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NONLINEAR SECOND ORDER ODE’S:
FACTORIZATIONS AND PARTICULAR SOLUTIONS

O. CorNEJO-PEREZ AND H. C. Rosu

Potosinian Institute of Science and Technology
Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, Mexico

We present particular solutions for the following important nonlinear second order differ-
ential equations: modified Emden, generalized Lienard, convective Fisher, and generalized
Burgers-Huxley. For the latter two equations these solutions are obtained in the travel-
ling frame. All these particular solutions are the result of extending a simple and efficient
factorization method that we developed in Phys. Rev. E 71 (2005) 046607.

§1. Introduction

The purpose of this paper is to obtain, through the factorization technique, particular
solutions of the following type of differential equations

i+ g(uw)i+ F(u)=0, (1-1)

where the dot means the derivative D = %, and g(u) and F'(u) could in principle be
arbitrary functions of u. This is a generalization of what we did in a recent paper for
the simpler equations with g(u) =+, where v is a constant parameter.!) Factorizing
Eq. () means to write it in the form

[D = ¢2(u)] [D = ¢1(u)]u=0. (1-2)

Performing the product of differential operators leads to the equation

der

i — Euu—¢1u—¢2u+¢1¢2u =0, (1-3)
for which one very effective way of grouping the terms is")
i — <¢1 + ¢2 + %u) U+ ¢1¢ou = 0. (1-4)
Identifying Eqs. ([I]) and (T4l leads to the conditions
g(u) = — <¢1 + ¢ + %u) (1-5)
F(u) = ¢102u . (1-6)

If F(u) is a polynomial function, then g(u) will have the same order as the bigger of
the factorizing functions ¢ (u) and ¢2(u), and will also be a function of the constant
parameters that enter in the expression of F'(u).
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In this research, we extend the method to the following cases: the modified Em-
den equation, the generalized Lienard equation, the convective Fisher equation, and
the generalized Burgers-Huxley equation. All of them have significant applications
in nonlinear physics and it is quite useful to know their explicit particular solutions.
The present work is a detailed contribution to this issue.

§2. Modified Emden equation

We start with the modified Emden equation with cubic nonlinearity that has been
most recently discussed by Chandrasekhar et al,?

i+ out + pud =0 . (2-1)

1) ¢1(u) = a1v/Bu, ¢a(u) = ay'\/Bu, (a; # 0 is an arbitrary constant).
Then Eq. (H) leads to the following form of the function g(u)

) =—/B (2 ) (22)

a

2a2+1 _ —a+y/a?-83 h
a1 ) OF a1, = — 75—, where we use a; as

Thus we can identify o = —+/3 (
a fitting parameter providing that a; < 0 for a > 0. Eq. (ZI) is now rewritten as

ii— /B (2a1 + a7 ') wi + Bu® = <D - afl\/ﬁu) (D - al\/ﬁu> u=0. (23)

Therefore, the compatible first order differential equation is @ — a11/Bu’ = 0, whose
integration gives the particular solution of Eq. (Z=3))
1 4
U= ———=———"— O U] = ) (2'4)

a1/ B(T — 70) (a+ /a2 —8B3)(T — 1)

where 7y is an integration constant.
2) é1(u) = a1v/Bu?,  ¢a(u) = a;'/B. Then, one gets
g2(u) = —\/B (al_l + 3a1u2) . (2:5)

Therefore, go is quadratic being higher in order than the linear g of the modified
Emden equation. We thus get the particular case GE = 33, A = 0 of the Duffing-van
der Pol equation (see case 3 of the next section)

i— /B (al_l + 3a1u2) o+ Bud = <D - afl\/ﬁ) (D - al\/ﬁu2> u=0, (26)

which leads to the compatible first order differential equation @ — a;v/Bu® = 0 with

the solution )

[—2a1v/B(1 — 10)]V/2

U = (27)
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§3. Generalized Lienard equation

Let us consider now the following generalized Lienard equation
i+gu)u+F3=0, (3-1)

where F3(u) = Au + Bu? + Cu3. We introduce the notation A = /B2 — 4AC, and
assume that A? > 0 holds. Then:

1) ¢1(u) = a1 <W£_A) + Cu) . po(u) =at <% + u); g(u) takes the form

(B+4) (B—A4)

91(u)=—[ 5 at o

ayt + (2Ca; + al_l) u] . (3-2)

For g(u) = g1(u), we can factorize Eq. (B) in the form

[D—al_l <%+u>:| [D—al <@+0u>]u:o. (3-3)

Thus, from the compatible first order differential equation 4 — al(% +Cu)u =0,
the following solution is obtained

0= D (a0 (PEDY ] 0) " e

2) ¢1(u) = a1(A+ Bu+Cu?), ¢o(u) = a;'; g(u) is of the form
g2(u) = — [(a1 A + a;') + 2a1 Bu + 3a;Cu?] . (3-5)

Thus, the factorized form of the Lienard equation will be
F:
[D a7l [D - aly} u=0 (3-6)

and therefore we have to solve the equation @ — a3 F3(u) = 0, whose solution can be
found graphically from

1

1
ud |24 2Cu+ B — A\ 24
a(r =) =n <m> ~In (m) : (37)

3) The case B =0 and C = 1: Duffing-van der Pol equation

The B = 0, C' = 1 reduction of terms in Eq. (BI) allows an analytic calculation
of particular solutions for the so-called autonomous Duffing-van der Pol oscillator
equation3)

[N[es

i+ (G+ FBu)u+ Au+u® =0, (3-8)

where G and E are arbitrary constant parameters. Since we want to compare our
solutions with those of Chandrasekar et al® we use the second Lienard pair of
factorizing functions ¢y (u) = a;(A +u?) and ¢9(u) = a7 . Then

