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Abstract

Lightness and appropriate mechanical response of materials are

currently demanded in many applications related to transportation

(automotive, aeronautic). Depending on the component, an appro-

priate mechanical behaviour may consist in having either damage

tolerance or energy dissipation capacity. In this regard, it is essential

to understand the mechanical behaviour of the materials in order to

succeed in the selection of them and the design of components.

Fibre metal laminates (FMLs) are multilayer systems consisting of

stacked metal sheets and thin plates of composite material. Among

FMLs, the ones based on self-reinforced composites (SRCs) have

demonstrated they can offer an excellent response to low and high

velocity impact loadings in terms of impact energy dissipating

capacity when compared to thermosetting matrix-based systems.

The main objective of this thesis is to study the mechanical behaviour

of fibre metal laminates based on SRCs. Within this general objective,

three partial subobjectives are established:

- To select the most appropriate SRC-FML, between an Al-based

one and a Mg-based one, in terms of energy dissipation capacity

under low-velocity impacts.

- To characterise the mechanical behaviour of the plain SRC and

to evaluate its influence in the mechanical response of the FML

based on the strain rate.

- To develop a constitutive model of the mechanical behaviour of

the SRC.



The results reveal that the Al/SRPP-FML is the most appropriate

in terms of energy dissipation capacity under low-velocity impacts.

After that, the characterisation of the plain SRPP shows that, when

the material is submitted to both tensile and shear stresses solici-

tations, it presents irreversible strains, hysteresis phenomena under

cyclic loads, a rate-dependent behaviour and a stiffness varying with

the strain. Besides, its influence in the mechanical response of the

FML is considerable. Then, a constitutive model of the mechanical

behaviour of the SRC is proposed. The model is based on the com-

bination of a elastoplastic model and a fractional viscoelastic model.

The numerical-experimental correlation demonstrates that the model

is capable of predicting accurately both the cyclic tensile and shear

behaviours of the SRPP.
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Chapter 1

Introduction

The present thesis entitled Mechanical behaviour of fibre metal laminates based

on self-reinforced composites for impact applications is framed within the Doctor-

ate Programme in Mechanical Engineering and Electrical Energy of Mondragon

Unibertsitatea.

1.1 Motivation and background

In December 2011, the European Commission (EC) adopted the Communication

“Energy Roadmap 2050”. In the roadmap, the European Union (EU) was com-

mitted to reduce greenhouse gas emissions to 80-95% below 1990 levels by 2050.

Transport is responsible for around a quarter of EU greenhouse gas emissions

making it the second biggest greenhouse gas emitting sector after Energy (see

Figure 1.1). Specifically, road transport contributes about one-fifth of the EU’s

total emissions of carbon dioxide (CO2), the main greenhouse gas.

In the EC’s road map was also committed to reduce road mortality. According

to the figures, there were 54302 deaths on the EU’s roads in 2001. The objective

of the previous road safety action programme was to reduce these fatalities by

50% to no more than 27000 deaths in 2010. In 2009, 34500 road mortal victims

were reported in the EU; i.e. a 36% reduction was reached. For 2010-2020, the

Commission’s aim is once again to halve the total number of road deaths in the
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Figure 1.1: Total greenhouse gas emissions by sector (%) in EU-27, 2009.

EU. To achieve this, different strategies have been proposed, among those the

manufacturing of safest vehicles can be highlighted.

In this context, lightness and appropriate mechanical response of materials are

currently demanded in many applications related to transportation (automotive,

aeronautic). Depending on the component, an appropriate mechanical behaviour

may consist in having either damage tolerance or energy dissipation capacity. In

this regard, it is essential to understand the mechanical behaviour of the materi-

als in order to succeed in the selection of them and the design of components.

Fibre metal laminates (FMLs) are multilayer systems consisting of stacked

metal sheets and thin plates of composite material. Each constituent material

is responsible for providing its best so that jointly a material with improved

properties is obtained when compared to their constituents. While toughness

and fatigue resistance are features normally attributed to metals, lightweight is

directly related with the concept of composite material.

2
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Among FMLs, the ones based on semicrystalline matrix have demonstrated

an excellent response under low and high velocity impacts in terms of energy

dissipating capacity when compared to thermosetting polymer matrix-based

systems [Abdullah and Cantwell, 2006b]. Moreover, when the semicrystalline

matrix composite constituent is a self-reinforced composite (SRC), such capacity

is even higher [Abdullah and Cantwell, 2006a].

SRCs are characterised by the reinforcing and matrix phases belong to the same

polymer family. In comparison with thermoplastic or thermosetting matrix

composites based on inorganic reinforcements, SRCs present several advantages:

they are more lightweight, entirely recyclable and show higher damage tolerance

[Aurrekoetxea et al., 2011]. Currently, there are commercial SRCs based on

polypropylene, polyethylene terephthalate and polyethylene. SRCs present

a relatively complex mechanical behaviour since they are orthotropic and

significantly viscous when compared to thermoplastic or thermosetting matrix

composites based on inorganic reinforcements. Besides, damage also occurs into

SRCs when submitted to loads [Aurrekoetxea et al., 2011].

The researches conducted on SRCs have essentially dealt with the development

of an energetically optimal manufacturing process and the study of the resulting

mechanical properties depending on the process parameters. Concerning

the research works on SRCs-based FMLs, the objects of study have been

their impact and interlaminar behaviour, the scaling effects on the mechan-

ical response and their formability. In every cases, they were based on aluminium.

Currently, the use of SRCs in automotive sector is spreading and, for this

reason, researchers are increasingly focused on their study, both plain and

as a part of a FML. However, there is a lack of knowledge about the use of

SRCs to manufacture FMLs based on alternative lightweight metals different of

aluminium, also concerning the influence of the mechanical behaviour of SRCs in

FMLs and their modelling, being this last topic really important for the design

of parts of both SRCs and SRCs-based FMLs.
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1.2 Objectives and organisation of the thesis

The main objective of this thesis is to study the mechanical behaviour of fibre

metal laminates based on self-reinforced composites for impact applications. In

order to achieve this general objective, three partial subobjectives are established:

- To select the most appropriate SRC-FML, between an Al-based one and a

Mg-based one, in terms of energy dissipation capacity under low-velocity

impacts.

- To characterise the mechanical behaviour of the plain SRC and to evaluate

its influence in the mechanical response of the FML based on the strain

rate.

- To develop a numerical model of the mechanical behaviour of the SRC.

Each subobjective of the research work is associated to a chapter in this thesis,

which is composed of six chapters including the general introduction and the

scientific and technological framework corresponding, respectively, to Chapter 1

and Chapter 2.

Chapter 3 is devoted to the low-velocity impact behaviour of SRC-based

FMLs. Firstly, the SRC, among three commercial alternatives, which offers

the most appropriate response under low-velocity impacts based on the energy

dissipation capacity, is selected. Secondly, an aluminium-based FML and a

magnesium-based FML are manufactured, whose low-velocity impact behaviours

are comprehensively studied to select the most appropriate FML based on its

impact response.

Chapter 4 concerns the mechanical characterisation of the SRC. Its tensile and

shear behaviours at different strain rates are studied. Then, the influence of the

SRC in the mechanical response of the FML is evaluated based on the strain rate.

Chapter 5 addresses the mechanical behaviour modelling task. After observing

the significant influence of the SRC in the mechanical response of the FML,

4
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a constitutive model within the framework of thermodynamics of irreversible

processes is developed for the plain composite.

Chapter 6, finally, collects the main conclusions obtained during the research

work and presents some future works.
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Chapter 2

Scientific and technological

framework

In this chapter, the scientific and technological framework of the mechanical be-

haviour of SRCs and SRCs-based FMLs is presented. Firstly, the origin and

evolution of FMLs is described. Secondly, the low-velocity impact behaviour

of FLMs depending on the constituent materials is shown. Then, the research

works on the mechanical behaviour of SRCs-based FMLs are reviewed. Finally,

the main trends concerning the modelling of composite materials, including SRCs,

are commented.

2.1 Introduction

2.1.1 The hybridization concept

Hybridization1, in Animal Biology, is any offspring resulting from the mating

of two genetically distinct individuals; in Molecular Biology, the process of

establishing an interaction between two or more complementary strands of acids

into a single complex; in Motor Industry, the combination of a conventional

1According to the Oxford English Dictionary, the word is derived from Latin hybrida,
meaning the “offspring of an tame sow and a wild boar”, “child of a freeman and slave”, etc.
The term entered into popular use in English in the 19th century, though examples of its use
have been found from the early 17th century.
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internal combustion engine (ICE) propulsion system with an electric propulsion

system. Such concept appears repeatedly at different scales in numerous scientific

areas. Nature shows the best example of the potential of hybridization with

the shells of molluscs [Meyers et al., 2008]. Shells are basically constituted by

one or more ceramic phases and a minimum quantity of proteins (between 0.1%

and 5%). These ceramic phases, an example is calcium carbonate (CaCO3),

are brittle by nature and they are not valid as armour. However, the resultant

bio-composite when combined with proteins in order to obtain a complex

laminar structure shows very superior mechanical properties when compared to

the monolithic ceramic phase, e.g. the fracture toughness and tensile strength of

CaCO3 bio-composite are 20-30 higher than that of monolithic version.

Likewise, human has made use of hybridization to the development of new alter-

native materials. In structural design engineering, such concept is applied to join

the virtues of materials of different nature. FMLs are an example of materials

hybridization; they are multilayer structures consisting of stacked metal sheets

and thin plates of composite materials. Each constituent material is responsible

for providing its best so that jointly a material with specific mechanical properties

is obtained (see Fig. 2.1).

2.1.2 Origin and evolution of FMLs

During the last decades the application of composite materials in aerospace,

aircraft and automotive sectors has become increasingly popular. Composite

Composite plates

Metal sheets

Figure 2.1: Configuration of a typical fibre-metal laminate (FML).
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materials have replaced traditional materials, such as metals, in numerous

applications because of their improved specific mechanical properties concerning

strength/stiffness ratio and fatigue resistance. However, there exist other appli-

cations where the positioning of composite materials is not possible since their

mechanical response do not enhance that of the original material. In this regard,

the demands by the Aircraft Industry and Defence of increasingly lightweight

and high-performance materials resulted in the conception of laminate materials

consisted of metal sheets and composite thin plates. These were named ‘hybrid

materials’. The recognized fatigue and fracture behaviour associated with

fibre-reinforced composite materials combined with the plastic behaviour and

durability offered by many metals gave way to the age of laminate materials

based on composite and metal [Vlot, 2001a].

A. Vlot, researcher of Delft University of Technology, firstly introduced the con-

cept of hybridization into materials in the 80’s; the result was a new material

typology which was called fibre-metal laminate, FML [Vlot, 2001a]. The first

generation of FMLs were based on thermoset matrixes, typically epoxy, as its

stiffness and thermo-mechanical strength is higher than that of thermoplastic

ones. After years of research and development, two commercial FMLs arose.

Firstly, ARALL R©, whose constituents are aramid fibre-reinforced epoxy compos-

ite (AFRP) and aluminium sheets; it is currently utilized in military aviation.

Then, GLARE R© [Vlot, 2001b], whose composite constituent is S2-glass fibre-

reinforced epoxy (GFRP), is currently one of the key materials used to manufac-

ture the upper fuselage of the Airbus A380 [Pora and Hinrichsen, 2001] (see Fig.

2.2).

The success of GLARE R© was due to its fatigue resistance, higher than that of its

predecessor, monolithic aluminium, and its lightness since it supposed a weight

reduction of 30%. Once FML was established in the aircraft sector, the interest

in introducing them into the automotive industry emerged. Something similar

happened successfully with composite materials. After being used in aeroplanes,

they were introduced in luxury cars, e.g. the Lamborghini Sesto Elemento, with

a body made of carbon fibre-reinforced polymer, (CFRP), and high-end cars, e.g.
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GLARE R©

Figure 2.2: Image of the Airbus A380 highlighting the upper fuselage which is made of
GLARE R©.

the Audi A8 (launched in 2015), with rims made of still an unknown reinforced

polymer called ‘Chromtec’, which will lead to a total weight saving of 18 kg [Chr,

2015]. More recently, BMW has started the production of its revolutionary i3

city car, which is the first mass-produced automobile using a composite frame.

The composite-based design supposes a total vehicle weight saving of 350 kg

when compared to a steel-based one. According to Automotive Light-weighting

Materials (ALM) project, a 10% weight reduction in vehicle implies a 7% fuel

saving, which implies a decreasing of combustion gas emissions to atmosphere.

These facts suggest that, as happened with composites, the introduction of FMLs

in automotive industry seems to be something possible; however, their effect

would be limited by now to relatively high cost products and generally low volume

of production.

2.2 Impact behaviour of FMLs

The utilization of FMLs in Transportation Sector makes them susceptible to

impacts. As an example, among different types of damages in an aircraft, such

as fatigue, corrosion and accidental (impact) damage, it is reported that at least

13% of 688 repairs to 71 Boeing 747 fuselages were related to impact damage,

usually located around the doors, on the nose of the aircraft, in the cargo

compartments and at the tail (due to tail scrape over the runway) [Vlot, 1993a].

Impact damage of aircraft is caused by sources such as runway debris, hail,

maintenance damage or dropped tool, collisions between service cars or cargo
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and the structure, bird strike, ice from propellers striking the fuselage, engine

debris, tire shrapnel from tread separation and tire rupture and ballistic impact

(for military aircraft) [Vlot, 1993b]. In automotive, as happened in aircraft,

vehicles can be subjected to impact loads in different situations: crash, a rock

hitting or even when an animal is knocked down. Every of them can compromise

the safety of occupants in road.

In short, the nature of impacts in transportation varies, just like the velocity of

impacts and, by extension, the strain-rates within the parts. This justifies the

interest of the rate-dependent behaviour of materials as study object. Scientif-

ically, impacts are categorized according to the velocity; ‘low-velocity impacts’,

until approximately 15 m/s, and ‘high-velocity impacts’, for higher velocities.

2.2.1 Types of metal constituents for FMLs

The use in research works of aluminium, specifically the 2024-T3 aluminium alloy

as metal constituent in FMLs, has been the habitual trend until now due to its

competitive price and specific mechanical properties; however, there exist other

alternative metal constituents, such as magnesium, titanium, nickel-titanium or

steel, which can provide interesting properties for specific applications. Among

the different options mentioned, the last three are the less used mainly due

to their relatively high weight in comparison with the two first. According to

the bibliography, while it is true that aluminium is at the top of the ranking

in use in research works, its substitution by magnesium in FMLs constitutes

an interesting alternative in Aircraft and Automotive Industry due to its lower

density. Moreover, apart from this, it is also worth highlighting its improved

electromagnetic shielding capability and superior corrosion resistance. In this

regard, diverse authors have tried to elucidate which alternative as metal con-

stituent in a FML would provide better mechanical response under low-velocity

impacts.

On the one hand, Cortés and Cantwell [2006b] studied the impact properties

of different alternatives of AZ31 magnesium FMLs. They demonstrated that a
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Figure 2.3: Comparison of the specific perforation energies of two magnesium alloy FMLs,
a carbon fibre-reinforced (CFRP) one and a GFPP one, with a woven Al/GFRP-FML and a
unidirectional Al/GFPP-FML (Adapted from [Cortés and Cantwell, 2006b]).

magnesium laminate with glass fibre-reinforced polypropylene (GFPP) offered su-

perior specific perforation resistance to those offered by both an aluminium/glass

fibre-reinforced epoxy (GFRP) and an aluminium/unidirectional GFPP (see Fig.

2.3), suggesting that magnesium multi-layered systems could offer an improved

resistance to localised impact loading.

On the other hand, Alderliesten et al. [2008] studied the applicability of magne-

sium FMLs in aerospace structures. They carried out an initial viability study by

using validated prediction models addressed and obtained from literature. They

concluded that in spite of the weight reduction which magnesium provided in

comparison with aluminium, its lower properties required changing the struc-

tural design, which most likely would nullify the weight saving for most struc-

tures. Besides, a direct comparative between S2-glass/epoxy-based Mg-FML and

Al-FML have been undertaken recently by Pärnänen et al. [2012], who compared

the impact responses of the first one with AZ31B-H24 magnesium and the other

with 2024-T3 aluminium of two different thicknesses. In their work, they con-

cluded that the Mg-FML did not offer an improvement in perforation resistance

or damage tolerance over the traditional Al-FML; the specific limit energies for

perforation of the Mg-FML and the Al-FML were equal (see Fig. 2.4), and the
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Figure 2.4: Specific limit energies of a Mg/GFRP-FML and two Al/GFRP-FMLs of different
thicknesses of constituent metal (Adapted from [Pärnänen et al., 2012]).

extent of cracked metal as well as the delamination area were higher in the Mg-

FML for the same impact energy (see Fig. 2.5). The authors affirmed that the

higher the rate of strain hardening and the fracture toughness of a constituent

metal, the smaller the delaminated area and the extent of metal cracking in the

FML. Unfortunately, the above comparative studies [Cortés and Cantwell, 2006b;

Pärnänen et al., 2012] cannot be directly compared since stacking configuration

as well as the thickness of the constituents were different [Pärnänen et al., 2012].

