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Abstract

Simple linear second-order differential equations have been written down for FRW cosmolo-
gies with barotropic fluids by Faraoni. His results have been extended by Rosu, who employed
techniques belonging to nonrelativistic supersymmetry to obtain time-dependent adiabatic in-
dices. Further extensions are presented here using the known connection between the linear
second-order differential equations and Dirac-like equations in the same supersymmetric con-
text. These extensions are equivalent to adding an imaginary part to the adiabatic index which
is proportional to the mass parameter of the Dirac spinor. The natural physical interpretation
of the imaginary part is related to the particular dissipation and instabilities of the barotropic
FRW hydrodynamics that are introduced by means of this supersymmetric scheme.

1 - Introduction
The barotropic FRW cosmologies obey the following set of differential equations:

a 4nG

a2 —T(P+3p) ; (1)
a\? 8nGp «k

(5) -5 (2)
p=(y-1)p, 3)

where a is the scale factor of the univerpeand p are the energy density and the pressure,
respectively, of the perfect fluid of which a classical universe is usually assumed to be made
of, k = 0,£1 is the curvature index of the flat, closed, open universe, respectively; isnd

the constant adiabatic index of the cosmological fluid. Recently, Farapprposed the
“Riccati route” of solving the system of egs. (1)-(3) and Rosu used Faraoni’s approach to
introduce a supersymmetric class of cosmological fluids possessing time-dependent adiabatic
indices P]. It was claimed that these fluids can provide a simple expiandor a currently
accelerating universel].

In this work, we review the supersymmetric factorization methods for barotropic FRW
cosmologies in section 2. Next, in section 3, we present corresponding Dirac-like (first-order)
coupled differential equations and their associated second-order differential equations and
discuss them in a formal way. We end up the work with a short conclusion section.
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2 - Supersymmetric (factorization) methods
Combining the equations (1)-(3) and using the conformaletivariable n defined by
dt=a(n)dn one gets the equation

" N\ 2
a a
E+(C—l> <5> +ck=0. (4)

where c= %’y— 1. The cas& = 0 is directly integrable] and will be skipped henceforth.
One can immediately see that by means of the change of funetioZ the following Riccati
eqguation is obtained

U+clh+kc=0. (5)
Employing now u= %x—i one gets the very simple second order differential equation

W, +KC?W, = 0. (6)
For k = 1 the solution of the latter is yv= W, cogcn +d), where d is an arbitrary phase,
implying a,(n) = A;[cogcn +d)]¥/¢, whereas fork = —1 one gets w, =W_;sinh(cn)

and therefore a (n) =A_,[sinh(cn)]¥/¢ , where W, and A,, are amplitude parameters.
These are the same solutions as in the textbook procedures.

The point now is that the Riccati solutiory, & %WW mentioned above is only the
particular solution, i.e., b = —tan(cn) and g = coth(cn) for k = £1, respectively.
The particular Riccati solutions are closely related to teeamon factorizations of the
second-order linear differentail equations that are tlyeelated to the well-known Darboux
isospectral transformations][ Indeed, Eq.§) can be written

W' —c(—kc)w =0 (7)
and also in factorized form using Eq. (6) one getg éE)%)
(Dp +cW) (Dy —Clp) W =W —c(Uy+CcB)w =0. (8)

To fix the ideas, we shall call Eq8) the bosonic equation. On the other hand, the
supersymmetric partner (or fermionic) equation of E).will be

(D — ctp) (Dyy + Clp) Wy = wy — c(—u;O +CB)w; = W — C- Cy suspV; = 0.(9)

Thus, one can write

o _ [ c(1+2tarfen)  ifk=1
Cu susy(11) = —Up+CUE = { c(—1+2cottfen) if k =—1

for the supersymmetric partner adiabatic index. The smhstiy are w = W(;Hd) and
W = chn) for Kk = 1 andk = —1, respectively.

