This is an Accepted Manuscript of an article published by Taylor & Francis in
International Journal of Control on 23 Ju2 2010, available online:
https://doi.org/10.1080/00207171003758778



https://doi.org/10.1080/00207171003758778

February 15, 2010 21:15 International Journal of Control PVTOL-Art12

International Journal of Control

Vol. 00, No. 00, Month 200x, 1-26

Research Article

Global stabilization of the PVTOL aircraft with lateral force coupling and
bounded inputs

D.J. Lépez-Araujo®, A. Zavala-Rio®*, I. Fantoni®, S. Salazar’, and R. Lozano®

¢ JPICYT, Camino a la Presa San José 2055, Lomas 4a. Seccion 78216, San Luis Potosi, Mexico
b Heudiasyc (UMR-CNRS 6599), UTC, BP 20529, 60205 Compiégne, France

(Recetved March 2009)

This work is devoted to prove that the nonlinear control scheme previously proposed by the (2nd, 3rd, & 5th)
authors for the global stabilization of the PVTOL aircraft with bounded inputs neglecting the lateral force
coupling, is robust with respect to the parameter characterizing such a lateral force coupling, €, as long as
such a parameter takes small enough values. In other words, global stabilization is achieved even if € > 0,
provided that such a parameter be sufficiently small. As far as the authors are aware, such a property has not
been proved in other existing control schemes when the value of € is not known. The presented methodology is
based on the use of embedded saturation functions. Furthermore, experimental results of the control algorithm
implemented on a real prototype are presented.
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1 Introduction

The literature shows that the planar vertical take-off and landing (PVTOL) aircraft continuously
produces a great interest in the control community. Indeed, its mathematical model represents
a challenge in nonlinear control design. The PVTOL aircraft system is also extensively used to
develop and/or approximate models of flying vehicles. This can be confirmed through numerous
works that have been recently contributed on Unmanned Autonomous Vehicles (UAV).

The nonlinear dynamical model of the PVTOL aircraft, as presented in Hauser et al. (1992),
is given by the following equations (see Fig. 1)

& = —uysinf + eug cos f (1a)
1 = upcosl + cugsind — 1 (1b)
0 = uy (1c)

where z, y, and 6 respectively refer to the center of mass horizontal and vertical positions
and the roll angle of the aircraft with the horizon; as conventionally, a dot and a double dot
above respectively denote velocity and acceleration. The variables u; and ug are respectively the
thrust and the angular acceleration inputs. The constant ‘—1’ is the normalized gravitational
acceleration and € is a (generally small) coefficient which characterizes the coupling between the
rolling moment uo and the lateral acceleration of the aircraft.

A large number of authors have proposed control methodologies for the stabilization or the
trajectory tracking of the PVTOL aircraft system. To cite a few of them, such studies include
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Figure 1. The PVTOL aircraft

Hauser et al. (1992), Lin et al. (1999), Marconi et al. (2002), Martin et al. (1996), Olfati-Saber
(2002), Saeki and Sakaue (2001), Sepulchre et al. (1997), Setlur et al. (2001), Teel (1996), Zavala-
Rio et al. (2003). Some authors have also contributed works supporting their algorithms through
experimental PVTOL aircraft setups (see for instance Lozano et al. (2004), Palomino et al.
(2003)). Some others have also been interested in designing observers when the full state of the
PVTOL system is not completely measurable. Indeed, Do et al. (2003) proposed an output-
feedback tracking controller considering no velocity measurements in the system and Sanchez
et al. (2004) presented a nonlinear observer design for the PVTOL aircraft in order to estimate
the angular position of the system.

Recently, Wood and Cazzolato (2007) proposed a nonlinear control scheme using a feedback law
that casts the system into a cascade structure and proved its global stability. Global stabilization
was also achieved by Ye et al. (2007) through a saturated control technique by previously trans-
forming the PVTOL dynamics into a chain of integrators with nonlinear perturbations. Further,
a nonlinear prediction-based control approach was proposed by Chemori and Marchand (2008)
for the stabilization problem; the control method is based on partial feedback linearization and
optimal trajectories generation to enhance the behaviour and the stability of the systems internal
dynamics. Tracking and path following controllers have also been developed. Indeed, on the one
hand, an open-loop exact tracking for the VTOL aircraft with bounded internal dynamics via
a Poincaré map approach was presented in Consolini and Tosques (2007). On the other hand,
a path following controller was proposed in Nielsen et al. (2008) that drives the center of mass
of the PVTOL aircraft to the unit circle and makes it traverse the circle in a desired direction;
instead of using time parametrization of the path, they use a nested set stabilization approach.

In the previously cited works, either the lateral coupling was neglected (by regarding the
coupling constant ¢ as so small that £ = 0 is supposed in (1); see for instance (Hauser et al. 1992,
§2.4)), or the exact knowledge of this term was considered to design the controllers. On the other
hand, from all the previously cited works, Zavala-Rio et al. (2003) was the first to simultaneously
consider the bounded nature of both inputs and the positive character of the thrust to develop
a globally stabilizing scheme. Nevertheless, robustness of the previously proposed algorithms to
uncertainties on the coupling parameter € has hardly been addressed. The optimal control setting
of Lin et al. (1999) was designed under the consideration of such uncertainties, but a nominal
value of € is required by the proposed algorithm. Further, Teel (1996) proposed a control law
based on the exact value of € and showed robustness of his approach, but only through numerical
simulations and for initial conditions being close enough to the origin. Numerical simulations were
also used in Chemori and Marchand (2008) to evaluate and show robustness of their algorithm
towards uncertain values of €. Now, due to its dependence on the physical parameters of the
aircraft, the supposition that ¢ is exactly known could be defended (see, for instance, Olfati-Saber
(2002)). Nevertheless, its exact value can be difficult to measure or estimate in real experiments.

In the present paper, the crucial contribution consists in demonstrating that through the use
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of the control methodology previously presented in Zavala-Rio et al. (2003), where ¢ = 0 was
supposed, global stabilization is achieved even if ¢ > 0, provided that such a parameter takes
small enough values. This corroborates the robustness of such a control approach. The algorithm
is based on the use of the embedded saturation function methodology proposed by Teel (1992).
The strength of the presented analysis relies on the fact that no modification on the original
control algorithm was required. Furthermore, the applicability of the method has been validated
by experimental results. Indeed, we present in this paper an experiment where we have applied
the proposed control design methodology on a four-rotor helicopter.

The paper is organized as follows. Section 2 states the notation used throughout the paper.
Section 3 recalls the approach presented in Zavala-Rio et al. (2003). Section 4 details the stability
analysis of the closed-loop system including the lateral force coupling. Some experimental results
are presented in Section 5. Finally, conclusions are given in Section 6.