As previously mentioned, although to a lesser degree, titanium has been proposed

in the literature as another alternative metal constituent in FMLs [Cortés and

Cantwell, 2002, 2006a,c; Johnson et al., 1996]. [Cortés and Cantwell, 2004]

initially performed tension-tension fatigue tests on notched unidirectional carbon

fibre-reinforced poly-ether-ether-ketone (PEEK) Ti-FMLs and appreciated that

these laminates offered fatigue lives up to fifty times greater than those of

notched monolithic titanium alloy. These authors stated that FMLs based

on titanium alloys appeared to be the most attractive for Aerospace Industry

as they would extend the advantages of the existing GLARE R© to higher

temperatures [Cortés and Cantwell, 2005]. Bourlegat et al. [2010] produced a

laminate with carbon fibre reinforced epoxy (CFRE) prepreg and titanium sheets
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Non-impacted size Impacted size

Mg-FML 20 J

15 mm Roll. Dir.

GLARE 5-3/2 0.4 50 J

15 mm Roll. Dir.

GLARE 5-3/2 0.4 20 J

15 mmRoll. Dir.

Mg-FML 20 J

15 mm Roll. Dir.

Mg-FML 50 J

15 mm

GLARE 5-3/2 0.4 70 J

15 mm

GLARE 5-3/2 0.4 70 J

15 mm

Mg-FML 50 J

15 mm

Mg-FML 75 J

15 mm

GLARE 5-3/2 0.4 80 J

15 mm

GLARE 5-3/2 0.4 80 J

15 mm

Mg-FML 75 J

15 mm

Figure 2.5: Examples of metal cracking patterns on the non-impacted and impacted sides
of the Mg/GFRP-FML and the Al(0.4)/GFRP-FML specimens (Images taken from [Pärnänen
et al., 2012]). The ends of the crack tips are marked with black dots.

inside of autoclave system. According to this study, the tensile stress, tensile

modulus, shear stress, and shear modulus values for titanium/CFRE laminates

are superior to those of GLARE R© and CARALL R©. Li and Johnson [1998]

manufactured hybrid titanium composite laminates (HTCLs) with prepreg layers

of high-temperature resin reinforced with carbon fibres; they assessed that the

performance of the HTCLs in fatigue was better than the one of the monolithic

titanium alloy for room-temperature and elevated-temperature conditions.

Nevertheless, Cortés and Cantwell [2007], when studied in a subsequent work

the low and high-velocity impact properties of two Ti-FMLs based on carbon

fibre-reinforced PEEK (CF/PEEK) and glass fibre-reinforced poly-ether-imide

(GF/PEI) composites, reduced the profile of Ti-FMLs as potential material to
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Figure 2.6: Specific perforation energies of a titanium-based CF/PEEK FML and the plain
composite (Adapted from [Cortés and Cantwell, 2007]).

applications susceptible to impacts. In accordance with their study, low velocity

impact tests showed that the specific perforation energy of the CF/PEEK FML

was similar to that offered by the CF/PEEK composite (see Fig. 2.6) and, in

contrast, for the GF/PEI FML system this value was lower than that of the

plain GF/PEI composite (see Fig. 2.7). As an exception, under high velocity

impacts, the specific perforation energy of the GF/PEI FML resulted higher

than those exhibited by the plain GF/PEI composite.

Briefly, and according to Cortes and Cantwell, the experimental evidence suggests

that titanium-based alloys are not recommendable as constitutive metal in FMLs

for impact applications. Regarding the other alternatives of metal constituents,

nickel-titanium and steel, they have also been object of study when used in a

FML, as previously commented [Cortés et al., 2007, 2008; Reyes and Gupta,

2009]; however, their low-velocity impact behaviour has not been studied yet.

2.2.2 Types of matrices for FMLs

First FMLs, developed for aerospace applications, were based on thermosetting

matrix composites. These composites present higher stiffness, strength and
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Figure 2.7: Specific perforation energies of a titanium-based GF/PEI FML and the plain
composite (Adapted from [Cortés and Cantwell, 2007]).

temperature resistance compared to thermoplastic matrix composites. However,

thermosetting matrix-based FMLs present comparatively disadvantages such

as brittleness, requirement of relatively long processing cycles to ensure the

complete curing and the providing of optimized bonding across the compos-

ite/metal interface, even difficulties associated with repair. These drawbacks

have been in the last decades the reason of increasing the attention to the

thermoplastic matrix-based FMLs [Bourlegat et al., 2010; Cortés and Cantwell,

2004, 2005, 2006a,c, 2007; Cortés et al., 2007, 2008; Li and Johnson, 1998;

Reyes and Gupta, 2009; Vlot, 1993b]. These last ones offer several advantages

associated to the manufacturing process; shorter cycle times, absence of volatile

substances, possibility of post-manufacturing forming, etc. Furthermore, they

present functional advantages concerning mechanical properties, such as higher

toughness and interlayer toughness, as well as lower density, higher facility to

repair and to recycle [Reyes and Kang, 2007].

Currently, there is not any comprehensive work to compare the low-velocity im-

pact behaviour of both FML types. Most of studies on GF thermoplastic compos-

ite FMLs are on high-velocity impact [Abdullah and Cantwell, 2006a; Compston

et al., 2001; Reyes and Cantwell, 2004]. However, it is worth noticing that in
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the high velocity impact studies Compston et al. [2001] demonstrated that the

specific perforation energy of GFPP-based FMLs is about 25% higher than for

the the corresponding thermosetting matrix GLARE R©. In the same study, it is

reported that GFPP-based FMLs show an increase in the ballistic perforation

limit of 50% when compared to monolithic aluminium alloy.

2.3 SRCs, all-thermoplastic composites

2.3.1 SRCs, an alternative to traditional composites

In response to the proposals expressed by the EC, to put only 5% of ELV

residues into landfills [dir, 2000], recyclability of materials is a topic increasingly

important in Automotive Industry. At the same time, it is indispensable

that the compliance with this demand does not prejudice to the requirements

concerning the safety of vehicles. Nowadays, it can be said that utilization

of composite materials in such industry is a reality, where the impact perfor-

mance, impact damage tolerance and post-impact integrity are some of the

most important safety issues. Traditional ceramic fibre composites can be

damaged when submitted to low-energy impacts and, consequently, the residual

properties of these composites can be degraded [Richardson and Wisheart, 1996].

On the other side, thermoplastic fibre composites are normally less sensitive

to damage caused by such solicitations due to their plastic behaviour [Bigg, 1994].

Self-reinforced thermoplastic composites or, simply, self-reinforced composites

(SRCs) (also called self-reinforced polymers (SRP), all-polymer composites or

all-thermoplastic composites) are composite materials in which the reinforcement

and the matrix belong to the same polymer family [Kmetty et al., 2010]. The

reinforcement consists in highly oriented thermoplastic fibres embedded in an

amorphous matrix. The adhesion between the two phases takes place at molec-

ular level thanks to the chemical compatibility of the phases. As a result, SRCs

present higher strength and stiffness than the bulk polymeric material [Alcock

et al., 2006, 2007]. In comparison with other thermoplastic or thermosetting ma-

trix composites with GF or other inorganic reinforcements, SRCs are the most
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lightweight and presents easier recyclability [Peijs, 2003], attributes in line with

the cited purposes of the EC [dir, 2000]. For example, GFRP can only be recycled

into new fibre reinforced grades because of the difficulty of separating glass fi-

bres from polymer matrix. Unlike GFRP, all-polymer composites can be entirely

melted at the end of the product life for recycling into polymer feedstock which

can be used for a wide range of future applications [Peijs, 2003]. Moreover, these

composites have also demonstrated other interesting properties when compared

to thermosetting matrix composites, such as higher impact damage tolerance and

post-impact integrity [Aurrekoetxea et al., 2011] and possibility of forming, sin-

gle [Cabrera et al., 2008] or jointly with metal as FML [Compston et al., 2004;

Gresham et al., 2006; Kalyanasundaram et al., 2007, 2013; Mosse et al., 2005a,b,

2006; Reyes and Gupta, 2005; Sexton et al., 2012].

2.3.2 Origin and evolution of SRCs

The first example of SRC was attributed to Capiati and Porter [1975]. They

defined the concept of ‘one polymer composite’, in their case made of high-

density polyethylene (HDPE), which was based on a difference in melting points

between fibre and matrix. The authors manufactured fibres that contained

aligned and extended chains which in turn provided thermodynamically more

stable crystals, with higher melting points than conventional ones. They stated

that the growth of transcrystalline regions in the melt matrix at the interface

plus partial melting between fibre and matrix were indications of a strong and

intimate interfacial bond with a gradient in morphologies for the system studied.

Following this pioneering work, numerous studies have been carried out on

SRCs. Several techniques have been developed and utilized to prepare these

composites, including film stacking [He and Porter, 1988; Zhang et al., 2009],

powder or solution impregnation [Lacroix et al., 1998, 1999], hot compaction

[Hine et al., 1993; Ward and Hine, 2004], co-extrusion [Peijs, 2003] and selective

surface dissolution [Qin et al., 2008; Soykeabkaew et al., 2008; Zhang et al., 2010].

Polymers, such as polyethylene (PE) and polypropylene (PP), have been particu-

larly investigated and utilized from the very beginning for manufacturing of SRCs
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because of their use in large number of industrial and domestic applications.

Nevertheless, the glass transition and melting temperatures of PE are lower than

those of PP, which means that creep and usage at elevated temperatures can

be problematic [Govaert and Peijs, 1995; Govaert et al., 1991, 1993]. Therefore,

in the recent years increasingly effort has been given to the research of PP and

its use in SRCs. This trend has prevailed to the point that nowadays there

are available commercial SRPPs, e.g. Curv R© [Pro, 2015], Tegris R© [Teg, 2015],

PURE R© [Pur, 2015] or Armordon R© [Arm, 2015]. From them, different kinds of

products, for automotive, sport staff or luggage, are currently manufactured (see

Fig. 2.8).

At the same time, researchers, encouraged by the success of all-PP composites,

also focused on Poly(ethylene terephthalate) PET (Tg ≈ 80 ◦C, Tm ≈ 265 ◦C),

which constituted an alternative solution to manufacture all-PET composites for

applications when temperature range is not attainable for SRPP. Moreover, as

there are well-developed recycling schemes for PET, SRC based on recycled PET

could be obtained [Pla, 2010]. In this regard, researchers from University of Leeds

successfully applied the hot compaction method in the manufacturing of SRPET,

studying the influence of process variables [Hine and Ward, 2004; Rasburn et al.,

1995]. Likewise, another research team from the University of Connecticut also

investigated the influence of amorphous and crystalline phases on mechanical

properties [Rojanapitayakorn et al., 2005]. Besides, Zhang et al. [2009] and Zhang

(a) (b) (c)

Figure 2.8: Some products made of SRPP; (a) under body shields, (b) ice skating boots and
(c) suitcases.
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and Peijs [2010] used the film stacking method to manufacture SRPET and im-

plementing a combined process of filament winding and hot-pressing, respectively.

2.4 FMLs based on SRCs

The aforementioned strengths of thermoplastic-based FMLs led researchers

to carry out plenty of research works on mechanical response of such type of

FMLs. Among these, GFPP-based FMLs have been the most studied in the last

two decades. Its interlayer behaviour [Reyes and Cantwell, 1998], formability

[Reyes and Gupta, 2005], fatigue behaviour [Reyes and Kang, 2007], low-velocity

impact response [Reyes and Cantwell, 2000] and high-velocity impact response

[Abdullah and Cantwell, 2006b; Cantwell et al., 2001, 2002] have already been

comprehensively studied. The extensive testing on such material has shown that

it offers an excellent response to low and high velocity impact loads in terms of

impact energy dissipating capacity when compared particularly to thermosetting

matrix-based systems.

Recently, Abdullah and Cantwell [2006a, 2012] analysed the high-velocity impact

resistance of SRPP-based FMLs. Initial tests were conducted on 2/1 stacking

FMLs based on 2024-O and 2024-T3 aluminium alloy sheets and SRPP core

of different thicknesses (sandwich laminates). They determined that laminates

based on the 2024-T3 alloy offered higher perforation resistance to those based

on 2024-O alloy. Besides, tests were also conducted on 3/2, 4/3 and 5/4

stacking multi-layered laminates in which the composite plies, always of the

same thickness, were dispersed between more than two aluminium sheets. For

a given target thickness, the multi-layered systems offered higher perforation

resistance than the sandwich laminates, while these latter ones demonstrated

higher specific perforation resistance (SPR) than the former ones.

Additionally, the 3/2 stacking FML were contrasted with other thermoplastic

matrix composites FMLs of same stacking configuration; e.g. the former offered

roughly double SPE than that of exhibited by a Kevlar-based laminate (see Fig.

2.9). To date, SRPP is the unique all-polymer composite used as composite con-
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Figure 2.9: Specific perforation energy of 3/2, 4/3 and 5/4 stacking configuration FMLs based
on 2024-T3 and 2024-O aluminium with SRPP (Adapted from [Abdullah and Cantwell, 2006a,
2012]).

stituent in a FML and in all of these cases the metal constituent was aluminium.

Among these works, there is no one about the capacity to dissipate energy under

low-velocity impact loads.

2.5 Theoretical modelling of polymeric matrix

composite

2.5.1 Classical models

Until about two decades ago, the scientific interest was mainly focused on

the modelling of thermosetting matrix composite materials. Ladevèze et al.

developed elastic models defined at the mesoscale level for carbon fibre reinforced

laminates with unidirectional plies which correctly describe the intralaminar and

even interlaminar damage mechanisms by the use of damage variables that take

into account the decrease elastic moduli observed in experiments [Allix et al.,

1998; Hild et al., 1997; Ladevèze, 1986, 1995; Ladevèze and LeDantec, 1992].

More recently Rozycki [2000] extended the model to take into account the strain

rate effects on glass-fibre reinforced composites. Based on the methods developed
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for unidirectional ply composites previously mentioned, several authors have

presented adapted methods for fabric reinforced composites under in-plane loads

[Hochard et al., 2001; Johnson et al., 2001; Marguet, 2007; Marguet et al.,

2007; Rozycki, 2000]. These models allow a correct description of the damage

mechanisms at a reasonably low computational cost by the use of damage

variables to describe the elastic moduli decrease [Lemaitre and Desmorat, 2005].

The irreversible strains have classically been described by plastic hardening

models [Hochard et al., 2001; Ladevèze and LeDantec, 1992] or viscoplastic

models [Marguet et al., 2007; Rozycki, 2000] which take into account strain rate

effects.

Nevertheless, the hysteresis phenomenon occurring under cyclic loads, associated

to the viscous character of polymers, has not been modelled in the aforemen-

tioned works. Such phenomenon affects the thermomechanical behaviour in

both tensile [O. Westphal and Rozycki, 2012] and impact [Aurrekoetxea et al.,

2011] fatigue loads. Several authors have developed models which take into

account the hysteresis loops: Maire based on [J.M. Bribis and Naslain, 1985],

proposed a spectral model for glass fibre-epoxy composites [Maire, 1992]. Hild et

al. developed a model using of a damage variable which takes into account the

size of the slip zone related to the crack spacing [Hild et al., 1996, 1997]. Halm

and Dragon developed an anisotropic damage model which introduces a internal

variable to account for the frictional sliding of closed microcracks within the

material [Halm and Dragon, 1998]. More recently, Bois proposed a rheological

model based on the superposition of a finite and infinite number of branches

to model the sliding and adherence phenomena within the fissures inside the

fabric reincoforced composite material [Bois, 2003] (see Appendix A.1). The

main drawback of these models is the need of a relative big number of material

parameters to obtain reasonable results.

Another possibility is the use of fractional models, which allow to reduce the

number of necessary parameters to obtain comparable results to those of the

previously cited models. Mateos [2014] modelled successfully the hysteretic and

damage behaviour of carbon fibre reinforced composite materials by using frac-
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tional operators.

2.5.2 Fractional models

Fractional calculus is nowadays applied in many fields of science and engineering.

In solid mechanics, fractional operators are now considered to be a convenient

tool to model the constitutive behaviour of viscoelastic materials. In 1921,

Nutting observed that the viscoelastic properties of materials appeared to be

proportional to fractional powers of time [Nutting, 1921] and posteriorly, in

1936, Gemant proved the dependence of the viscoelastic properties on fractional

powers of frequency [Gemant, 1936]. These findings led the latter to suggest the

use of fractional operators to model material viscoelastic behaviour [Gemant,

1938].

From then on, several authors have addressed viscoelastic behaviour modelling

by using fractional calculus. Scott-Blair and Caffyn [1949] proposed the use of

fractional derivatives to relate time dependent strain and stress in viscoelastic

materials. More recently, the application of fractional derivatives to viscoelastic-

ity was extensively studied by Caputo [1969] and Caputo and Mainardi [1971]. At

the beginning of the 80’s, Bagley and Torvik [1983, 1986] physically justified the

use of fractional models from a molecular point of view and later they developed

the conditions to obtain thermodynamic consistency to assure a non-negative en-

ergy dissipation. Koeller [1984] suggested to replace the classical dashpots in the

rheological models by generalised viscous elements called spring-pots. This name

conveys the fact that for α fractional order values near 0, the element behaviour

is nearly the one showed by an elastic spring and for α values close to 1, the

behaviour is almost similar to that dissipative nature of dashpots. Thus, the

spring-pots enable to model a wide range of behaviours by varying the values of

α. A number of theoretical and experimetal studies have been devoted to this

behaviour: Cosson [1995] characterised the mechanical behaviour of elastomers

by fractional models. Enelund and Olsson [1999] analysed the performance of

fractional models for viscoelastic behaviour characterisation and Adolfsson et al.