Introducing the (Qquantum momentum) operatgr-P—iD,, we can write the fermionic
equations as follows

(—Py —icup) (P —icUp) Wy = —PAw; — c(—iPpup -+ CU)W; (10)
whereas the bosonic case is



There is a more general factorization of the bosonic equéfip
(D + cug) (Dyy — CUg) Wg = Wy — C(Ug + CU)Wg = Wy + KCc(17; A )wg = 0, (12)
which is given in terms of the general Riccati solutigyim)

U(11;A) = () — <D [In(1(7) +4)] =Dy [In (%) T e
and yields the one-parameter family of adiabatic indigeg)cA )
—KC(N;A) = Cué(n;)\) + %ZA) = —KC— %D% [In(IK(n) +)\)]
:_KC_4WK<n>W’K(n) L 2wk(n) (14)

c(l(m)+2) ~ clle(n)+A)?’

where | (n) = [¢ w2 (y)dy, if we think of a half line problem for whiclA is a positive
integration constant thereby considered as a free paraofdtee method..

Allc(n;A) have the same supersymmetric partner ingexg(n) obtained by deleting
the zero mode solution w They may be considered as intermediates between thel initia
constant indexc and the supersymmetric partner indexg,(n). From Eq. (2) one can
infer the new parametric ‘zero mode’ solutions of the urseefor the family of barotropic
indices g (n;A) as follows

1
oy Wk(n) ( Wi (1) )5
Before closing this sectlon, we recall an interesting pdamce what we have done here
is to use the Darboux transformations at the level of cosgicé evolutionary equations (i.e.,
equations of motion of the scale factor of the FRW cosmokgaenatural question is what
is the effect of such transformations at the level of any bagran of the cosmological fluid
mechanics. The answer to this question has been alreadidpdoin the literature. Neto
and Filho ] have shown that in general the application of the Darboargformations is
equivalent to the addition of a total time derivative of aglyrimaginary function to the
Lagrangian and later, Samsonay (ising the coherent state approach confirmed their result.

3 - Dirac-like formalism
The Dirac equation in the susy nonrelativistic formalisns baen discussed by Cooptial
[8] already in 1988. They showed that the Dirac equation wittoeehtz scalar potential is
associated with a susy pair of Schroedinger Hamiltoniahss fesult has been used later by
many other authors. Here we make an application to baratfelglW cosmologies that we
find not to be a trivial exercise except for the uncoupleddzerass’ case (subsectiGri).

3.1- Let’s introduce now the following two Pauli matrices= —igy = —i ( (I) 6' )
andp = oy = ( Cl) (1) ) and write a cosmological Dirac equation
HEMW = [igy Py, + ok (icup)]W =0, (16)
whereW = wl is a two component ‘zero-mass’ spinor. This is equivalenth®

following decoupled equations
—Pyw, +icupw, =0 (17)
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Solving these equations one getsW1/cogcn) and w, I cogcn) for kK = 1 cosmologies
and w 0 1/sinh(cn) and w, O sinh(cn) for k = —1 cosmologies. Thus, we obtain

w=(u)-()
This shows that the matrix ‘zero-mass’ Dirac equation is\ejant to the two linear second-
order differential equations for the bosonic and fermia@mponents.
3.2- Consider now a “massive” Dirac equation
HERMW = [igy Py, + ok (icup + K)JW = KW | (19)

whereK may be considered the mass parameter of the Dirac spino(18ds equivalent to
the following system of coupled equations

—Ppw, - (icup + K)wy = Kw,, (20)
Py W, + (icup + K)w, = Kw, . (21)

These two coupled first-order equations are equivalenetéolfowing second order equations
for the two spinor components

—P2w, —c[i(:FP,7 —2K)up+cu§]wi =0, (22)

where the subindeix= 1, 2.
The fermionic spinor component can be found directly astsmig of

