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This paper deals with the chaos suppression for oscillators in canonical form. The
underlying idea is to optimize the robust chaos supression by accounting the control cost.
The robust chaos supression is attained by the robust asymptotic feedback while the
optimization is solved via Riccatti ecuations. A �nite horizon is arbitrarily settled and
the suppression is achieved at this time by means of optimal control problem. This scheme
allows to take into account the energy that is wasted by the controller and the closed-loop
performance of states. Some experimental results show the features of the approach when
a High-Gain observer is added in order to have available the complete state vector.

1. Introduction

Nowadays the studies of chaotic systems are still having interest from many �elds, like
physics, chemistry, electronics, biology, control theory even economy. The chaos suppres-
sion problem exhibits an important advance of chaos theory. From the point of view of
control theory, the chaos suppression is treated as stabilization of a nonlinear system and
a lot of works dealing with stabilization, robust stabilization, secure communication, etc.
had been published in the recent decade. Some of these works exploit the geometric con-
trol theory to obtain a (suitable) linear equivalent system and then apply the standard
methods of linear control. As the chaotic system is not fully linearizable an useful way to
tackle the problem is the de�nition of the canonical form obtained by Lie-based derivative
operator [5], [8], [10]. Most of chaotic systems can be transform to this canonical form
aided by a nonlinear di¤eomorphic map, see for instance [5] and [10].
Currently two questions arises from the chaos suppression problem. The �rst one ques-

tion is about how to set an arbitrary time in which the stabilization of system be suc-
cessfully done. The latter is how to estimate (and possibly to reduce) the control e¤ort
wasted in perform the stabilization. Bowong and Kakmeni [3] have reported a scheme for
the compute the "time duration" on robust asymptotic feedback for suppressing chaotic
behavior. Their work opens this research direction, but their method is overcomplex,
implementation is di¢ cult, and implies to solve by simulation a given di¤erential equa-
tion at each step of control. Moreover, the control cost has not been reported and an
experimental veri�cation shows that high control cost is involved in their approach. The
present contribution tackles this two questions and the results shows that is feasible under
some conditions set the time of convergence and take into account the e¤ort wasted.
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The rest of the paper is organized as follows. The problem formulation is presented in
next section. In section 3 the ideal robust controller is constructed. Section 4 is devoted
to tackle the problem under estimation of states. Section 5 introduces, by simulations,
the features of controller. Section 6 shows the behavior of a real system under this class
of controllers. Finally Section 7 present the conclusions of the present document.

2. Problem Formulation

Consider the chaotic system in the canonical form:8>><>>:
_xi = xi+1; i = 1; 2; :::; p� 1;
_xp = &(x; �) + 
(x; �)u;
_� = �(x; �);
y = x1

(1)

where x 2 Rp, � 2 Rn�p, u 2 R and y 2 R are the state variables, unobservable vari-
ables, system input and output, respectively. &(x; �) and 
(x; �) are unknown nonlinear
functions smooth functions.
The objective is to design a robust feedback controller for system (1) achieving some

optimal objective and achieving the trajectory y = 0 in a (may be given) �nite time.
For the uncertain chaotic system (1) we take the following assumptions

Assumption 1. Only the system output y = x1 is available for feedback.
Assumption 2. 
(x; �) is bounded away from zero.
Assumption 3. The sign of nonlinear function 
(x; �) is known and and estimate 
̂(x)
of 
(x; �) is available for feedback.
Assumption 4. System (1) is minimum phase; i.e., the subsystem _� = �(x; �) is stable.
By de�ning �(x; �) = 
(x; �)� 
̂(x), �(x; �; u) = &(x; �) + �(x; �)u, and � = �(x; �; u)

[6]. Thus the system (1) takes the form8>>>><>>>>:
_xi = xi+1; i = 1; 2; :::; p� 1;
_xp = � + 
̂(x)u;
_� = �(x; �; �; u; _u)
_� = �(x; �);
y = x1

(2)

First step in our approach is to consider the transitive of states only. To this end, a
quadratic performance criterion, qualifying the transient trajectory toward the desired
end point (y = 0), is de�ned as [4]