[2005] developed a fractional behaviour formulation based on internal variables to
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reduce computational effort. On the other hand, several works have been devoted

to the finite element implementation of fractional models and the reduction of the

numerical effort during the evaluation of fractional derivatives: Padovan [1987]

developed solution algorithms for finite element transient analysis of viscoelas-

tic materials. Yuan and Agrawal [2002] developed a numerical scheme based on

the Laguerre integral formula to reduce computational cost. Schmidt and Gaul

[2002] developed a finite element formulation based on the Grünwald definition

of fractional derivatives. Galucio et al. [2004] developed a finite element formu-

lation for transient analysis of sandwich with a four parameter fractional model.

Schmidt and Gaul [2006] developed a modified numerical scheme based on the

use of transfer functions to evaluate the fractional derivatives. More recently,

Deü and Matignon [2010] have developed a numerical scheme for the evaluation

of fractional derivatives by combining a Newmark method and a diffusive repre-

sentation of the fractional derivatives. The aforementioned works constitute good

examples of fractional models ability to describe viscoelastic material behaviour

in several analyses.

Origin and evolution of fractional calculus

Fractional calculus deals with integral and differential operators of non-integer

order α. In fact, it generalises the concepts of derivative and integral (or

antiderivative) operations of differential and integral calculus from integer orders

to the entire complex plane. Nevertheless, fractional calculus is almost as old

as calculus itself. Its origin goes back more than three centuries, when in 1695

in a letter Leibniz and L’Hôpital [1849] gave a first answer to a question from

Gillaume de L’Hôpital about the mathematical meaning of a fractional derivative

of order 1/2. The topic of fractional or irrational order derivatives [Leibniz

and Bernouilli, 1850a] and later on derivatives of general order [Leibniz and

Bernouilli, 1850b] can also be found in correspondences between Bernouilli and

Leibniz in 1695. After the death of Leibniz in 1716, the topic of non-integer order

derivatives continued with Euler’s generalisation in 1738 of factorials when he

worked on arithmetic progressions [Euler, 1738], concluding with the definition

of the posteriorly so called as Gamma function by Legendre (see Appendix B.1).
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The first detailed definition of a fractional derivative is considered to have been

given by Laplace [1812]. Some years later, Lacroix [1819] devoted less than two

pages to derivatives of arbitrary order in his book on differential and integral

calculus, where he worked on the generalisation of the derivatives of integer

order m of the function y(x) = xn, n ∈ N to fractional order by the use of

Euler’s Gamma function. The relevance of Lacroix’s work lies in the fact that

his result is the same obtained by nowaday’s Riemann-Liouville definition of

a fractional integro-differential. Since then, many authors contributed to the

evolution of fractional derivation and integration [Abel, 1881; Caputo, 1967;

Fourier, 1822; Grünwald, 1867; Letnikov, 1868; Riemann, 1953; Sonin, 1869].

In 1974, the first conference devoted exclusively to the theory and applications

of fractional calculus was held in the University of New Haven. In that same

year, the first book on fractional calculus by Oldham and Spanier [1974] was

published. After that, several books have appeared, the most popular being

the ones by Miller and Ross [1993], S. Samko and Marichev [1993], Podlubny

[1999], Hilfer [2000] , and more recently the ones by A.A. Kilbas and Trujillo

[2006], Magin [2006] and Mainardi [2010]. Finally, in 1998, the first issue of

the mathematical journal “Fractional calculus and applied analysis” appeared,

which deals exclusively with topics on fractional calculus theory and applications.

As it has been seen above, several different fractional operators have been devel-

oped throughout history. In the following subsection the Riemann-Liouville (RL)

fractional integro-differential, utilized in this research work, is described.

Riemann-Liouville fractional integro-differentials

The Riemann-Liouville definition of integro-differential operator is based on the

Cauchy formula for repeated integration:

Inf(t) =

∫ t

a

dtn−1

∫ tn−1

a

dtn−2 . . .

∫ t1

a

f(t0) dt0 =

=
1

(n− 1)!

∫ t

a

(t− τ)n−1f(τ) dτ,

(2.1)
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with a < t < b, n ∈ N. With the use of the Euler’s Gamma function, Eq. 2.1 can

be extended to calculate any positive real fractional order α Riemann-Liouville

integral:

RL
aI
α
t f(t) =

1

Γ (α)

∫ t

a

(t− τ)α−1f(τ) dτ, (2.2)

with a < t < b, α ∈ R+. For functions n times differentiable with <(α) < n,

repeated integration by parts yields

aI
α
t f(t) =

n−1∑
k=0

(t− a)α+kf (k)(a)

Γ(α + k + 1)
+ aI

α+n
t f (n)(t). (2.3)

Applying Eq. 2.3 to the definition of Riemann-Liouville integral, Eq. 2.2, the

following alternative expression may be obtained [Oldham and Spanier, 1974;

Podlubny, 1999; Riesz, 1949]:

RL
aI
α
t f(t) =

n−1∑
k=0

(t− a)α+kf (k)(a)

Γ(α + k + 1)
+

1

Γ(α + n)

∫ t

a

(t− τ)α+n−1f (n)(τ) dτ. (2.4)

In order to obtain the Riemann-Liouville fractional differential (or derivative)

operator, property 6 (see Appendix B.2) may be used, which yields

RL
aD

α
t f(t) = Dn

t

(
RL
aI
n−α
t f(t)

)
=

1

Γ(n− α)

dn

dtn

(∫ t

a

(t− τ)n−α−1f(τ) dτ

)
, (2.5)

with n ∈ N such that 0 < n−1 < α ≤ n, that is, n is the smallest positive integer

greater or equal to α and Dn is the ordinary differential operator. Again, under

the same conditions previously established for fractional integrals, by perfoming

repeatedly integration by parts, the following expression is obtained:

RL
aD

α
t f(t) =

n−1∑
k=0

(t− a)k−αf (k)(a)

Γ(k − α + 1)
+

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ) dτ. (2.6)

As it may be observed, this last relation coincides with Eq. 2.4 when substituting

negative values of α into it, taking into account the fact that I−α = Dα.

In general, within the applications covered in this work 0 ≤ α ≤ 1, then n = 1
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and Eq. 2.5 gives the following definition of the Riemann-Liouville fractional

derivative:

RL
aD

α
t f(t) = D1

t

(
RL
aI

1−α
t f(t)

)
=

1

Γ(1− α)

d

dt

(∫ t

a

(t− τ)−αf(τ) dτ

)
(2.7)

provided that f(t) ∈ C1[a, b].

Alternativelly, substituting n = 1 in Eq. 2.6 leads to

RL
aD

α
t f(t) =

(t− a)−αf(a)

Γ(1− α)
+

1

Γ(1− α)

∫ t

a

(t− τ)−α
(

df(τ)

dτ

)
dτ. (2.8)

These relations will be used subsequently to produce numeric algorithms for

Riemann-Liouville fractional integro-differential operators. It is apparent that

Riemann-Liouville operators are also non-local, since their value at time t de-

pends on the whole history of the kernel function f(τ). The storage of all the

values f(τ) along time t ∈ [a, t] is needed. This fact is one of the main draw-

backs of fractional operators, as they require more and more data-storage as time

progresses.

R-L algorithms

The R-L-algorithms are based on the Rieman-Liouville definition of integro-

differentials. The R-algorithms are used for fractional integration and the L-ones

for fractional differentiation. These latter ones are subsequently described since

they are the ones used in this work.

For fractional derivatives, Eq. 2.8 with a = 0 may be rewritten as

RL
aD

α
t f(t) =

t−αf(0)

Γ(1− α)
+

1

Γ(1− α)

∫ t

0

τ−α
(

df(t− τ)

dτ

)
dτ, (2.9)

which may be transformed into a summation as

RL
aD

α
t f(t) =

t−αf(0)

Γ(1− α)
+

1

Γ(1− α)

N−1∑
j=0

∫ (j+1) t
N

j t
N

τ−α
(

df(t− τ)

dτ

)
dτ. (2.10)
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The L1-algorithm is constructed by backwards discretisation of the derivative

within the integral in Eq. 2.10:

∫ (j+1) t
N

j t
N

τ−α
(

df(t− τ)

dτ

)
dτ ≈

f
(
t− j t

N

)
− f

(
t− (j + 1) t

N

)
t/N

∫ (j+1) t
N

j t
N

τ−α dτ,

(2.11)

which, after integration and manipulation, finally yields the L1-algorithm for

fractional derivatives of order α with 0 ≤ α < 1:

L1
0Dα

t f(t) =
(t/N)−α

Γ(2− α)

[
1− α
Nα

f(0) +

N−1∑
j=0

[
f

(
t− j t

N

)
− f

(
t− (j + 1)

t

N

)][
(j + 1)1−α − j1−α

]]
.

(2.12)

For higher orders of the fractional derivative order α, numerical algorithms may

be developed in a similar way but they will not be covered in this work as the

fractional orders of interest in the applications analysed lie within the range

0 ≤ α < 1.

Regarding the error induced by numerical discretisation of Riemann-Liouville

integro-differential operators, it generally depends on the values of α and N . It

tends to zero as N approaches infinity.

2.6 Conclusions

In this chapter, the scientific and technological framework of the mechanical

behaviour of SRCs and SRCs-based FMLs is presented. Firstly, the origin

and evolution of FMLs is related. Secondly, the low-velocity impact behaviour

of FLMs depending on the constituent materials is shown. Then, SRCs are

presented as alternative composite material and the research works on mechan-

ical behaviour of SRCs-based FMLs are reviewed. Finally, the main trends

concerning the modelling of composite materials, including SRCs, are described.
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According to the introduction, as it happened with composite materials, the

inclusion of FMLs in Automotive Industry seems to be feasible due to their

enhanced specific mechanical properties when compared to their composite

constituents; however, their implementation would be limited by now to high

class vehicles duo to the high manufacturing costs.

From the review of the impact behaviour of FMLs, it can be stated that since

automotive parts are susceptible to impacts, specifically low-velocity impacts,

the study of the low-velocity impact response is of great interest, being the

strain-rate effect on the mechanical response of constituents an essential interest

aspect. On the one hand, among the different metal constituents, aluminium and

magnesium seem to be the most appropriates for impact applications thanks to

their lightweight and impact behaviour; nevertheless, the suitability of one metal

or the other varies depending at least on the composite constituent and the

stacking configuration. On the other hand, there is no work comparing directly

the low-velocity impact behaviour of any thermosetting matrix FML with that

of its thermoplastic counterpart; however, the studies on high-velocity impact

behaviour of FMLs have demonstrated that thermoplastic-based FMLs are more

appropriate for impact applications due to enhanced energy dissipation capacity.

Concerning SRCs, their recyclability and improved impact behaviour, specifi-

cally, in respect of damage tolerance and post-impact integrity, in comparison

with the rest of composites are their main attractions. Being SRPP the only

commercialised all-polymer composite, there are other alternatives which deserve

to be contemplated as composite constituent in FMLs. Regarding SRC-based

FMLs, several studies have been undertaken, but there is no one focusing on

their low-velocity impact.

Finally, the use of classical models to reproduce phenomena, such as hysteresis,

associated in most of the cases to the viscous character of polymers, requires a

relative big number of material parameters to obtain reasonable results. This

suggests that the employment of fractional models is a more effective alternative

which can be valid to model the behaviour of SRCs.
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Chapter 3

Low-velocity impact behaviour of

SRCs and SRC-based FMLs

This chapter is devoted to the low-velocity impact behaviour of SRCs and SRC-

based FMLs. It is divided into two parts. In the first one, the impact response

of three different SRCs is studied in order to determine the most appropriate

in terms of their energy dissipation capacity under low-velocity impacts. In the

second one, two different FMLs, one based on aluminium and other based on

magnesium, are manufactured by using the SRC previously chosen. Then, their

low-velocity impact response is analysed in detail to elucidate which alternative

presents the highest energy dissipation capacity.

3.1 Low-velocity impact behaviour of SRCs

3.1.1 Materials

Three different SRCs are studied in this part; a SRPP, a SRPET and a SRPE.

All of them consist of a thermoplastic polymer fibre 0◦/90◦ woven reinforcement

embedded in a same-polymer matrix. They were supplied by PropexTM, ComfilTM

and KayplaTM, respectively, being the SRPP commercialised under the trade

name of Curv R© and the others with the enterprise name. Their mechanical

properties, provided by the manufacturers, are shown in Table 3.1.
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Table 3.1: Mechanical properties of the SRPP [Pro, 2015], SRPET [Com, 2015] and SPPE.

SRPP SRPET SRPE

1-Direc. 2-Direc. 1-Direc. 2-Direc. 1-Direc. 2-Direc.

Elastic modulus [GPa] 4.2 4.2 5.4 5.0 20.0 20.0

Yield stress [MPa] 120 120 192 159 − −

Strain to faiulure [mm/mm] 0.20 0.20 0.24 0.24 − −

Density [g/cm3] 0.93 1.38 < 1

Melting point [◦C] 165 265 125

3.1.2 Experimental procedure

Biaxial-bending impact tests

Low-velocity impact tests with different impact energies have been carried out

on the SRCs by using a drop-weight machine. The machine, a Ceast 9350 model

(Fractovis-Plus), was equipped with a 20 kN load cell attached to a 20 mm

diameter hemispherical striker which measured contact force history. The selected

impact height has been 500 mm for every test so that each material performs

always with the same strain rate. The impact mass has been varied to establish

specific impact energies. 80 mm × 80 mm square samples of 1 mm thick from

plates of the three materials have been cut for the tests.

Energy profile method

The dissipated energy in an impact event versus impact energy is usually rep-

resented in a diagram called ‘energy profile’ (see Fig. 3.1). Such diagram is

capable of revealing certain damage thresholds of composite materials and lam-

inated structures [Feraboli and Kedward, 2006]. The energy profile presents a

diagonal line (equal energy line) which indicates the maximum dissipated energy

for an impact. Commonly, three regions can be distinguished in an energy profile

diagram. Region (I) represents a stage in which the specimen is not penetrated.

In that region, the curve is below the equal energy line, so dissipated energy is

lower than impact energy. The energy excess is used to make the striker rebound

from the sample at the end of the impact event. At the upper limit of Region
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Figure 3.1: General scheme of an energy profile divided into the Region (I), Region (II)
and Region (III), which correspond to the no-penetration, the penetration and the perforation
phases, respectively.

(I) the penetration threshold (point B) is defined; in this point the dissipated

energy equals the impact energy for the first time. Then, Region (II), known as

penetration range, starts. In this stage the whole impact energy is dissipated by

the sample. Normally, in this energy range the striker sticks into specimens and

does not rebound any more [Aktas et al., 2009; Feraboli and Kedward, 2006].

Finally, in Region (III) the specimen is always perforated; the dissipated energy

remains constant and corresponds to the perforation threshold, located at the

beginning of such region (point C). As a consequence of the randomness of the

damage caused by penetration, a slight dispersion of the value of dissipated en-

ergy may occur in Region (III). Hence, the average value of the impact energy in

that region is taken as perforation threshold.

3.1.3 Results

Self-reinforced polypropylene, SRPP

Fig. 3.2 shows force-time corresponding to different damage stages of the SRPP

and Fig. 3.2(b) its energy profile. The onset of fibre breakage (OFB) has been

detected for a 30 J energy impact and perforation threshold has been detected

at 44 J. Fig. 3.3 shows images of the impacted SRPP samples corresponding to

the 6 J, 30 J and 60 J force-time curves and showing different damage stages.
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According to the images, permanent deformation, already present for 6 J energy

impact, increases with impact energy. Fibres breakage starts at 30 J and spreads

through the thickness until perforation takes place at 44 J.

Self-reinforced poly(ethylene terephthalate), SRPET

Fig. 3.4(a) shows force-time corresponding to different damage stages of the

SRPET and Fig. 3.4(b) its energy profile. The OFB has been detected for 18

J energy impact and perforation threshold has been detected at 23.5 J. Fig. 3.5

shows images of the impacted SRPET samples corresponding to the 12 J, 18 J and

30 J cases. According to the images, damage phenomena happened sequentially

and similarly to the SRPP.

Self-reinforced polyethylene, SRPE

Fig. 3.6(a) shows force-time corresponding to different damage stages of

the SRPE and Fig. 3.6(b) its energy profile. The OFB and the perforation

phenomena have been detected for a 90 J energy impact, i.e there has not been

a progressive fibre breakage prior to the perforation; this has been catastrophic

instead. Fig. 3.7 shows images of the impacted SRPE samples corresponding to

the 20 J, 70 J and 90 J force-time curves and showing different damage stages.

As can be seen, there is no fibre breakage before that the perforation takes place,

just permanent deflection.

