . , an), either ai ≥ 0 for i = 1, . . . , n, or
ai ≤ 0 for i = 1, . . . , n. As an example, the alternating braid T (3, 2, 1, 2, 2) is depicted
in Figure 10(a).

Given two braids A and B, A · B is, as before, the braid obtained by juxtaposition
of A and B. With this operation, n-braids form a noncommutative group with identity
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a1a1

a2a2

a3a3 an−1

an−1 an

an

n odd n even

Figure 9: The 3-braid represented by a diagram of the form T (a1, . . . , an) according to whether n is odd
or even. Note that a1 always represents crossings involving the uppermost two strands.

E E−1

(a) (b) (c)

Figure 10: Examples of diagrams of 3-braids: (a) An alternating diagram given by T (3, 2, 1, 2, 2). (b)
and (c): Examples of non-alternating diagrams representing the 3-braids E = T (1,−1, 1) and E−1 =
T (0, 1,−1, 1), respectively.

. A diagram for the inverse of an n-braid with diagram A will be denoted by A−1,
hence the meaning of Ak is clear for k ∈ Z. Two important non-alternating diagrams in
the representation of braids are E (which was introduced above in the definition of c5)
and its inverse E−1, depicted in Figures 10(b) and (c) respectively, and represented by
the following diagrams

E = T (1,−1, 1) and E−1 = T (0, 1,−1, 1).

It was shown in [7] that every braid B admits a standard diagram , that is, a diagram
of the form B = AD ·Ek, where AD is alternating and k ∈ Z.

4.2. Which 3-braids are inhabitants of R′?

It is easy to see that not all 3-braids are inhabitants of the room R′. Such is the case,
for instance, of T = T (2, 2, 3); to see why, it suffices to inspect the permutation π(T )
and observe that π(T )(2) 6= 2, i.e., the strand of T that is attached to the left middle
port of R′ does not end at the middle right port, and hence the orientations are not
respected. On the other hand, all braids with diagrams T (1, k, 3) (k ∈ Z) are in S(R′),
and so is Ek for every k ∈ Z. The essential property for a 3-braid to belong to S(R′)
is that the associated permutation leaves 2 invariant, i.e., for a 3-braid T , π(T )(2) = 2
if and only if T ∈ S(R′). To that effect, a necessary and sufficient condition is that
the braid admits a diagram of the form T (2a1, . . . , 2an) · Ek, as stated in the following
theorem. Before presenting the theorem, however, let us mention that braid diagrams
satisfy an interesting property whereby a number of boxes may be “raised” or “lowered”
without changing the braid, as long as each of those moves is compensated by including
an appropriate power of E. More precisely, let n ∈ N and k ∈ {1, . . . , n}. Then, for k
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odd:

T (a1, . . . , ak, ak+1, . . . , an) = T (a1, . . . , ak + 1,−1, 1− ak+1,−ak+2, . . . ,−an) ·E
−1

= T (a1, . . . , ak − 1, 1,−1− ak+1,−ak+2, . . . ,−am) ·E,

(5)

whereas, for k even:

T (a1, . . . , ak, ak+1, . . . , am) = T (a1, . . . , ak + 1,−1, 1− ak+1,−ak+2, . . . ,−am) ·E

= T (a1, . . . , ak − 1, 1,−1− ak+1,−ak+2, . . . ,−am) ·E−1.

(6)

PSfrag

a1

a1

ak

ak

ak+1

an

−ak+1

−an

E E−1

T (a1, . . . , ak, ak+1, . . . , an)

T (a1, . . . , ak + 1,−1, 1 − ak+1, . . . , an) · E−1

Figure 11: Twisting the portion of the braid consisting of all boxes from the (k + 1)th to the nth
one results in these boxes “swapping” their position, i.e., lower boxes are raised and upper boxes are
lowered. The net effect of the swap is that factors E and E−1 are inserted after the kth and the nth
boxes, respectively. Obviously the diagram changes but the 3-braid remains unaltered. Only the case
when k and n are odd is shown; analogous conclusions hold for the other cases.

The proof of these equalities is easily derived by inspection of Figure 11, where
only the case when k and n are odd is shown. Notice that the sign change in the
boxes affected by the twisting is due to the sign conventions adopted for 3-braids. An-
other obvious property of 3-braids, to be used below in the proof of Theorem 4, is that
T (a1, a2, . . . , an) ∈ S(R′) if and only if T (0,−a1,−a2, . . . ,−an) ∈ S(R′).