J(x; u) = x(t)|Qfx(t) +

Z T

t0

x(t)|Qx(t)dt (3)

where t0 � 0 is the time which control starts and T > t0 is the time when the system (2)
achieves the desired trajectory (y = 0); Q > 0, Qf � 0 are symmetric matrices.
It can be proof that system (2) is dynamically externally equivalent to system (1).
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3. Ideal robust control

Theorem 1 The control law

u(x) =
1


̂(x)

�
�� � 1

2
B|P (t)x

�
; t0 � t � T (4)

where T is given, P (t) is a symmetric positive matrix solving the Riccati equation

� _P = A|P + PA� PBB|P +Q
P (T ) = Qf

(5)

with A 2 Rp�p and B 2 Rp�p de�ned as

A =

26664
0 1 � � � 0
...
...
. . .

...
0 0 � � � 1
0 0 � � � 0

37775 B =

26664
0
...
0
1

37775
stabilizes the system (2) in the following sense x ! 0 as t ! T < 1; with a suit-
able matrices Q and Qf , moreover the closed loop performs a value of the functional (3)
J(x; u) = x|0P (0)x0, where x0 is the initial condition of system.

Proof. Substituting control law (4) in (2) the closed-loop can be written as�
_x =

�
A� 1

2
BB|P (t)

�
x

_� = �(x; �; �; u; _u)
(6)

De�ning the Lyapunov function

V (t) = x(t)|P (t)x(t) (7)

and evaluate his time derivative

_V (t) = _x(t)|P (t)x(t) + x(t)| _P (t)x(t) + x(t)|P (t) _x(t)

substituting (5) and (6) and skipping the time dependence

_V = x|
�
A� 1

2
BB|P

�|
Px+ x|P

�
A� 1

2
BB|P

�
x

+x(t)| (�A|P � PA+ PBB|P �Q)x(t)

�nally we have

_V (t) = �x(t)|Qx(t) (8)

which is negative de�nite, thus x(t) converges to zero, and Q determines how much fast
converges. Now, Integrating (8) from t0 to T with respect t and using (7) we have

x(T )|P (T )x(T )� x(0)|P (0)x(0) = �
Z T

t0

x(t)|Qx(t)dt

then J(x; u) = x|0P (0)x0
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Remark 1 The control law (4) is de�ned only for the interval t0 � t � T , and the
stabilization is achieved for some matrices Q and Qf if solution of Riccati equation (5)
exist in such interval. The proposed feedback requires availability of the complete state.

A more complete approach can be settled introducing the following de�nitions

~B =
�
0 � � � 0 
̂(x)

�|
uu = � �


̂(x)

(9)

we can call uu the part "unavoidable" of control, that is the control force necessary to
compensate the nonlinear function � in the system. In this way, as a second step of
design, the control e¤ort can be added to the cost function. That is, we can rede�ne the
performance criterion to include the "avoidable" control e¤ort in a quadratic criterion (3)
to have

~J(x; ~u) = x(t)|Qfx(t) +

Z T

t0

[x(t)|Qx(t) + ~u|R~u] dt (10)

with a given symmetric matrix R > 0; ~u := u� uu: Hence the control law becomes

u =

�
� �


̂(x)
+ ~u

�
Therefore the closed loop takes the form�
_x = Ax+ ~B~u
_� = �(x; �; �; u; _u)

(11)

that allows to set the standard LQ problem as [4]

min
u

~J(x; ~u)

s:t: _x = Ax+ ~B~u

whose solution for controller is given by

~u = �R�1B|P (t)x; t0 � t � T

where P (t) is now the solution of the following Riccati equation

� _P = A|P + PA� P ~BR�1 ~B| +Q
P (T ) = Qf

(12)

and a value of functional (10) given by

~J(x; ~u) = x|0P (0)x0 (13)

Notice that, at this point, the approach requires full knowledge of states. Nevertheless,
according with Assumption 1, only x1 in available for feedback. In the next section, the
full knowledge situation is relaxed by paying higher control cost due to state estimation.
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4. Suboptimal robust control

Because Assumption 1, only x1 is available for feedback. Then, the construction of an
observer becomes suitable to get a suboptimal robust controller. We take the observer
from [1], [7] and [9].8>>>><>>>>:

�
x̂i = x̂i+1 + C

i
p+1�

i(x1 � x̂1);
i = 1; 2; :::; p� 1;
�
x̂p = �̂ + 
̂(x̂)u+ C

p
p+1�

p(x1 � x̂1);
�
�̂ = �p+1(x1 � x̂1)

where (x̂,�̂) are estimated values of (x,�) respectively

Cip+1 =
(p+ 1)!

i!(p+ 1� i)!

and � is the so-called high-gain parameter. For a su¢ ciently large value of the high-gain
parameter �, the dynamics of estimation error converge exponentially to zero, see [7].
By using the de�ned estimates, the feedback control law (4) can be written as

u(x̂) =
1


̂(x̂)

�
��̂ � 1

2
B|P (t)x̂

�
; t0 � t � T (14)

and we complete the control after transient with the control

u(x̂) =
1


̂(x̂)

�
��̂ � 1

2
B| �Px̂

�
; t > T (15)

where �P is a constant positive de�nite matrix such that the system (2) still in y = 0 for
t > T , thus �P is also a tuning parameter.
Notice that the control cost of the suboptimal robust controller is higher than the ideal

one. The waste of energy increases due to the estimation, and have the form:

~J(x; ~u) = x|0P (0)x0 +

Z T

t0

(x� x̂)|Q (x� x̂)

in consequence, the choice of parameters becomes important and present a trade-o¤ be-
tween optimization and estimation.

5. Illustrative example

We take as example to illustrate the behavior of the proposed controller, the Chua�s
dynamical system, a system easy to implement physically [2]. Chua�s circuit is widely
know as a system that exhibits a strange attractor and having several con�gurations of
it. The dynamics of Chua�s circuits are given by the di¤erential equations [2]:8<:
_x1 = 
1 (x2 � x1 � f(x1)) + u
_x2 = x1 � x2 + x3
_x3 = �
2x2

(16)
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where u is the control input and

f(x1)

8<:
bx1 + a� b

ax1
bx1 � a+ b

x1 > 1
jx1j � 1
x1 < �1

Typical value of the system parameters 
1 = 9; 
2 = 100=7; a = �8=7 and b = �5=7 cre-
ates chaotic behavior in the dynamical system (16). The implementation of the controller
(14) on Chua�s system allows to show that it is capable to suppress chaos in dynamical
systems whose Lie derivative could not be de�ned at some points belonging to its domain.
In Chua�s system case, the Lie derivative is not de�ned at (�1; 0; 0) [12]. The observer
can be written as�
ẑ1 = �̂ + u+ 2�(z1 � ẑ1)
�̂ = �2(z1 � ẑ1)

(17)

for this case we can compare the performance with the work of Bowong and Kakmeni [3],
They use the same observer but a di¤erent controller based on a Lyapunov methodology.
The advantage that they present is that the control time is explicitly computed. In our
case the control time is arbitrarily settled and the suitable parameters founded.
The initial conditions of system (16) in both cases were (x1(0); x2(0); x3(0)) = (0:1; 0; 0)

and for the observer (17) (ẑ1(0); �̂(0)) = (0:1; 0:128). The high gain parameter value was
chosen as � = 20. The controller parameter were

Q = 1� 106; Qf = 1000
�P = 1000

and the �nite horizon is settled in T = 0:3. Figure (1) present the behavior of �rst state
of Chua�s system for the proposed controller (x1 Solid line) and the Bowong�s one (xc1
Dotted line). Both systems achieves the zero at t = 0:3, that is both converges to the
objective set, but the behavior of the proposed control looks better. A zoom in the time
line shows details and di¤erences of the evolution for both systems. Figure (2) shows
the second and third states for both systems. The system controlled by the proposed
controller converges faster to the origin.

6. Experimental implementation

Now, in order to illustrate the real behavior of the approach, the Malasoma�s oscillator
is physically implemented. The model is based on sprott�s work [13], and have three states
and have a nonlinear part due to a multiplicative signal. The analysis of chaos can be
found in [11]. The dynamical system is given by:8<:
_x1 = x2
_x2 = x3
_x3 = ��x3 � x1 + x1x2 + u