Based on the results above, it is raised the question about which SRC offers

the most appropriate response under low-velocity impacts. On the one hand, the

SRPE has demonstrated the higher capacity to dissipate impact energy; however,

it has been observed some phenomena which cast doubt on the suitability of this

SRC to manufacture FMLs for impact applications. It has shown much less

bending stiffness than the SRPP and the SRPET, and it started to yield at

relatively low energy impacts. Moreover, it is worth reminding that the original

SRPE samples, of similar dimensions as the SRPP and SRPE ones, pulled into

the holder during impacts in spite of being clamped. After performing the tests

on the final dimensions SRPE samples, it has been detected that, even being
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Figure 3.2: (a) Force-time curves corresponding to different damage stages of the SRPP and
(b) its energy profile.
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Figure 3.3: Images of impacted SRPP samples showing different damage stages; (a) permanent
deformation for 6 J, (b) fibres breakage for 30 J and (c) perforation for 60 J.
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Figure 3.4: (a) Force-time curves corresponding to different damage stages of the SRPET and
(b) its energy profile.
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Figure 3.5: Images of impacted SRPET samples showing different damage stages; (a) perma-
nent deformation for 12 J, (b) fibres breakage for 18 J and (c) perforation for 30 J.
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Figure 3.6: (a) Force-time curves corresponding to different damage stages of the SRPE and
(b) its energy profile.
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Figure 3.7: Images of impacted SRPE samples showing different damage stages; (a) permanent
deformation for 20 J and (b) 70 J (close to perforation) and (c) perforation for 90 J.
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larger, yield effects went over the clamped area. In fact, the deformation in

plane was so large that a wrinkling phenomenon occurred. Such phenomenon is

a consequence of an inappropriate (generally low) compaction temperature in the

manufacturing process [Meerten et al., 2015]. On the other hand, the SRPP and

the SRPET have qualitatively shown the same kind of response; nevertheless,

quantitatively, the SRPP has shown almost twice penetration energy than the

SRPET. These results suggest rejecting the SRPE as alternative for the FMLs

and have demonstrated that the SRPP offers the most appropriate response under

low-velocity impacts due to its capacity to dissipate impact energy at perforation.

3.2 Low-velocity impact behaviour of SRPP-

based FMLs

3.2.1 Materials and manufacturing

Three different SRC-based FMLs have been studied; one with AZ31B-H24 mag-

nesium and the other with 2024-T3 aluminium as metal constituent, and both

with self-reinforced polypropylene (SRPP), selected in the previous section as

composite constituent. Additionally, in the comparative study, a single SRPP of

thickness similar to the FMLs’ one is included as reference base material (pro-

vided also by PropexTM and from now on referred to as 2.7-SRPP). Table 3.2

summarizes the thicknesses of the laminates and their constituents. A 2-1 stack-

ing configuration was employed for both FMLs: [metal, SRPP]s. The orientation

of the layers is such that the metal’s rolling and the composite’s 0◦ directions

coincides. The layers have been joined by using an interlayer adhesive consisting

on a maleic anhydride modified polypropylene hot melt film [col, 2015].

The FMLs have been manufactured by hot pressing. Firstly, SRPP layers, inter-

layer adhesive films and metal sheets have been stacked according to the above

configuration. Secondly, the laminate has been pressed (30 bar) using a mechan-

ical press with hot plates at 165 ◦C; this temperature is less than SRPP’s melting

point and the minimal bondline temperature for the adhesive to melt and run

38



CHAPTER 3. Low-velocity impact behaviour of SRCs and SRC-based FMLs

Table 3.2: Thicknesses of the constituents as received and total thicknesses of the laminates
obtained after processing. Units are in millimetres.

SRPP Metal sheet Adhesive Total thickness

Mg-FML 0.63 0.42 0.06 2.28

Al-FML 0.63 0.41 0.06 2.26

2.7-SRPP 2.70 − − 2.70

properly in operating status. Once the adhesive has been melted, the hot plates

have been cooled at a rate of 10 ◦C/min until the temperature has dropped below

100 ◦C to assure the adhesive curing. Finally, the laminates have been removed

from the press and cooled at room temperature. With this process, 250 mm ×
250 mm square plates have been manufactured.

3.2.2 Experimental procedures

Tensile tests

Quasi-static tensile tests on the FMLs and the 2.7-SRPP have been performed

to determine their mechanical properties. Five repetitions of each test have been

performed at a strain rate of 10−3 s−1 and the strain has been measured with a

50 mm long extensometer. For this, the FMLs samples have been cut by water

jet according to metal’s rolling and composite’s 0◦ directions (ASTM E8M-00

standard), whereas for the 2.7-SRPP, 20 mm × 200 mm rectangular samples

have been cut.

Biaxial-bending impact tests

Low-velocity impact tests with different impact energies have been carried out on

the SRC-FMLs by using the same drop-weight machine employed for the impacts

on the SRCs. FML samples were 60 mm diameter circular plates, whereas SRPP

samples were 80 mm × 80 mm square plates. The impact mass has been varied

from 0.1 to 45.045 kg and the impact height has been kept constant at 500 mm

(3.13 m/s) to avoid strain rate dependence of the mechanical response. The

testing procedure has consisted in performing impacts with 0.5 J increments

for each material and correlating events in the registered force-time curves with
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images of impacted specimens obtained with a macroscope. In this way, the

failure energy for cracking of metal sheet (refers to as ‘first cracking’ for the

non-impacted side (non-IS) and ‘second cracking’ for the impacted side (IS)),

onset of fibre breakage (OFB) in the composite constituent and total perforation

of the laminate have been identified.

The impact responses have also been studied by means of peak force and central

deflection of the samples. The central deflection has been obtained by successive

integrations of the acceleration signal obtained from the measured force-time

curve. The permanent deflection has been measured directly from samples by

using a dial gauge and the elastically recovered deflection has been obtained

calculating the difference between maximum deflection and permanent deflection.

Besides, the ‘energy profile’ method, described in Section 3.1, has been used to

identified the no-penetration, penetration and perforation regions.

3.2.3 Results

Tensile tests

Tensile stress-strain response of materials, together with fracture toughness, has

been used by different authors as a tool to estimate their impact energy dissipation

capability [Pärnänen et al., 2012]. Fig. 3.8 shows the stress-strain curves of

the FMLs and the 2.7-SRPP, and Table 3.3 collects their mechanical properties,

deduced from the curves, as well as those of the metal sheets and the adhesive,

provided by the manufacturers. According to Table 3.3, the Al-FML has higher

mechanical properties than the Mg-FML. Moreover, the toughness of 2024-T3

is higher than that of AZ31B-H24 [Alderliesten et al., 2008]. Thus, the results

suggest that the Al-FML would offer higher capacity to dissipate impact energy

than the Mg-FML. However, impact properties of FMLs are generally expressed in

specific values in order to consider the material weight. In this case, the Mg-FML

implied a weight reduction of 21% when compared to its aluminium counterpart.
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Figure 3.8: Quasi-static tensile stress-strain curves of the FMLs and the 2.7-SRPP composite.

Table 3.3: Mechanical properties of the metal sheets (aluminium [alu, 2015], magnesium [mag,
2015]), the adhesive [col, 2015], the FMLs and the 2.7-SRPP composite.

Density

[g/cm3]

Elastic

modulus

[GPa]

Yield

stress

[MPa]

Maximum

Strength

[MPa]

Strain

to failure

[mm/mm]

Aluminium 2.70 73.1 288 436 0.164

Magnesium 1.78 50.7 207 275 0.095

Adhesive 0.92 0.5 − 25 6.000

SRPP/2.7-SRPP 0.92 3.24 ± 0.02 − 187 ± 2 0.171 ± 0.001

Mg-FML 1.24 15.7 ± 0.01 78 ± 2 149 ± 3 0.085 ± 0.001

Al-FML 1.57 21.5 ± 0.01 105 ± 3 221 ± 4 0.127 ± 0.002

2.7-SRPP composite

Three damage stages have been identified in the 2.7-SRPP composite. In the first

one, the samples have revealed permanent deformation, e.g. from 29.6 J to 59.0

J. The second one has started with OFB on the non-IS at 63.9 J; the higher the

energy impact, the higher the thickness affected by the breakages. Finally, the

perforation has been reached at 75.3 J. Accordingly, Fig. 3.9 shows the damage

evolution, while Fig. 3.10(a) and Fig. 3.10(b) presents the corresponding force-

time curves.
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Figure 3.9: Images of the non-IS and the IS of the samples impacted with 63.9 J (OFB on
the non-IS; end of the first stage), 68.9 J (partial fibre breakage through the whole section;
belonging to the second stage) and 75.3 J (detection of the perforation threshold; end of the
second stage) of the 2.7-SRPP composite.
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Figure 3.10: Force-time curves for different impact energies of the 2.7-SRPP; (a) belonging
to the first stage which ended with the OFB and (b) one belonging to the second stage which
suffered fibre breakage in the whole thickness and the other corresponding to the perforation
thresholds.
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Mg-FML

Four damage stages have been distinguished in the Mg-FML. Each stage has been

initiated by a specific failure mode. Before detecting any of these failure modes,

the FML has responded elastically, e.g. at 0.6 J (see Fig. 3.12a). The first failure

mode, a permanent deflection associated to plasticity phenomenon, has been

observed with a change in the slope of the force-time curve at approximately

1200 N, e.g. at 6.0 J (see Fig. 3.12a). Then, the first and second cracking, the

OFB and the perforation have progressively led to other three damage stages at

10.0 J, 19.8 J and 39.4 J, respectively (see Fig. 3.11). The first (on the non-IS)

and the second cracking (on the IS), which have occurred simultaneously at 10.0 J

and in the rolling direction (RD) (see Fig. 3.11), have been associated with a force

drop at around 3500 N (see Fig. 3.12a). Then, the OFB has been also detected on

both sides of the FML. On the non-IS, fibres have failed by tensile stress (see Fig.

3.13(a)) and, on the IS, fibres have been sheared by the lips of the crack when the

striker dented the metal sheet (see Fig. 3.13(b)). Moreover, at 19.8 J the crack

of the non-IS propagated and perpendicular ramifications were generated (Fig.

3.13a) and the crack of the non-IS has traced a hemi-circular path according to

the shape of the hemispherical striker (see Fig. 3.13(b)). Increasing the impact

energy, the cracks have continued propagating and while some fibres have been

sheared because of the dent, the rest of the fibres have performed properly under

tension until failure (see Fig. 3.12(b)). Finally, at 39.4 J the laminate has been

fully perforated. Regarding the interlayer behaviour, the hot melt adhesive film

has kept the magnesium sheets and the composite material joined in some regions

12 mm 12 mm 12 mm12 mm12 mm12 mm

IS (10.03 J) IS (19.84 J)Non-IS (10.03 J) Non-IS (19.84 J) IS (39.46 J) Non-IS (39.46 J)

Figure 3.11: Images of the Mg-FML samples impacted with 10.0 J, 19.8 J and 39.4 J, corre-
sponding to the first and second cracking (10.0 J), the OFB (19.8 J) and the perforation (39.4
J) (RD is indicated in the picture on the left and it is the same for all the samples).

43



3.2. Low-velocity impact behaviour of SRPP-based FMLs

0 2 4 6 8 10 12 14
0

1

2

3

4

Time [ms]

F
o
rc

e
[k

N
]

10.0 J
6.0 J
0.6 J

(a)

First and second cracking

Onset of plasticity

No damage

0 2 4 6 8 10 12 14
0

1

2

3

4

Time [ms]

F
or

ce
[k

N
]

39.4 J
19.8 J

(b)

Perforation

Propagated cracks in both

sides and fibre breakage

Figure 3.12: Force-time curves for different impact energy of the Mg-FML; (a) corresponding
to responses with no damage, with plasticity (originate at 1200 N) as well as the first and
second cracking and (b) corresponding to the OFB and the perforation.

of the impact area, forcing an intralayer failure in such regions. However, in some

areas, the join between the substrates have failed, causing interlayer decohesion.

In these parts the film has remained bonded to the composite (see Fig. 3.13(c)).

Al-FML

The same failure modes associated to the same damage stages of the Mg-FML

have been identified in the Al-FML. The first and second cracking, the OFB and

the perforation have been detected at 88.5 J, 108.1 J and 117.9 J, respectively (see
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Figure 3.13: Macroscope images of the Mg-FML; (a) crack on the non-IS in presence of fibre
breakage and ramifications at 19.8 J; (b) circular-shaped crack on the IS in presence of fibre
breakage by shearing at 19.8 J; and (c) perforation region denoting composite-metal interlayer
failure and showing a portion of adhesive bonded to the composite substrate at 39.4 J (the RD
is indicated for the first two pictures).

Fig. 3.14). Fig 3.15a shows the different kinds of responses; an elastic response

for 0.6 J, a response with presence of plasticity at 24.7 J and the corresponding

to the first and second cracking moment, at 88.5 J. The change in the slope of

the force-time curve which has announced the beginning of plasticity corresponds

to approximately 1500 N (see Fig. 3.15a). The first (on the non-IS) and

the second cracking (on the IS) have appeared in the RD (see Fig. 3.14) and

caused a force drop after reaching the peak value (see Fig. 3.15a). The OFB has

taken place in both sides of the FML at 108.1 J due to the tensile stress state

produced throughout the thickness (see Fig. 3.15b). The cracks have defined

hemi-circular paths (see Fig. 3.14) presenting a perpendicular ramification in the

non-IS (see Fig. 3.16a) (see Fig. 3.16b). Finally, at 117.9 J the laminate has fully

12 mm 12 mm 12 mm12 mm12 mm12 mm
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Figure 3.14: Images of the Al-FML samples impacted with 88.51 J, 108.13 J and 117.94 J,
corresponding to the first and second cracking (88.5 J), the OFB (108.1 J) and the perforation
(117.9 J) (the RD is indicated in the picture on the left and it is the same for all the samples).
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Figure 3.15: Force-time curves for different impact energy of the Al-FML; (a) corresponding
to responses with no damage, with plasticity (originate at 1500 N) as well as the first and
second cracking and (b) corresponding to the OFB and the perforation.

fully perforated. The hot melt adhesive film has kept the aluminium sheets and

the composite material joined all over the region affected by the impact, forcing

intralayer failure (see Fig. 3.16c).

Energy profile

Fig. 3.17 shows the energy profile of the Mg-FML (a) and the Al-FML (b).

Neither Region (I) nor Region (II) can be distinguished for either laminates. The

reason is that in both cases, for every impact below the perforation threshold,
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Figure 3.16: Macroscope images of the Al-FML; (a) crack on the non-IS in presence of fibre
breakage by tensile and ramifications at 108.1 J; (b) circular-shaped crack on the IS in presence
of fibre breakage at 108.1 J; and (c) perforation region with intralaminar failure at 117.9 J.

practically the whole impact energy has been dissipated by the samples making

impossible the identification of their penetration thresholds. Thus, in order to

distinguish their penetration thresholds, energy profiles have been represented in

terms of the dissipated energy-impact energy ratio (see Fig. 3.18). Up to 30

J, the higher the impact energy, the higher the ratio as a consequence of the

increasing plasticity in the constituents. At 30 J, the Mg-FML has reached a

ratio of 1 (penetration threshold), whereas the ratio of the Al-FML has resulted

0.95. Later, the ratio of the Mg-FML has remained constant with a value of 1

until being perforated at approximately 40 J (according to Section 3.2.3), while

the ratio of the Al-FML has not reached the value of 1 until 90 J. The penetration
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Figure 3.17: Energy profiles of (a) the Mg-FML and (b) the Al-FML. They enabled the
identification of their perforation thresholds, but not of their penetration thresholds.
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Figure 3.18: Dissipated energy ratio diagrams of the Mg-FML and the Al-FML.

threshold has been considered to be 30 J for that material. Finally, the profile

of the Al-FML has established its perforation threshold at approximately 117 J.

Concerning the 2.7-SRPP, the three regions were identified directly in the energy

profile diagram. The penetration and the perforation thresholds were established

at 63 J (OFB) and 75 J, respectively.

Peak force and central deflection

Fig. 3.19 shows the peak force evolution with impact energy for both the FMLs

and the 2.7-SRPP. For the three materials peak force increased until any crack or

breakage has taken place; first cracking in the Mg-FML (10 J) and Al-FML (88 J),

and OFB in the 2.7-SRPP (63 J). From there on, the peak force has hardly varied

until perforation. The peak force of the Al-FML has resulted approximately 4

times higher than that of the Mg-FML and 35% higher than that of the 2.7-SRPP

composite.

The permanent central deflection data have been normalized by the highest value

from among the three materials, corresponding to that of the Al-FML, just before

perforation (see Fig. 3.20a). The recovered deflection has been represented as a

percentage of the maximum deflection (see Fig. 3.20b). Below 10 J of impact

energy, corresponding to the first cracking of the Mg-FML, both FMLs showed
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Figure 3.19: Peak force versus impact energy curves for the FMLs and the 2.7-SRPP.

almost the same permanent (see Fig. 3.20a) and recovered central deflection

(see Fig. 3.20b). As an example, Fig. 3.21 shows the 6 J impact curves of both

FMLs. Although the Mg-FML has reached a higher maximum deflection than the

Al-FML because of its lower stiffness, it has also experienced a higher recovery

of central deflection, resulting in the same permanent deflection. Beyond 10

J, whereas their permanent deflections have also resulted similar, the recovered

deflection of the Mg-FML has been higher than that of the Al-FML, e.g. for

19 J (see Fig. 3.21). While the Al-FML has showed no damage, the Mg-FML

has suffered the first and second cracking at around 3000 N. Once the cracking

has started, the more the cracks propagated, the more the SRPP constituent

was loaded. Finally, the unload slope of the Mg-FML has resulted less than

that of the Al-FML because of the lower stiffness which has been reduced as a

consequence of the damage caused in the magnesium sheets. Hence, the Mg-FML

has experienced a higher deflection recovery when compared to the Al-FML, but

they have suffered the same permanent deformation. For impact energies higher

than 19 J, the recovered central deflection for Mg-FML has been 3 times higher

than that of the Al-FML. This difference has been due to the SRPP which was

the most decisive in the response of the laminate causing such elastic recovery,

which in the case of the 2.7-SRPP is relatively significant (see Fig. 3.20b).
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Figure 3.20: Normalized permanent central deflection (a) and recovered central deflection (b)
versus impact energy of the materials.