Theorem 4. A 3-braid T belongs to S(R′) if and only if there exist integers a1, . . . , an
and k such that T = T (2a1, 2a2, . . . , 2an) ·Ek.

Sketch of Proof. If T = T (2a1, . . . , 2an)·Ek for some integers a1, . . . , an and k, then
it is clear that T ∈ S(R′). Now suppose that T ∈ S(R′). By the result from [7]
cited above, any 3-braid T admits a diagram of the form T = T (b1, . . . , bm)·Er, where
bibi+1 ≥ 0 for i = 1, 2, ..., n− 1, bjbj+1 > 0 for i = 2, ..., n− 1, and r ∈ Z. Since both T =
T (b1, b2, . . . , bm)·Er and E−r belong to S(R′), it suffices to prove that T (b1, b2, . . . , bm) =
T (2a1, 2a2, . . . , 2an)·Ek for some integers a1, . . . , an and k. Let us assume that bi ≥ 0
(the case bi ≤ 0 is analogous). A necessary condition to have T (b1, b2, . . . , bm) ∈ S(R′)
is that π(T (b1, b2, . . . , bm))(2) = 2, i.e., the second strand connects the left and right
middle ports of R′. Let us proceed by induction on the number m of boxes in the

11



diagram. For m = 1 the claim is clear since if b1 is odd then π(T (b1))(2) 6= 2, a
contradiction. Now let m ∈ N assume that for any k ≤ m, the claim is true. Let
b1, . . . , bm+1 ∈ Z and let T = T (b1, . . . , bm+1). If b1, . . . , bm+1 are all even, the proof is
finished. Otherwise, let q the least integer such that bq is odd. Since the permutation
of the braid consisting of the boxes bq, . . . , bm must leave 2 invariant, there exists a
smallest integer r ∈ {q + 1, . . . ,m} such that r ≡ q mod 2 and br is odd. Assume
that q > 1 or r < m. If q = 1 then T (b1, . . . , br) has fewer than m boxes, so by the
induction assumption it admits a diagram all of whose boxes are even. If q > 2 then one
applies the induction assumption to T (bq, . . . , bm+1) or to T (0, bq, . . . , bm+1) according
to whether q is odd or even, respectively. If q = 2 then apply the induction assumption
to T ′ = T (−b2,−b3, . . . ,−bm+1) to write T ′ = T (2a1, . . . , 2al) · Ep, which implies that
T = T (0,−2a1, . . . ,−2al) ·Ep. Now consider the case when q = 1 and r = m+1. In this
case a procedure will be applied to pass from a diagram T (b1, . . . , bm+1), with m even,
to an equivalent diagram T (2a1, . . . , 2al) · Ep for some integers a1, . . . , al and p. This
procedure shall be illustrated only for the case T (b1, b2, b3); the general case is analogous.
The essence of this procedure consists in repeatedly applying either (5) or (6) until the
required conclusion is reached. One has

T (b1, b2, b3) = T (b1 + 1,−1, 1− b2,−b3) ·E
−1

= T (b1 + 1,−1− 1, 1,−2 + b2, b3) ·E
−2

= T (b1 + 1,−2, 1 + 1,−1, 3− b2,−b3) ·E
−3

...

= T (b1 + 1,−2, 2, . . . , (−1)b2−12, (−1)b2(b3 + 1)) · E−b2 .

Having established that every 3-braid T ∈ S(R′) may be written as T (2a1, . . . , 2an) ·
Ek, the next step is to find explicit expressions for its invariant i(T ). To this purpose,
an instrumental role is played by the so-called continued fractions. Recall that, given
a1, . . . , an in a field F, the continued fraction associated to those elements, denoted
[a1, . . . , an] is defined by

[a1, . . . , an] = a1 +
1

a2 +
1

.. . +
1

an

.

For a continued fraction [a1, . . . , an], one defines elementsN([a1, . . . , an]) andD([a1, . . . , an])
in F, referred to as the numerator and the denominator of [a1, . . . , an], respectively,
in an inductive way:

N([a1]) = a1, D([a1]) = 1, N([a1, a2]) = 1 + a1a2, D([a1, a2]) = a2,

and, for n ≥ 3:

N([a1, . . . , an]) = anN([a1, . . . , an−1]) +N([a1, . . . , an−2])

D([a1, . . . , an]) = anD([a1, . . . , an−1]) +D([a1, . . . , an−2]).

