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Abstract Chaos generation in a new fractional order

unstable dissipative system with only two equilibrium

points is reported. Based on the integer version of a

unstable dissipative system (UDS) and using the same

system’s parameters as interger-order, fractional chaos

behavior is observed with an order less than three,

i.e., 2.85. The fractional order can be decreased as low

as 2.4 varying the equilibrium points of the fractional

UDS in accordance with a switching law that fulfills

the asymptotic stability theorem for fractional systems.

The largest Lyapunov exponents are computed from the

numerical time series in order to prove the chaos regime.

Besides, the presence of fractional chaos is also verified

obtaining the topological horseshoe in both cases. That

topological proof guarantees the chaos generation in the

proposed fractional order switching system avoiding the
possible numerical bias of Lyapunov exponents.

Keywords Fractional order · Chaotic system · Strange

attractor · Topological horseshoe · UDS

1 Introduction

During the last years fractional calculus starts to at-

tract attention of physicists and engineers due to the

fractional order models give more accuracy results than
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the corresponding integer-order models [1]-[9]. There

are two main features for that claim; the fractional or-

der parameter improves the system performance by in-

creasing one degree of freedom, and the other one is re-

lated to fractional derivatives provides a valuable tool

for the description of memory and hereditary proper-

ties in various processes [4]. Therefore, the fractional

derivatives have been used to describe elegantly inter-

disciplinary applications; for instance, in control theory

a fractional order controller has a unique isodamping

property that improves robustness via reducing the sen-

sitivity of the system stability margins with respect to

the system uncertainties [5]; in viscoelastic materials,

the fractional order damping element provides a better

model due its modeled as a force proportional to the

fractional order derivative to displacement [7]; also in

dielectric polarization [8], and so on [9], [10].

One of the main objectives in the literature about

fractional calculus is to find chaos behavior in frac-

tional order systems. Usually chaotic attractors cannot

be observed in nonlinear systems whose order is less

than three, so it is highly interesting to analyze the

routes to get fractional chaos. Recently there has been

a trend to transform integer-order chaotic systems in

fractional versions because of the integer-order versions

preserve chaotic dynamics when their models become

fractional [10],[11]; such as, the fractional Lorenz sys-

tem [12], the fractional Chen system [13], the fractional

Chua’s circuit [14], the fractional Rössler system [15],

the fractional jerk system [16], the fractional Lü sys-

tem [17], and many others [18]. Compared to integer-

order, the fractional chaotic systems have the follow-

ing advantages; the fractional derivatives have com-

plex geometrical interpretation because of their non-

local character and high nonlinearity; the power spec-

trum of fractional order chaotic systems fluctuates com-
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plexly increasing the chaoticity in frequency domain;

and the computational complexity goal is also achieved.

More specifically, the security in cryptosystems based

on chaos can be increased using the derivative orders as

secret keys in addition to the systems parameters [19],

[20]; so the complexity of the verification of each key

is strengthened causing the traditional cracking algo-

rithms of chaotic masking will be unusable. Therefore,

new fractional chaotic systems are crucial to enhance

the performance of several integer-order chaos-based

applications.

In this work, a fractional order unstable dissipative

system (FOUDS) is analyzed, considering the dynam-

ical characteristics of the integer-order UDS that have

been previously reported [21]. we are interested in find

a minimum effective order while chaos behavior is pre-

served in the first case. The fractional chaotic attractor

appears as a result of the combination of several unsta-

ble one-spiral trajectories around a saddle hyperbolic

stationary point. As second case, we also studied the

trade-off between the equilibrium points and the reduc-

tion of effective dimension, which is the sum of all orders

concerned to derivatives, in the proposed fractional or-

der chaotic system. The resulting fractional chaotic at-

tractor has same equilibria than scroll as shown herein.

The fractional chaos state is verified using the time se-

ries analysis of the numerical temporal data.

Additionally, we also demonstrated the fractional

chaotic attractor obtaining the topological horseshoe

in both cases because not only provides much informa-

tion that Lyapunov exponents, but also shows detailed

dynamics of chaos, that is to say, a fractional order sys-

tem should be chaotic if a horseshoe can be found to

exist in it [22]. The reason to find a horseshoe must be

Lyapunov exponents which seems insufficient to show

chaotic characteristics of the fractional order systems,

cause the numerical error may make it unreliable, espe-

cially when the computed output is close to zero.