3.2.4 Discussion

Table 3.4 summarizes the limit energies of the different failure modes and thresh-

olds. The first and second cracking, as their names indicate, appeared sequentially

for a specific force, suggesting that both laminates behaved as a membrane until

such force. However, as Table 3.4 shows, the energy limit to generate the cracks

for the Al-FML has resulted more than 8 times higher than that of the Mg-FML.

The reason of such difference is attributed to the brittleness of magnesium in

comparison with aluminium. When the magnesium sheet of the IS cracked and
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Figure 3.21: Force-central deflection curves of the Mg-FML and the Al-FML for the energy
impacts of 6 J and 19 J.

started to shear fibres of the composite constituent, these fibres stopped work-

ing in tension making the rest of the fibres to be overloaded. The more the

crack propagated and the dent penetrated, the higher the number of throughout-

thickness sheared fibres, causing a reduction of the effective thickness working

as a membrane. Moreover, the interlayer adhesion of the Mg-FML, which has

resulted worse than that of the Al-FML, probably contributed to magnify the

quantitative differences between the limit energies of their failure modes as well

as the penetration and perforation thresholds. The peak force has also revealed

significant differences as a consequence of the relatively early appearance of the

first failure mode of the Mg-FML and its deficient interlayer adhesion. Values

shown in Table 3.4 were normalized by their areal densities giving the values

shown in Fig. 3.22. The specific perforation threshold for the Al-FML has re-

sulted more than 2 times higher than that of the Mg-FML despite the weight

reduction that the use of magnesium implies. In addition, the penetration range,

where most of the energy is dissipated, has been in the Al-FML 8 times bigger

than in Mg-FML. Moreover, the Al-FML has improved the impact resistance by

10% and showed an energy dissipation capacity around 5 times higher when com-

pared to the 2.7-SRPP. The Mg-FML, also, offered the worst behaviour from a

resistance and energy dissipation capacity point of view.
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3.3. Conclusions

Table 3.4: Limit energies of the different thresholds and failure modes.

1st cracking [J] 2nd cracking [J] OFB [J] Penetration [J] Perforation [J]

Mg-FML 10.0 10.0 19.8 30.0 40.0

Al-FML 88.5 88.5 108.1 30.0 117.0

2.7-SRPP 63.9 63.9 75.3
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Figure 3.22: Quasi-static tensile stress-strain curves of the FMLs and the 2.7-SRPP composite.

3.3 Conclusions

In the first part of this chapter, three different SRCs have been studied; a SRPP,

a SRPET and a SRPE. First of all, the SRPE has demonstrated the higher

capacity to dissipate impact energy; however, its relatively low stiffness and

trend to suffer wrinkling cast doubt on the suitability of this SRC to manufacture

FMLs for impact applications. And, between the SRPP and the SRPET, it has

been the former which has offered almost twice more penetration energy than

the latter. Thus, the SRPP has been selected to manufacture SRPP-based FMLs.

In the second part of this chapter, two different SRPP-based FMLs have been

studied; one with AZ31B-H24 magnesium and the other with 2024-T3 aluminium

as metal constituent. The Al-FML has demonstrated a higher perforation resis-

tance and capacity to dissipate energy impact than the Mg-FML. In fact, despite
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CHAPTER 3. Low-velocity impact behaviour of SRCs and SRC-based FMLs

the latter presented a lower density than the former, the perforation threshold

of the aluminium-based laminate has resulted more than twice than that of the

aluminium-based one. Furthermore, the limit energy of the failure modes have

suggested that the impact performance of these SRC-based laminates not only

depends on the mechanical properties of metal and composite constituents, but

also on the interaction between them when subjected to impact. Particularly,

in the case of the Mg-FML, the brittleness of magnesium has produced the

cracking of the IS sheets causing the shearing of fibres of the SRPP con-

stituent, what reduced the effective thickness. Consequently, the potential that

the laminate could offer when working as a membrane has assumed no advantage.

Also, the combination of SRPP with aluminium sheets can provide a FML which

constitutes an improved alternative to the plain composite for impact applica-

tions. In this case, the Al-FML has proven to have higher impact resistance and

capacity to dissipate impact energy when compared to the 2.7-SRPP composite.

The Mg-based FML, otherwise, has resulted to have less impact resistance than

the similar-thickness plain composite.
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Chapter 4

Mechanical characterisation of

SRPP and Al/SRPP-FML

This chapter deals with the mechanical characterisation of SRPP and Al/SRPP-

FML. It is divided into two parts. In the first one, the mechanical behaviour of

SRPP at different strain rates is characterised. It is also included an analysis of

the stiffness evolution with strain and the hysteresis phenomenon associated to

the viscous character of SRPP. In the second part, the mechanical response at

different strain rates of Al/SRPP-FML is studied and the influence of SRPP as

constituent material in the FML is evaluated.

4.1 Basic definitions

For both the mechanical characterisation and behaviour modelling of the plain

composite, addressed this latter in Chapter 5, the coordinate system is composed

of the first axe which corresponds to the warp direction and the second one,

perpendicular to the first one, coincides with the weft direction in the case of

balanced fabrics. The third axe is normal to the plane defined by the first and

second directions, which coincides with the direction given by the thickness of

the ply. Fig. 4.2 shows a general orthotropy reference frame (O, 123) with a

clockwise rotation angle θ with respect to the global frame (O, xyz).
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y
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O

Figure 4.1: General orthotropy reference frame (O, 123) with a clockwise rotation angle θ
with respect to the global frame (O, xyz).

In order to develop the theoretical models in Chapter 5 for the elementary ply,

the stress is supposed to be plane, i.e. the stress σ33 is negligible. Furthermore,

the strain and stress distributions within the thickness of the elementary ply are

assumed to be uniform. The undamaged elastic stiffness matrix C0 is then defined

as follows [Gay, 2005; Gornet and Ijaz, 2011; Herakovich, 1998]:

C0 =



E11

1− ν12ν21

ν12E22

1− ν12ν21

0

E11

1− ν12ν21

E22

1− ν12ν21

0

0 0 2G12

 , (4.1)

where E11, E22 and G12 are elastic constants and ν12 and ν21 are the Poisson’s

ratios of the material with
ν12

E11

=
ν21

E22

. (4.2)

In order to take into account the material degradation, based on the continuum

damage mechanics approach, where the models are written at the homogenised

mesoscale of the elementary ply [Hochard et al., 2001; Ladevèze, 1986, 1994], the

elastic stiffness matrix C is

E0
11(1− d11)

1− ν12ν21

ν12E22

1− ν12ν21

0

E11

1− ν12ν21

E0
22(1− d22)

1− ν12ν21

0

0 0 2G0
12(1− d12)

 , (4.3)

56



CHAPTER 4. Mechanical characterisation of SRPP and Al/SRPP-FML

where E0
11, E0

22 and G0
12 are undamaged elastic constants, d11 and d22 are respec-

tively the damage variables in the warp and weft directions, and d12 the damage

variable associated to the shear in direction 12. These may be gathered collec-

tively into the damage variables vector d = [d11, d22, d12]T. Note that Poisson’s

ratio is assumed to experiment no degradation. In this case, eq. 4.2 takes the

form:
ν12

E0
11

=
ν21

E0
22

. (4.4)

With the hypothesis of plane stress and according to a Voigt vectorial represen-

tation, the strain tensor in the orthotropy frame is related to the strain tensor in

the global one as follows:
ε11

ε12

2ε12

 =

 cos2θ sin2θ sin θ cos θ

sin2θ cos2θ sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2θ − sin2θ




εxx

εyy

2εxy

 (4.5)

For the stress vector, the same relation is obtained:
σ11

σ12

σ12

 =

 cos2θ sin2θ 2 sin θ cos θ

sin2θ cos2θ 2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2θ − sin2θ




σxx

σyy

σxy

 (4.6)

Eqs. 4.5 and 4.6 will be used in Section 4.2 and Section 4.2.2 in order to relate

the global frame, associated to the test machine, and the orthotropy frame,

associated to the fibres orientations.

For the study of the mechanical response of the FML, the coordinate system used

is the one defined for the plain composite so that the rolling and transverse direc-

tions of the metal coincide with the warp and weft directions of the composite,

respectively. As for the plain composite, the stress is supposed to be plane.
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4.2 Experimental methodology

4.2.1 Characterisation methodology of the SRPP

The mechanical characterisation of the SRPP covers a study of quasi-static be-

haviour at different strain rates. In the particular case of balanced woven fabric

composites, the longitudinal and transversal directions are assumed to have the

same behaviour and damage evolution laws. Thus, the experimental campaign

has consisted of the following tests:

- Quasi-static cyclic tensile tests on 1-direction oriented laminates.

- Quasi-static cyclic tensile tests on 45◦ oriented laminates.

It must be pointed out that, when performing cyclic tests, the number of cycles

has been limited to 6 in order to remain in a domain where fatigue effects are

negligible [Rozycki, 2000]. Besides, the stiffness variation with strain is analysed

and its causes, which are attributed to damage generation Ladevèze [1986] and

material stiffening phenomena [Galeski and Regnier, 2009; Holliday, 1971], are

estimated y quantified.

Tensile tests have been performed following ASTM D638 standard [D63]. Fig.

4.11 shows the geometry and dimensions of the tensile test samples. The tests

have been performed in an Instron 3369 universal test machine at 10−4 s−1, 10−3

s−1 and 10−2 s−1. For the load and longitudinal strain measurements, an Instron

2580-108 load cell and TML’s YFLA-5 strain gauges have been used, respectively.

Data acquisition has been achieved by an external National Instruments R© sys-

tem, which consists of a NI-9219 module mounted on a cDAQ-9178 chassis, and
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Figure 4.2: Sample geometry dimensioned according to ASTM D638 standard [D63].
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CHAPTER 4. Mechanical characterisation of SRPP and Al/SRPP-FML

LabView SignalExpress 2010 data acquisition software. The tests have been per-

formed on 5 different samples and the properties have been established by the

average values of these 5 tests.

Tests on 1-direction oriented laminates

In this case, the warp coincides with the direction in which the load is applied,

i.e. the global longitudinal x direction, associated to the test machine. Thus,

Eqs. 4.5 and 4.6 with θ = 0 yield:

σxx = σ11 (4.7)

εxx = ε11 (4.8)

εyy = ε22 (4.9)

Furthermore, if the orthotropy of the material is assumed, then E11 = E22 and

from eq. 4.2 it results:

ν12 = ν21 (4.10)

The elastic behaviour law gives the following equations:

σ11 = E0
11(1− d11)εe

11, σ22 = 0, σ12 = 0 (4.11)

σ11 = −E
0
11

ν12

εe
22 (4.12)

Tests on 45◦ oriented laminates

In this case, the warp is rotated 45◦ with respect to the global longitudinal x

direction, associated to the test machine. Thus, Eqs. 4.5 and 4.6 with θ = 45◦

yield:

σ12 =
σxx
2

(4.13)

ε12 = −εxx − εyy
2

(4.14)
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4.2. Experimental methodology

Stiffness evolution: damage and stiffening

The stiffness decrease is caused by damage generation, which in composite

materials is associated to several phenomena such as fibre breakage, fibre-matrix

debonding or matrix microcracking, depending on loading orientation [Ladevèze,

1986; Rozycki, 2000]. In semicrystalline polymers, another damage classes can

be identified such as lamellar fragmentation and voids generation [Detrez et al.,

2011]. Moreover, in these materials another phenomena implying the contrary

effect, i.e a stiffness increase, can take place, e.g chains orientation [Galeski and

Regnier, 2009; Holliday, 1971]. The stiffness increase caused by any phenomenon

will be name stiffening.

As it will be seen, in a first stage the tensile stiffness of the SRPP decreases with

the strain and, subsequently, a stiffness increase stage is initiated. Assuming

an uniaxial case and defining the relation between the elastic modulus and the

undamaged elastic modulus ζ as

ζ =
E

E0
, (4.15)

the stress can be expressed by means of

σ = E0ζεe. (4.16)

Based on the approach of continuum damage mechanics (CDM) to model damage,

it is proposed to reformulate the damage elastic law in order to include a new

variable associated to stiffening by means of:

σ = E0(1− d)(1 + r)εe, (4.17)

where r is the variable associated to stiffening. Equalling Eq. 4.16 and Eq. 4.17,

it can be established that

ζ = (1− d)(1 + r) = 1 + r − d− dr = 1− (d− r + dr)︸ ︷︷ ︸
Rs

= 1−Rs, (4.18)
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CHAPTER 4. Mechanical characterisation of SRPP and Al/SRPP-FML

where Rs is the stiffness variability ratio, which is defined as follows:

Rs = 1− ζ = 1− E

E0
. (4.19)

Then, from Eq. 4.18 it can be deduced the following expression for the stiffening:

r =
d−Rs

1− d
. (4.20)

Subsequently, an example of how to identify the damage and the stiffening is

presented. It is assumed some random Rs data which evolves with the elastic

strain (see Fig. 4.3) according to the trend that will be seen in Section 4.3.

As Fig. 4.3 shows, initially, the stiffness variation ratio increases progressively

from certain estimable elastic strain and, then, after reaching a maximum, it

starts to decrease. This stiffness variation is caused by the damage and stiffening

phenomena, which are coupled. Experimentally quantifying the influence of each

phenomenon to such evolution would be of great difficulty [Stribeck, 2009], so

in this research work a criterion to determine the contribution of them has been

established. This criterion has been based on two hypothesises:

- The stiffening does not influence on the stiffness variability ratio until this

later reaches its maximum, i.e the stiffness variability ratio is equal to the

damage until then.

- The damage evolves exponentially, as it has been previously verified on most

of semicrystalline polymers and composite materials [Detrez et al., 2010].

0 εemax

0

Rs.max

εe

R
s

Rs.max

Figure 4.3: Evolution of the stiffness variation ratio with elastic strain.
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Hence, to estimate the damage an exponential evolution curve is fitted to the

Rs experimental data considering all points from the beginning to the maximum

value Rs.max (see Fig. 4.4(a)). Then, the stiffening is calculated by means of Eq.

4.20 resulting its evolution with elastic strain (see Fig. 4.4(b)).

4.2.2 Characterisation methodology of Al/SRPP-FML

In order to study of the mechanical response of the Al/SRPP-FML, two tensile

tests at 10−4 s−1 and 10−2 s−1, and a cyclic tensile test 10−3 s−1 have been

performed. The tests have been performed in an Instron 3369 universal test

machine. The data acquisition has been carried out in the same way that in the

plain composite and the sample geometry used has been the corresponding to

ASTM D638 standard [D63]. The aim of these tests is to evaluate the influence

of the SRPP as constituent material in the FML.

4.3 Mechanical characterisation of the SRPP

4.3.1 1-direction tensile behaviour

Fig. 4.5 shows the 1-direction tensile behaviour obtained from the cyclic tensile

tests on 1-direction oriented laminates at 10−4 s−1, 10−3 s−1 and 10−2 s−1. From

0 εemax

0

Rs.max

εe

d

Rs Experimental

Damage estimated

Rs.max

(a)

0 εemax

0

Rs.max

εe

r

Rs Experimental

Stiffening estimated

Rs.max

(b)

Figure 4.4: Evolution of the (a) damage estimated and the (b) stiffness from the stiffness
variation ratio with elastic strain.
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them, the following observations have been made:

- Existence of irreversible strains.

- Generation of non-symmetric hysteresis loops resulting from the load-

unload cycles.

- Strain rate dependence.

- Variation of stiffness with the elastic strain at global scale.

Fig. 4.5 also shows that the strain rate effect is significantly perceptible not

only in the hardening, but also in the accumulated irreversible strains and the

shape of hysteretic loops. The higher the strain rate, the lower the irreversible

strains and the thinner and taller the hysteretic loops. The undamaged elastic

modulus E0
11, obtained from the initial linear part of stress-strain curves within

the range 2-6 MPa, is also affected by the strain rate (see Table 4.1). Concerning

the stiffness, in a first stage it decreases with the strain and, subsequently, a

increasing stage is initiated. All these aspects will be taken into account in the

development of the tensile behaviour models in Chapter 5.

Fig. 4.6 shows the evolution of stiffness variability ratio Rs, defined in Section

4.6 (see Eq. 4.19), for the three strain rates. The stiffness decrease stage implies

an increasing stiffness variability ratio and the subsequent stiffness increase stage

implies a decreasing stiffness variability ratio.