12



Pursuing with the computation of the invariant i(T ) for a 3-braid T , and considering
that its first four components are the entries of M∇(T ), it is useful to obtain expressions
for the matrix associated to the “building blocks” of all 3-braids, namely those of the
form T (2a), T (0, 2a) and Ek, with a, k ∈ Z. Using simple link diagrams one shows that

M∇(T (2n)) =

(

1 0
nz 1

)

, M∇(T (0, 2n)) =

(

1 −nz
0 1

)

M(E) =

(

0 1
1 0

)

, M(E2) =

(

1 0
0 1

)

.

Using these equations, along with the fact that

T (a1, . . . , an) =

{

T (a1) · T (0, a2) · T (a3) · · · T (an), n odd;
T (a1) · T (0, a2) · T (a3) · · · T (0, an), n even,

and Proposition 2, the following result is easily established.

Theorem 5. For integers a1, . . . , an and a braid T = T (2a1, . . . , 2an) (n ≥ 2) one has:

M∇(T ) =















(

D[a1z,−a2z, a3z, . . . , anz] D[a1z,−a2z, a3z, . . . ,−an−1z]
N [a1z,−a2z, a3z, . . . , anz] N [a1z,−a2z, a3z, . . . ,−an−1z]

)

, n odd;
(

D[a1z,−a2z, a3z, . . . , an−1z] D[a1z,−a2z, a3z, . . . ,−anz]
N [a1z,−a2z, a3z, . . . , an−1z] N [a1z,−a2z, a3z, . . . ,−anz]

)

, n even.

(7)

The following theorem determines the fifth and sixth components of i(T ) as affine
functions of its first four components.

Theorem 6. Given integers a1, . . . , an, let T = T (2a1, . . . , 2an). Then the following
relationships hold amongst components of i(T ):

T c5 = T c1 + T c4 + z and T c6 = T c2 + T c3 − 2. (8)

Proof. Let us first note, with the aid of Figure 12, that for a ∈ Z the six components of
i(T (2a)) are easily computed to be i(T (2a)) = (az, 1, 1, 0, z(a+ 1), 0)T . Similarly one
deduces that i(T (0, 2a)) = (0, 1, 1,−az, z(1− a), 0)T .

Let a1 ∈ Z and set T = T (2a1). Then i(T ) = (a1z, 1, 1, 0, z(a1 + 1), 0)T and hence,
in particular,

T c5 = a1z + z = T c1 + T c4 + z and T c6 = 0 = T c2 + T c3 − 2.

Now let a1, a2 ∈ Z and consider T = T (2a1, 2a2) = T (2a1) · T (0, 2a2). One has x =
i(T (2a1)) = (a1z, 1, 1, 0, z(a1 + 1), 0) and y = i(T (0, 2a2)) = (0, 1, 1,−a2z, z(1− a2), 0);
computing η(x, y) as in Corollary 3, and considering the expressions for ψE and ψN given
in (3), one gets i(T ) = (a1z, 1−a1a2z2, 1,−a2z, (a1−a2+1)z,−a1a2z2)T . Consequently,

T c5 = a1z − a2z + z = T c1 + T c4 + z and T c6 = −a1a2z
2 = T c2 + T c3 − 2.

Therefore (8) is valid for n ∈ {1, 2}.
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2a 2a 2a

2a 2a 2a

(T (2a))c1 = az (T (2a))c2 = 1 (T (2a))c3 = 1

(T (2a))c4 = 0 (T (2a))c5 = z(a + 1) (T (2a))c6 = 0

E

Figure 12: The six components of the invariant i for a 3-braid T (2a), which consists of 2a crossings
involving only the upper two strands.

Now let n ∈ N, n ≥ 2, and assume that for any k ≤ n, (8) holds true. Consider integers
ai ∈ Z (i = 1, . . . , n + 1) and let T = T (2a1, . . . , 2an+1). Set x = i(T (2a1, . . . , 2an)).
Assume that n is odd. In this case T = T (2a1, . . . , 2an) · T (0, 2an+1) and hence, by
virtue of Corollary 3, in order to compute i(T ) it suffices to know the values of x and
i(T (0, 2an+1)). The definition (4) of M∇, along with the expressions in (7) for n odd
yield

x1 = N([a1z,−a2z, a3z, . . . , anz]), x2 = N([a1z,−a2z, a3z, . . . ,−an−1z]),

x3 = D([a1z,−a2z, a3z, . . . , anz]), x4 = D([a1z,−a2z, a3z, . . . ,−an−1z]),

whereas, by the induction assumption,

x5 = x1 + x4 + z

= N([a1z,−a2z, a3z, . . . , anz]) +D([a1z,−a2z, a3z, . . . ,−an−1z]) + z,

x6 = x2 + x3 − 2

= N([a1z,−a2z, a3z, . . . ,−an−1z]) +D([a1z,−a2z, a3z, . . . , anz])− 2.

