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Abstract 

Aging is one of the primary health concerns in nowadays world, 

being memory decline an important worry that affects daily 

functioning of healthy adults.  This work presents a study of this 

kind of decline in normal aging, by processing and analysing 

electroencephalographs (EEGs) of 72 healthy subjects, 

categorized as either young or older adults. These biosignals are 

first pre-processed using a customized pre-processing pipeline 

using the EEGLAB tool in Matlab. Once the signals have been 

pre-processed, two different analyses are carried out: a 

frequency analysis, obtaining the powers for each band of the 

EEG signals, and a time-frequency analysis. The data obtained 

from these studies is analysed using R, obtaining some important 

results and conclusions. 

1. Introduction 

Aging is one of the primary health concerns in the entire 

world. Healthy adults experience memory declines that 

affect their daily functioning, yet their ability to process 

emotion is well-preserved [1]. During the last decades, 

there have been several aging studies exploring brain 

plasticity in relation to cognitive and motor improvement 

[2-5]. However, the benefit of utilizing spared emotional 

abilities to help mitigate the memory decline that occurs 

with age has not been previously explored. 

This is the premise of the MEMOTION project [1]. One of 

the main goals of this project is to analyse age-related 

neural networks underlying emotional and memory 

processes. Furthermore, the project presents a ground-

breaking methodology to train brain plasticity and transfer 

those benefits to daily life. This way, the importance of 

age-related preserved emotions to improve memory 

deficits is enhanced. 

The study design consists on a series of task-related and 

resting state EEG scans (rs-EEG) recorded before and after 

an eight-week training program in positive emotions to 

later examine the neuronal changes that occur in young and 

older individuals as a result of training. This article 

describes the analysis of rs-EEG before the training 

program in positive emotions. 

The work presented in this paper has been developed in the 

context of a graduate-level project following the Project-

based learning (PBL) methodology at Mondragon 

Unibertsitatea. 

2. Materials and methods 

This first chapter describes how the EEG recordings and 

data acquisition have been carried out. 

2.1. Subjects 

The study included 72 right-handed and healthy 

participants divided into two groups: 34 young and 38 

older adults. The age range of young adults was between 

18 and 26 years, while older adults ranged between 60 and 

75 years. 

2.2. Experimental setup 

EEG recordings occurred twice: before (pre-test session) 

and after (post-test session) ten training sessions (training 

period), distributed across 8 weeks. The rest-task-rest EEG 

design of both EEG sessions was identical with a total 

duration of 1.5 h. Therefore, the overall experimental 

procedure was as follows: the pre-test session included a 

rest scan (rs1), followed by a task-related scan (tr1), after 

which another rest scan (rs2) was obtained. The pre-test 

session was followed by a training program in positive 

emotions for an 8-week period. Following completion of 

this training program, the post-test session included a rest 

scan (rs3), followed by a task-related scan (tr2), and 

subsequently another rest scan (rs4). See Figure 1 for data 

acquisition protocol. The current work focuses on the 

analysis of the rs-EEG scans before the training program 

(rs1 and rs2). All rest scans had the same protocol and 

lasted 5 min, in which participants were instructed to keep 

their eyes open and to fixate a target point. 

2.3. EEG recordings and pre-processing 

EEG is an electrophysiological monitoring system to 

record electrical activity of the brain, specifically from the 

post-synaptic pyramidal neurons [6]. It is typically non-

invasive and acquired by means of electrodes that are 

placed along the scalp. These electrodes measure voltage 

variations resulting from ionic currents within the neurons 

of the brain. 

EEG signal analysis generally focuses either on Event-

Related Potentials (ERP) or on the spectral content of the 

biosignal. The former investigates potential variations time 

locked to an event-like stimulus, while the latter analyses 

the type of neural oscillations or brain waves that can be 

observed in the frequency domain [7]. As opposed to the 

ERPs, this type of neural oscillations can be analysed in a  
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Figure 1. Data acquisition pipeline 

Brain wave Frequency band 

Delta 0.5 – 4 Hz 

Theta  4 – 8 Hz 

Alpha  8 – 12 Hz 

Beta  12 – 30 Hz 

Gamma 30 – 48 Hz 

Table 1. Brain waves and their frequency bands [8] 

resting-state. Resting-state EEG refers to the recording of 

the brain's electrical activity when a subject is not 

performing an explicit task. The frequencies of the brain 

signals are classified in different waves depending on the 

frequency band and the state where they appear (Table 1). 