Table 4.1: Undamaged elastic modulus depending on the strain rate.

10−4 s−1 10−3 s−1 10−2 s−1

E0
11 [MPa] 4214.9±3.8 4284.7±5.8 4981.1±8.5
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Figure 4.5: 1-direction stress-strain relation at (a) 10−4 s−1, (b) 10−3 s−1 and (c) 10−2 s−1.

64



CHAPTER 4. Mechanical characterisation of SRPP and Al/SRPP-FML

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

εe

R
s

10−4 s−1

(a)

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

εe

R
s

10−3 s−1

10−4 s−1

(b)

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

εe

R
s

10−2 s−1

10−4 s−1

(a)

Figure 4.6: Evolution of stiffness variability ratio in tensile on 1-direction at (a) 10−4 s−1, (b)
10−3 s−1 and (c) 10−2 s−1.

4.3.2 Shear behaviour

Fig. 4.7 shows the shear curves obtained from the cyclic tensile tests on 45◦

oriented laminates at 10−4 s−1, 10−3 s−1 and 10−2 s−1. It must be remarked

that these tests have not been performed until the breakage, since from certain

deformation level the angle formed by the principal directions became significantly

different of 45◦, which is essential to decouple the shear mode. From them, the

following observations have been made:

- Existence of irreversible strains.

- Generation of symmetric hysteresis loops resulting from the load-unload

cycles.

- Strain rate dependence.
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- Decrease (loss) of stiffness with the elastic strain at the global scale.

Fig. 4.7 also shows that the strain rate effect is perceptible not only in the

hardening, but also in the cumulated irreversible strains and the size of hysteretic

loops. The higher the strain rate, the lower the irreversible strains and the

larger the hysteretic loops. This latter means that the higher the strain rate,

the higher the dissipated energy by viscous phenomena. The undamaged elastic

modulus G0
12, obtained from the initial linear part of stress-strain curves within

the range 2-6 MPa, is also affected by the strain rate (see Table 4.2). Concerning

the stiffness, for every strain rate it decreases with the strain.

Fig. 4.8 shows the evolution of stiffness variability ratio Rs for the three strain

rates. Rs decreases with strain as a consequence of damage generation.

Table 4.2: Undamaged shear elastic modulus depending on the strain rate.

10−4 s−1 10−3 s−1 10−2 s−1

G0
12 [MPa] 1119.1±3.1 1120.4±5.1 1295.3±7.2
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Figure 4.7: Shear stress-strain relation at (a) 10−4 s−1, (b) 10−3 s−1 and (c) 10−2 s−1.
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Figure 4.8: Evolution of stiffness variability ratio in shear at (a) 10−4 s−1, (b) 10−3 s−1 and
(c) 10−2 s−1.

4.4 Mechanical response of Al/SRPP-FML

In this section, the mechanical response at different strain rates of Al/SRPP-

FML is studied and the influence of SRPP as constituent material in the FML

is evaluated. Fig. 4.9 shows the tensile stress-strain curve at different strain

rates. As it can be seen, the FML presents a rate-dependent mechanical response.

Assuming that the behaviour of aluminium does not depend significantly on strain

rate [Seidt and Gilat, 2013], the appreciated rate-dependent response of the FML

can be associated to the influence of the SRPP. Moreover, such influence is also

reflected in the unload-reload cycles, in which hysteresis phenomena are detected

(see Fig. 4.10).
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Figure 4.9: Tensile tests of Al/SRPP-FML at 10−4 s−1 and 10−2 s−1.
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Figure 4.10: Cyclic tensile test of Al/SRPP-FML at 10−3 s−1.

4.5 Conclusions

In the first part of this chapter, the SRPP has been characterised. The SRPP

reveals that, both in tensile and shear, it presents irreversible strains when

deformed, generates hysteresis loops when submitted to load-unload cycles,

its stiffness varies with the elastic strain at global scale and its behaviour is

rate-dependent.
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4.5. Conclusions

In the second part of this chapter, the tensile mechanical response at different

strain rates of Al/SRPP-FML is studied. It is demonstrated that the influence

of the SRPP, as constituent material, in the FML is significant since makes the

laminate behave according to a rate-dependent response. Moreover, the influence

of the SRPP is also revealed based on the presences of hysteresis phenomena

within the unload-reload cycles. This implies that the rate-dependent mechanical

behaviour of the SRPP must be considered to model the mechanical response of

the Al/SRPP-FML.
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Chapter 5

Theoretical modelling of SRPP

This chapter addresses the mechanical behaviour modelling of the SRPP. A

constitutive model of the quasi-static cyclic behaviour is formulated within the

framework of thermodynamics of irreversible processes. This considers plasticity

and histeresis phenomena, as well as stiffness variation caused by damage and

stiffening. The model is validated for different strain-rates.

5.1 Continuum mechanics formulation

The models are written at the mesoscale of the layer which establishes a good

compromise between the scales of the constitutive materials and the structure.

A plane-stress state is assumed and only small strains are taken into account.

The orthotropy frame defined in Chapter 4 is used.

The material model consists of two different models interacting each other. These

are formulated separately. On the one hand, a elastoplastic model associated to

the enveloping of the cyclic stress-strain curve is presented. On the other hand,

to reproduce the stress-strain relation corresponding to hysteresis loops a non-

standard viscoelastic model is formulated by using fractional operators. To deal

with both the reversible and the irreversible effects, the classical split of the total

strain ε is assumed to be
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5.1. Continuum mechanics formulation

ε = εe + εp, (5.1)

where εe stands for the elastic strain Voigt vector and εp stands for the irreversible

strain Voigt vector, and they are defined as εe = [εe
11 ε

e
22 ε

e
12]T

εp = [εp
11 ε

p
22 ε

p
12]T

In the following sections, the models associated to both the enveloping (Section

5.1.1) and the hysteresis loops (Section 5.1.2) are developed.

5.1.1 Model I. The envelope

The free energy potential and the elastic law

Assuming isothermal conditions and following the formalism of the thermody-

namics of irreversible processes [De Souza Neto et al., 2008], the specific free

energy, also so-called Helmholtz free energy per unit mass, is assumed to be a

function

ψ(ε, εp,d, r, ε̄p) (5.2)

of the total strain ε, the plastic strain εp, the internal variables associated to

damage d and stiffening r, and the internal variables corresponding to hardening

phenomenon ε̄p. It is assumed that the free energy can be split as

ψ(ε, εp,d, r, ε̄p) = ψed(ε− εp,d, r) + ψp(ε̄p) =

= ψed(εe,d, r) + ψp(ε̄p)
(5.3)

into a sum of an elastic-damage contribution, ψed, and a contribution due to

hardening, ψp. Thus, the Helmholtz free energy expression is chosen to be

ρψ = ρψ(ε− εp,d, r, ε̄p) =
1

2
(ε− εp) : C(d, r) : (ε− εp) + h(ε̄p), (5.4)

in which the damage variables vector d and the stiffness variables vector r affect

the material stiffness tensor C [Desmorat, 2006], ε̄p is the accumulated plastic
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strain and h(ε̄p) is the energy associated to hardening. Its differentiation yields

ψ̇ =
∂ψ

∂εe : ε̇e +
∂ψ

∂d
ḋ +

∂ψ

∂r
ṙ +

∂ψ

∂ε̄p
˙̄ε
p
. (5.5)

Substituting Eq. 5.5 into the Clausius-Duhem inequality results(
σ − ρ ∂ψ

∂εe

)
: ε̇e + σ : ε̇p − ρ∂ψ

∂d
: ḋ− ρ∂ψ

∂r
: ṙ− ρ ∂ψ

∂ε̄p
: ˙̄ε

p ≥ 0. (5.6)

From the last three terms, the thermodynamic force associated to the damage,

stiffening and hardening thermodynamic forces are extracted and, respectively,

defined as

Y ≡ −ρ∂ψ
∂d

, (5.7)

Z ≡ −ρ∂ψ
∂r
, (5.8)

κ ≡ −ρ ∂ψ
∂ε̄p

, (5.9)

so that the requirement of non-negative dissipation can be reduced to

Υ(σ,Y,Z, κ; ε̇p, ḋ, ṙ, ˙̄ε
p
) ≥ 0, (5.10)

where the dissipation function Υ is defined by

Υ(σ,Y,Z, κ; ε̇p, ḋ, ṙ, ˙̄ε
p
) ≡ σ : ε̇p −Yḋ− Zṙ− κ ˙̄ε

p
. (5.11)

Considering the elastic contribution represented by the first term of Eq. 5.4, the

general corresponding elastic law is given by

σ ≡ ρ
∂ψ

∂εe
= C(d, r) : εe, (5.12)

where εe will be obtained based on a elastic predictor/return mapping scheme

[De Souza Neto et al., 2008].
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5.1. Continuum mechanics formulation

Yield function, plastic flow rule and hardening law

According to the plasticity phenomena identified in both the principal and shear

directions, an anisotropic yield criterion is proposed subsequently. This yield

criterion considers the presence of damage by introducing the effective stress,

which is defined as

σ̃ =



σ11

(1− d11)
σ22

(1− d22)
σ12

(1− d12)


, (5.13)

within the expression of the yield surface, which is formulated as

Φ(σ̃, σy) = q(σ̃)− σy, (5.14)

where q(σ̃) is the equivalent stress and σy is the hardening function. Generalising

the expression used by Ladevèze and LeDantec [1992], the following definition of

the equivalent stress is proposed:

q(σ̃) =
√

(σ̃2
12 + a2

1σ̃
2
11 + a2

2σ̃
2
22), (5.15)

where a1 and a2 are material parameters. Besides, the hardening function is

assumed to be

σy = σy0 + κ(ε̄p), (5.16)

where σy0 is the initial shear yield stress.

In the determination of the equivalent stress the parameters a1 and a2 assign

a weight to the loads in principal directions. These are defined as the relation

between the shear yield evolution (hardening function) and the tensile yield evo-

lution corresponding to direction 1 and direction 2, respectively. Thus, a1 and a2

depend on the accumulated plastic strain ε̄p, which is defined as

ε̄p =

∫ t

0

√(
4
(

˙̃ε
p

12

)2

+
1

a2
1

(
˙̃ε
p

11

)2

+
1

a2
2

(
˙̃ε
p

22

)2
)

dt. (5.17)
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As the material herein studied is a balanced woven fabric composite, the me-

chanical properties in the principal directions are the same and, hence, a1(ε̄p)

and a2(ε̄p) are equal. To determine the evolution of these parameters it must be

proceed as follows (taking as an example the case of a1(ε̄p)):

- Firstly, a1 is calculated for ε̄p = 0.

- Then, it is assumed an increment of the accumulated plastic strain ∆ε̄p

based on the value of a1 calculated in the previous step.

- a1 is calculated for the new stage.

- These steps are repeated iteratively.

Finally, the accumulated plastic strain is calculated solving the Eq. 5.17.

Concerning the plastic flow rule, assuming a an associative plasticity model, which

implies that the yield function, Φ, is taken as the flow potential [De Souza Neto

et al., 2008; Simo and Hughes, 1998], i.e.

Ψ = Φ, (5.18)

the corresponding flow vector is given by

N ≡ ∂Φ

∂σ
=

∂

∂σ

[√
(σ̃2

12 + a2
1σ̃

2
11 + a2

2σ̃
2
22)

]
=

1

q(σ̃)


a2

1σ̃11

a2
2σ̃22

σ̃12

 (5.19)

and the flow rule results in

ε̇p = γ̇
1

q(σ̃)


a2

1σ̃11

a2
2σ̃22

σ̃12

 (5.20)

where γ̇ is the plastic multiplier rate.
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5.1. Continuum mechanics formulation

5.1.2 Model II. The hysteresis loops

As it has been introduced, in order to reproduce the stress-strain relation

corresponding to hysteresis loops, a non-standard viscoelastic damage model is

written by using fractional operators. The damage during unloading is assumed

to remain constant until further positive loading is applied and causes further

damage accumulation. Following the same reasoning, the stiffening is also

assumed to remain constant during such phase. In an effort to make easier the

reading, the terms associated to the damage and stiffening has been omitted

in the formulation developed in this section; however, they are reintroduced at

the end of the mathematical development and, of course, considered in the model.

The model used is a fractional standard linear solid (F-SLS), also known as the

fractional Zener model (see Fig. 5.1). Differently of the non-fractional Zener

model, the fractional one presents a generalised viscous element (called spring-

pot and represented by a diamond-shape element), which replaces the dashpot

[Koeller, 1984]. The F-SLS model is a particular case of the fractional gener-

alised Maxwell model, which in turn generalises the (non-fractional) generalised

Maxwell model (see Appendix A.1) [Koeller, 1984].

The free energy potential and the fractional viscoelastic damage law

The F-SLS model consists of a Hookean elastic spring and a fractional Maxwell

branch (see Appendix A.1) connected in parallel (see Fig. 5.1).

εe εi

ε

CvCm

C∗

σσ

Figure 5.1: Fractional solid linear standard model.
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Assuming isothermal conditions, the state variables are the strain ε and the

inelastic strain εi. The Helmholtz free energy ρψ is given by

ρψ(ε, εi) =
1

2
ε : C∗ : ε+

1

2
(ε− εi) : Cm : (ε− εi), (5.21)

where C∗ is a fourth order elasticity tensor. Its differentiation then yields

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂εi
: ε̇i. (5.22)

Substituting Eq. 5.22 into the Clausius-Duhem inequality yields(
σ − ρ∂ψ

∂ε

)
: ε̇− ρ∂ψ

∂εi
: ε̇i ≥ 0. (5.23)

Making use of Eq. 5.21 the following state law is obtained:

σ = ρ
∂ψ

∂ε
= C∗ : ε+ Cm : (ε− εi) = C∗ : ε+ σm, (5.24)

where σm is the stress corresponding to the Maxwell branch. Then, the dissipa-

tion yields

Υ(σ; ε̇i) = CV : Dα
t ε

i : ε̇i, (5.25)

where Cv is the fourth order viscosity tensor and α, being 0 ≤ α ≤ 1, is the

order of the fractional derivative.

In order to satisfy the Clausius-Duhem inequality, the dissipation must be greater

or equal to zero. To verify so, following the observation by Lion [1997] that a

spring-pot can be interpreted in terms of a continuous superposition of Maxwell

elements in parallel, which was obtained from the power-law spectrum derived

by Tschoegl [1989], the spring-pot in the fractional model can be replaced by N

discrete Maxwell elements in parallel (see Fig. 5.2).

Denoting zk > 0 the relaxation time for the element k, the discrete stiffness and

viscosity tensors are denoted by Cv
k and zkC

v
k , respectively, and the internal
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5.1. Continuum mechanics formulation

εe εi ε
v
k

ε

Cv
N

Cv
k

Cv
1

zNCv
N

zkC
v
k

z1C
v
1

Cm

C∗

σσ

Figure 5.2: Fractional solid linear standard model based on N discret Maxwell model.

strains of the dashpots as εv
k. The Helmholtz free energy ρψ is given by

ρψ(ε, εi, εv
k) =

1

2
ε : C : ε+

1

2
(ε− εi) : Cm : (ε− εi)+

+
1

2

N∑
k=1

(εi − εv
k) : Cv

k : (εi − εv
k).

(5.26)

Its differentiation then yields

ψ̇ =
(
C∗ : ε+ Cm : (ε− εi)

)
: ε̇+

+

(
N∑
k=1

Cv
k : (εi − εv

k)−Cm : (ε− εi)

)
: ε̇i−

−
N∑
k=1

Cv
k : (εi − εv

k) : ε̇v
k.

(5.27)

Substituting Eq. 5.27 into the Clausius-Duhem inequality yields

(
σ −C∗ : ε+ Cm : (ε− εi)

)
: ε̇+

(
Cm : (ε− εi)−

N∑
k=1

Cv
k : (εi − εv

k)

)
: ε̇i+

+
N∑
k=1

Cv
k : (εi − εv

k) : ε̇v
k ≥ 0.

(5.28)

78



CHAPTER 5. Theoretical modelling of SRPP

In the previous expression, the coefficient of ε̇ must vanish, giving the state law

for the discrete system

σ = C∗ : ε+ Cm : (ε− εi). (5.29)

According to the equilibrium conditions, it occurs the same with the coefficient

of ε̇i, resulting

Cm : (ε− εi) =
N∑
k=1

Cv
k : (εi − εv

k). (5.30)

Considering a single Maxwell element the stresses in the spring and the dashpot

are equal, the following relation is obtained:

zkε̇
v
k = εi − εv

k. (5.31)

Introducing Eq. 5.30 and Eq. 5.31 into Eq. 5.28, the dissipation yields

Υ(σm; ε̇i) =
N∑
k=1

(ε− εv
k) :

Cv
k

zk
: (ε− εv

k), (5.32)

which satisfies the condition of non-negativity of the dissipation. Thus, after

discretising the spring-pot by Maxwell elements in parallel, it has been shown

that the discrete fractional Maxwell model satisfies the Clausius-Duhem inequal-

ity. Once demonstrated the admissibility of the model, introducing the damage

and stiffening variables, omitted in the mathematical development, makes the

dissipation to be

Υ(σm,Y,Z; ε̇i, ḋ, ṙ) = CV : Dα
t ε

i : ε̇i + Yḋ + Zṙ, (5.33)

resulting the state law

σ = ρ
∂ψ

∂ε
= C∗(d, r) : ε+ Cm : (ε− εi). (5.34)

Considering that

Cm : (ε− εi) = Cv : Dα
t ε

i, (5.35)
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5.2. Cyclic shear behaviour law

according to F-SLS model (see Fig. 5.1) and after working appropriately with Eq.