Moreover, i(T (0, 2an+1)) = (0, 1, 1,−an+1z, z(1− an+1), 0)
T and thus, carrying out the

computations required for ψN and simplifying the resulting expressions yields

ψN (x, i(T (0, 2an+1))) = −an+1zx1 + x6

= −an+1zN([a1z,−a2z, a3z, . . . , anz])

+N([a1z,−a2z, a3z, . . . ,−an−1z])

+D([a1z,−a2z, a3z, . . . , anz])− 2

= N([a1z,−a2z, a3z, . . . ,−an+1z]) +

D([a1z,−a2z, a3z, . . . , anz])− 2

= (T (2a1, . . . , 2an+1))
c2 + (T (2a1, . . . , 2an+1))

c3 − 2,
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which proves that the second equation in (8) holds for n+ 1 even. Similarly:

ψE(x, i(T (0, 2an+1))) = −an+1zx3 + x5

= −an+1zD([a1z,−a2z, a3z, . . . , anz])

+N([a1z,−a2z, a3z, . . . , anz])

+D([a1z,−a2z, a3z, . . . ,−an−1z]) + z

= D([a1z,−a2z, a3z, . . . ,−an+1z])

+N([a1z,−a2z, a3z, . . . , anz]) + z

= (T (2a1, . . . , 2an+1))
c4 + (T (2a1, . . . , 2an+1))

c1 + z,

which in turn proves the first expression in (8) for n + 1 even. Now assume that n is
even. Thus T = T (2a1, . . . , 2an) · T (2an+1) and, again by Corollary 3, it suffices to know
the values of x and i(T (2an+1)) to get i(T ). Using again (4) and (7) for n even

x1 = N([a1z,−a2z, a3z, . . . , an−1z]), x2 = N([a1z,−a2z, a3z, . . . ,−anz]),

x3 = D([a1z,−a2z, a3z, . . . , an−1z]), x4 = D([a1z,−a2z, a3z, . . . ,−anz]),

and hence, by the induction assumption,

x5 = x1 + x4 + z

= N([a1z,−a2z, a3z, . . . , an−1z]) +D([a1z,−a2z, a3z, . . . ,−anz]) + z,

x6 = x2 + x3 − 2

= N([a1z,−a2z, a3z, . . . ,−anz]) +D([a1z,−a2z, a3z, . . . , an−1z])− 2.

Since i(T (2an+1)) = (an+1z, 1, 1, 0, z (an+1 + 1) , 0)T , it follows from the expression for
ψN that

ψN (x, i(T (2an+1))) = an+1zx4 + x6

= an+1zD([a1z,−a2z, a3z, . . . ,−anz]) +

+N([a1z,−a2z, a3z, . . . ,−anz])

+D([a1z,−a2z, a3z, . . . , an−1z])− 2

= D([a1z, ,−a2z, a3z, . . . , an+1z])

+N([a1z,−a2z, a3z, . . . ,−anz])− 2

= (T (2a1, . . . , 2an+1))
c3 + (T (2a1, . . . , 2an+1))

c2 − 2,

which establishes the second expression in (8) for n+ 1 odd. Analogously:

ψE(x, i(T (2an+1))) = an+1zx2 + x5

= an+1zN([a1z,−a2z, a3z, . . . ,−anz])

+N([a1z,−a2z, a3z, . . . , an−1z])

+D([a1z,−a2z, a3z, . . . ,−anz]) + z

= N([a1z,−a2z, a3z, . . . , an+1z])

+D([a1z,−a2z, a3z, . . . ,−anz]) + z

= (T (2a1, . . . , 2an+1))
c1 + (T (2a1, . . . , 2an+1))

c4 + z,

which proves that the first equation in (8) holds for n+1 odd. This finishes the proof.
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5. Explicit formulas for continued fractions and the invariant i for 3-braids

In this section a number of explicit, nonrecursive formulas are given to express the
numerator and denominator of continued fractions. On account of Theorems 5 and 6, as a
derived result these expressions provide an easy way to compute the Conway polynomials
required to obtain the invariant i(T ) for 3-braids in S(R′).

