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Abstract
Simple linear second-order differential equations have been written down for FRW cosmolo-
gies with barotropic fluids by Faraoni. His results have been extended by Rosu, who employed
techniques belonging to nonrelativistic supersymmetry to obtain time-dependent adiabatic in-
dices. Further extensions are presented here using the known connection between the linear
second-order differential equations and Dirac-like equations in the same supersymmetric con-
text. These extensions are equivalent to adding an imaginary part to the adiabatic index which
is proportional to the mass parameter of the Dirac spinor. The natural physical interpretation
of the imaginary part is related to the particular dissipation and instabilities of the barotropic
FRW hydrodynamics that are introduced by means of this supersymmetric scheme.

1 - Introduction
The barotropic FRW cosmologies obey the following set of differential equations:
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=−

4πG
3

(ρ +3p) , (1)

(

ȧ
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p= (γ −1)ρ , (3)

where a is the scale factor of the universe,ρ and p are the energy density and the pressure,
respectively, of the perfect fluid of which a classical universe is usually assumed to be made
of, κ = 0,±1 is the curvature index of the flat, closed, open universe, respectively, andγ is
the constant adiabatic index of the cosmological fluid. Recently, Faraoni [1] proposed the
“Riccati route” of solving the system of eqs. (1)-(3) and Rosu used Faraoni’s approach to
introduce a supersymmetric class of cosmological fluids possessing time-dependent adiabatic
indices [2]. It was claimed that these fluids can provide a simple explanation for a currently
accelerating universe [3].

In this work, we review the supersymmetric factorization methods for barotropic FRW
cosmologies in section 2. Next, in section 3, we present corresponding Dirac-like (first-order)
coupled differential equations and their associated second-order differential equations and
discuss them in a formal way. We end up the work with a short conclusion section.
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2 - Supersymmetric (factorization) methods
Combining the equations (1)-(3) and using the conformal time variable η defined by
dt= a(η)dη one gets the equation

a
′′

a
+(c−1)

(

a
′

a

)2

+cκ = 0 . (4)

where c= 3
2γ −1. The caseκ = 0 is directly integrable [1] and will be skipped henceforth.

One can immediately see that by means of the change of function u= a
′

a the following Riccati
equation is obtained

u
′

+cu2+κc= 0 . (5)

Employing now u= 1
c

w
′

κ
wκ

one gets the very simple second order differential equation

w
′′

κ +κc2wκ = 0 . (6)

For κ = 1 the solution of the latter is w1 = W1cos(cη +d), where d is an arbitrary phase,
implying a1(η) = A1[cos(cη +d)]1/c , whereas forκ = −1 one gets w−1 = W−1sinh(cη)
and therefore a

−1(η) = A
−1[sinh(cη)]1/c , where W

±1 and A
±1 are amplitude parameters.

These are the same solutions as in the textbook procedures.

The point now is that the Riccati solution up =
1
c

w
′

w mentioned above is only the
particular solution, i.e., up,1 =− tan(cη) and up,−1 = coth(cη) for κ = ±1, respectively.
The particular Riccati solutions are closely related to thecommon factorizations of the
second-order linear differentail equations that are directly related to the well-known Darboux
isospectral transformations [4]. Indeed, Eq. (6) can be written

w
′′

−c(−κc)w = 0 (7)

and also in factorized form using Eq. (6) one gets (Dη = d
dη )

(

Dη +cup
)(

Dη −cup
)

w = w
′′

−c(u
′

p+cu2
p)w = 0 . (8)

To fix the ideas, we shall call Eq. (8) the bosonic equation. On the other hand, the
supersymmetric partner (or fermionic) equation of Eq. (8) will be

(

Dη −cup
)(

Dη +cup
)

wf = w
′′

f −c(−u
′

p+cu2
p)wf = w

′′

f −c·cκ,susywf = 0 .(9)

Thus, one can write

cκ,susy(η) =−u
′

p+cu2
p =

{

c(1+2tan2cη) if κ = 1
c(−1+2coth2cη) if κ =−1

for the supersymmetric partner adiabatic index. The solutions wf are wf =
c

cos(cη+d) and
wf =

c
sinh(cη) for κ = 1 andκ =−1, respectively.