20+

:c2(1+2tar?cn) + 2icKtan m}wf =0 fork=1 (23)

and

Daw; — | (1 2cotifen) — 2icKcoth cn} wy =0 fork=-1, (24)
whereas the bosonic components are solutions of
Diwg + c2 —2icKtan 07} wj=0 for k=1 (25)

and

D,27W§ + -—c2+2icKcotho7}w2* =0 for k=-1. (26)

The solutions of the bosonic equations are expressed irstefithe Gauss hypergeometric
functions,F, in the variables y= €“71 and y= €1, respectively

_ 1 . 1 .
Wy = Ay PRy | = S(pia)i—5(p—ia), 1 pi—y?|+

1 o1 .
Byszl[Q(D—IQ),E(D-HQ)J-F p;—yz} (27)
and . : :
Wy = O(=1) 2y TR, [~ S(r+is), —5(r—is) L1—iry?] +
D(—1)i?ry"2F1[Ié(r—s),lz(r-l-s),l-l-ir;yz} , (28)
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respectively.  The parameters are the foIIowmg::p—l—%)?, g=(1—%%)2,

r=(-1- i%)%, S= (—1+i%)%, whereas A, B, C, D are superposition constants.

It is not necessary to try to find the general fermionic sohsithrough the analysis
of their differential equations2) and @4) because they are related in a known way to the
bosonic solutionsg The general fermionic solutions can be obtained easilyng argues
that the particular fermionic zero mode is the inverse of i@#ar bosonic zero mode and
constructing the other independent zero mode solution exthooks. Thus

L 1k w, ]z

, (29)

wherek is an arbitrary constant.

3.3- The most general case in this scheme is to consider thenioljpmatrix Dirac-like

equation
(0 —i 0 1 icup + K 0 w
(70 )re (2 0) (™0™ i, )| (W) -
K, O w
(% &) () @0

Proceeding as iB.2 one finds the coupled system of first-order differential ¢igna
[Py +icug + K, | w, = Kyw, (31)
| = Py icup+ Ky | wy = Kow, (32)
and the equivalent second-order differential equations

—Pp%w; + [ic(up —Ug) + (K — KZ)} Prw;+

[ic(iP,7 u; + Ky ug + Koup) — czupug} w; =0, (33)

where the subindex= 1,2, and y and y, correspond to yiand y, respectively. In the P
notation this equation reads

Dy W + | CAupg — 1K) | Dw+

+ [c(iD,,ui + (IK1Ug +KyUp)) —czupug] w; =0. (34)
Under the gauge transformation
( 3/ e AK)}“’) (- (35)
W, =z exp( —= Upg — i T)=z(n)—
i = 48XP| —5 Py Z|’7(|K+A>%
one gets
—P,’z+Q(n)z =0, or Dy°z+Q(n)z =0, (36)
where

Q(n) = [c(iDn U+ (K ug+ KyUp)) — czupug} —~
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1 1 . 2
>Ds cAupg| - 2 g — iAK) | (37)
fori=1,2, respectivelyQ; are complicated ‘potential’ functions and we were not ablrtd
analytical solutions of Eq.30).

The corresponding Dirac spinor is of the following form

wossie) = (%) ) = (i) )

where w(A,K,) is given by Eq. {5) for K, =K, = 0. ForA — o one obtain§V(A,0,0) —
W. In addition,  — up and for K; = K, = K one gets the particular case3i2.

4 - Conclusions

We come now to the interpretation of the mathematical resihiat we displayed in the
previous sections. An examination of the formulas (23-2@) @7) show that the parameters
K introduce an imaginary part in the adiabatic index of thenmasgical fluid. Thus, the
supersymmetric techniques presented in this researan et a particular way to consider
dissipation and instabilities in the ideal case of baratr¢RW cosmologies. More general
scale factors of barotropic FRW universes incorporatingb-defined type of dissipation can
be obtained from the ‘zero-modes; w* by means of the relationa w¥/<(":). The indices

c(n;K) are redefined adiabatic indices that can be infered fronmottmetflas (23-26) and (37),
respectively.
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