In the expressions below, a specific multi-index notation will be used as follows. For
k ∈ N, a k multi-index is an ordered k-tuple of integers I = (i1, . . . , ik). A k multi-
index I is said to have alternating parity (or more simply, to be alternating) if either
k = 1 or, for each j ∈ {1, . . . , k − 1}, ij is odd if and only if ij+1 is even. Given strictly
positive integers n and k, let

Q(n, k) =
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 < i2 < · · · < in and I is alternating
}

.

In other words, Q(n, k) is the set of alternating, strictly increasing k multi-indices with
entries in {1, . . . , n}. Clearly, Q(n, k) = ∅ whenever k > n. Each set Q(n, k) is further
partitioned, according to the parity of the first entry of each of its elements, into the
following two subsets:

Qs(n, k) = {(i1, . . . , ik) ∈ Q(n, k) | i1 ≡ s mod 2} , s = 0, 1.

Hence Q0(n, k) and Q1(n, k) consist of all multi-indices in Q(n, k) which have even and
odd leading entries, respectively. An obvious property of the sets just defined is that if
k, n,m ∈ N satisfy n < m, then Q(n, k) ⊂ Q(m, k) and Qs(n, k) ⊂ Qs(m, k), s = 0, 1.
The main use that will be made of these indexing sets is to represent certain multinomials
in a compact way. Thus, if a1, . . . , an are indeterminates (or, for that matter, elements
in any ring) and I = (i1, . . . , ik) is a k multi-index with entries in {1, . . . , n}, one sets
aI = ai1ai2 · · · aik . The notation

∑

I∈I aI is therefore clear for any finite set I of multi-
indices with entries in {1, . . . , n}.

Example 1. With n = 4 and k = 4 one has

Q(4, 1) = {1, 2, 3, 4}, Q(4, 2) = {(1, 2), (1, 4), (2, 3), (3, 4)}

Q(4, 3) = {(1, 2, 3), (2, 3, 4)} and Q(4, 4) = {(1, 2, 3, 4)},

whereas

Q0(4, 1) = {2, 4}, Q0(4, 2) = {(2, 3)}, Q0(4, 3) = {(2, 3, 4)}, Q0(4, 4) = ∅,

and

Q1(4, 1) = {1, 3}, Q1(4, 2) = {(1, 2), (1, 4), (3, 4)},

Q1(4, 3) = {(1, 2, 3)}, Q1(4, 4) = {(1, 2, 3, 4)}.

And if a1, . . . , a4 belong to a ring, then, for instance,

4
∑

k=1

∑

I∈Q1(4,k)

aI = a1 + a3 + a1a2 + a1a4 + a3a4 + a1a2a3 + a1a2a3a4.
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The following technical lemmas, which single out basic properties of the sets defined
above, will be useful to prove the ensuing results.

Lemma 7. Let k, n ∈ N, with k ≤ n. Then Q1(n, k) = Q1(n + 1, k) whenever k ≡ n
mod 2, and Q0(n, k) = Q0(n+ 1, k) whenever k 6≡ n mod 2.

Proof. Let k, n ∈ N and assume that k ≤ n. Obviously, Qs(n, k) ⊂ Qs(n+1, k), s = 0, 1,
hence only the reverse inclusions need to be proven. Suppose that k ≡ n mod 2 and let
I = (i1, . . . , ik) ∈ Q1(n+ 1, k) so that i1 < · · · < ik ≤ n+ 1. Since the parities of k and
n coincide, ik 6≡ n+1 mod 2, so i1 < · · · < ik ≤ n. But k ≤ n, hence I ∈ Q1(n, k). Now
suppose that k 6≡ n mod 2 and let I = (i1, . . . , ik) ∈ Q0(n + 1, k). Since the parities of
k and n are different, one again has ik 6≡ n+ 1 mod 2, so i1 < · · · < ik ≤ n. But k ≤ n,
hence I ∈ Q0(n, k).

Lemma 8. Let k, n ∈ N, with n > 2, and for any set S of k multi-indices let

An(S) = {(i1, . . . , ik) ∈ S | ik = n}.

Then Q1(n, k) = An(Q
1(n, k)) ∪ Q1(n − 2, k) whenever k ≡ n mod 2, and Q0(n, k) =

An(Q
0(n, k)) ∪Q0(n− 2, k) whenever k 6≡ n mod 2.

