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M. P. Monsiváis-Alonsoa, J. C. Navarro-Muñoza, L. Riego-Ruizb, R.
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Abstract

In this work, we modify the superparamagnetic clustering algorithm (SPC) by
adding an extra weight to the interaction formula that considers which genes
are regulated by the same transcription factor. With this modified algorithm
that we call SPCTF, we analyze Spellman et al. microarray data for cell cycle
genes in yeast, and find clusters with a higher number of elements compared
with those obtained with the SPC algorithm. Some of the incorporated genes
by using SPCFT were not detected at first by Spellman et al. but were later
identified by other studies, whereas several genes still remain unclassified. The
clusters composed by unidentified genes were analyzed with MUSA, the motif
finding using an unsupervised approach algorithm, and this allow us to select
the clusters whose elements contain cell cycle transcription factor binding sites
as clusters worth of further experimental studies because they would probably
lead to new cell cycle genes. Finally, our idea of introducing available infor-
mation about transcription factors to optimize the gene classification could be
implemented for other distance-based clustering algorithms.
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jcarlos@ipicyt.edu.mx ( J. C. Navarro-Muñoz), lina@ipicyt.edu.mx (L. Riego-Ruiz),
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1. Introduction

DNA microarrays allow the comparison of the expression levels of all genes in
an organism in a single experiment, which often involve different conditions (i.e.
health-illness, normal-stress), or different discrete time points (i.e. cell cycle)
[1, 2]. Among other applications, they provide clues about how genes interact
with each other, which genes are part of the same metabolic pathway or which
could be the possible role for those genes without a previously assigned function.
DNA microarrays also have been used to obtain accurate disease classifications
at the molecular level [3, 4, 5]. However, transforming the huge amount of data
produced by microarrays into useful knowledge has proven to be a difficult key
step [6].

On the other hand, clustering techniques have several applications, ranging
from bioinformatics to economy [7, 8, 9]. Particularly, data clustering is proba-
bly the most popular unsupervised technique for analyzing microarray data sets
as a first approach. Many algorithms have been proposed, hierarchical cluster-
ing, k-means and self-organizing maps being the most known [10, 11]. Clustering
consists of grouping items together based on a similarity measure in such a way
that elements in a group must be more similar between them than between el-
ements belonging to different groups. The similarity measure definition, which
quantifies the affinity between pairs of elements, introduces a priori informa-
tion that determines the clustering solution. Therefore, this similarity measure
could be optimized taking into account additional data acquired, for example,
from real experiments. Some works with a priori inclusion of bioinformation in
clustering models can be found in [12, 13].

In the case of gene expression clustering, the behavior of the genes reported
by microarray experiments is represented as N points in a D-dimensional space,
being N the total number of genes, and D the number of conditions. Each gene
behavior (or point) is then described by its coordinates (its expression value for
each condition). Genes whose expression pattern is similar will appear closer
in the D-space, a characteristic that is used to classify data in groups. In
our case, we have used the Superparamagnetic Clustering Algorithm (SPC)
[14, 15, 16, 17], which was proposed in 1996 by Domany and collaborators as a
new approach for grouping data sets. However, this methodology has difficulties
dealing with different density clusters, and in order to ameliorate this, we report
here some modifications of the original algorithm that improve cluster detection.
Our main contribution consists on increasing the similarity measure between
genes by taking advantage of transcription factors, special proteins involved in
the regulation of gene expression.

The present paper is organized as follows: in Section 2, the SPC algorithm
is introduced, as well as our proposal to include further biological information
and our considerations for the selection of the most natural clusters. Results for
a real data set, as well as performance comparisons, are presented in Section 3.
Finally, Section 4 is dedicated to a summary of our results and conclusions.
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2. Method

2.1. Superparamagnetic Clustering Algorithm (SPC)

A Potts model can be used to simulate the collective behavior of a set of
interacting sites using a statistical mechanics formalism. In the more general
inhomogeneous Potts model, the sites are placed on an irregular lattice. Next, in
the SPC idea of Domany et al. [14], each gene’s expression pattern is represented
as a site in an inhomogeneus Potts model, whose coordinates are given by the
microarray expression values. In this way, a particular lattice arrangement is
spanned for the entire data set being analyzed.