5.34 and reorganising the terms, the state law can be represented as a function

exclusively of the total strain ε, yielding

σ + (Cm)−1 : Cv : Dα
t σ =

= C∗(d, r) : ε+ (Cm)−1 : (C∗(d, r) + Cm) : Cv : Dα
t ε.

(5.36)

5.2 Cyclic shear behaviour law

5.2.1 Elastoplastic modelling of the envelope

The free energy potential and the elastoplastic damage law

Considering pure shear conditions, the Helmholtz’s free energy for the enveloping

of the cyclic stress-strain curve results

ρψ = ρψ(ε12 − εp
12, d12, ε̄

p) =
1

2
2G0

12(1− d12)(ε12 − εp
12)2 + h(ε̄p), (5.37)

where G0
12, d12 and ε̄p stand for the undamaged elastic modulus, the damage vari-

able associated to loss of stiffness and the accumulated plastic strain, respectively.

Using the split of strain

εe
12 = ε12 − εp

12, (5.38)

Eq. 5.37 yields

ρψ =
1

2
2G0

12(1− d12)(εe
12)2 + h(ε̄p). (5.39)

After differentiating this expression and substituting into the Clausius-Duhem

inequality, the model for the shear Cauchy’s stress σ12, the thermodynamic force

Y12, associated to the shear damage variable; and the thermodynamic force κ,

associated to the accumulated plastic strain ε̄p, are obtained:

σ12 = ρ
∂ψ

∂ε12

= 2G0
12(1− d12)(εe

12) (5.40)
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Y12 = −ρ ∂ψ
∂d12

=
1

2
2G0

12(εe
12)2 (5.41)

κ = ρ
∂ψ

∂ε̄p
= ρ

∂h(ε̄p)

∂ε̄p
= κ(ε̄p), (5.42)

The dissipation, for its part, is given by

Υin
12 = Y12ḋ12 + κ ˙̄ε

p
, (5.43)

which must be positive in order to fulfil the Clausius-Duhem inequality.

Experimental evolution laws

In this section, the hardening, shear damage and shear stiffening evolution laws

are determined. To do so, the irreversible strain εp
12 and the stiffness variability

ratio Rs.12 for every cycle of the shear stress-strain curve must be obtained. εp
12

is necessary to identify the hardening function and Rs.12 is required to determine

the damage and stiffening evolution laws. This latter is obtained from the

average slope within the loop G12 and the initial undamaged slope G0
12.

According to Fig. 4.8, Rs.12 increases continuously until saturating, differently of

the tensile stiffness variability ratio Rs.11 as in Chapter 4 was shown. Thus, an

absence of stiffening phenomenon is considered. This implies that Rs.12 is equal

to the shear damage, so that according to Eq. 4.19 and Eq. 4.20,

Rs.12 = 1− G12

G0
12

= d12. (5.44)

Assuming that damage during unloading remains constant until further positive

loading is applied and causes further damage accumulation, the parameter Ȳ12 is

defined to describe the shear damage development. It is based on the maximum

value reached by the thermodynamic force associated to damage Y12 along the

previous loading history;

Ȳ12 = max
τ≤t

(√
Y12(τ)

)
. (5.45)
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5.2. Cyclic shear behaviour law

Then, the shear damage evolution law is defined as

d12 = f12(Ȳ12), (5.46)

where f12 is the damage evolution function. From experimental data, an expo-

nential evolution has seemed to be a proper form for the shear damage evolution

curve;

d12 = f12(Ȳ12) = ds
12

〈
1− e

−β12
(
Ȳ12−
√
Y 0
12

)〉
+

if d12 < 1 and Ȳ12 <
√
Y c

12,

(5.47)

where 〈〉+ is the Macaulay bracket, Y c
12 is the damage critical thermodynamic

force; Y 0
12, the damage initiation thermodynamic force; ds

12, the damage satura-

tion; and β12, a coefficient related to damage saturation rate.

Concerning the hardening law, a potential evolution has seemed to be a proper

form to reproduce the hardening curve:

σy = σy0 + κ(ε̄p) = σy0 +K(ε̄p)m (5.48)

where K and m are material parameters.

Table 5.1 collects the material parameters of the shear evolution laws for the

three strain rates and Fig. 5.3 shows the (a) hardening and (b) shear damage

experimental data at 10−4 s−1, 10−3 s−1 and 10−2 s−1, and their respective

approximations.

At this point, the shear elastoplastic model is completely defined. Fig. 5.4 shows

the response of the model for the three strain rates. The model reproduces

accurately the envelopes of the shear stress-strain curves; however, it considers

that the unloading is linear. In the following section, this imprecision of the model

is resolved using the fractional viscoelastic model to reproduce the hysteresis

loops.
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Table 5.1: Hardening and shear damage parameters at 10−4 s−1, 10−3 s−1 and 10−2 s−1.

ε̇12 [s−1] Hardening parameters Damage parameters

K m σy0 ds12 β12 Y 0
12

10−4 29.42 0.4931 11.82 0.655 2.60 0.185

10−3 48.73 0.6033 13.72 0.633 2.06 0.124

10−2 33.79 0.3678 16.42 0.660 1.70 0.150
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Figure 5.3: (a) Hardening and (b) shear damage laws at 10−4 s−1, 10−3 s−1 and 10−2 s−1.
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Figure 5.4: Numerical-experimental correlation in shear at (a) 10−4 s−1, (b) 10−3 s−1 and
(c) 10−2 s−1 considering the elastoplastic model.
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5.2. Cyclic shear behaviour law

5.2.2 Fractional viscoelastic modelling of the hysteresis

loops

The free energy potential and the fractional viscoelastic law

Given the pure shear conditions, the rheological model can be represented as Fig.

5.5 shows.

2εe
12 2εi

12

2ε12

Gv
12Gm

12

G∗12

σ12σ12

Figure 5.5: Rheological representation of the shear F-SLS model.

The Helmholtz’s free energy for the hysteresis loops results

ρψ(ε12, ε
i
12) =

1

2
G∗12ε

2
12 +

1

2
Gm

12(ε12 − εi
12)2, (5.49)

where G∗12 and Gm
12 are material parameters. After differentiating this expression

and substituting into the Clausius-Duhem inequality, the following non-standard

model for the Cauchy’s shear stress σ12 is proposed;

σ12 = ρ
∂ψ

∂ε12

= G∗12ε12 +Gm
12(ε12 − εi

12). (5.50)

Then, considering that

Gm
12(ε12 − εi

12) = Gv
12Dα12

t εi
12, (5.51)

after working appropriately with Eq. 5.76 and reorganising the terms, the state

law can be represented as a function exclusively of the total strain ε12, yielding

σ12+
Gv

12

Gm
12

Dα12
t σ12 = G∗12ε12 +

G∗12 +Gm
12

Gm
12

Gv
12Dα12

t ε12, (5.52)
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where Dα12
t is the fractional derivative of order α12, being 0 < α12 < 1. The

dissipation during the unloading, for its part, is given by

Υin
12 = Gv

12Dα12
t εi

12 · ε̇i
12, (5.53)

which must also be positive in order to fulfil the Clausius-Duhem inequality.

According to the positiveness of the term of the dissipation (see Section 5.1.2),

this models verifies the Clausius-Duhem inequality.

Numerical evaluation of the fractional model

The numerical evaluation of the fractional derivative of the strain and the stress

in Eq. 5.52 has been achieved using of the L1-algorithm, following in the footsteps

of Mateos et al. [2013]. Using Eg 2.12, the following expressions to calculate the

fractional derivatives of such variables are obtained: for the strain,

L1
0Dα12

t ε12(t) =
(t/N)−α12

Γ(2− α12)

[
1− α12

Nα12
ε12(0) +

N−1∑
j=0

[
ε12

(
t− j t

N

)
− ε12

(
t− (j + 1)

t

N

)][
(j + 1)1−α12 − j1−α12

]]
,

(5.54)

and for the stress,

L1
0Dα12

t σ12(t) =
(t/N)−α12

Γ(2− α12)

[
1− α12

Nα12
σ12(0) +

N−1∑
j=0

[
σ12

(
t− j t

N

)
− σ12

(
t− (j + 1)

t

N

)][
(j + 1)1−α12 − j1−α12

]]
,

(5.55)

where N is the number of evaluation points.

Parameters identification and model implementation

In order to obtain the values for the parameters of the fractional model, an

optimisation problem has been formulated aimed at minimising the error function
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5.2. Cyclic shear behaviour law

δe, which has been calculated adding all the individual data point errors in the

interval considered. During the optimisation process, the state law (see Eq. 5.52)

has been used. The error function δe, which is calculated from the error δme at

the time tm, has been defined as:

δe =
n∑

m=0

δme =
n∑

m=0

(σ̄m12 − σm12)2, (5.56)

where σ̄m12 and σm12 are the tensile stress value obtained from experimental tests

and from the mathematical model, respectively, both evaluated at time tm. The

parameters of the model, G∗12, Gm
12, Gv

12 and α12, can be then be obtained by

minimising the error. Then, the implementation of the model (consisted of the

elastoplatic and fractional viscoelastic formulations) is carried out following the

scheme appearing in Algorithm 1, which is included in Appendix C.1.

Numerical results

In this section, the numerical results obtained with the fractional model for

the three strain rates are presented. To do so, firstly, the suitability of the

F-SLS model as a generalised one has been checked, considering the possibility

that a particular case of such model was valid. Several trials of parameters

identification of the F-SLS model have led Gm
12 to acquire a value very similar to

the shear modulus G12 as best alternative to reproduce every loop. Thus, it has

been considered that Gm
12 corresponds with G12, which means that it is necessary

to identify exclusively G∗12, Gv
12 and α12.

Fig. 5.6 shows the evolution of the values of the parameters identified for each

loop at 10−4 s−1, 10−3 s−1 and 10−2 s−1 and the numerical approximations defined

based on the accumulated plastic strain and Table 5.2 collects the form of the

approximation functions used as well as the coefficients of such functions. The

values identified for the parameters denote that a master curve for the three strain

rates can be deduced.
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Figure 5.6: Experimental evolution and numerical approximation of (a) α12, (b) G∗
12 and (c)

Gv
12 depending on the accumulated plastic strain in shear at 10−4 s−1, 10−3 s−1 and 10−2 s−1.

Table 5.2: Coefficients of the numerical approximations of the evolution of the material pa-
rameters G∗

12, α12 and Gv
12 of F-SLS model in shear.

ε̇12 [s−1] G∗
12 = a∗12(ε̄p)b

∗
12 + c∗12 α12 = aα12(ε̄p)b

α
12 + cα12 Gv

12 = av12(1− exp(−bv12ε̄p)) exp(cv12(ε̄p)1/2)

a∗12 b∗12 c∗12 aα12 bα12 cα12 av12 text bv12 text cv12

10−4 302.8 34.53 62.83 -0.01 -0.67 1.06 4832 text 152.8 text 2.54

10−3 451.6 56.44 78.29 -0.21 -0.22 1.29 547.4 text 161.2 text 2.44

10−2 601.0 68.62 106.0 -1.84 -0.04 2.91 305.5 text 109.1 text 1.25

5.2.3 Numerical-experimental correlation

Fig 5.7 shows the numerical-experimental correlation for the the three strain

rates. As it can be seen, the model has the ability to reproduce accurately the

envelope as well as the hysteresis loops in every cases. The root-mean-square

error (RMSE) at 10−4 s−1, 10−3 s−1 and 10−2 s−1 is 1.01%, 1.28% and 1.94%,

respectively.

87



5.2. Cyclic shear behaviour law

0 5 10 15 20 25
0

10

20

30

40

2ε12 × 10−2

σ
1
2

[M
P

a]

Experimental (10−4 s−1)
Numerical

(a)

0 5 10 15 20 25
0

10

20

30

40

2ε12 × 10−2

σ
1
2

[M
P

a]

Experimental (10−3 s−1)
Numerical

(b)

0 5 10 15 20 25
0

10

20

30

40

2ε12 × 10−2

σ
1
2

[M
P

a]

Experimental (10−2 s−1)
Numerical

(c)

Figure 5.7: Experimental-numerical correlation of the shear stress-strain relation at 10−4 s−1,
10−3 s−1 and 10−2 s−1.
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5.3 Cyclic tensile behaviour law

5.3.1 Elastoplastic modelling of the envelope

The free energy potential and the elastic damage law

Considering tensile conditions in direction 1, the Helmholtz’s free energy for the

enveloping of the cyclic stress-strain curve results

ρψ = ρψ(ε11−εp
11, d11, r11, ε̄

p) =
1

2
E0

11(1−d11)(1+r11)(ε11 − εp
11)2+h(ε̄p), (5.57)

where E0
11, d11, r11 and ε̄p stand for the undamaged elastic modulus, the damage

variable associated to loss of stiffness, the stiffening variable and the accumulated

plastic strain, respectively. Using the split of strain

εe
11 = ε11 − εp

11, (5.58)

Eq. 5.57 yields

ρψ =
1

2
E0

11(1− d11)(1 + r11)(εe
11)2 + h(ε̄p). (5.59)

After differentiating this expression and substituting into the Clausius-Duhem

inequality, the model for the tensile Cauchy’s stress σ11, the thermodynamic

force Y11, associated to the tensile damage variable; the thermodynamic force

Z11, associated to the tensile stiffening variable; and the thermodynamic force κ,

associated to the accumulated plastic strain ε̄p, are obtained:

σ11 = ρ
∂ψ

∂ε11

= E0
11(1− d11)(1− r11)(εe

11) (5.60)

Y11 = −ρ ∂ψ
∂d11

=
1

2
E0

11(1 + r11)(εe
11)2 (5.61)

Z11 = −ρ ∂ψ
∂r11

= −1

2
E0

11(1− d11)(εe
11)2 (5.62)
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5.3. Cyclic tensile behaviour law

κ = ρ
∂ψ

∂ε̄p
= ρ

∂h(ε̄p)

∂ε̄p
= κ(ε̄p), (5.63)

The dissipation is given by

Υin
11 = Y11ḋ11 + Z11ṙ11 + κ ˙̄ε

p
, (5.64)

which must be positive in order to fulfil the Clausius-Duhem inequality.

Experimental evolution laws

In this section, tensile damage and stiffening evolution laws, as well as the evo-

lution of the tensile yield σy.11 and the parameter a1 are determined (remember

that the hardening function has already been defined in Section 5.2.1). To do

so, the irreversible strain εp
11 and the stiffness variability ratio Rs11 for every

cycle of the shear stress-strain curve must be obtained. εp
11 is necessary to obtain

the evolution of σy.11 and a1; it results when the stress becomes zero. Rs11 is

required to determine the damage and stiffening evolution laws; it is obtained

from the average slope within the loop E11 and the initial undamaged slope E0
11.

According to Fig. 4.6, the evolution of Rs.11 indicates that in direction 1 the

material presents both damage and stiffening. Hence, the damage and stiffening

evolution laws has been obtained according to the criterion stabilised in Section

4.2.1. Firstly, the damage evolution law has been estimated, making possible the

calculation of the damage in each loop M by means of

dM11 = fM11 (Y M
11 ), (5.65)

which allows to obtain the stiffening stage in each loop, which is necessary to

determine the corresponding stiffening law based on the expression defined for

this purpose (see Eq. 4.20). This is

rM11 =
dM11 −Rs

M
11

1− dM11

. (5.66)

Assuming that damage during unloading remains constant until further positive

90



CHAPTER 5. Theoretical modelling of SRPP

loading is applied and causes further damage accumulation, the parameter Ȳ11 is

defined to describe the damage development. It is based on the maximum value

reached by the thermodynamic damage force along the previous loading history;

Ȳ11 = max
τ≤t

(√
Y11(τ)

)
. (5.67)

Then, the damage evolution law is defined as

d11 = f11(Ȳ11), (5.68)

where f11 is the damage evolution function. From experimental data, an expo-

nential evolution has seemed to be a proper form for the tensile damage evolution

law;

d11 = f11(Ȳ11) = ds
11

〈
1− e

−β11
(
Ȳ11−
√
Y 0
11

)〉
+

if d11 < 1 and Ȳ11 <
√
Y c

11,

(5.69)

where 〈〉+ is the Macaulay bracket, Y c
11 is the damage critical thermodynamic

force; Y 0
11, the damage initiation thermodynamic force; ds

11, the damage satura-

tion; and β11, a coefficient related to damage saturation rate.

Assuming that stiffening during unloading remains constant until further positive

loading is applied and causes further stiffening, the parameter Z̄11 is defined to

describe the stiffening development. It is based on the maximum value reached

by the thermodynamic stiffening force along the previous loading history;

Z̄11 = max
τ≤t

(√
Z11(τ)

)
. (5.70)

Then, the stiffening evolution law is defined as

r11 = g11(Z̄11), (5.71)

where g11 is the stiffening evolution function. From experimental data, an ex-

ponential evolution was found to be a good approach for the tensile stiffening

evolution law;
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5.3. Cyclic tensile behaviour law

r11 = g11(Z̄11) = rs
11

〈
1− e

−γ11
(
Z̄11−
√
Z0
11

)〉
+

, (5.72)

where Z0
11 is the stiffening initiation thermodynamic force; rs

11, a material

parameter; and γ11, another material parameter.