Introducing the (quantum momentum) operator Pη = −iDη we can write the fermionic
equations as follows

(

−Pη − icup
)(

Pη − icup
)

wf =−P2
ηwf −c(−iPηup+cu2

p)wf , (10)

whereas the bosonic case is
(

Pη − icup
)(

−Pη − icup
)

wb =−P2
ηwb−c(iPηup+cu2

p)wb , (11)
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There is a more general factorization of the bosonic equation [5]
(

Dη +cug
)(

Dη −cug
)

wg = w
′′

g−c(u
′

g+cu2
g)wg = w

′′

g+κcc(η;λ )wg = 0 , (12)

which is given in terms of the general Riccati solution ug(η)

ug(η;λ ) = up(η)−
1
c

Dη

[

ln(Iκ(η)+λ )
]

= Dη

[

ln

(

wκ(η)
Iκ(η)+λ

)
1
c ]

(13)

and yields the one-parameter family of adiabatic indices cκ(η;λ )

−κcκ(η;λ ) = cu2
g(η;λ )+

dug(η;λ )
dη

=−κc−
2
c

D2
η

[

ln(Iκ(η)+λ )
]

=−κc−
4wκ(η)w′

κ(η)
c(Iκ(η)+λ )

+
2w4

κ(η)
c(Iκ(η)+λ )2 , (14)

where Iκ(η) =
∫ η

0 w2
κ(y)dy, if we think of a half line problem for whichλ is a positive

integration constant thereby considered as a free parameter of the method..
All cκ(η;λ ) have the same supersymmetric partner index cκ,susy(η) obtained by deleting

the zero mode solution wκ . They may be considered as intermediates between the initial
constant indexκc and the supersymmetric partner index cκ,susy(η). From Eq. (12) one can
infer the new parametric ‘zero mode’ solutions of the universe for the family of barotropic
indices cκ(η;λ ) as follows

wg(η;λ ) =
wκ(η)

Iκ(η)+λ
=⇒ ag(η,λ ) =

(

wκ(η)
Iκ(η)+λ

)
1
c

. (15)

Before closing this section, we recall an interesting point. Since what we have done here
is to use the Darboux transformations at the level of cosmological evolutionary equations (i.e.,
equations of motion of the scale factor of the FRW cosmologies) a natural question is what
is the effect of such transformations at the level of any Lagrangian of the cosmological fluid
mechanics. The answer to this question has been already provided in the literature. Neto
and Filho [6] have shown that in general the application of the Darboux transformations is
equivalent to the addition of a total time derivative of a purely imaginary function to the
Lagrangian and later, Samsonov [7] using the coherent state approach confirmed their result.

3 - Dirac-like formalism
The Dirac equation in the susy nonrelativistic formalism has been discussed by Cooperet al
[8] already in 1988. They showed that the Dirac equation with a Lorentz scalar potential is
associated with a susy pair of Schroedinger Hamiltonians. This result has been used later by
many other authors. Here we make an application to barotropic FRW cosmologies that we
find not to be a trivial exercise except for the uncoupled ‘zero-mass’ case (subsection3.1).

3.1- Let’s introduce now the following two Pauli matricesα = −iσy = −i

(

0 −i
i 0

)

andβ = σx =

(

0 1
1 0

)

and write a cosmological Dirac equation

HFRW
D W = [iσyPη +σx(icup)]W = 0 , (16)

whereW =

(

w1
w2

)

is a two component ‘zero-mass’ spinor. This is equivalent tothe

following decoupled equations

−Pηw1+ icupw1 = 0 (17)
+Pηw2+ icupw2 = 0 . (18)
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Solving these equations one gets w1 ∝ 1/cos(cη) and w2 ∝ cos(cη) for κ = 1 cosmologies
and w1 ∝ 1/sinh(cη) and w2 ∝ sinh(cη) for κ =−1 cosmologies. Thus, we obtain

W =

(

w1
w2

)

=

(

wf
wb

)

.

This shows that the matrix ‘zero-mass’ Dirac equation is equivalent to the two linear second-
order differential equations for the bosonic and fermioniccomponents.

3.2- Consider now a “massive” Dirac equation

HFRW
D W = [iσyPη +σx(icup+K)]W = KW , (19)

whereK may be considered the mass parameter of the Dirac spinor. Eq.(19) is equivalent to
the following system of coupled equations

−Pηw1+(icup+K)w1 = Kw2 (20)
Pηw2+(icup+K)w2 = Kw1 . (21)

These two coupled first-order equations are equivalent to the following second order equations
for the two spinor components

−P2
ηwi −c

[

i(∓Pη −2K)up+cu2
p

]

wi = 0 , (22)

where the subindexi = 1,2.
The fermionic spinor component can be found directly as solutions of