92(u) = — (Aay + ayl+ 3agu?) . (3:9)
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Eq. (B) is now rewritten
i— (mA+a;" +3au?) i+ Au+ud = [D—ai'] [D—ar(A+uH)]u=0. (3-10)

Therefore, the compatible first order equation @—a; (A+u?)u = 0 leads by integration
to the particular solution of Eq. (B=I0)

B Aexp[2a1 A(T — 19)] 1/2 B Aexp[—%AE(T —70)] 2 ‘
v=s( i) ‘i< ) B

1 —exp[2a1 A(T — 79 1— exp[—%AE(T - 70

where the last expression is obtained from the comparison of Egs. [B=R) and BI0)
that gives a; = —% and G = Ag—?g.
This is a more general result for the particular solution than that obtained

through other means by Chandrasekar et al®) that corresponds to F = and A = %
§4. Convective Fisher equation

Schénborn et al® discussed the following convective Fisher equation

ou 10%u ou

—=—-—=—+4+u(l—-—u)—pu—, or u+2v-—pu)it+2ul—-—u)=0, (41

5 =~ 5552 Tl —u) —pugs (v — pu) (1—wu) (4-1)
where the transformation to the travelling variable 7 = x — vt was performed in
the latter form. The positive parameter p serves to tune the relative strength of

convection.

1) ¢1(u) = V2a1(1 —u), ¢a(u) = v2a;'. Then g(u) = —v2 ([a1 +a; '] — 2a1u).
Therefore, for this g(u), we can rewrite the ordinary differential form in Eq. ) as

1
i+ 2 (——(a1+af1)+\/§a1u>zl—|—2u(1—u) =0. (4-2)
V2
If we set the fitting parameter a; = —%, then we obtain v = £ 4+ p~!. Eq. @) is

factorized in the following form
[D - \/éal—l] [D — V2ar(1 - u)] w=0, (43)

that provides the compatible first order equation 4+ pu(1—u) = 0, whose integration
gives
ur = (1% explp(r —m)) ™" . (44)

2) Since we are in the case of a quadratic polynomial, a second factorization means

exchanging ¢1(u) and ¢o(u) between themselves. This leads to a convective Fisher
equation with compatibility equation u — \/Eal_lu = 0, where now a; = —v2p,
having exponential solutions of the type

up = expl—p~ (1 — 70)] . (4-5)
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§5. Generalized Burgers-Huxley equation
In this section we obtain particular solutions for the generalized Burgers-Huxley

equation discussed by Wang et al®)

ou 58u 62'&_ Fy Fy
E*'OZU%—@—ﬁU(l—U)(U =) (51)

or in the variable 7 =z — vt

i 4 (v — aud)i + fu(l —u)(u® — ) =0 . (5-2)
1) ¢1(u) = VBar(1 —u®) ,  ¢2(u) = v/Ba; (u® — ) . Then, one gets
g1(u) = \/B <7a1_1 —aj +[a1(1+6) — al_l]u5) (5:3)

and the following identifications of the constant parameters v = —/3 (al — ’yal_l),
a=—B(a1(1+6) —a;'). Writing Eq. (52) in factorized form

[D —V/Bait(u® — ’y)} [D —V/Bay (1 - u‘;)] u=0, (5-4)

the solution s
Uy = (1 + exp[—ay \/35(7' — 7'0)]> (5-5)

of the compatible first order equation @ — /Baju(l — u®) = 0 is also a particular
kink solution of Eq. ([B=). It is easy to solve the second identification equation for
a1 = ai(q, 3,0) leading to
—a£y/a?+46(1+9)
a =
- 2v/B(1 +9)

Then Eq. (B0) becomes a function u = u(7;, 3,9), and v = v(«a, 5,7, 9).

(5-6)

2) ¢1(u) = VBer(u? —v), ¢2(u) = v/Bey (1—u’). This pair of factorizing functions

lead to
g2(u) = /B (fyel — el_l + [el_l —er(1+ 5)]u6> (5:7)

and the v and « identifications: v = /B (e1y —e7'), a = VB (e; ' — e1(1 +9)).
Eq. (B=2) is then factorized in the different form

[D —V/Bert(1 - ué)] [D —V/Be1(u® — 7)} u=0. (5-8)

The corresponding compatible first order equation is now @ — \/Belu(u5 —7) =0,
and its integration gives a different particular solution of Eq. (B=2) with respect to
that obtained for the first choice of factorizing brackets:

B ~y 1/6 ‘
v = <1 g 2 To)]) | (59)
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ug is different of uq because the parameter o has changed for the second factorization.
Solving the « identification for e; = ej(a, 3, 9) allows to express the solution given
by Eq. (&9) in terms of the parameters of the equation, u = u(7; «, 3,7, 6), and also
one gets v = v(a, 3,7,0). If weset 6 =1 in Eq. (&), then from o = \/B(el_1 —2e1)

2
one can get ej, = % that can be used to obtain vy = v(a,,7). The

solutions given by Eqs. (B0) and (&0 and in (&) have been obtained previously
by Wang et al® by a different procedure.

§6. Conclusion

In this paper, the efficient factorization scheme that we proposed in a previous
study® has been applied to more complicated second order nonlinear differential
equations. Exact particular solutions have been obtained for a number of impor-
tant nonlinear differential equations with applications in physics and biology: the
modified Emden equation, the generalized Lienard equation, the Duffing-van der
Pol equation, the convective Fisher equation, and the generalized Burgers-Huxley
equation.
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