(18)

where � is a parameter that belonging to the set 2:08 < � < 2:51 allows the chaotic
behavior of system. In order to have a physical realization of Malasoma�s oscillator We
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used the IC AD633JN, which is a four-quadrant multiplier. It includes high impedance X
and Y inputs and a high impedance input Z (called summing node). The summing node
allows the addition of two or more multiplier outputs. The di¤erential inputs X and Y
are converted into di¤erential currents by means of internal voltage-to-currents converters.
The product of these currents is performed by the multiplying core and a buried Zener
reference provides an overall scale factor of 10V . Then the sum of (XY )=10 + Z, where
X = X1 � X2 and Y = Y1 � Y2 is applied to the ampli�er output. When the Z is not
used, it is grounded. Thus, the output of the multiplier is given by

W =
(X1 �X2)(Y1 � Y2)

10

(R9 +R10)

R9
+ Z

where Z is the optional summing input of the multiplier,X1, and Y1 are the inputs entering
to the multiplier and corresponds to the variables to be multiplied, the inputs X2, and Y2
are grounded, R9 and R10 are resistors whose value are chosen to compensate the e¤ect
of the scaling factor, given by the division of 10. The Figure (3) shows the diagram of
the circuit. Note that the chaotic circuit also includes �ve ampli�ers for integration and
inversion operations The TL082CN and TL084CN are junction �eld e¤ect transistors,
JFET�s, input opamp�s. Each opamp incorporates well-matched high-voltage JFET and
bipolar transistors in the same integrated circuit. The device features are high slew
rates, low input bias and o¤set currents, and low o¤set voltage temperature coe¢ cient.
This is signi�cant to reduce sensitivity to circuit parameter values. In this manner, the
bifurcation of the circuit can be handled.For a better control the observer is turned on
before the control acts thus the control law takes the form

u(x̂) =

8<:
0
1

̂(x̂)

�
��̂ � 1

2
B|P (t)x̂

�
1

̂(x̂)

�
��̂ � 1

2
B| �Px̂

� t < t0
t0 � t � T
t > T

(19)



9

Also We used the dSpace Real Time Interface CP1104, reading only state x1 of oscillator
and sending the control signal to the corresponding node. In order to the control signal
must be saturated at �10V . In all experiments the observer is turned on at t = 0 and
the controller at t0 = 10 with a �nite horizon of 0:1, that is T = 10:1; using a integration
step of Ts = 0:001, The weighting matrices are given as

Q =

�
0:1 0
0 0:1

�
; Qf =

�
0:1 0
0 0:1

�
and the observer gain as � = 135, �nally the corresponding tuning parameter for t > T is

�P =

�
1� 10�5 1� 10�5
1� 10�5 1� 10�5

�
Figure (4) shows the behavior when the observer signals are saturated as

x̂! �10
�̂ ! �0:5

notice that stabilization around the origin is achieved in the given horizon. In the Figure
(4) is also plot a zoom of the controller interval in order to view the acceptable behavior
taking into account that the system was observed from state x1. Finally the Figure (4)
shows the control action, the dotted lines pointed the control horizon. After t = 10:1 the
control signal is used only for con�ne near to zero the state. Figure (5) shows the phase
portrait of oscillator when the control action is applied, notice that only x1 versus x2 is
plotted, but from the equation (18) we know that x3 is also near to zero.Figure (6) shows
the behavior when the observer signals are not saturated but the controller is saturated at
�4V . Notice that stabilization around the origin is also achieved in the given horizon. In
the Figure (6) is also plot a zoom of the controller interval in order to view the acceptable
behavior. Finally the Figure (6) shows the control action, the dotted lines pointed the
control horizon. Figure (7) shows the phase portrait of oscillator when the control action
is applied, notice that only x1 versus x2 is plotted and there are near to zero.

7. Conclusions

In this contribution, an optimal robust feedback control is designed to suppress chaotic
behavior on dynamical system in strict-feedback form. The problem is solved for the full
knowledge of states and for the estimation of states as well, both consider the partial
linearization of the dynamical system. The controller takes into account the behavior of
transient response and the controller e¤ort. The proposed strategy leads to construct a
controller that optimizes the control cost and at the same time allows to set the time
for suppress the chaotic behavior. Two examples, shows the features of the proposed
controller by simulation and by physical realization of system. The construction of the
controller requires minimal information of system and have several tuning parameters
that shows the compromises between time of suppress an cost, and between estimation of
states and cost.
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Figure 5. Phase portriat of Malasoma�s Oscillator when controller is applied.
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