Proof. Let k, n ∈ N. If k > n − 2 then Q(n − 2, k) = ∅ and one immediately checks
that the claim holds, so let us assume that k ≤ n − 2. Suppose that k ≡ n mod 2
and let I ∈ Q1(n, k) \ An(Q

1(n, k)). Then ik 6= n, so i1 < · · · < ik < n and, since
k and n are both even or both odd, it follows that ik ≡ n mod 2. But ik < n, thus
i1 < · · · < ik ≤ n − 2 and I ∈ Q1(n − 2, k). Since Q1(n − 2, k) ⊂ Q1(n, k), and
given that none of the multi-indices in Q1(n − 2, k) have last entry equal to n, one has
Q1(n, k) \ An(Q

1(n, k)) = Q1(n − 2, k), as required. Now suppose that k 6≡ n mod 2
and let I ∈ Q0(n, k) \ An(Q

0(n, k)). Then ik 6= n, so i1 < · · · < ik < n and, since
the parity of k differs from that of n, it again follows that ik ≡ n mod 2. But ik < n,
thus i1 < · · · < ik ≤ n − 2 and I ∈ Q0(n − 2, k). Since Q0(n − 2, k) ⊂ Q0(n, k), and
given that none of the multi-indices in Q0(n − 2, k) have last entry equal to n, one has
Q0(n, k) \An(Q

0(n, k)) = Q0(n− 2, k), as was to be shown.
The sets and notations described above provide explicit nonrecursive formulas for the

numerator and denominator of continued fractions, as stated in the following result.

Theorem 9. Given elements a1, . . . , an in F, one has

N([a1, . . . , an]) =

{

∑⌊n+1

2
⌋

k=1

∑

I∈Q1(n,2k−1) aI , if n is odd;

1 +
∑⌊n

2
⌋

k=1

∑

I∈Q1(n,2k) aI , otherwise;
(9)

and

D([a1, . . . , an]) =

{

1 +
∑⌊n

2
⌋

k=1

∑

I∈Q0(n,2k) aI , if n is odd;
∑⌊n+1

2
⌋

k=1

∑

I∈Q0(n,2k−1) aI , otherwise.
(10)

Proof. First note that

Q(1, 1) = {1}, Q0(1, 1) = ∅, Q1(1, 1) = {1},

Q(2, 1) = {1, 2}, Q0(2, 1) = {2}, Q1(2, 1) = {1},

Q(2, 2) = {(1, 2)}, Q0(2, 2) = ∅, Q1(2, 2) = {(1, 2)}.
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Clearly,

N([a1]) = a1

1
∑

k=1

∑

I∈Q1(1,2k−1)

aI ,

D([a1]) = 1 = 1 +

0
∑

k=1

∑

I∈Q0(1,2k)

aI

N([a1, a2]) = 1 + a1a2 = 1 +

1
∑

k=1

∑

I∈Q1(2,2k)

aI

D([a1, a2]) = a2 =

1
∑

k=1

∑

I∈Q0(2,2k−1)

aI ,

so (9) and (10) hold for n ∈ {1, 2}. Now suppose that these formulas hold for some n ≥ 2
and every family a1, . . . , ak of elements in F, with k ≤ n. Let a1, . . . , an+1 be in F. By
definition,

N([a1, . . . , an+1]) = an+1N([a1, . . . , an]) +N([a1, . . . , an−1])

D([a1, . . . , an+1]) = an+1D([a1, . . . , an]) +D([a1, . . . , an−1]).

Suppose that n is odd, so that ⌊n−1
2 ⌋ = n−1

2 and ⌊n+1
2 ⌋ = n+1

2 = n−1
2 + 1. Then

N([a1, . . . , an+1]) = an+1N([a1, . . . , an]) +N([a1, . . . , an−1])

= an+1

⌊n+1

2
⌋

∑

k=1

∑

I∈Q1(n,2k−1)

aI +

1 +

⌊n−1

2
⌋

∑

k=1

∑

I∈Q1(n−1,2k)

aI . (11)

Using the fact that Q1(n, n) = {(1, . . . , n)}, incorporating the common factor an+1 into
the first summation in the right-hand member of (11), and appealing to the notation of
Lemma 8, the same sum may rewritten as

an+1

⌊n+1

2
⌋

∑

k=1

∑

I∈Q1(n,2k−1)

aI = a1 · · · an+1 +

⌊n−1

2
⌋

∑

k=1

∑

I∈An+1(Q1(n+1,2k))

aI .