A spin value σi, arbitrarily chosen from q possibilities, is assigned to each
site, where i corresponds to the site of the lattice i = 1, 2, ..., N . The main
idea is to characterize the resulting spin configuration by the ferromagnetic
Hamiltonian:

H = −
∑

i,j

Jijδσi,σj
, σi = 1, ..., q, (1)

where the sum goes over all neighboring pairs, σi and σj are spin values of site
i and site j respectively, and Jij is their ferromagnetic interaction strength.

Each site interacts only with its neighbors, however since the lattice is ir-
regular, it is necessary to assign the set of nearest-neighbors of each site using
the so-called k-mutual-nearest-neighbor criterion [18]. The original interaction
strength is as follows:

Jij =











1
K̂
e−

d2
ij

2a2 if i and j are neighbors

0 otherwise,

(2)

with K̂ the average number of neighbors per site and a the average distance
between neighbors. The interaction strength between two neighboring sites
decreases in a Gaussian way with distance dij and therefore, sites that are sep-
arated by a small distance have more probability of sharing the same spin value
during the simulation than the distant sites. On the other hand, said proba-
bility, Pij = (1 − e(−Jij/T )), also depends on the temperature T , which acts
as a control parameter. At low temperatures, the sites tend to have the same
spin values, forming a ferromagnetic system. This configuration is preferred
over others because it minimizes the total energy. However, the probability of
encountering aligned spins diminishes as temperature increases, and the system
could experience either a single transition to a totally disordered state (para-
magnetic phase), or pass through an intermediate phase in which the system
is partially ordered, which is known as the superparamagnetic phase. In the
latter case, varios regions of sites sharing the same spin value emerge. Sites
within these regions interact among them with a stronger force, exhibiting at
the same time weak interactions with sites outside the region. These regions
could fragment into smaller grains, leading to a chain of transitions within the
superparamagnetic phase until the temperature is so high that the system en-
ters the paramagnetic phase, where each spin behaves independently. This
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hierarchical subdivision in magnetic grains reflects the organization of data into
categories and subcategories. Regions of aligned spins emerging during simula-
tion correspond to groups of points with similar coordinates, i.e., similar gene
expression patterns [14, 15, 16]. This subdivision can be simulated, for example,
by using the Monte Carlo approach, by which one can compute and follow the
evolution of system properties such as energy, magnetization and susceptibility,
while the temperature is modified. In addition, the temperature ranges in which
each phase transition takes place can be localized.

Rather than thresholding the distances between pairs of sites to decide their
assignment to clusters, the pair correlation Gij , indicating a collective aspect of
the data distribution, is preferred . It can be calculated as follows [15]

Gij =
(q − 1)(〈δσi,σj

〉) + 1

q − 1
. (3)

In this way, Gij is the normalized probability for finding two Potts spins
σi and σj sharing the same value for a given temperature step. If both spins
belong to the same ordered region, their correlation value would be close to one,
otherwise their correlation would be close to zero [17]. Thus, for each tempera-
ture step, two sites are assigned to the same cluster if their correlation exceeds
a threshold value of Gij > 0.5. If a site does not have a single correlation value
greater than 0.5, it is joined with its neighbor showing the highest value.

2.2. Transcription Factors in SPC (SPCTF)

For our SPCTF algorithm, we also accept sites whose Gij are larger than
0.5 in order to build a cluster. However, differently from the traditional SPC
algorithm [14, 15, 16, 17], if two sites do not reach the Gij value greater than
0.5 they are not connected. This is because with our data we have found that
the original condition led to unnatural growth of some clusters when the tem-
perature is increased.