2 Basic Definitions in Fractional Calculus

There are different definitions for fractional derivatives

[2]. The Riemann-Liouville and the Caputo definitions

are more reported than others [3]. The Caputo defini-

tion of the fractional derivative is,

0D
α
t f(t) =

1

Γ (m− α)

∫ t

0

f (m)(τ)

(t− τ)q+1−m dτ, (1)

where m = dαe. The Riemann-Liouville definition can

be described as

aD
α
t f(t) =

1

Γ (n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1f(τ)dτ, (2)

where n = dαe, and Γ is the Gamma function,

Γ (z) =

∫ ∞
0

tz−1e−tdt. (3)
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Fig. 1 Stability region of fractional order linear time invari-
ant system with order 0 < α < 1

2.1 Numerical Method for Solving Fractional

Differential Equations

We considered the Adams-Bashforth-Moulton method

(ABM) [24], first we consider the following fractional

differential equation:

Dα(y(x)− y(0)) = f(x, y(x)), x > 0

y(k)(0) = y
(k)
0 , k = 0, 1, . . . ,m− 1.

(4)

The solution of (4) is given by a integral equation

Volterra type as

y(x) =

dαe−1∑
k=0

yk0
tk

k!
+

1

Γ (α)

∫ x

0

(x− z)α−1f(z, y(z))dz.

(5)

How it is showed in [3], there is unique solution of (4)

in [0, X] interval, then we need to remplace (5) in a

discrete form so

yh(tn+1) =

dαe−1∑
k=0

yk0
tk

k!
+

hα

Γ (α+ 2)
f
(
tn+1, y

P
h (tn+1)

)
+

hα

Γ (α+ 2)

n+1∑
j=0

aj,n+1f (tj , yh(tj)) , (6)
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where

aj,n+1 =


nα+1 − (n− α)(n+ 1)α, j = 0,

(n− j + 2)α+1 + (n− j)α+1

−2(n− j + 1)α+1, 1 ≤ j ≤ n,
1, j = n+ 1,

(7)

The predictor has following structure

yPn+1 = y(0) +
1

Γ (α)

k∑
j=0

bj,n+1f(tj , yh(tj)), (8)

and bj,k+1 is define by

bj,n+1 =
hα

α
((n+ 1− j)α − (k − jα)). (9)

The error of this approximation is described as

max
j=0,1,...N

|y(tj)− yh(tj))| = O(hp), (10)

where p = min(2, 1 + α).

2.2 Asymptotic Stability of the Fractional-Order

System

Consider the following fractional-order dynamical sys-

tem:

dαx

dt
= Ax+Bu, (11)

where x ∈ Rn, u ∈ Rm, and A ∈ Rn×n, B ∈ Rn×m,

p ≡ (x∗1, x
∗
2, x
∗
3) be an equilibrium point of (11), and α

is the fractional commensurate order.

Consider the following autonomous system

dαx

dt
= Ax, x(0) = x0, (12)

where A is n × n matrix, and 0 < α < 1 is asymptoti-

cally stable if and only if | arg λ| > απ
2 for all eigenval-

ues (λ) of A. In this case, each component of solution

x(t) decays towards 0 like t−α [11]. This show that if

| arg(λ)| > απ
2 for all eigenvalues (λ) of A then the

solution xi(t) tends to 0 as t → ∞. Thus, the equilib-

rium point p of the system is asymptotically stable if

| arg(λ)| > απ
2 , for all eigenvalues λ of A, that is if

min
i
| arg(λi)| >

απ

2
(13)

The stable and unstable regions for 0 < α < 1 is shown

in Fig. 1

Table 1 Equilibrium points and corresponding eigenvalues

Equilibrium point Eigenvalues

O(0, 0, 0) −1.2041, 0.1020± 1.1115i
E1(0.66, 0, 0) −1.2041, 0.1020± 1.1115i

3 Fractional Order Unstable Dissipative

System - FOUDS

3.1 Unstable Dissipative System

The dynamical system is called unstable dissipative sys-

tem (UDS) because it is dissipative in one of its com-

ponents while unstable in the other two. The UDS is

builded with a switching law to obtain a strange at-

tractor. The strange attractor appear as a result of the

combination of several unstable one-spiral trajectories.

Each of these trajectories lies around a saddle hyper-

bolic stationary point. In [21] proposed a multiscroll

attractor by switching linear systems

ẋ = y,

ẏ = z.