But in view of Lemma 8, Q1(n+ 1, 2k) = An+1(Q
1(n+ 1, 2k)) ∪Q1(n− 1, 2k), hence

N([a1, . . . , an+1]) = 1 + a1 · · · an+1 +

⌊n−1

2
⌋

∑

k=1

∑

I∈Q1(n+1,2k)

aI

= 1 +

⌊n+1

2
⌋

∑

k=1

∑

I∈Q1(n+1,2k)

aI ,
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as required. For D([a1, . . . , an+1]) one has

D([a1, . . . , an+1]) = an+1D([a1, . . . , an]) +D([a1, . . . , an−1])

= an+1



1 +

⌊n

2
⌋

∑

k=1

∑

I∈Q0(n,2k)

aI





+

⌊n

2
⌋

∑

k=1

∑

I∈Q0(n−1,2k−1)

aI . (12)

Shifting the limits of summation index by one, compensating accordingly, and noting
that Q0(n + 1, 1) = {(n + 1)}, the first term on the right-hand member of (12) may be
rewritten as

an+1



1 +

⌊n

2
⌋

∑

k=1

∑

I∈Q0(n,2k)

aI



 = an+1 +

⌊n

2
⌋+1

∑

k=2

an+1

∑

I∈Q0(n,2k−2)

aI

= an+1 +

⌊n

2
⌋+1

∑

k=2

∑

I∈An+1(Q0(n+1,2k−1))

aI

=

⌊n+2

2
⌋

∑

k=1

∑

I∈An+1(Q0(n+1,2k−1))

aI .

On the other hand, if k = ⌊n
2 ⌋+ 1 = ⌊n+2

2 ⌋ then Q0(n− 1, 2k − 1) = Q0(n − 1, n) = ∅,
thus the upper limit of the second summation in (12) may be replaced by ⌊n+2

2 ⌋ without
affecting the sum. Using again Lemma 8 to deduce that Q0(n+1, 2k−1) = An+1(Q

0(n+
1, 2k − 1)) ∪Q0(n− 1, 2k − 1), it follows that

D([a1, . . . , an+1]) =

⌊n+2

2
⌋

∑

k=1

∑

I∈Q0(n+1,2k−1)

aI ,

as required. The proof in the case when n is even is the same, mutatis mutandis.
As a corollary of Theorem 6, the above result leads to explicit, nonrecursive expres-

sions for the components of the polynomial invariant i(T ) for T a 3-braid. As remarked
earlier, the availability of this type of expressions represents a significant advantage when
computing i(T ) in practical situations.

Corollary 10. Given integers a1, . . . , an, let T = T (2a1,−2a2, 2a3 . . . , (−1)n−12an).
Then, if n is odd one has:

T c1 =

⌊n+1

2
⌋

∑

k=1

z2k−1
∑

I∈Q1(n,2k−1)

aI , T c2 = 1 +

⌊n−1

2
⌋

∑

k=1

z2k
∑

I∈Q1(n−1,2k)

aI

T c3 = 1 +

⌊n

2
⌋

∑

k=1

z2k
∑

I∈Q0(n,2k)

aI , T c4 =

⌊n

2
⌋

∑

k=1

z2k−1
∑

I∈Q0(n−1,2k−1)

aI ,
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whereas, if n is even:

T c1 =

⌊n

2
⌋

∑

k=1

z2k−1
∑

I∈Q1(n−1,2k−1)

aI , T c2 = 1 +

⌊n

2
⌋

∑

k=1

z2k
∑

I∈Q1(n,2k)

aI

T c3 = 1 +

⌊n−1

2
⌋

∑

k=1

z2k
∑

I∈Q0(n−1,2k)

aI , T c4 =

⌊n+1

2
⌋

∑

k=1

z2k−1
∑

I∈Q0(n,2k−1)

aI .

The values of T c5 and T c6 are independent of the parity of n and are given by

T c5 = z +

⌊n+1

2
⌋

∑

k=1

z2k−1
∑

I∈Q(n,2k−1)

aI , T c6 =

⌊n

2
⌋

∑

k=1

z2k
∑

I∈Q(n,2k)

aI .

Remark 1. The definition T = T (2a1,−2a2, 2a3 . . . , (−1)n−12an) merely reflects an
artifice to simplify the expressions and prevent the need to account for the minus signs in
the even entries of the numerators and denominators in (7). Not using this artifice would
force one to include additional “sign bookkeeping” factors in the indexed summations
for the T cis, making the resulting expressions more cumbersome.