2 Notation

Let IR, represent the set of nonnegative real numbers. We denote 0,, the origin of IR". For any
r € IR", x; represents its i'" element. Let A € IR™"™ be a symmetric matrix, i.e. AT = A. The
maximum and minimum eigenvalues of A will be respectively denoted A\pax(A4) and Apin(A). I,
denotes the n x n identity matrix.

Throughout the paper, || - || will represent the standard Euclidean vector norm and induced
matrix norm, i.e. ||z £ [0, \xiﬂl/z for any x € IR", and ||B| = [)\max(BTB)]l/2 for any
B € IR™*"™. Other type of norms will be explicitly expressed. For instance, the infinite induced
matrix norm will be denoted ||B||oo, i-€. [|Blloc = max; > 7—1|bij|, where b;; represents the
element in row ¢ and column j of matrix B.

Let A and &£ be subsets (with nonempty interior) of some vector spaces A and E respectively.
We denote C}*(A; £) the set of m-times continuously differentiable functions from A to £ whose
m™ derivative is Lipschitz-continuous. Consider a scalar function h € C2(IR; IR). The following
notation will be used: A’ : s — %h and b : s — j—;h, while »” : s — DTh”, where D"
denotes the upper right-hand (Dini) derivative (see for instance (Khalil 2002, Appendix C2)).
Let us note that if a scalar function v(s) is differentiable at s, then DTv(s) = %(s). For a
Lipschitz-continuous function v(s) that is not differentiable at a finite number of values of s, say
51,82, ey S, DT0(s) is a function with bounded discontinuities but well defined at such points,
51,824y Sn-

3 Globally stabilizing controller

In view of the small value that € usually takes (see, for instance, Hauser et al. (1992)), a control
scheme for the PVTOL aircraft was proposed in Zavala-Rio et al. (2003) by considering ¢ = 0
in (1), i.e. modelling the system dynamics as

i=—using , j=wucosfd—1 , 6=us (2)

Under this consideration, the control objective achieved in Zavala-Rio et al. (2003) was the
global asymptotic stability of the closed-loop system trivial solution (z,y,0)(t) = (0,0,0) avoid-
ing input saturation, i.e. with 0 < uy(¢t) < Uy and |ua(t)| < Us, Vt > 0, for some constants
U; >1and Uy > 0.1

INotice, from the vertical motion equation in the system dynamic model, whether the lateral force coupling is neglected as
in (2) or considered as in (1), that Uy > 1 is a necessary condition for the PVTOL to be stabilizable at any desired position.
Indeed, any steady-state condition implies that the aircraft weight be compensated.
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The approach developed in Zavala-Rio et al. (2003) is based on the use of linear saturation
functions, as defined in Teel (1992), and a special type of them stated in Zavala-Rio et al. (2003)
and referred to as two-level linear saturation functions, whose definitions are recalled here.

Definition 3.1: Given positive constants L and M, with L < M, a function o : IR — IR is
said to be a linear saturation for (L, M) if it is a nondecreasing Lipschitz-continuous function
satisfying

(a) o(s) =s when |s| < L
(b) |o(s)] < M for all s € R

Definition 3.2: Given positive constants L*, M+, N*, L=, M~, and N, with LT <
min{ M*, N*}, a function ¢ : IR — IR is said to be a two-level linear saturation for
(LT, M+ Nt L~,M~,N7) if it is a nondecreasing Lipschitz-continuous function satisfying

) o(s) =sforall s [-L",L7]

) =M~ <o(s)<M* forall se (—N—,NT)
) o(s)=—M~ forall s < —-N~

) o(s) =M™ forall s > N*

—_— N~

a
b
c
d

—

We recall the control scheme proposed in Zavala-Rio et al. (2003), where the thrust u; and
the rolling moment us were defined as

up = /13 4+ (1 +72)? (3)
Uy = o41(ag) — 032(0 — 0az(wa) + 0310 — ou3(wg) + 0 — 04)) (4)
where
r = —ko12(2 + o1 (kx + 7)) (5)
ro = —02(y + oy +9)) (6)
04 = arctan(—rq,1 + r2) (7)

arctan(a,b) represents the (unique) angle « such that sina = a/Va?+b? and cosa =
b/va? + b?; k in (5) is a positive constant smaller than unity, i.e.

0<k<1 (8a)

0;;(+) in (5) and (6) are functions on C? (IR; IR) satisfying Definition 3.2, for given (L;;., MZ-J;, Ng,

Ll._j, MZ-;, NZ;) such that
(kMi2)* + (1+ Mgz)* < U? (8b)
M <1 (8¢)
L; .
My < 72, Vi = 1,2 (Sd)

with M;; £ maX{Mi;,M{;} and L;; = min{Li_j,L;;}, i =1,2, j = 1,2; the functions o,,,,(-) in

(4) are linear saturations for given (L., My,y,) such that

My + M3 < Uy (Qa)
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My +2Myo + 2M3; < L3 (9b)
Myy + Myo + 2My3 + 2By, < L3 (9¢)
with
By, £ arctan (k:Mlg, 1-— M2J5) (10)
and
wg = % and ag = %
e=0 e=0

whose expressions, calculated considering equations (2) as the system dynamics, are given by

wq = kg (11a)
with
r — (1
By = T1p2 — ( 2+ r2)p1 (11b)
uy
and
ag = kay (12&)
with
_ e — (A +m)pr 2mbg (12b)
u% ul
where
r
e El = —012(512) (13a)
dr ) . .
= d—tl = —075(s12)[—u1 sin 0 + o (s11) (ki — uq sin 0)] (13b)
e=0
A dT’Q / / .
02 T = —099(892)[u1 cos O — 1 + 05 (s21)(y + uy cos§ — 1)] (13c)
e=0
d*r . . .
01 2 W; = — ofy(s512)[~u1 sin @ + o7 (s11) (kZ — uy sin 9)]2
e=0
(13d)

— ohy(s12) [ — w10 cos O — iy sin @ + oy (s11) (ki — uq sin §)?

+ o1 (511)(—kuy sin @ — w10 cos @ — puy sin 9)]
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A d2T2 " / . 2
g = T2 = — 099(892)[u1 cos @ — 1 4 05, (s21) (Y + ug cosf — 1)]
e=0
/ N e 1] . 2 (136)
— 099(522) [ —u10sin @ + py cos O + o4, (s21)(y + ug cosf — 1)
+ 0hy(s91)(ug cos @ — 1 — uifsin @ + piq cos 0)]
d k%F 1
e=0 u1
with
A . A .
s =kr+a,s12 =3+ o011(s11)
A (13g)

sot ZY+y 522 =+ 021(s21)

Remark 1: One can easily verify, from the above stated equations, that if v =y =60 =12 =
y=0=0,thenr =ry=0;=0,u; =1, wg = ag = uz = 0, and consequently, from the system
dynamics in Egs. (1), we have that & = 3§ =60 = 0.