ż = −ax− by − cz + f(x),

(14)

where a = 1.5, b = 1, c = 1 and β = 1.

f(x) =

{
β, if x ≥ 0.35,

0, otherwise
(15)

The system (14) is dissipative if the sum of its eigen-

values is negative, additionally the system has three

eigenvalues; one eigenvalue is a negative real number

and two eigenvalues are complex numbers with positive

real part.

3.2 Chaos generation in FOUDS

In this section, the corresponding fractional order sys-

tem of (14), considering (15) as the switched function,

is introduced and analyzed. The main idea consist on

finding the minimun fractional order where the system

exhibits chaos behavior using the same value for the

system parameters as integer-order case. The resulting

FOUDS is given by

Dαx = y,

Dαy = z,

Dαz = −ax− by − cz + f(x),

(16)

where α ∈ (0, 1). The equilibrium points of the system

(14) and the eigenvalues are given in Table 1, The sys-

tem has only two equilibrium points, it is clear that

them 0 and E1 are saddle points of index two; hence,

there are two-scroll attractor in the system (16).
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Fig. 2 xy-phase portraits for parameters given in Table 2

Table 2 Parameters which system in (16) generates chaotic behavior

Order α System parameters Behavior LLE Phase portrait

0.94 a = 1.5, b = 1, c = 1, β = 1 Fixed point Fig. 2 a)
0.95 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.44 Fig. 2 b)
0.96 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.51 Fig. 2 c)
0.97 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.51 Fig. 2 d)
0.98 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.56 Fig. 2 e)
0.99 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.6 Fig. 2 f)

In order to obtain fractional chaos from FOUDS, the

stability general theorem given in (13) must be satisfied.

As a result, the system (16) displays regular and stable

behavior if

α <
2

π
min
i
| arg(λi)| ≈ 0.9417 (17)

Accordingly, the system does not show chaotic behavior

for α < 0.9417 as demonstrated in Fig 2 a) where the

xy-phase portrait for α = 0.94 is displayed.

It is found that FOUDS shows chaotic behavior for

α ≥ 0.95. For α = 0.95 xy-phase portrait is shown in

Fig 2 b). Fig 2 c) to f) show xy-phase portraits to α =

0.96 to α = 0.99, respectively. This variety of fractional

chaotic attractors have same equilibria than scrolls.

The largest Lyapunov exponents (LE) λmax of the

fractional chaotic attractors in Fig 2 are computed from

the numerical time series of the state-variable x. As

well-known, a positive LE indicates chaos behavior. The

higher the value of the LE, the higher the chaoticity

observed in a system.

Table 2 shows the numerical results of largest LE

using TISEAN package software [25]. TISEAN has been

apointed as a proved tool to investigate the presence of

chaos in several numerical and experimental systems.

3.3 Chaos in Lowest Orders of FOUDS

As mentioned in introduction, one viable aplication of

the fractional chaotic systems consist on using the frac-

tional derivative order as the key for secure communi-

cations schemes. So the lower the value of the fractional

order, the higher the number of possible combinations

for the secret key. Thus, the FOUDS is modified to ob-

tain a lower order than previous case. By considering

the strange attractor appears as a result of the combi-

nation of several unstable one-spiral trajectories around
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Table 3 Parameters which system in (16) generates regular oscillations and chaotic behavior

Order α System parameters Behavior LLE Phase portrait

i) 0.7 a = 7.5, b = 0.2, c = 0.2, β = 5 Limit cycle Fig. 3 a)

ii) 0.74 a = 4.5, b = 0.3, c = 0.3, β = 3 Limit cycle Fig. 3 b)

iii) 0.77 a = 3, b = 0.5, c = 0.5, β = 3 Limit cycle Fig. 3 c)

iv) 0.8 a = 3.75, b = 0.7, c = 0.7, β = 2.5 Chaos 0.4 Fig. 3 d)

v) 0.82 a = 4.75, b = 0.9, c = 0.9, β = 3.16 Chaos 0.53 Fig. 3 e)
0.83 a = 4.75, b = 0.9, c = 0.9, β = 3.16 Chaos 0.66 Fig. 3 f)

a saddle hyperbolic stationary point, the equilibrium

points together with the commutation plane are scaled

in a proper form to preserve the chaos regimen and the

asymptotically stability.