The EEGs were recorded with a BioSemi Active Two high 

density system with 128 electrodes. Additionally, four 

electrodes in the vicinity of the eyes were used to capture 

two electroculogram (EOG) signals that recorded the 

vertical and horizontal eye movements.  The data were 

digitalized at a sampling rate of 1024 Hz. Finally, data were 

offline re-referenced to the nose tip, giving a total number 

of 133 acquired channels.  

3. Signal processing 

In this chapter the techniques used for the pre-processing 

of the EEG signals are described, as well as the frequency 

and time-frequency analysis techniques. 

3.1. Signal pre-processing 

EEG signals contain multiple artifacts and noise sources 

that must be removed before these biosignals can be used 

for analysis. For that purpose, the signal pre-processing 

method used in this work is a customized version of the 

Makoto’s pre-processing pipeline, adapted for EEGLab 

software [9]. 

3.1.1. Down-sampling 

The first step is to reduce the sampling frequency of the 

signals from 1024 Hz to 256 Hz. This way, the 

computational load of the algorithm is reduced. 

3.1.2. Bandpass filtering 

Bandpass filtering is necessary for the elimination of noise 

and artefacts that are located outside the band of interest. 

In the works [10 - 11] the pass band of the resting state is 

considered to be between 1 and 45 Hz, so these cutting 

frequencies have been used for the realization of the first 

filtering stage. 

3.1.3. Removal of bad channels 

Channels that show erroneous or badly acquired 

information are eliminated and then interpolated using the 

signals of the adjacent channels. 

3.1.5. Re-reference data to average 

In this step, the signals of the electrodes are re-referenced. 

The new reference becomes an imaginary point obtained as 

the average of all the electrodes. 

3.1.6. Independent Component Analysis (ICA) 

Using the ICA, the EEG signal is separated into 

independent components. Then, the SASICA tool (Semi-

Automated Selection of Independent Components for 

Artefact correction) of the EEGLAB library is used for 

eliminating the components containing artefacts. 

3.1.7. Interpolation of removed channels 

Finally, the channels that have been eliminated in previous 

steps are interpolated again. 

3.2. Frequency analysis 

With the aim of analyzing the spectrum of the EEG, the 

mean power of each of the EEG frequency bands presented 

in Table 1 has been computed. This calculation is carried 

out for each of the 128 EEG signals, for both rs1 and rs2. 

3.3. Time-frequency analysis 

When analyzing biosignals it is often interesting to see how 

the frequency content of the signal changes over time. 

These changes can be noticed by using time-frequency 

analysis techniques, such as the Short Term Fourier 

Transform (STFT), Cohen’s classes of distributions or the 

Wavelet transform. In this study, the Morlet Wavelet 

Transform (MWT) was used in order to carry out the time-

frequency analysis of the EEG signals. The MWT is a 

complex wavelet, comprising real and imaginary 

sinusoidal oscillations, which is convolved with a Gaussian 

envelope so that the wavelet magnitude is largest at its 

center and tapered toward its edges [12-13]. 

In this study, a wavelet factor of 7 [14] has been used and 

the spectrum has been divided into 124 frequency bins. 

Once the time-frequency maps using the MWT have been 

obtained, the power present in each frequency band has 

been calculated for 30 second intervals. 

4. Data analysis 

Once the power data from the different frequency bands 

was obtained, two different studies were carried out. First 

statistically significant changes were sought in frequency, 

and then, time-frequency changes were studied.  
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The main objective of this step is to determine whether 

there is any interaction between the two age groups (young 

vs. older) and the two different resting states (rs1 and rs2). 

For this, a two-way mixed analysis of variance (ANOVA) 

was carried out considering as intra-subject variable the rs- 

EEG scan, and as inter-subject variable the age group. The 

p-value of the relationship between age group and rs-EEG 

scan was observed. 

A different ANOVA was performed for each of the EEG 

channels and each frequency band. The process was carried 

out in three different steps: i) Group the data based on the 

channel number, ii) Filter the desired number of channels, 

and iii) Make the ANOVA test for which an error term that 

accounts for natural variation from subject to subject was 

specified.  

As multiple comparisons are being performed, it is 

necessary to control the expected proportion of falsely 

rejected hypotheses. For this, the False Discovery Rate 

(FDR) method of Benjamini and Hochberg [15] was used 

with a corrected p-value of 0.05. 