4 Main Result

Proposition 4.1:  Consider the PVTOL aircraft dynamics (1) with input saturation bounds
Ui > 1 and Uy > 0. Let the input thrust ui be defined as in (3),(5),(6), with constant k and
parameters (L;;, M;]f, N;]f, L, M, NZ;) of the twice differentiable two-level linear saturation
functions o;;(-) in (5) and (6) satisfying inequalities (8), and the input rolling moment ug as in
(4),(7),(11),(12), with parameters (Lpn, Myny) of the linear saturation functions oy () in (4)

satisfying inequalities (9). Then, provided that k and € are sufficiently small,
(i) global asymptotic stability of the closed-loop system trivial solution (z,y,0)(t) = (0,0,0)
is achieved, with

(i) 0 < 1— My, <u(t) < \/(le2)2 +(1 +M2‘2)2 < Uy and |uz(t)| < My + Msy < Us,
vt > 0.

Proof Ttem (ii) of the statement results from the definition of uq, ug, 71, and ry. Its proof is
consequently straightforward. We focus on the proof of item (i). Let us consider the state vector

z= (z1 29 23 24 75 Z(;)Té (x Ty y 0 9)T (14)

evolving within the normed state space (IRS,|| - |). The closed-loop system dynamics gets a
consequent state-space representation Z = f(z), with f(0g) = Og (see Remark 1). The present
stability analysis is carried out showing that under such a state space representation, provided
that e and k are small enough, the origin is asymptotically stable and globally attractive (Rouche
et al. 1977, §2.11), or equivalently for the latter property, with IR® as region of attraction (Rouche
et al. 1977, §2.10), (Hahn 1967, §26), (Sepulchre et al. 1997, §2.3.1), that is, with every solution
converging to the origin whatever its initial condition is in IR® (Khalil 2002, §4.1), (Sastry 1999,
Definition 5.8).

The asymptotic stability of the origin is proved through the linearization (or indirect Lya-
punov) method (see for instance (Khalil 2002, Theorem 4.7)), considering that, provided that &
is small enough, within a sufficiently small neighborhood around the origin, we have that the val-
ues of all the saturation functions in equations (4)—(6) are equal to their respective arguments
(this is analytically corroborated in (Zavala-Rio et al. 2003, Appendix B) and (Lépez-Araujo
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2008, Appendix A)), i.e
r = —2]€2’2 — k221 s To = —22’4 — Z3 s U = 0g — 2(2’6 — wd) — (2’5 — Qd)
Under this consideration, the Jacobian matrix of f(z) evaluated at the origin, A £ % 0 is
z2=Ug
given by
0 1 0 O 0 0
ek? 2ek(k+1) 0 0 —1—¢glk(k+4)+1] —2e(k+1)
e 0 0 0 1 0 0
1 o0 0 -1 -2 0 0
0 0 0 o0 0 1
k> 2k(k+1) 0 0 —k(k+4)—1 —2(k+1)

Further, its characteristic polynomial, P(\) £ |\ — A, is given by
PA) = (A+1)? A +2(k+ 1)(1 — ek)A® + (k* + 4k + 1 — ek?®)A% + 2k(k + 1)\ + k7]

Applying the Routh-Hurwitz criterion, one can verify that if ek < 0.8, all the roots of P()\) have
negative real parts (this is shown in (Lépez-Araujo 2008, Appendix B)) and, consequently, the
origin of the closed-loop system is indeed asymptotically stable.

The proof of the global attractivity of the origin is divided in 6 parts. The first part shows that
04, wg, and g, respectively in (7), (11), and (12), are bounded signals whose bounds are directly
influenced by the parameter k. The second part shows that for any initial condition vector
2(0) € IR®, provided that k is small enough, there exists a finite time ¢, > 0 after which the
trajectories of the rotational motion dynamics evolve within a positively invariant set Sy C IR?
where the value of every linear saturation function o, (-) in (4) is equal to that of its argument.
By defining 6, = %‘00 and the error variable vector e = (e; e2)T £ (25 — 0g 25 — 04)7,
the third part shows that, for any z(ty) € IR* x Sp, there exists a finite time t3 > to such that
lle(t)|| < ekBs, ¥t > ts, for some Bz > 0, or equivalently e( )€ By & {ec R : ||e| < ckBs},
Vt > t3. By defining 27 £ (21 22 23 2)" and ¢ = (zT e, the fourth part shows that for
any ((t3) € IR* x By, provided that ek is small enough, there exists a finite time ¢’ > t3 after
which the trajectories of the translational motion closed-loop dynamics, zp(t), evolve within a
positively invariant set Sjo C IR* where the value of every linear saturation function oi;(+) in (5)
and (6) is equal to that of its argument. The fifth part shows that, for any ((¢') € S12 x By, there
exists a finite time tg > ' such that ||((¢)[| < ekBg, Vt > tg, for some B; > 0, or equivalently

Ct)yeB 2 {C e RS :|¢| < ekBg}, Vt > ts. The sixth part proves that for any ((ts) € B,
provided that € is small enough, ((t) — 0g as t — co. Since ( = 0 <= z = 0g, and in view of
the intermediate results obtained in the precedent parts, global attractivity of the origin of the
closed-loop system is concluded.

First part. From the strictly increasing nature of the arctan function and the definitions of rq

and 79 in (5) and (6), it can be seen that |6,4(t)| < By, (see (10)), ¥t > 0. Furthermore, note that
88B£d = (kMAiI;(}F(fVIMM)LP < 1M1\1/;;2’ Vk > 0, whence we have By, < Mj\lj+ -k, Yk > 0, which shows
that By, is directly influenced by k. Now, twice differentiability of aw( ) (i = 1,25 = 1,2)

on IR guarantees boundedness of oj;(s) and oy;(s) on [N, N;; *] (see for instance (Apostol

1974, Theorem 4.17)), i.e. there eXist positive constants A;jj and Bjj such that |oj;(s)| < Aj;
and |o(5(s)| < Byj, Vs € [Ny N+] On the other hand, o;;(s) = a”( s) = 0 when |s| > N*

ij
Therefore, for any scalar p > 0, ]spa (s)] < NZ-AU and |sPo}; ( )| < NZ]BZ-]-, Vs e R, Vi,j=1,2,
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with Nij =S max{Ni_

+
N +. Hence (see Egs. (13))

|p1(t)| < A1a[Bu, + A11C1] £ B,

|p2(t)| < Ago[By, + A91C2 + 1] 2 B,,

+ B,, £ By,

R

Vvt > 0, with

B, & /M2, + (1+ My)? (15)
Ci & Nig + M1 + Buy,, and Co = Nog + My + By, + 1. Therefore,
|lwa(t)| < Bg,k
¢ >0, with

M2B), B,

By, &
=My (1 M)

(see Egs. (11)), showing that wy is bounded and that its bound is directly influenced by k.
Furthermore, assuming the existence of a finite time ¢; > 0 such that |6(¢)| < D, Vt > t;, for
some initial-condition-independent positive constant D,! we have (see Eqs. (13))

B 2
lp1(t)] < Bz <A—i’2> + A12[C3 + BiiC} + AnCy] £ By,

Bo\?2
lp2(t)| < Baz <A§;> + Ag2[C3 + B21C3 + Ay (Cy +1)] £ By,

Yt > ty, with C3 = /(B,, D)2 + B2 and Cy £ /(Bu,D)? + (By, + By,)%. As a result

|a(t)] < Ba,k (16)

t > t;, with

de A M12B:0—2 B@l + ZBM;BJM
(1 — M) (1 — My)

(see Eqgs. (12)), which shows that g is ultimately bounded and that its ultimate bound is also
directly influenced by k.