This is carried out by choosing other set of the sys-

tem parameters a, b, c and function f(x) to satisfy the

stability condition in (13). Analogous to previous case,

FOUDS in (16) generates both regular oscillations and

chaotic behaviors. Numerical results, lower order, sys-

tem parameters and the corresponding largest LE are

given in Table 3 and Fig 3.

4 Topological Horseshoe Theory

The topological horseshoe theory, which is based on the

notion of symbolic dynamics[22]-[30], provides a rigor-

ous proof to estimate topological entropy, verify exis-

tence of chaos, and reveal invariant sets of chaotic at-

tractors in chaotic systems. The topological horseshoe

depends on the geometry of continuous maps on some

subsets of interest in state space based on the second

return Poincaré map, for continuous-time systems the

topological horseshoe theorem cannot be directly ap-

plied [23]. Therefore, one needs to find an appropri-

ate Poincaré section to obtain an appropriate Poincaré

map.

In this work, the topological horseshoe of FOUDS is

determined in both aforementioned cases because not

only provides much information that Lyapunov expo-

nents, but also shows detailed dynamics of chaos, that

is to say, a fractional order system should be chaotic if

a horseshoe can be found to exist in it [22].

The basic procedure is to propose an appropriate

Poincaré section and define a second return Poincaré

map, which implies that the entropy of the attrac-

tors of FOUDS is not less than log2, proving the exis-

tence of chaos. The reason to find a horseshoe must be

Lyapunov exponents which seems insufficient to show

chaotic characteristics of the fractional order systems,

cause the numerical error may make it unreliable, espe-

cially when the computed output is close to zero.

4.1 Aspects of symbolic dynamics

Let Sm = {0, 1, . . . ,m − 1} and
∑
m be the collection

of all bi-infinite sequences with their elements s ∈
∑
m:

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . . }, si ∈ Sm, ∀i.

If we consider another sequence s̄ ∈
∑
m, with

s̄ = {. . . , s̄−n, . . . , s̄−1, s̄0, s̄1, . . . , s̄n, . . . }, s̄i ∈ Sm, ∀i.

Then the distance between s and s̄ is defined as

d(s, s̄) =

∞∑
−∞

1

2|i|
|si − s̄i|

1 + |si − s̄i|
. (18)

4.2 Metric space and the m-shift

With the distance defined in (18),
∑
m, is a metric

space and has the following three properties with

which a set is called a Cantor set.

Theorem 1 [28] The metric space
∑
m is

(i) compact;

(ii) totally disconnected;

(iii) perfect.

Now define a map of
∑
m into itself, denoted by γ,

as follows:

γ(s)i = si+1 ∀i (19)

The map γ is referred to as the m-shift map, which

has the following properties.

Theorem 2 [22] (a) γ(
∑
m) =

∑
m, and γ is continu-

ous; (b) The shift map γ as a dynamical system defined
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Fig. 3 xy-phase portraits for parameters given in Table 3

on
∑
m has:

(i) a countable infinity of periodic orbits consisting of

orbits of all periods;

(ii) an un-countable infinity of non-periodic orbits;

(iii) a dense orbit.

In this manner the dynamics generated by the

shift map γ display sensitive dependence on initial

conditions on a closed invariant set, and therefore are

chaotic. (See [22]-[30] for proofs of the theorems.)

Let X be a metric space, D be a compact subset

of X, and f : D → X be a map satisfying the as-

sumption that there exist m mutually disjoint subsets

D1, . . . , Dm−1 and Dm of D, so that the restriction of f

to each Di, f |Di, is continuous, for all i = 1, . . . ,m−1.

Definition 1 [27]-[28] Let ξ be a compact subset of D,

such that for every 1 ≤ i ≤ m, ξi = ξ
⋂
Di is nonempty

and compact. Then ξ is called a connection with respect

to D1, . . . , Dm−1 and Dm. Let F be a family of connec-

tions with respect to D1, . . . , Dm−1 and Dm, satisfying

the property:

ξ ∈ F ⇒ f(ξi) ∈ F.

Then F said to be a f -connected family with respect

to D1, . . . , Dm−1 and Dm.

Definition 2 [22] If there is a continuous and onto map

h : K →
∑
m

such that h ◦ f = γ ◦ h, then f is said to be a

semi-conjugate to γ.

Theorem 3 [22]-[27] If there is an f -connection family

with respect to D1, D2, . . . , Dm, then there is a compact

invariant set K ⊂ D, such that f |K is semi-conjugate

to an m-shift map.