Finally, in order to identify the type of change observed in 

those positive results, the average values of the 

observations were calculated by group and condition. This 

process was repeated for both frequency and time-

frequency analyses. 

5. Results 

This section summarizes the results obtained through 

statistical analysis of frequency band power and time-

frequency power data. 

5.1. Frequency analysis results 

The results of the ANOVA tests showed statistically 

significant differences in the alpha frequency band of 42 

EEG channels regarding the interaction between age group 

and rs-EEG scan (Table 2).  

 

Figure 2. Map of the scalp showing the channels with a 

statistically significant difference regarding the interaction 

between age group and rs-EEG scan in the Alpha waveform 

The underlying areas of the brain where these interactions 

are identified are the frontal, prefrontal, occipital and 

posterior areas (Figure 2). Regarding the delta waves, six 

channels were identified with significant statistical 

differences grouped in the occipital part of the brain. These 

differences however, may be due to artifacts that were not 

completely suppressed in the pre-processing stage. 

Differences between the values of young and older adults 

between rs1 and rs2 follow the same trend in all cases 

without exception. On the one hand, the values for the 

young group are in all cases higher than for the elderly. On 

the other hand, the values increase from rs 1 to rs2 

following the same trend for both young and older 

individuals , being this increase greater in the case of young 

adults. 

These results can be observed in Figure 3, which shows 

results for each age group for the Alpha waveform in the 

27th channel. As depicted in Figure 3, changes from rs1 to 

rs2 are more prominent in the young group compared to the 

older participants. 

CH p-value CH p-value CH p-value 

9 0.016* 36 0.01547* 73 0.00695** 

10 0.0167* 37 0.010406* 74 0.01405* 

11 0.00084*** 38 0.00234** 77 0.00834** 

12 0.004803** 39 0.001** 79 0.00830** 

13 0.000667*** 40 0.00149** 82 0.008006** 

14 3.81e-05**** 41 4.99e-05**** 84 0.01072* 

15 0.00281** 43 0.0145* 88 0.00929** 

23 0.009079** 44 0.00242** 90 0.00314** 

24 0.002683** 45 0.000264*** 91 0.006696** 

26 0.00359** 57 0.01476* 95 0.010938* 

27 4.42e-05**** 62 0.010679* 96 0.0011** 

28 0.0022** 67 0.00138** 99 0.0122* 

29 0.009567** 68 0.01082* 100 0.01503* 

31 0.00287** 69 0.00627** 108 0.0148* 

Table 2: Statistically significant results for the Alpha waveform 

case per channel (CH). 

 

Figure 3: Boxplots of the Alpha bandpower results for each 

group.  
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5.2. Time-frequency analysis results 

The results obtained from the analysis of the time-

frequency data are not as prominent as in the previous case. 

In this instance, only 15 significant values are found after 

applying the FDR, as can be seen in Figure 4. However, it 

can be clearly seen that the alpha band is strongest in the 

third (Alpha3) and sixth (Alpha6) windows (intervals from 

1:00-1:30 min and 2:30 -3: 00 min). After calculating the 

grand mean between the different windows, no relevant 

trend is seen. 

 

Figure 4: Statistically significant results for each time window in 

the Alpha waveform per channel.   

6. Conclusions 

Due to the rapid population aging that most developed 

countries are experiencing, the search for techniques that 

allow to ameliorate the loss of cognitive abilities that older 

individuals face is a general priority. The innovative nature 

of the project MEMOTION is two-folded. First, we have 

designed a training program that benefits from well-

preserved emotional processes to mitigate memory 

problems that occur with age. Second, we have used rs-

EEG to predict age-related changes in the resting brain as 

a result of training. The current work is a preliminary 

approach that focuses on rs-EEG scans before the training 

program. 

The main conclusions have been drawn from the data 

analysis of the frequency content of the analyzed signals. 

Statistically significant differences in the alpha band 

between rs1 and rs2 were found in the frontal, prefrontal 

and occipital zones for both young and older individuals. 

As for the delta waveform, statistically significant 

differences were found in the occipital area, although these 

may be a consequence of artifacts that were not completely 

removed in the pre-processing stage. The analyzed data 

shows that there is a significant increase in the power 

values from the first resting-state to the second one in both 

groups. This finding suggests that resting state can be used 

as a predicting tool to assess changes in neural activity after 

task performance. What is more, resting state changes as a 

result of the memory task are more prominent in the young 

adult group than in the elderly, showing that age is a 

significant factor that affects the resting state networks in 

the brain.   