D2
ηw+

1 −

[

c2(1+2tan2cη)+2icKtancη
]

w+
1 = 0 forκ = 1 (23)

and

D2
ηw−

1 −

[

c2(−1+2coth2cη)−2icKcothcη
]

w−
1 = 0 forκ =−1 , (24)

whereas the bosonic components are solutions of

D2
ηw+

2 +
[

c2−2icKtancη
]

w+
2 = 0 for κ = 1 (25)

and

D2
ηw−

2 +
[

−c2+2icKcothcη
]

w−
2 = 0 for κ =−1 . (26)

The solutions of the bosonic equations are expressed in terms of the Gauss hypergeometric
functions2F1 in the variables y= eicη and y= ecη , respectively

w+
2 = Ay−p

2F1

[

−
1
2
(p+ iq);−

1
2
(p− iq),1−p;−y2

]

+

Byp
2F1

[1
2
(p− iq),

1
2
(p+ iq),1+p;−y2

]

(27)

and

w−
2 = C(−1)−

i
2ry−ir

2F1

[

−
i
2
(r+ is),−

i
2
(r− is),1− ir;y2

]

+

D(−1)
i
2ryir

2F1

[ i
2
(r−s),

i
2
(r+s),1+ ir;y2

]

, (28)
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respectively. The parameters are the following: p= (−1− 2K
c )

1
2 , q= (1− 2K

c )
1
2 ,

r = (−1− i 2K
c )

1
2 , s= (−1+ i 2K

c )
1
2 , whereas A, B, C, D are superposition constants.

It is not necessary to try to find the general fermionic solutions through the analysis
of their differential equations (23) and (24) because they are related in a known way to the
bosonic solutions.[9] The general fermionic solutions can be obtained easily if one argues
that the particular fermionic zero mode is the inverse of a particular bosonic zero mode and
constructing the other independent zero mode solution as intextbooks. Thus

w1
± =

1+ k
∫ y[w2

±]2dz

w2
±

, (29)

wherek is an arbitrary constant.

3.3- The most general case in this scheme is to consider the following matrix Dirac-like
equation

[

i

(

0 −i
i 0

)

Pη +

(

0 1
1 0

)(

icup+K1 0
0 icug+K2

)](

w1
w2

)

=

(

K1 0
0 K2

)(

w1
w2

)

. (30)

Proceeding as in3.2 one finds the coupled system of first-order differential equations
[

Pη + icug+K2

]

w2 = K1w1 (31)
[

−Pη + icup+K1

]

w1 = K2w2 (32)

and the equivalent second-order differential equations

−Pη
2wi +

[

ic(up−ug)+(K1−K2)
]

Pηwi+

[

ic(±Pηui +K1ug+K2up)−c2upug

]

wi = 0 , (33)

where the subindexi = 1,2, and u1 and u2 correspond to up and ug, respectively. In the Dη
notation this equation reads

Dη
2wi +

[

c∆upg− i∆K)
]

Dηwi+

+
[

c(±Dηui +(iK1ug+K2up))−c2upug

]

wi = 0 . (34)

Under the gauge transformation

wi = zi exp

(

−
1
2

∫ η [
c∆upg− i∆K)

]

dτ
)

= zi(η)
e

1
2 iη∆K

(Iκ +λ ) 1
2

(35)

one gets

−Pη
2zi +Qi(η)zi = 0, or Dη

2zi +Qi(η)zi = 0, (36)

where
Qi(η) =

[

c(±Dηui +(iK1ug+K2up))−c2upug

]

−
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1
2

Dη

[

c∆upg

]

−
1
4

[

c∆upg− i∆K)
]2

(37)

for i = 1,2, respectively.Qi are complicated ‘potential’ functions and we were not able to find
analytical solutions of Eq. (36).

The corresponding Dirac spinor is of the following form

W (λ ,K1,K2) =

(

z1(K1)
z2(λ ,K2)

)

=

(

wf(K1)
wg(λ ,K2)

)

,

where wg(λ ,K2) is given by Eq. (15) for K1 = K2 = 0. Forλ → ∞ one obtainsW (λ ,0,0)→
W . In addition, ug → up and for K1 = K2 = K one gets the particular case in3.2.

4 - Conclusions
We come now to the interpretation of the mathematical results that we displayed in the
previous sections. An examination of the formulas (23-26) and (37) show that the parameters
K introduce an imaginary part in the adiabatic index of the cosmological fluid. Thus, the
supersymmetric techniques presented in this research letter are a particular way to consider
dissipation and instabilities in the ideal case of barotropic FRW cosmologies. More general
scale factors of barotropic FRW universes incorporating a well-defined type of dissipation can
be obtained from the ‘zero-modes’ w1,2

± by means of the relation a∼ w1/c(η;K). The indices
c(η;K) are redefined adiabatic indices that can be infered from the formulas (23-26) and (37),
respectively.
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