As already mentioned, the data are fragmented in various clusters for each
temperature value, and for higher temperatures, the number of clusters increases
due to finer and finer segmentation. In order to select the more representative
clusters through all temperature steps, we assign a stability value to each ob-
tained cluster, based on its evolution. We define Tt as the number of temperature
steps until the system reaches the paramagnetic phase and Tv as the number of
temperature steps a cluster v survives, while It and Iv are defined as the total
number of sites and the number of elements in a given cluster, respectively. We
assign a stability parameter Sv to each cluster, as follows:

Sv =
colvrowv

| colv − rowv |+ ǫ
, (4)

where colv = Tv

Tt
is the fraction of temperature steps a cluster v survives, while

rowv = Iv
It

is the fraction of total elements belonging to v. The advantage
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of using the stability parameter Sv is that it gives preference to clusters that
survive several temperatures, but also have an acceptable number of elements.
We added a small positive real number ǫ to the denominator in the expression
of Sv for the special case when colv = rowv = n, where n belongs to the range

(0, 1], leading to Sv = n2

ǫ instead of the infinity.
It has been reported that the main drawback of the SPC algorithm consists

of dealing with data showing regions of different density [19, 20]. In this case,
either depending on temperature or the number of neighbors selected, some
clusters will easily get prominent whereas the detection of others will be hin-
dered. To overcome this problem, at least two techniques have been proposed
e.g., sequential superparamagnetic clustering [19] and a modularity approach
[20]. Our idea is to take advantage of already available biological information to
improve lattice connectivity in such a way that biologically significant clusters
have more probability of being detected by the algorithm.

Indeed, at the transcriptional level, the expression of a gene could be pro-
moted/suppressed by the binding of the proteins named transcription factors to
specific sequences on the gene promoter region. Then, if a group of genes shows
the same expression behavior in a microarray experiment, it is quite possible
that they are being regulated by a specific transcription factor, forming a group
of coregulated genes [21]. Thus, available information about which genes are
targeted by the same transcription factors may be useful in the detection of
groups of genes with similar expression profiles.

To make effective this idea, we downloaded from www.yeastract.com a list
of yeast transcription factors that are well documented, and whenever two
neighboring genes are controlled by the same transcription factor, we increased
their interaction strength. It is important to note that the list provided by
www.yeastract.com includes transcription factors associated with several pro-
cesses and are not only cell cycle related. The formula that takes this into
account replaces Eq. (2) of the original algorithm, and has the following form:

Jij =











F
K̂
e
−

d2
ij

2(Fa)2 if i and j are neighbors,

0 otherwise.

(5)

Here, F = fn is the number of common transcription factors shared by i and
j (n, which varies for each pair of neighboring genes), multiplied by a factor f
which was chosen to be 2.0 after comparing the results obtained with several
other values. The selected value has the characteristic of preserving well-defined
susceptibility peaks as well as obtaining larger clusters. The objective is to
strengthen some connections without preventing the natural fragmentation of
clusters caused by the temperature parameter. If two elements do not share a
transcription factor, then F = 1, recovering the original SPC formula. There-
fore, the modified interaction strength between each site and its neighbors is
governed by two aspects: the distance between them, which comes from gene
expression values generated through microarray experiments, and the number
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of transcription factors regulating both genes, obtained from documented bio-
logical data. Any time two genes share a transcription factor, their interaction
strength becomes larger, and this favors that the clusters including these sites
remain stable for longer temperature ranges, with the corresponding increase of
their stability values.

3. Results and Discussion

We analyzed Spellman et al. [22] microarray data in which gene expression
values from synchronized yeast cultures were obtained at various time moments,
aiming to identify cell cycle genes. Yeast cultures were synchronized by three
methods: adding alpha pheromone, which arrests cells in the G1 phase; using
centrifugal elutration for separating small G1 cells; and using a mutation that
arrests cells late in mitosis at a given temperature. Combining the three ex-
periments and using Fourier and correlation algorithms, Spellman et al. [22]
reported 800 cell cycle regulated genes.

The goal was to compare the performance of SPC and SPC with tran-
scription factors (SPCTF), which are algorithms that do not make assump-
tions about periodicity. Nonetheless, the overall analysis is time consuming and
we only selected the data set treated with the alpha pheromone, available at
http://cellcycle-www.stanford.edu. Genes with missing values were discarded,
leaving an input matrix of 4489 genes and 18 time courses that included only
613 of the genes reported by Spellman et al. [22]. Furthermore, as we do not
include the other two synchronization experiments, we expect to loose some of
their cell cycle genes.