1Such an assumption will be proved to be satisfied with D = My + Mys + M3 in the second part of the proof.
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Second part. Consider the rotational motion closed-loop dynamics, (1c¢) and (4), expressed in its
state space representation defined according to (14):

25 = 26 (17a)

Ze = 041 (ad) — 032 (26 — 042(wd) + 0'31(26 — 043(wd) + 25 — Qd)) (17b)

Let us define the positive scalar function V; £ zg. Its derivative along the trajectories of subsys-
tem (17), V1, is given by

Vi = 22626 = 226|041 (g) — 032(532)] (18)
where
32 = 26 — ou2(wg) + 031(26 — 043(wa) + 25 — ba)
Suppose for the moment that zg > My + My + M3; > 0. Under such an assumption, we have
832 = 26 — O42(wa) + 031(-) > 26 — Myz — M3y > My >0
Then, according to Definition 3.1, either o32(+) € (0, Lsz], implying
26 = 041() — 26 + 042(-) —031(+) < My + Myo + Ms; — 26 <0
or o32(+) € (L3, M32], entailing
26 = o41(+) — 032() < Myy — L3o < Myy + 2Myo + 2M31 — L3z < 0

(see (9b)), i.e.

26 > My + Mys + M3y > 0= 36 <0 (19)
Similarly, if zg < —My3 — Myo — M3 < 0, then

s32 = 26 — 0az(wa) + 031(+) < 26 + Maz + Mz1 < =My <0
Hence, either o32(-) € [—Ls2,0), entailing
26 = 041(") — 26 + 0a2(-) — 031(-) > =My — Myg — M3 — 26 > 0
or o32(:) € [-Ms2,—Ls2), implying
26 = 041(+) — 032() > —My1 + Lsg > —Myy — 2My9 — 2M31 + L3z > 0

(according to (9b)), i.e.

26 < —Muy — Myp — M1 < 0= 36 > 0 (20)
Hence, from (19) and (20), one sees that

|26] > Myy + Mg + Msy = sign(zg) = —sign(4) = V1 <0
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This proves that, for any initial state vector z(0) € IRS, there is a finite time #; > 0 such that
|26(t)| < M1 + Myg + M3y £ D
vt > t;.! Then, for all t > t;, we have
|s32| < |26| + Mag + M3y < Myy +2My2 + 2M31 < Ls2
(in view of (9b)). Therefore, according to Definition 3.1, o32(s32) = s32 and (17b) becomes
z6 = o41(aa) — 26 + 042(wa) — 031(26 — 043(wWa) + 25 — 0a) (21)

from t; on. At this stage, let us define ¢ £ z5 + 2 and the positive scalar function V3 £ ¢%. The
derivative of V5 along the trajectories of subsystem (17a) and (21), Vs, is given by

V2 = 2qq = 2q[041 (ad) + 0'42(Wd) - 031(331)]
where
831 = q— 0’43(“%[) — 04

Following a reasoning similar to the one developed for the analysis of V; in (18) (relying on the
satisfaction of inequality (9c)), one sees that

\q[ > My + Myo + Myz + By, = sign(q) = —Sigﬂ((j) = VQ <0
proving that, for any z(0) € IR, there exists a finite time to > ¢; such that
lq(t)] < My1 + Myos + My3 + By,

Vit > t9. Hence, for all ¢ > t9, we have

|s31] < lq| + Mug + By, < Mar + Myz + 2Muy3 + 2By, < L3
(see (9c)). Thus, according to Definition 3.1, 031(s31) = s31 and (21) becomes

26 = ou1(a) — (26 — 042(wa)) — (26 — o43(wa)) — (25 — 0a) (22)
from 9 on. Now, from the first part of the proof, one sees that a sufficiently small value of k can
be chosen such that |wg(t)| < min{La4s, L4z} and |ag(t)| < La1, ¥t > t1. Therefore, provided that
such a choice of k is made, the value of every linear saturation function in (22) is equal to that
of its arguments (according to Definition 3.1) from ¢; on. Hence, for all ¢ > t5, the rotational
motion closed-loop dynamics, expressed in the original variables, becomes

0 =aq—2(0 —wy) — (60— 0g) = us (23)

Observe that this part of the proof shows that for any z(0) € IR®, provided that k is small
enough,

(0(t),0(t)) € So 2 {(0,0) € R*: 10| < D, |0+ 6| < Mys + Mao + Myz + By, }

1Recall that this was assumed in the first part of the proof. Thus, it is shown that such an assumption is actually a fact.
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Vt > to, where the value of every linear saturation in uy (see (4)) is equal to that of its argument.

Third part. Let

. . 2
9d = @ and 9d = d—id
dt |.>g dt* |.>g

From the definition of 64 in equation (7), the system dynamics in (1), and the proposed scheme,
we get, from to on (consequently taking ug as in (23)):

0q = wq + kA (24)
éd = g+ kAo (25)

with A; and Ay as expressed in Appendix A.

Remark 2: Carrying out a procedure similar to the one followed in the first part of the proof,
it can be shown that there exist positive constants Ba, and Ba, such that |A;] < Ba, and
|As| < B, for any value of the system states. Estimations of these bounds were obtained in

(Lépez-Araujo 2008, Appendix D).
60— 0,4
0 — 6y

Let
é = Ape+ h(t,e) (26)

[I>

- (2)

From equations (23)—(25), we have that

from 9 on, with

0 1 0
Ay = <_1 _2> and h(t,e) = —ck <2A1 N A2>

(where the trajectories of the translational motion dynamics, involved in h, are being considered
external time-varying functions). Let us define a quadratic positive definite function V3(e) =
el Pye, where Py is the (unique) solution of the Lyapunov equation PyAg + AgPo = -1, ie

(=

1

2 2
derivative of V3(e) along the trajectories of subsystem (26) is given by

(=

3
Py = <2 2). For such a Py, we have that Apayx(Po) = 252 and Amin(Po) = 252 > 0. The

Vs(e) = e Py[Age + h(t,e)] + [Aoe + h(t,e)]" Pye
=—¢le+ 2eTP0h(t, e)
< —lell* + 2Amax (Po)lel||| (¢, €) |