Theorem 4 [29] For two dynamical systems (X, f)

and (Y, g), if (X, f) is semi-conjugate to (Y, g), then

the topology entropy of f is not less than g.

The topological entropy is a nonnegative real num-

ber.Then the system is chaotic if its topological entropy

is not zero. Furthermore, if g is an m-shift map, then

ent(f) ≥ ent(g) = logm, that is, f is chaotic when

m > 1.



Strange attractors generated by a fractional order switching system and its topological horseshoe 7

4.3 Topological Horseshoe in the proposed FOUDS

In this subsection, we prove the existence of the horse-

shoe in the fractional-order system (16) based on the

review in the section above.
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Fig. 4 xy-phase portrait for parameters given in Table 3

Considering the fractional-order system (16) with

a = 4.75, b = 0.9, c = 0.9, β = 3.16, first consider the

plane Ω = {(x, y, z) ∈ R3 : x = 0} as shown in Fig 4.

On this plane, choose a Poincaré section with its four

vertices being

A(0, 0.35, 0.44), B(0, 0.44, 0.46),

C(0, 0.46, 0.45), D(0, 0.34, 0.41)

The Poincaré map

P : |ABCD| → Ω,

is defined as follows. For each point x ∈ |ABCD|, P (x)

is chosen to be the first return intersection point with Ω

under the flow of the system (16) with initials condition

x. Under this Poincaré map P , P (x) is very thin hook-

like strip which is wholly across |ABCD| as shown in

Fig 5, where

A′ = P (A), B′ = P (B), C ′ = P (C), D′ = P (D),

are the images of points, respectively.

Theorem 5 The Poincaré map P corresponding to

the Poincaré section |ABCD| has the property that

there is a closed invariant set Λ ⊂ |ABCD| for which

P |Λ is semi conjugate to the 2-shift map, Hence,

(P ) ≥ log 2 > 0. This implies that attractor generated

by system (16) with a = 4.75, b = 0.9, c = 0.9, β = 3.16,

has a positive topological entropy.

Proof. In order to prove the assertion, one must find

two mutually disjointed subsets of |ABCD|, such that

a P -connected family with respect to them exists.

The subsets are denoted by Q1 and Q2 as shown in

Fig 5, the first subset Q1 with the quadrangle |ADEF |.
Under the first return Poincaré map P , the subset Q1

is mapped to |A′D′E′F ′| with AD mapped to A′D′

and EF mapped to E′F ′. We can make the conclusion

that the image P (Q1) lies wholly across the quadrangle

|ABCD| with respect to AD and BC as shown in the

Fig 6.

A

B

C

D

E

F

G

H

Q
1

Q
2

y

z

Fig. 5 Two mutually disjoint subsets |AEFD| and |GBCH|
of the quadrangle |ABCD|

A'

D'

A

E

F

D

E'

F'

y

z

Fig. 6 The image |A′E′F ′D′| of the quadrangle |AEFD|
under the map P .

The second subset Q2, namely quadrangle |GBCH|,
with GH and BC being its bottom and top edges,
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respectively. Like Q1 the subset Q2 is mapped to

|G′B′C ′H ′| under the Poincaré map P with GH

mapped to G′H ′ and BC mapped to B′C ′. Thus, the

image P (Q2) lies wholly across the quadrangle |ABCD|
with respect to AD and BC as shown in the Fig 7.

y

z

G

H

B

C

B'

C'

G'

H'

Fig. 7 The image |G′B′C′H′| of the quadrangle |GBCH|
under the map P .

Evidently, the subsets Q1 and Q2 are mutually dis-

jointed. Therefore, it follows that for every connection

of |ABCD| respect Q1 and Q2, for instance, Q5, the

images P (Q5 ∩ Q1) and P (Q5 ∩ Q2) also lie wholly

across the quadrangle |ABCD|. Thus the images of

P (Q5 ∩ Q1) and P (Q5 ∩ Q2) are still connections

respect to Q1 and Q2. According to Definition 1 and

Theorem 3, there is a P -connected family, so that the
Poincaré map P is semi conjugate to the 2-shift map.

Based on Theorem 4, it is concluded that the entropy

of P is not less than log 2, which implies that the

attractor has positive entropy. The proof is completed

All this facts prove that the fractional order unsta-

ble dissipative system attractor has positive topological

entropy, and hence it is chaotic.