It is worth mentioning that Getz et al. [23] also analyzed the Spellman alpha
synchronized set with the SPC algorithm. They took 2467 genes which have
characterized functions and introduced a Fourier transform to take into account
the oscillatory nature of the cell cycle. In our case, however, we decided not to
introduce any considerations about the periodicity of the data, mainly because
the time series cover only two cell cycle periods [24].

We obtain compact gene clusters implementing SPC original algorithm and
SPCTF, both with parameter values k = 8 and q = 20. The cluster with the
highest stability value contains an extremely large number of elements without
a clear biological linkage between them. It is mainly composed of genes whose
expression do not change significantly over time, thus it is possible that they are
included here for this very reason. We discard this cluster from our analysis,
although it could always be taken apart and analyzed again with SPCTF by
choosing the appropiate number of neighbors to obtain more information.

To compare in more detail both approaches, it is necessary to correlate each
cluster in the SPC method with its equivalent in SPCTF. In order to do this,
we calculate the euclidian distance between the mean position vector of every
cluster in each approach, and choose the pairs with the shortest distance be-
tween them. (We recall that the mean position vector of a cluster is obtained
by averaging each coordinate between all its elements). Although different mea-
sures could have been used, this one performed adequately, as can be seen in the
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supplementary information file, where we provide a more detailed comparison
between SPCTF and SPC clusters. In Table 1, we present the differences in
cluster size as well as the hits, the number of genes reported by Spellman et al.
[22], which have been included in the clusters. When going through the SPCTF
approach, one can see that the first largest cluster looses some genes, while the
number of the rest of the clusters augments. Besides, hits or coincidences with
Spellman et al. [22] cell cycle genes in clusters of six or more elements increase
by 61%, from 108 to 174. Therefore, we were able to incorporate several genes
to these clusters, mainly from outliers.

Comparison between SPC and SPCTF

Method First Cluster Cluster Cluster Cluster Cluster Cluster Total Total Total

Cluster size ≥ 6 size = 5 size = 4 size = 3 size = 2 size = 1 Clusters Genes Hits

SPC 1(2078) 68 19(220) 108 5(25) 2 23(92) 11 57(171) 39 144(288) 49 1615 336 1864 (4489) 613

SPCTF 1(1657) 64 27(359) 174 13(65) 23 32(128) 22 61(183) 30 187(374) 60 1723 240 2044 (4489) 613

Table 1: Number of clusters for different cluster size. The total number of genes for each
cluster size appears in parentheses and their hits with Spellman et al. [22] appear in bold
type. Hits with the 613 cell cycle genes reported by Spellman et al. [22] increase for clusters
of size 6 and bigger, while decreasing in the first cluster and outliers.

In the following analysis, we focus on clusters of six or more elements, be-
cause we are interested in finding groups of several genes sharing the same
expression pattern (coregulated genes). Results of the comparison for the first
27 most stable clusters, discarding the first one, are shown in Fig. 1. Gener-
ally, these clusters incorporate more elements with SPCTF, including more cell
cycle genes as those reported by Spellman et al. [22] and thus improving the
matching.

Depending on the available information about the genes, we classify the
clusters in three groups. The first cluster type, cell cycle genes, CC, corresponds
to groups formed in their majority (≥ 85%) by already reported cell cycle genes
(Fig. 2). The second type, mixed genes, M, contains clusters with non-reported
genes as well as already known cell cycle genes (Fig. 3), and in the third type,
no hits, N, we include the clusters that contain only one hit or are entirely
composed of non-previously identified cell cycle genes (Fig. 3).

It is worth mentioning that more cell cycle experiments have been done since
Spellman et al. [22] and new genes have been classified meanwhile as cell cycle
regulated. Some of these newly reported cell cycle genes were obtained by Cho
et al. [25], Pramila et al. [26], Rowicka et al. [27] and Lichtenberg et al. [28].
We analize our 27 clusters taking now as hits, genes reported either by Spellman
et al. [22] or by one of the above mentioned studies. In this way, we gained
thirty additional hits in the SPC clusters, while in SPCTF clusters we have
fifty-two extra genes. The results including all the aforementioned cell cycle
studies are presented in Figs. 4–6 [29].