—llell* + k(2 + V2)|le]|(2Ba, + Ba,)

IN

(see Remark 2). Defining Ba = 2Ba, + Ba,, we can rewrite the foregoing inequality as

Vs(e) < —(1 = ¢n)llell* — fle] [¢1||€H —ek(2+V2)Ba
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where ¢ is a strictly positive constant less than unity, i.e. 0 < ¢1 < 1. Then

Va(e) < —(1—gn)llel* Vel > M

¢

Thus, from (Khalil 2002, Theorem 4.18), there exists a finite time ¢3 > t2 such that

le(t)|| <ekBs  Vt>ts (27)
with
B, & (44 3v2)Ba
b1
In other words, for any z(t3) € IR* x S,
et) e Bi £ {ec R*: |le| <ekB:}  t>t3 (28)

Fourth part. Let
T
2 2 (21 29 23 24)T and (= (z% eT)

Remark 3: One can verify, from the expressions defining 6, and éd, that ( =0 <— 2z = 0.

Observe that, from t3 on, the translational motion closed-loop dynamics, (1a), (1b), (3)—(7),
can be expressed as

= 2 (29a)
29 = —koya(z2 + o11(kz1 + 22)) + R1(0) (29b)
PR (29¢)
b4 = —090(24 + 091 (23 + 24)) + Ro(C) (29d)
where
R1(¢) = —ui [sin(er + 64) — sin b + cus cos(er + 0a)
and
Ry(¢) = uq [cos(er + 04) — cos b4] + eua sin(eq + 64)
with
U = Og — 262 —e1 + 2€kA1 (30)

Let us note that from (27), (30), and the facts that |aq| < kBg, (see (16)), |sin(e; + 04)—sin f,| <
le1], [cos(er +0a) — cos 4] < [en], ler| < [le]l, and [2e2 +ex] = [(1 2)e] < [|(1 2)][le]l = V/5]e],
we have

[Ri(C(1))| < ek B,
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i1 =1,2, Vt > t3, with
B, £ Bs, +2¢Ba, + B'B:
where B’ £ B,, + V/5e, with B,, as defined in (15). Further, observe that in view of the
boundedness of the terms involved in the translational motion closed-loop dynamics, i.e. (1a),
(1b), (3)—(7), 2r(t) exists and is bounded at any finite time ¢ > 0.1
We begin by analyzing the vertical motion closed-loop dynamics, i.e. equations (29¢) and
(29d). Suppose that €k is small enough to satisfy
EkBRi S min{Lgl, L22 — 2M21, kLll, k(ng — 2M11)} (31)

Let us define the positive scalar function Vj = 23. Its derivative along the system trajectories is
given by

Vi = 22424 = 224 [—002(24 + 091 (23 + 24)) + R2(Q)] (32)
Suppose for the moment that z4 > Mas; + ekBg, > 0. Under such an assumption, we have
24+ 091(-) > 24 — Moy > ekBp >0
Then, according to Definition 3.2, either oa2(-) € (0, L3,], implying
24 = —24 — 021(") + Ra(C) < —24 + Moy +ckBp, <0
or oa2(-) € (L, M), entailing
2y = —022(-) + R2(¢) < —L3, + ekBp, <0
since, according to (31), ekBp < Lo — 2Ma; < Lgs < L;Q. Hence,
24 > Moy +ekBp, >0 = 2, <0 (33)
Similarly, if 24 < —M2; — ekBp, <0, which implies
24+ 021(-) < 2y + Moy < —kBp <0
then either ogs(-) € [—L5,,0) entailing
24 = —24 —021(-) + Ra(() > —24 — Moy — €kBp, >0
or o93(-) € [=Ms,, —Ls,) implying
24 = —092(-) + Ra(¢) > Loy — ekBp, >0
since, according to (31), ekBp, < Loz — 2Ma1 < Lao < Lj,. Thus,

24 < =My —ekBp <0 = 2, >0 (34)

1>

'In particular, for any 7 > 0, |22(t)] < |22(0)] + Fr and |21(t)] < |21(0)| + |22(0)|7 + %7'2, vt € [0,7], where F
\/Bg1 + (¢Bu, )2, with By, = Mu1 + Msa, while |z4(t)| < |24(0)] + (F + 1)7 and |23()| < [23(0)] + [z4(0)|7 + FF 72,
vt € [0, 7).
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Therefore, from (33) and (34), we see that
|z4| > Moy + kB, = sign(zy) = —sign(Zy) = V, <0
This proves that, for any ((t3) € IR* x By, there exists a finite time ¢4 > t3 such that
|24(t)| < May + ekBp,
Vt > t4. Then, for all ¢ > t4, we have
|24 + 021(-)| < |za]| + M2y < 2Myy +ekBpg, < Lo
since, from (31), ekBg < Lag — 2Ma;. Consequently, according to item (a) of Definition 3.2,
092(24 + 021(+)) = 24 + o21(")
and (29d) becomes
24 = —z4 — 021(23 + 21) + R2(() (35)

from ¢, on. Let us now define ¢; = 23+ 24 and the scalar positive function V5 2 ¢?. The derivative
of V5 along the system trajectories is given by

Vs = 20141 = 21 [—021(q1) + Ra(C)]

Following a reasoning similar to the one developed for the analysis of V; in (32), one sees that

lq1| > ekBg, == sign(q1) = —sign(q1) = Vs <0
Hence, for any ((t3) € IR* x By, there exists a finite time t5 > ¢4 such that

lq1(t)| < ekBp, < Ly
(see (31)), Vt > t5. Consequently, according to item (a) of Definition 3.2,
091(23 + 24) = 23 + 24
and (35) becomes
24 = —23 — 224 + R2(Q)

from t5 on. At this point, we have that, for any ((t3) € IR* x By, provided that ek is small
enough,

(Zg(t),24(t)) S £ {(23,24) c R?: ’24‘ < Moy +€kBRi , ‘2’3 + 24‘ < Lgl} (36)

Vt > t5, where the value of every two-level linear saturation function involved in 7o (see (6)) is
equal to that of its arguments.