Regarding the results obtained for the time-frequency 

analysis, no statistically significant difference between the 

values for the different time windows have been obtained 

for all channels. This may be due to the window length 

selected for the analysis (30 seconds). Reducing this 

window length may throw significant results when data 

analysis techniques are applied on the time-frequency data.  

References 

[1] Solesio-Jofre, E. C. European Commission, «Projects and 

Results : Changing the course of cognitive decline in normal 

aging with positive emotions by training brain plasticity», 

24-jul-2017. 

[2] B. Hu, Q. Dong, Y. Hao, Q. Zhao, J. Shen, y F. Zheng, 

«Effective brain network analysis with resting-state EEG 

data: a comparison between heroin abstinent and non-

addicted subjects», J. Neural Eng., vol. 14, n.o 4, p. 046002, 

2017. 

[3] Y.-Y. Lee y S. Hsieh, «Classifying Different Emotional 

States by Means of EEG-Based Functional Connectivity 

Patterns», PLoS ONE, vol. 9, n.o 4, abr. 2014. 

[4] J. J. (Joshua) Davis, C.-T. Lin, G. Gillett, y R. Kozma, «An 

Integrative Approach to Analyze EEG Signals and Human 

Brain Dynamics in Different Cognitive States», J. Artif. 

Intell. Soft Comput. Res., vol. 7, n.o 4, pp. 287–299, 2017. 

[5] R. J. Barry y F. M. De Blasio, «EEG differences between 

eyes-closed and eyes-open resting remain in healthy 

ageing», Biol. Psychol., vol. 129, pp. 293-304, oct. 2017. 

[6] E. Niedermeyer y F. L. da Silva, Electroencephalography: 

Basic Principles, Clinical Applications, and Related Fields. 

Lippincott Williams & Wilkins, 2004. 

[7] D. H. Barros, «Potenciales relacionados a eventos cognitivos 

en psicología del deporte», vol. 1, p. 14, 2006. 

[8] P. Ariza etal., «Evaluating the effect of aging on interference 

resolution with time-varying complex networks analysis», 

Front. Hum. Neurosci., vol. 9, may 2015. 

[9] S. C. for C. N. SCCN, «Makoto’s preprocessing pipeline», 

2016. [Available online]: https://sccn.ucsd.edu/wiki/ 

Makoto’s_preprocessing_pipeline. 

[10] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, y 

M. Corbetta, «Electrophysiological signatures of resting 

state networks in the human brain», Proc. Natl. Acad. Sci. 

U. S. A., vol. 104, n.o 32, pp. 13170-13175, ago. 2007. 

[11] M. Hata et al., «Functional connectivity assessed by resting 

state EEG correlates with cognitive decline of Alzheimer’s 

disease – An eLORETA study», Clin. Neurophysiol., vol. 

127, n.o 2, pp. 1269-1278, feb. 2016. 

[12] B. J. Roach y D. H. Mathalon, «Event-Related EEG Time-

Frequency Analysis: An Overview of Measures and An 

Analysis of Early Gamma Band Phase Locking in 

Schizophrenia», Schizophr. Bull., vol. 34, n.o 5, pp. 907-

926, sep. 2008. 

[13] H. Wang, Z. Chen, S. Zou, y L. Zhao, «[The continuous 

analysis of EEG’s alpha wave by morlet wavelet 

transform]», Sheng Wu Yi Xue Gong Cheng Xue Za Zhi J. 

Biomed. Eng. Shengwu Yixue Gongchengxue Zazhi, vol. 

27, n.o 4, pp. 746-748, 752, ago. 2010. 

[14] O. Faust, U. R. Acharya, H. Adeli, y A. Adeli, «Wavelet-

based EEG processing for computer-aided seizure detection 

and epilepsy diagnosis», Seizure, vol. 26, pp. 56-64, mar. 

2015. 

[15] Y. Benjamini y Y. Hochberg, «Controlling the False 

Discovery Rate: A Practical and Powerful Approach to 

Multiple Testing», J. R. Stat. Soc. Ser. B Methodol., vol. 

57, n.o 1, pp. 289-300, 1995. 

274

XXXVI Congreso Anual de la Sociedad Española de Ingeniería Biomédica. Ciudad Real, 21 – 23 nov, 2018