In addition, we analyze the expression profiles of the genes conforming each
cluster using the SCEPTRANS tool [30], and we notice that all the genes
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Figure 1: General comparison of the first 27 clusters, discarding the first one. Gray bars
correspond to the clusters obtained with the SPC algorithm and black bars to the equivalent
clusters in SPCTF. Groups tend to increase in size and also in hits with cell cycle genes
reported by Spellman et al. [22], with the exception of cluster 11.

Figure 2: Comparison between the SPC and SPCTF results, showing the CC clusters. Gray
bars correspond to the clusters obtained with the SPC algorithm and black bars to the equiv-
alent clusters in SPCTF.
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Figure 3: M and N clusters, left and right respectively. Gray bars correspond to the clusters
obtained with the SPC algorithm and black bars to the equivalent clusters in SPCTF.

Figure 4: General comparison of the first 27 most stable clusters. Hits are now taken as cell
cycle genes reported by all studies. Gray bars correspond to the clusters obtained with the
SPC algorithm and black bars to the equivalent clusters in SPCTF.
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Figure 5: Comparison between SPC and SPCTF results, showing CC clusters. Gray bars
correspond to the clusters obtained with the SPC algorithm and black bars to the equivalent
clusters in SPCTF.

Figure 6: M and N clusters, left and right respectively. Gray bars correspond to the clusters
obtained with the SPC algorithm and black bars to the equivalent clusters in SPCTF.
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grouped in the same cluster had the same expression pattern. This gives us
further confidence that our algorithm is grouping data correctly. The expres-
sion profiles for a representative member of each cluster type are shown in Fig.
7. We also find two clusters (21 and 27) that present an oscillating behaviour
that is due to an artifact in the manner the microarray experiment was per-
formed, see [31, 32]. In the supplementary information file, we include the list
of oscillating genes identified in [31] and the number of these genes inside each
of our first 27 clusters. We also include the expression profiles of these clusters
as well as those of size 5 and 4 which contain hits with cell cycle genes identified
by Spellman et al. [22]. These clusters have also similar expression profiles
but were not further analyzed because of their low number of elements. In the
case of gene annotation, it is important to have clusters of many elements to
effectively assure that an unknown gene shares the biological function already
assigned to the other genes in the same cluster.

The CC clusters are almost entirely composed of cell cycle regulated genes
reported either by Spellman et al. [22] or by other authors, besides, their ex-
pression patterns are similar, which leaves no doubt on their validity. For the
M and N clusters, we know that they are well grouped because their elements
share the same expression patterns, but in order to select those of worth for fur-
ther analysis (for example in a laboratory experiment) we analyze them through
MUSA, motif finding using an unsupervised approach algorithm, that can be
found at www.yeastract.com. This program searches for the most common se-
quences (motifs) in the regulatory region of a set of genes, and compare them
to the transcription factor binding sites already described in yeastract database
[33, 34]. Results of this analysis are shown in Table 2, which includes the quo-
rum or percentage of genes containing a motif in each cluster, and the alignment
score, which quantifies the level of similarity between the encountered motif and
the known transcription factor associated with it. The clusters that probably
would give us the best results would be those associated with cell cycle tran-
scription factors with high percentages and scores. We select in this way, the
clusters 1, 5, 9, 12, 16 and 24 because they have percentages higher than 70%
and scores higher than 80%.

In order to validate the MUSA analysis, we also constructed various clusters
with sizes ranging from six to thirty-seven genes that were composed by genes
selected at random from the original data. When analyzing these random clus-
ters in the same way in MUSA, we obtain at most two cell cycle transcription
factor coincidences.