Let us now analyze the horizontal motion closed-loop dynamics, i.e. equations (29a) and (29b).
We define the positive scalar function Vg = z3. Its derivative along the system trajectories is
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given by
Vo = 22040 = 229 [—ko12(20 + 011 (k21 + 22)) + Ri(Q))]

Following a procedure similar to the one developed above for the analysis of V; in (32), one sees
that

|z2| > My1 +eBp, = sign(z2) = —sign(é2) = Vs <0
This proves that, for any ((t3) € IR* x By, there exists a finite time tg > t3 such that
|22(t)| < Mi1 + eBg,
Vt > tg. Then, for all t > tg
|z2 + 011(-)| <[22 + M1 < 2M1y +eBp, < L2
since, from (31), eBp, < L1z — 2My;1. Consequently, according to item (a) of Definition 3.2,
o12(22 + 011(+)) = 22 + 011 ()
and (29b) becomes
Zo = —kzo — koy1(kz1 + 22) + R1(¢) (37)

from tg on. Let us now define ¢o = kz; + 2 and the positive scalar function V5 = q%. The
derivative of V7 along the system trajectories is given by

Vr = 20262 = 2q2 [ko11(q2) + R1(Q)]

Following a reasoning similar to the one developed above, one sees that

lg2| > eBg, = sign(q2) # sign(¢2) = Vi <0
Hence, for any ((t3) € IR* x By, there exists a time t; > tg such that

g2(t)| < eBp, < L1
(see (31)), Vt > t7. Consequently, according to item (a) of Definition 3.2,
o11(kz1 + 29) = kz1 + 29
and (37) becomes
5y = —k%2) — 2kzy + R1(Q)

from t7 on. Thus, we have that, for any ((t3) € IR* x By, provided that ek is small enough,

(Zl(t),ZQ(t)) S 52 £ {(Zl,ZQ) S ]R2 : |Z2| < M +€BRi R |k721 + Z2| < Ln} (38)
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Vt > t7, where the value of every two-level linear saturation function involved in 71 (see (5)) is

equal to that of its argument. Finally, from (36) and (38) we see that, for any ((t3) € IR* x By,
provided that ek is small enough,

ZT(t) € S = S1 X So Vvt > t & max{t5,t7}

where the value of every two-level linear saturation in u; (see (3)) is equal to that of its argument.
More generally, considering (28),

C(t) € S12 x By vt > t (39)

where the value of every linear saturation in u; and ug (see (3) and (4)) is equal to that of its
arguments.

Fifth part. As a consequence of the precedent analysis, the closed-loop system may be expressed,
from ¢’ on, as

{=A1C+9(C)
where
0 1 0 0 0 O 0
—k2-20 0 0 0 —uq sin(eg + 04) + ug sin Oy + cug cos (eq + 04)
4 0O 0O 0 1 0 O 0
=1 0 0 -1-20 0 - 9(Q) = uy cos (e1 + 0g) — uy cos By + cug sin (€1 + 0y)
0 0O 0 0 0 1 0
0 0 0 0 —1-2 ek(2A1 + Ay)

The characteristic polynomial of A; is given by [Ag — A1| = (A + k)2(A + 1)* wherefrom it is
clear that A; is Hurwitz. Hence there exists a (unique) positive definite symmetric matrix Pj
that solves the Lyapunov equation PyA; + AT Py = —I;. Let us, on the other hand, note that,
on S12 X By (see (39) and (28)):
Ig(ON1? = (—uy sin (eq + Og) + uy sin Oy + eug cos (e1 + 0,))?
+ (ug cos (e + 0g) — uq cos g + cug sin (e + 04))* + (ek)*(2A1 + Az)?
= o} [(sin (e1 + 0q) — sinfy)® + (cos (e1 + 84) — cos 0)?]
— 2euqug [sin (e + 04) cos 04 — sin O cos (e1 + 64)]
+ (EUQ)2 [sin2 (e1 +64) + cos? (e1 + Qd)] + (Ek)2(2A1 + A2)2
= ui [(sin (e1 + 0q) — sin04)® + (cos (e1 + ) — cos 0,4)?]
— 2euqugsine; + (eup)? + (ek)?(2A1 + Ay)?
< 2B2 |e1|* + 2ckBy, By, le1| + (ck)?B2, + (¢k)?(2Ba, + Ba,)?
< 2B2 |le||* + 2ckBy, Ba,|le|| + (ek)? B2, + (¢k)*(2Ba, + Ba,)?
< (Ek)z [2BU1B5(BU1BE + Bﬂz) + B§2 + (2BA1 + BAz)z]
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i.€.
19(O)l < ekBg

with

B; & \/2BUIBE(BulBé + Bg,) + B2, + (2Ba, + Ba,)?

where By, = Ba, + ¢V/5B: + 26Ba, and the facts that |ay| < kBg, (see (16)), [2e2 + e1| =
(1 2)e] < [I(1 2)|lle]l = V5llell, |sin(er + 8a) —sinfa] < |ex], [cos(er + 8a) — cosfa| < |eal,
ler] < |le]|, and (27), have been considered.

Now, let us define the quadratic Lyapunov candidate function Vg(¢) = ¢TPi¢. On Sip x By
(see (39)), its derivative along the system trajectories is given by

V5(¢) = ¢"Pi[ALC + 9(O)] + [A1¢ + 9(O)T Pi¢
= —(T¢+2¢"Pig(C)
< —[ICI1 + 2Amax (P)IICIg (O

< —(1 = @)IICI* = @2 ¢l + 25k By Amax (P
2ekBgAmax (P,
<—a-ail L o) > ZhEeed

where ¢ is a strictly positive constant less than unity, i.e. 0 < ¢o < 1. Thus, according to
(Khalil 2002, Theorem 4.18), there exists a finite time tg > t' such that

IC@OI < ekBg (40)

for all t > tg, with

B: &
¢ b2 Amin(P1)
In other words, for any ((t') € S12 x By,
((t)eBy2{Ce R :|(|| <eckBg}  Vt>tg (41)

where, according to the precedent parts of the proof, the value of every linear saturation in u;
and us is equal to that of its argument.

Remark 4: Observe that By is a positively invariant compact set containing Og.

Sizth part. From tg on, the closed-loop system dynamics may be written as

(= As¢ + (¢
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where

0 1 0 0 O

0
—k* =2k 0 0 —1 0
4 0 0 01 0 O
10 0 -1-20 0
0O 0 0 0 0 1
0 0 0 0 —-1-2
and
§(0) = () +€(0) (42)
with
0 0
—uq[sin(ey + 04) — ug sinfy] + eq ug cos (e1 + 0y)
) 0 L 0
9(¢) = uy|cos (e1 + 64) — uy cos O] an 9(¢) = ug sin (eq + 04)
0 0
0 k(QAl + Ay)
and ¢ evolves in By (see (41)) where 04j(s;;) = sij in uy and pmn(Smn) = Sma in u2, and

consequently o7,(-) = 1, 0j5(-) = o/;(-) = 0, and 07,,,(*) = 1, o7,,(-) = 0. Let us note that, after
several basic developments, we have