Similar to previous case, now we applied the same

proof to demonstrate a topological horseshoe when se-

lected a = 4.75, b = 0.7, c = 0.7, β = 2.5, parameters

and consider an order α = 0.8, the attractor corre-

sponding is showed at Fig 3 d) in this plane, choose

a Poincaré section with its four vertices being

Â(0, 0.4, 0.45), B̂(0, 0.45, 0.475),

Ĉ(0, 0.45, 0.4), D̂(0, 0.5, 0.45)

The Poincaré map

P̂ : |ÂB̂ĈD̂| → Ω̂,

is defined as follows. For each point x ∈ |ÂB̂ĈD̂|, P̂ (x)

is chosen to be the first return intersection point with Ω̂

under the flow of the system (16) with initials condition

x. Under this Poincaré map P̂ , P̂ (x) is very thin hook-

like strip which is wholly across |ÂB̂ĈD̂| as shown in

Fig 8, where

Â′ = P̂ (Â), B̂′ = P̂ (B̂), Ĉ ′ = P̂ (Ĉ), D̂′ = P̂ (D̂),

are the images of points, respectively.

Theorem 6 The Poincaré map P corresponding to

the Poincaré section |ÂB̂ĈD̂| has the property that

there is a closed invariant set Λ̂ ⊂ |ÂB̂ĈD̂| for which

P̂ |Λ̂ is semi conjugate to the 2-shift map, Hence,

(P̂ ) ≥ log 2 > 0. This implies that attractor generated

by system (16) with a = 4.75, b = 0.7, c = 0.7, β = 2.5,

has a positive topological entropy.

Proof. In order to prove the assertion, one must find

two mutually disjointed subsets of |ÂB̂ĈD̂|, such that

a P̂ -connected family with respect to them exists.

The subsets are denoted by Q3 and Q4 as shown in

Fig 8, the first subset Q3 with the quadrangle |ÂD̂ÊF̂ |.
Under the first return Poincaré map P̂ , the subset Q3

is mapped to |Â′D̂′Ê′F̂ ′| with ÂD̂ mapped to Â′D̂′

and ÊF̂ mapped to Ê′F̂ ′. We can make the conclusion

that the image P̂ (Q3) lies wholly across the quadrangle

|ÂB̂ĈD̂| with respect to ÂD̂ and B̂Ĉ as shown in the

Fig 8.
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Fig. 8 The image |Â′Ê′F̂ ′D̂′| of the quadrangle |ÂÊF̂ D̂|
under the map P̂ .
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The second subset Q4, namely quadrangle |ĜB̂ĈĤ|,
with ĜĤ and B̂Ĉ being its bottom and top edges,

respectively. Like Q3 the subset Q4 is mapped to

|Ĝ′B̂′Ĉ ′Ĥ ′| under the Poincaré map P̂ with ĜĤ

mapped to Ĝ′Ĥ ′ and B̂Ĉ mapped to B̂′Ĉ ′. Thus, the

image P (Q4) lies wholly across the quadrangle |ÂB̂ĈD̂|
with respect to ÂD̂ and B̂Ĉ as shown in the Fig 8.
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Fig. 9 The image |Ĝ′B̂′Ĉ′Ĥ′| of the quadrangle |ĜB̂ĈĤ|
under the map P̂ .

Evidently, the subsets Q3 and Q4 are mutually dis-

jointed. Therefore, it follows that for every connection

of |ÂB̂ĈD̂| respect Q3 and Q4, for instance, Q6, the im-

ages P (Q6 ∩Q3) and P (Q6 ∩Q4) also lie wholly across

the quadrangle |ÂB̂ĈD̂|. Thus the images of P (Q6∩Q3)

and P (Q6 ∩Q4) are still connections respect to Q3 and

Q4. According to Definition 1 and Theorem 3, there is a

P -connected family, so that the Poincaré map P̂ is semi

conjugate to the 2-shift map. Based on Theorem 4, it is

concluded that the entropy of P̂ is not less than log 2,

which implies that the attractor has positive entropy.

The proof is completed

All this facts prove that the fractional order unsta-

ble dissipative system attractor has positive topological

entropy, and hence it is chaotic.

5 Conclusion

We have studied a fractional order system and analyzed

its chaotic characteristic by applying the topological

horseshoe theory a proof has been given to confirm that

the entropy of P is not less than log 2 in fractional order

unstable dissipative system, further we considered the

largest Lyapunov exponent to prove the chaotic behav-

ior its system.
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