4. Summary and conclusions

Large amounts of biological information are constantly obtained by through-
put techniques and clustering algorithms have taken an important place in the
unraveling of this information. However, the clustering analyses offer a difficult
challenge because any data set can be grouped in numerous ways, depending on
the level of resolution asked for and the applied similarity measure. In this work,
we propose the use of available biological information in order to strengthen the
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CC: cluster 4

M: cluster 1

N: cluster 16

Figure 7: (Color online) Expression profiles for a representative member of each cluster type
using the SCEPTRANS tool. Expression profiles for all clusters are available in the supple-
mentary information.
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MUSA analysis

Cluster Cluster Transcription Factor Association with Promoter Percentage of cluster genes
Name Type (alignment score/maximum possible score) sharing a motif, i.e. quorum

1 M Cup2p, Mig3p, Mig2p, Mig1p, Arg80p (5/6) 91.67 %
Swi4p (6/6), Azf1p, Ime1p, Dal82p, Dal81p (5/6) 88.89 %
Ste12p (7/7), Rox1p (6/7) 83.33 %

5 M Hac1p (6/6), Rme1p, Arg80p, Mot3p (5/6) 76.47 %
7 N Azf1p, Zap1p (6/7) 81.82 %
8 N Low scores Low percentages
9 N Mig3p, Mig1p, Crz1p, Mig2p (5/6) 80 %

Rfx1p, Arg81p (6/7) 70 %
10 N Low scores
11 N Azf1p (6/7)
12 N Azf1p (7/8) 88.89 %

Rfx1p, Cup2p (5/6) 77.78 %
14 M Azf1p (7/8) 75 %
15 M Low scores Low percentages
16 N Mcm1p (5.25/6), Crz1p (5/6) 100 %

Hap1p (5/6) 71.43 %
17 N Arg81p, Upc2p, Sip4p, Rox1p, Crz1p, Zap1p (5/6) 100

Pdr8p (5.33/6) 87.5 %
18 N Azf1p, Zap1p (6/7) 100 %
20 N Low scores
21 N Low scores
22 N Low percentages
23 M Low scores
24 M Hap1p (6/6), Ecm22p, Upc2p (5/6) 100 %

Rfx1p (6/7) 83.33 %
25 M Hac1p (6/7) 83.33 %
26 N Dal80p, Gat1p, Gln3p, Gzf3p (6/7) 83.33 %
27 N Ino4p (6.5/7), Ino2p (6/7) 100 %

Table 2: Results for quorum higher than 70% and scores higher than 80%. Transcription
factors associated to cell cycle are shown in bold. The most confident clusters are taken as
those that included cell cycle transcription factor.

interaction between genes which share a transcription factor involved in any
metabolic process, improving the similarity measure. This information is intro-
duced in the natural evolution of the SPC algorithm, and in this way, we are able
to enhance the creation and endurance of groups of possible coregulated genes.
As the network spanned by the transcription factors information connects all
genes, clustering directly a posteriori using only this information in the present
case results into a single massive cluster (See section IV of the Supplementary
Information). However, by having the distance play an important weight in
the interaction formula, the far-located clusters will not join, despite sharing
transcription factors between their genes.

With this in mind, we have modified the SPC algorithm, and applied both
the original and modified SPCTF algorithm to one of the three Spellman et al.
[22] data sets of the yeast cell cycle. The expression profiles of the genes in all
resulting clusters show a similar behavior, but we obtain larger clusters with
SPCTF. We classified them in three types, CC, M, and N, depending on the
amount of cell cycle reported elements inside each cluster. With SPCTF, the CC
type clusters increase in size including more cell cycle genes, and for the M and N
type clusters, we also looked for common sequences in its regulatory regions and
selected various groups worth of further research in order to report possible new
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cell cycle genes. As expected, some of these clusters include already known cell
cycle genes sharing a transcription factor, but more importantly, at the predictive
level, they promote the inclusion of new genes with similar expression patterns.
It is also important to note that the modified algorithm can be applied to any
data set, and the followed methodology leads to the selection of the potential
gene subsets feasible to be experimentally investigated. Our work can serve
as an example of how the inclusion of available biological information, such
as transcription factors, and bioinformatic tools, such as MUSA, can lead to
better and more confident results, aiding in the analysis of data coming from
microarray experiments.
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