0go
aZi
9
aZj

= (1 —cosep)ik®™ Vi=1,2

=(j—2)sine; Vj=3,4
03
861
o3
862

= —uqcos(ey + 04) — cos O] — 1o
=0

and
044
8ZZ'
00
8Zj

= —ik*'sine;  Vi=1,2

=(2—j)(cosey — 1) Vi =3,4
231
661
031
662

= —uq[sin(e; + 04) — sinfy] + 1

=0
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Hence
5|05
Z 8gC2 < k(k+2)|1 — cosey| + 3|siney| + uy|cos(ey 4+ 0g) — cosbg| + |(1 2)- (23 z1)T]
=1 ¢
< (K + 2k)lex| + 3ler| + Bu,ler| + V5[l(z5  24)]|
< (k2 +2k+3+V5+ Bu)|<|
and
6 04
Z 8{4 < k(k+2)|siney| + 3| cose; — 1| +uy|sin(e; + 0g) — sin | + |(K% 2k) - (21 22)7|
i=1 v

< (k® 4 2k)|e1| + 3ler| + By, le1| + EVE2 +4[|(z1 20)]|
< (K®+2k+3+kVE2+4+ By
< (K* 4 2k 4+ 3+ V5 + By,)|[C]|

where the facts that [sine;| < |ey|, [coser — 1| < let], ler] < |[CI, (1 2)(z3 =z4)T| <

102l - [I(zs 20)ll = V5ll(zs 20)ll, (B2 2k) (=1 22)"| < (K2 2k)] - (s 22)]
EVEZ+4|(z1 22)| < V5|(z1 22)|, and ||[(2;  zj11)|l < ||¢]| with j = 1 or j = 3, were consid-
ered. Then,

H H (k* + 2k + 3+ V5 + By,) |||
and consequently

Ha{H < VB + 2%+ 3+ VB + Bu)IlC]

since H ac H <6 H H (see for instance Exercise 2.2 in the 2nd edition of Khalil (2002)). Hence

H H <chBy  VCeB

with
By £ V6(k* + 2k + 3+ V5 + By, ) B;

where (40) has been considered. From this and the easily verifiable fact that §(0g) = 0g, we have
that ||g({)|| < ekB;l|C][, V¢ € Ba, according to (Khalil 2002, Lemma 3.3). On the other hand, by
analyzing every term involved in §(¢), one can easily see that §(¢) is continuously differentiable
on Bsy. Hence, the Jacobian matrix of §((), g—g, exists and is continuous on By. Moreover, V( € Bs,

99
¢
is finite. From this and the easily verifiable fact that §(0s) = 0, we have that ||g(¢)| < L|[<]l,
V( € By, according to (Khalil 2002, Lemma 3.3). Thus, from (42), we have that

is bounded in view of the compactness of By, and consequently L = max¢ep, H ac H exists and

13O < 13O +llg(ll < eBICI V¢ € By (45)
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with B = kB; + L.

Now, the characteristic polynomial of Ay is given by |[Alg — As| = (A + k)?(X +1)* whence one
sees that Ao is Hurwitz. Then, according to (Khalil 2002, Theorem 4.6), there exists a (unique)
symmetric positive definite matrix P, that solves the Lyapunov equation P, As + A2TP2 = —I.
Consider the positive definite scalar function Vy(¢) = ¢T Py(. Its derivative along the closed-loop
system trajectories is given by

Vo(¢) = (TP A + g(O)] + [A2¢ + g(O)T Po¢
= —("¢+2("Py(¢)
~[[CII? + 2 max (PN 1O

< — (1= 2eBman(P)) 12

IN

V(¢ € Bg, where (45) has been considered. Then, for a sufficiently small value of ¢, such that

< =, Vg(C) is negative definite on Bs. Moreover, recall that By is compact and
2BAmax(P2)

positively invariant (see Remark 4). Observe, on the other hand, that F £ {¢ € By : Vo(¢) =

0} = {0¢}. Consequently, the largest invariant set contained in F is E itself. Therefore, from

LaSalle’s invariance principle (see for instance (Khalil 2002, Theorem 4.4)), we conclude that,

for any ((ts) € B, ((t) — 0g as t — oo. Finally, from the precedent parts of the proof and

Remark 3, we conclude that, for any 2(0) € IR®, 2(t) — 0g as t — oo.

Conclusion. Since, according to the proof, the origin is asymptotically stable and, for any
2(0) € R®, 2(t) — 0Og as t — oo (which equivalently states that the region of attraction is
IRS), then according for instance to (Khalil 2002, §4.1), (Sastry 1999, Definition 5.8), (Hahn
1967, §26), (Sepulchre et al. 1997, §2.3.1), and (Rouche et al. 1977, §2.10-2.11), Og is a globally
asymptotically stable equilibrium for the closed-loop system.

g

Remark 5: Let us note that if ¢ = 0, in which case éd = wy and éd = g, then the third part
proves that, for any z(ts) € IR* x Sy, e(t) — 0y as t — oo. Further, through the application of
La Salle’s invariance principle, the fifth part proves that, for any ((¢') € S12 x By, ((t) — 0g as
t — oo. Consequently, in the ¢ = 0 case, the fifth part ends the proof.

Remark 6: From the proof of Proposition 4.1, one sees that the simultaneous satisfaction of

L L L
k < min { L e } (46a)
1
< (46D)
2B}‘maX(P2)
Loy Loy —2Moy kLy1 k(Lig — 2M
ek < min | L20 L2 n kLu (L12 11),0.8 (46¢)

states a sufficient condition to satisfy the small enough requirement for k& and € that the algorithm
imposes for the global stabilization goal to be achieved. These inequalities come respectively from
the first, sixth, and fourth parts of the proof of Proposition 4.1. Note however that the worst
case character implicitly adopted along the proof renders restrictive such criterion. Small enough
values of k and e not necessarily satisfying inequalities (46) may be chosen leading however to
the globally stabilizing goal.
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Figure 3. System states and control inputs (— real data, - — - reference)

5 Experimental results

Numerical results with several values of € # 0 are presented in (Zavala-Rio et al. 2003, §4) and
(Lépez-Araujo 2008, Chapter 4). The control objective is indeed shown to be achieved avoiding
input saturation on each of the cases considered therein. Here, we present some experimental
results obtained when the control scheme in (3)—(7) is applied to a real prototype: the four-rotor
Draganflyer III helicopter (see Fig. 2). In this device, the front and rear motors rotate counter
clockwise while the other two rotate clockwise. When the yaw and roll angles are set to zero, this
helicopter reduces to a PVTOL system. We have used a Futaba Skysport 4 radio for transmitting
the control signals; these are referred as the throttle (uq1) and the pitch (uz2) control inputs. They
are constrained in the radio to satisfy 0.66 V < u; < 4.70V and 1.23V < uy < 4.16 V. In order
to measure the position (x,y) and the orientation # of the mini helicopter, we have used a 3D
tracker system (POLHEMUS). The computation of the control input requires the knowledge of
various angular and linear velocities. We have obtained the angular velocity by means of a gyro
Murata ENV-05F-03. Linear velocities were approximated as ¢ = £~ where T is the sampling
period (T = 0.05sec, in our experiment). The initial conditions and desired configuration were
(z0,Y0,00) = (0,30cm, 0.1rad) and (x4, yq,04) = (0,50 cm, 0). In order to ease the displacement
of the helicopter altitude, small step inputs were gradually added to y4 around the reference
value (50 cm) between 10 sec and 80 sec. In Fig. 3, we can see that the altitude y follows
the reference. Concerning the position x, we observe a small deviation (2 ¢cm) due to, among
others, uncertainties and cables connections between the PC and the mini helicopter. The angle
0 converges to zero and the control inputs are bounded. In all figures, we note that the signals are
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corrupted by noise due to mechanical gears of motors and propellers. Furthermore, uncertainties
in the responses are also caused by the difficulty to adjust gains and couplings existing in the
four-rotors helicopter, which have not been taken into account in the analysis. However, the
experimental results presented here show that the control strategy works on a real experiment.