Proof of Corollary 10. Owing to the alternating signs used in the definition of T , in
this case one has

M∇(T ) =















(

D[a1z, . . . , anz] D[a1z, . . . , an−1z]
N [a1z, . . . , anz] N [a1z, . . . , an−1z]

)

, n odd;
(

D[a1z, . . . , an−1z] D[a1z, . . . , anz]
N [a1z, . . . , an−1z] N [a1z, . . . , anz]

)

, n even.
(13)

The proof that the expressions given for T c1, . . . , T c4 are correct trivially boils down to
computing the numerators and denominators in (13) via the formulas in Theorem 9. The
equalities requiring nontrivial proofs are the ones for T c5 and T c6. Suppose that n is
odd. By Theorem 6 one has

T c5 = T c1 + T c4 + z and T c6 = T c2 + T c3 − 2.

But

T c1 + T c4 =

⌊n+1

2
⌋

∑

k=1

z2k−1
∑

I∈Q1(n,2k−1)

aI +

⌊n

2
⌋

∑

k=1

z2k−1
∑

I∈Q0(n−1,2k−1)

aI . (14)

Since n is odd, ⌊n+1
2 ⌋ = ⌊n

2 ⌋ + 1, thus if k = ⌊n+1
2 ⌋ then 2k − 1 = n. Moreover,

since n − 1 is even, Lemma 7 entails that Q0(n − 1, 2k − 1) = Q0(n, 2k − 1) and thus
Q(n, 2k− 1) = Q1(n, 2k− 1)∪Q0(n− 1, 2k− 1). Using these observations in (14) yields

T c5 = z + zna1 · · · an +

⌊n

2
⌋

∑

k=1

z2k−1
∑

I∈Q(n,2k−1)

aI

= z +

⌊n+1

2
⌋

∑

k=1

z2k−1
∑

I∈Q(n,2k−1)

aI ,
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as required. Similarly, from Theorem 6:

T c2 + T c3 = 1 +

⌊n−1

2
⌋

∑

k=1

z2k
∑

I∈Q1(n−1,2k)

aI + 1 +

⌊n

2
⌋

∑

k=1

z2k
∑

I∈Q0(n,2k)

aI . (15)

Since n is odd, ⌊n
2 ⌋ = ⌊n−1

2 ⌋ and n− 1 is even. Hence, using Lemma 7, Q1(n− 1, 2k) =
Q1(n, 2k) and thus Q(n, 2k) = Q0(n, 2k) ∪Q1(n− 1, 2k). Therefore

T c6 =

⌊n

2
⌋

∑

k=1

z2k
∑

I∈Q(n,2k)

aI ,

as was to be shown. The case when n is even is proven similarly.

6. Conclusions

This work extends previous work on closures of 3-tangles viewed as elements in the
skein S(R′) of a room R′. The nonstandard orientation of R′ allows the definition of five
different closures—referred to throughout as c1, . . . , c4 and c6—which do not introduce
any additional crossings. A sixth closure, c5, involving three additional crossings is
introduced in order to enable the computation of the Conway polynomial of the c6 closure
of 3-tangles in S(R′). For such tangles, an invariant i is defined with values in the
6-fold product F

6 of the fraction field of Z[z]; the components of i are the Conway
polynomials of the six closures c1, . . . , c6. For the specific case of 3-braids in the skein
of R′, this work extends former explorations by providing explicit formulas for all the
six closures and, therefore, for the invariant i. One interesting feature of the expressions
and formulas exhibited in this paper is that they bypass the recursive nature found in
the usual definitions of polynomial invariants and continued fractions. Computationally
speaking, such nonrecursive formulas turn out to be more time-efficient and simple to
program in computer algebra environments. As a somewhat unexpected byproduct of our
findings, similar nonrecursive formulas are obtained for the numerators and denominators
of continued fractions in terms of simple indexing sets. This contributes to shed more light
on the connections between continued fractions and 3-braids. The envisaged future work
includes the exploitation of the tools presented in this paper, including the systematic
use of the invariant i and the associated nonrecursive formulas, to pursue the study of
knots and links obtained as closures of 3-braids in S(R′).
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[6] H. Cabrera-Ibarra, D. Lizárraga-Navarro, An algorithm based on 3-braids to solve tangle equations

arising in the action of Gin DNA invertase, Appl. Math. Comput. 216 (2010) 95–106.
[7] H. Cabrera-Ibarra, On the classification of rational 3-tangles, J. Knot Theory Ramifications 12

(2003) 921–946.

21