6 Conclusions

In this work, global stabilization of the PVTOL aircraft with lateral force coupling and bounded
inputs has been addressed. The control approach had been developed considering ¢ = 0. Here,
it has been proven that such an algorithm achieves the global stabilization objective even with
€ # 0, provided that such a value is small enough. A certain degree of robustness of such a control
scheme with respect to uncertain (small enough) values of ¢ is thus concluded. The proposed
methodology takes into account the positive nature of the thrust. The presented analysis was
based on the use of embedded saturation functions. The demonstration does not involve any
change in the proposed algorithm. Finally, the applicability of the control design methodology
has been shown by experimental results on a real mini-helicopter.

Appendix A:

A and Ay, respectively in (24) and (25), are given by the following expressions:

U2

A== |(1+72)h; — 1Ay, (Ala)
uy

where
Aj, = 0ly(s12)[1 + 07 (s11)] cos 0 (Alb)
Ay, = 0ho(522)[1 + 0hy(s21)]sin @ (Alc)

and

Ag = Ag, + A (A1d)

where

U

Ai}d = u—; |:2(DdAu1 + (1 + TQ)Ap'l + p1A7'«2 — FlAp'g — pzAT1:| (Ale)

%Al + ’LL_; |:(1 + TQ)A;I — T1A¢2:| (A1f)

A1 = u_; [(1 + 7‘2)A,a1 + f’gA;l — FlAan — 7"1A7a2] —
(3] ’LLl

uy
with

Aul = szlArﬂ + (1 + T2)A7'~2 (Alg)
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Ay, = oly(s12) <1 + 0'/11(811)) ( — uy sin@ + oy (s11) (k& — vy sin 0)) cos 6

+ 0l5(512) (k‘ail(su) + o1 (s11) (k3 — ug sin 9)) cos 6 (Alh)

/

O19\S512 .
+ 12151 ) (1 + 0&1(311)>Aa1 sin ¢

Ap, = 059(s22) (1 + 051(821)) <u1 cos ) — 1+ by (s91) (Y + uy cos O — 1)) sin 0

+ 0y (s22) (1 (521) + 0% (21) (5 + wr cos f — 1)) sin 6 (A1D)
_ O'é%«fm) (1 + 051(321)>Au1 cos 0
1= p1 — U, (A1j)
Ty = p2 — €Uy, (Alk)

Arﬂ = 0'/1/2(812)312(1 + 0'/11(811)) COS@ + 032(812)03/1 (811)311 COS@

) (A11)

- 0{2(312)(1 + 0'/11(811))98in9
Afz = 05’2(822)@2(1 + 0'11(311)) sin 0 + oh9(522)05; (821) 821 sin 6 (Alm)
: m

+ 09(s22) (1 + 0% (s21)) 6 cos §
i = — e Ay, (Aln)

uy
iy = ég — 2[ag — 2(0 — wa) — (0 — 0a) — wa] — (6 — 6a) (Alo)
(:dd = Qg — €]€Ad)d (Alp)

2

) . - ) ) ) Uy . )
Qg = T1P2 +T1pe — (1 +1r2)1 — 7’2901] T w [Ulad + wd<u—1ul + Nl) + led} (Alq)

Sl =

R V51 k*r1p1 + ko1 + (14 79)p2 + fopo
1 = —u—lm + ”

(Alr)

p1 = p1 — U, (Als)

,[)2 = Y2 — EZLQAP'Z (Alt)
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PO " . . ’ . . 2
01 = — 079(s12)812( — w1 sinf + o1 (s11)(kE — uy sinh)
— 2075(s12) ( —uysin @ + oy (s11) (k& — g sin 9)) ( — w16 cos @ — 0y sinf
+ oy (s11)$11 (k3 — ug sin @) + o}, (s11) (kag — u10 cos 6 — iy sin 0))
— d'la(s12)312 [ — w1 cos§ — pysin @ + oy (s11) (ki — uy sin 0)?
+ o1 (s11)(—ku sin @ — u; 0 cos 0 — puy sin 0)]
. . . (Alu)
— 0l5(s12) { — g cos 0 4 w162 sin @ — 160 cos O — 116 cos 6 — fuy sin 6
+ o1 (s11)$11 (ki — u sin 6)?
+ 207, (s11) (k& — uy sin6)(ka, — w10 cos O — 11 sin 0)
+ o1 (s11)811(—kuy sin 6 — w10 cos ) — 1 sin )
+ 031(311)( — ku16 cos 6 — ki sin @ — ujug cos 0 + w162 sin 6

— ulécos 0 — ,ulécos 0 — [11 sin 9)]

2
Yo = — ahh(s92) 892 <u1 cos 0 — 1 + oby(s21)(y + uy cos O — 1))

— 20%5(522) <u1 cos — 1+ o4 (s21)(y + ug cos b — 1)) ( — u10sin 6 + 1wy cos f
+ 01 (s21)821 (9 + w1 cos 0 — 1) + 0%y (s21)(ay — w10sin 0 + iy cos 0))
— 095 (522) 522 [ — u10sin 0 + 13 cos 0 + ol (s21)(§ + uqg cos § — 1)
+ ob(s21)(u1 cos @ — 1 — u1fsin 6 + pu; cos 6)}

. . . (Alv)
— 099 (522) [ — uyup sinf — u10% cos § — 110sin 6§ — 16 sin @ + fiy cos 6

+ ot (s21)$21 (9 + ug cos 6 — 1)?

+ 205, (s21) (9 + ug cos 0 — 1)(ay — 110 sin 0 + @y cos 0)

+ 091 (s21)$21 (w1 cos — 1 — u10sin 6 + p11 cos 0)

+ 0’51(321)( — w10 sin 6 4 1 cos @ — ujus sin @ — w162 cos f

— 10sinf — uﬁsin@ + f11 cos 9)}
and

S12 = Qg + 0&1(811)$11 , Sn=kt+4+a, , az=—uisinf+ cuscosb (AlW)

322 = ay + 051(821)é21 s 321 = y + Ay 5, Ay = U1 cos f + EU sinf — 1 (AlX)
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