Concerning the evolution of σy.11, a potential evolution has seemed to be a proper

form to reproduce the corresponding curve:

σy.11 = σy0.11 +K11(ε̄p)m11 , (5.73)

where σy0.11, K11 and m11 are material parameters.

Concerning the evolution of a1, an exponential form has seemed to be a proper

form to reproduce the corresponding curve:

a1 = a+ b exp(−cε̄p), (5.74)

where a, b and c are material parameters.

Fig. 5.8 shows the (a) damage and (b) stiffening experimental data as well as

their respective evolution laws and Table 5.3 collects the value of the parameters

of such laws for the three strain rates.

Fig. 5.9 shows the (a) tensile yield experimental data as well as its respective

evolution law σy.11(ε̄p) and (b) the evolution of a1(ε̄p), which has been deduced

from σy(ε̄p) (hardening function) and σy.11(ε̄p). Table 5.4 collects the value of the

parameters of σy.11(ε̄p) and a1(ε̄p).

At this point, the tensile elastoplastic model is completely defined. Fig. 5.10

shows the response of the model at the three strain rates. The model reproduces

accurately the envelopes of the tensile stress-strain curves; however, it considers

that the unload is linear. In the following section, this imprecision of the model is

resolved using the fractional viscoelastic model to reproduce the hysteresis loops.
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Table 5.3: Value of the parameters of the damage and stiffening evolution laws for the three
strain rates.

ε̇11 [s−1] Damage parameters Stiffening parameters

ds11
β11

[MPa−1/2]

Y 0
11

[MPa1/2]
rs11

γ11

[MPa−1/2]

Z0
11

[MPa1/2]

10−4 0.55 2.43 0.14 0.48 1.05 0.64

10−3 0.52 2.72 0.19 0.45 1.28 0.68

10−2 0.53 2.50 0.21 0.46 0.45 0.81
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Ȳ11 [
√

MPa]

d
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(b)

Figure 5.8: (a) Damage and (b) stiffening tensile evolution laws in direction 1 for the three
strain rates.

Table 5.4: Value of the parameters of the tensile yield and a1(ε̄p) evolution laws for the three
strain rates.

ε̇11 [s−1] σy.11 = σy0.11 +K11(ε̄p)m11 a1 = a+ b exp(−cε̄p)

σy0.11 K11 m11 a b c

10−4 37.73 6244 1.351 0.1507 0.2231 7.039

10−3 38.24 4221 1.156 0.1862 0.2003 10.12

10−2 46.94 3446 0.988 0.1554 0.214 10.28
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Figure 5.9: (a) Tensile yield and (b) a1(ε̄p) evolution laws in direction 1 for the three strain
rates.
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Figure 5.10: Numerical-experimental correlation in tensile in 1-direction at (a) 10−4 s−1,
(b) 10−3 s−1 and (c) 10−2 s−1 considering the elastoplastic damage model, which predicts the
envelope of each curve.

94



CHAPTER 5. Theoretical modelling of SRPP

5.3.2 Fractional viscoelastic modelling of the hysteresis

loops

The free energy potential and the fractional viscoelastic law

Given the tensile conditions, the rheological model can be represented as Fig.

5.11 shows.

εe
11 εi

11

ε11

Ev
11Em

11

E∗11

σ11σ11

Figure 5.11: Rheological representation of the shear F-SLS model.

The Helmholtz’s free energy for the hysteresis loops results

ρψ(ε11, ε
i
11) =

1

2
E∗11ε

2
11 +

1

2
Em

11(ε11 − εi
11)2, (5.75)

where E∗11 and Em
11 are material parameters.

After differentiating Eq. 5.75 and substituting into the Clausius-Duhem inequal-

ity, the following non-standard model for the Cauchy’s tensile stress σ11 is pro-

posed;

σ11 = ρ
∂ψ

∂ε11

= E∗11ε11 + Em
11(ε11 − εi

11). (5.76)

Then, considering that

Em
11(ε11 − εi

11) = Ev
11Dα

t ε
i, (5.77)

after working appropriately with Eq. 5.76 and reorganising the terms, the state
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5.3. Cyclic tensile behaviour law

law can be represented as a function exclusively of the toal strain ε11, yielding

σ11+
Ev

11

Em
11

Dα
t σ11 = E∗11ε11 +

E∗11 + Em
11

Em
11

Ev
11Dα

t ε11, (5.78)

where Dα
t is the fractional derivative of order α, being 0 < α < 1. The dissipation

during the unloading, for its part, is given by

Υin
11 = Ev

11Dα
t ε

i
11 · ε̇i

11, (5.79)

which must also be positive in order to fulfil the Clausius-Duhem inequality.

According to the positiveness of the term of the dissipation (see Section 5.1.2),

this models verifies the Clausius-Duhem inequality.

The formulation associated to the tensile behaviour which has been developed

until now is based on a elastoplastic model (for the envelope) and a fractional

model (for the hysteresis loops). However, according to Fig. 4.5, the stress-strain

relation of the reloads, which is non-linear, can be approximated by a linear form,

whose slope changes with the strain, as it can be seen subsequently. Form now

on, this reloading slope will be referred to as Er
11 and will be used to model the

reloads based on a linear elastic model.

Numerical evaluation of the fractional model

As in the shear case, the L1-algorithm has been used to achieve the numerical

evaluation of the fractional derivative of the strain and the stress in Eq. 5.78.

Then, using Eq. 2.12, the following expressions to calculate the fractional deriva-

tives of such variables are obtained: for the strain,

L1
0Dα11

t ε11(t) =
(t/N)−α11

Γ(2− α11)

[
1− α11

Nα11
ε11(0) +

N−1∑
j=0

[
ε11

(
t− j t

N

)
− ε11

(
t− (j + 1)

t

N

)][
(j + 1)1−α11 − j1−α11

]]
,

(5.80)
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and for the stress,

L1
0Dα11

t σ11(t) =
(t/N)−α11

Γ(2− α11)

[
1− α11

Nα11
σ11(0) +

N−1∑
j=0

[
σ11

(
t− j t

N

)
− σ11

(
t− (j + 1)

t

N

)][
(j + 1)1−α11 − j1−α11

]]
,

(5.81)

where N is the number of evaluation points.

Parameters identification and model implementation

In order to obtain the values for the parameters of the fractional model, another

optimisation problem similar to that of the shear case has been formulated. In

this case, Eq. 5.52 has been used. The type of error function used has been the

same:

δe =
n∑

m=0

δme =
n∑

m=0

(σ̄m11 − σm11)2, (5.82)

where σ̄m11 and σm11 are the tensile stress values obtained from experimental tests

and from the mathematical model, respectively, both evaluated at time tm. The

parameters of the model, E∗11, Em
11, Ev

11 and α11 can be then be obtained by

minimising the error. Then, the implementation of the model (consisted of the

elastoplatic, fractional viscoelastic and linear elastic formulations for the envelope,

the unloads and the reloads, respectively) is carried out following the scheme

appearing in Algorithm 1, which is included in Appendix C.1.

Numerical results

In this section, the numerical results obtained with the fractional model for the

three strain rates are presented. To do so, firstly, the suitability of the F-SLS

model as a generalised one has been checked, considering the possibility that a

particular case of such model was valid. Several trials of parameters identification

of the F-SLS model have led E∗11 and α to become zero and one, respectively, as

best alternative to reproduce every semi-loop. This means that non-fractional

Maxwell model has been selected to model the unloading semi-loops, which has
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5.3. Cyclic tensile behaviour law

supposed that only the identification of Em
11 and Ev

11 is needed.

Fig. 5.12 shows the value of the parameters identified for each semi-loop at

10−4 s−1, 10−3 s−1 and 10−2 s−1 and the numerical approximations defined based

on the tensile plastic strain. Table 5.5 collects the form of the approximation

functions used as well as the coefficients of such functions. The values identified

for the parameters denote that a master curve for the three strain rates can be

deduced.

Fig 5.13 shows the evolution of Er
11 with εp

11 and Table 5.6 shows the coefficients

of their numerical approximations. Er
11 evolves linearly and the higher the strain

rate, the higher its value.
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Figure 5.12: Experimental evolution and numerical approximation of (a) Em
u.11 and (b) Ev

u.11

depending on the accumulated plastic strain in tensile in 1-direction at 10−4 s−1, 10−3 s−1 and
10−2 s−1.

Table 5.5: Coefficients of the numerical approximations of the evolution of the material pa-
rameters Em

u.11 and Ev
u.11 of the Maxwell model for the 1-direction tensile behaviour.

ε̇11 [s−1] Em
11 = am11 exp(−bm11ε̄p) + cm11 Ev

11 = av11(εp11)b
v
11 + cv11

am11 bm11 cm11 av11 bv11 cv11

10−4 1100 -47.86 1066 9.88× 107 2.27 2.578× 104

10−3 1137 -111.3 1465 1.25× 107 2.022 2.751× 104

10−2 907.2 -113.7 2386 8.11× 105 1.592 6.758× 103
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Figure 5.13: Experimental evolution and numerical approximation of Er.11 depending on the
tensile plastic strain εp11 in tensile in 1-direction at 10−4 s−1, 10−3 s−1 and 10−2 s−1.

Table 5.6: Coefficients of the numerical approximations of the evolution of the reloading slope
Er.11 with ε̄p in tensile in 1-direction at 10−4 s−1, 10−3 s−1 and 10−2 s−1.

ε̇11 [s−1] Er
11 = ar11(εp11) + br11

ar11 br11

10−4 5813 2047

10−3 9373 2170

10−2 8842 2423

5.3.3 Numerical-experimental correlation

Fig 5.14 shows the numerical-experimental correlation for the the three strain

rates. As it can be seen, the model has the ability to reproduce accurately the

envelope as well as the unloads in every cases. Concerning the reloads, a slightly

difference increasing with strain rate is appreciated between the prediction and

the experimental data. Such difference is caused by a progressive loss of linearity

in the reloads when strain rate is increased. The root-mean-square error (RMSE)

at 10−4 s−1, 10−3 s−1 and 10−2 s−1 is 7.36%, 8.03% and 9.12%, respectively.

5.4 Conclusions

In this chapter, a constitutive model of the cyclic quasi-static behaviour of the

SRPP is formulated within the framework of thermodynamics of irreversible

processes. The proposed model consists of two parts or submodels: one associ-

99



5.4. Conclusions

0 2 4 6 8 10 12 14
0

50

100

150

200

ε11 × 10−2

σ
1
1

[M
P

a
]

Experimental (10−4 s−1)
Numerical

(a)

0 2 4 6 8 10 12 14
0

50

100

150

200

ε11 × 10−2

σ
1
1

[M
P

a
]

Experimental (10−3 s−1)
Numerical

(b)

0 2 4 6 8 10 12 14
0

50

100

150

200

ε11 × 10−2

σ
1
1

[M
P

a]

Experimental (10−2 s−1)
Numerical

(c)

Figure 5.14: Experimental-numerical correlation of the tensile stress-strain relation in 1-
direction at (a) 10−4 s−1, (b) 10−3 s−1 and (c) 10−2 s−1.
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ated to the envelopes of the stress-strain relations of both tensile and shear and

another one formulated to reproduce independently the hysteresis phenomena

appearing in both tensile and shear.

The model of the envelopes is based on an elastoplastic formulation which

considers the stiffness variation caused by damage generation (in both tensile

and shear) and stiffening caused by chains orientation (in tensile). The model

of the hysteresis loops is based on a fractional solid linear standard (F-SLS)

formulation in the shear case, and a combination of a F-SLS (unloading part of

the loop) and an elastic (reloading part of the loop) formulations in the tensile

case.

The numerical-experimental correlation has demonstrated that the model is ca-

pable of predicting accurately both the cyclic tensile and shear behaviours of

the SRPP, so that can be stated that the use of the combination of an elasto-

plastic model and a fractional viscoelastic one is valid to predict the quasi-static

behaviour of plain SRCs.
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Chapter 6

General conclusions and future
work

6.1 Conclusions

This research work has dealt with the mechanical behaviour of SRC-based

FMLs. Firstly, the most appropriate SRC-FML, between an Al-based FML

and a Mg-based FML, for low-velocity impact applications in terms of energy

dissipation capacity has been chosen (Chapter 3). Secondly, the mechanical

behaviour of the composite constituent, SRPP, has been characterised and its

influence in the mechanical response of the FML has been evaluated (Chapter

4). Finally, given the relevance of the of the SRPP in this last issue, a material

model of the SRPP has been formulated (Chapter 5).

In the first part of Chapter 3, the low-velocity impact behaviour of three different

SRCs have been studied: a SRPP, a SRPET and a SRPE. On the one hand,

the SRPE have demonstrated the highest energy dissipation capacity due to

the relatively large deformation of the material; however, this seems to be

associated to an inappropriate compaction temperature which causes a wrinkling

phenomenon. On the other hand, the SRPP and the SRPET have qualitatively

shown the same kind of response; nevertheless, quantitatively, the SRPP has

demonstrated almost twice penetration energy than the SRPET. These results

suggest rejecting the SRPE as alternative for the FMLs and selecting the SRPP

103



6.1. Conclusions

as the material that shows the most appropriate response under low-velocity

impacts due to its capacity to dissipate impact energy at perforation. In the

second part the chapter, two different SRPP-based FMLs have been studied;

one with AZ31B-H24 magnesium and another one with 2024-T3 aluminium

as metal constituents. The Al-FML has demonstrated higher perforation

resistance and energy dissipation capacity than the Mg-FML. In fact, despite

the latter presents lower density than the former, the perforation threshold of

the Al-based laminate has resulted more than twice the one of the Mg-based FML.

In the first part of Chapter 4, the SRPP has been characterised at different

strain rates. The SRPP has revealed that, when submitted to both tensile and

shear stress solicitations, presents irreversible strains when deformed, hysteresis

phenomena when submitted to load-unload cycles, a rate-dependent behaviour

and a stiffness varying with the strain. In the second part of Chapter 4, the

tensile mechanical response at different strain-rates of Al/SRPP-FML has been

studied and the influence of the SRPP as constituent material in the FML

has been evaluated. The FML has demonstrated a rate-dependent behaviour.

Besides, when submitted to load-unload cycles, it showed hysteresis loops.

These phenomena are attributed to the presence of the SRPP, which affects

significantly to the mechanical behaviour of the FML. This implies that the

rate-dependent mechanical behaviour of the SRPP must be considered to model

the mechanical response of the Al/SRPP-FML.

In Chapter 5, a constitutive model within the framework of thermodynamics of

irreversible processes of the mechanical behaviour of the SRPP has been formu-

lated. The numerical-experimental correlation has demonstrated that the model

is capable of predicting accurately both the cyclic tensile and shear behaviours

of the SRPP. It can be stated that the use of the combination of an elastoplastic

model and a fractional viscoelastic one may be valid to predict the quasi-static

behaviour of another SRCs.
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6.2 Future work

In the present work, the low-velocity impact behaviour of three SRCs (SRPP,

SRPET and SRPE) and two SRPP-FMLs: one based on aluminium and another

one based on magnesium have been studied. After selecting the Al/SRPP-FML

as object of study, the influence of the SRPP, as composite constituent, in the

mechanical response of the FML is evaluated based on strain rate. Given the

significant effect of the composite, it is determined the necessity of characterising

and modelling its mechanical behaviour in a first step in order to predict

accurately the mechanical response of the SRC-FMLs.

While it is true that the Al/SRPP-FML has been selected according to some

criteria, it should be studied another alternative SRC-FMLs consisting of another

SRCs such as SRPET or SRPE.

This thesis ends proposing a constitutive model of the quasi-static cyclic

behaviour of the SRPP considering hysteresis phenomena and stiffness varying

with strain. The evolution with the plastic strain of the values of the model

parameters for the three strain rates studied denotes that master curves can

be deduced and, hence, a rate-dependent model can be determined. However,

to predict the response of SRC-FML when submitted to low-velocity impact

solicitations, a rate-dependent model would be necessary of the behaviour of the

SRPP. For this, the mechanical behaviour of the SRPP should be characterised

at higher strain rates than the ones used in this thesis.

The modelling methodology implies the combination of a elastoplastic model for

the envelope and a fractional viscoelastic model for the hysteresis loops of the

stress-strain relation. It should be checked the validity of the proposed model

for other SRCs.

The model is capable of predicting the stress-strain response both in tensile

and in pure shear conditions by using an anisotropic yield criteria proposed
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specifically for composites presenting yield phenomenon in fibre directions. It

should be checked the validity of the that criterion for multiaxial solicitations.

To do so, it would be necessary experimental data provided by a cruciform

multiaxial testing machine or if possible a tensile testing machine preventing

from significant distortion of the angle defined by the fibres of the fabric.
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d’endommagement anisotropes non standards. Comptes Rendus Mécacanique,

2006. 72
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Crystalline Polymers. In József Karger-Kocsis and Stokyo Fakirov, editors,

Nano- and Mircro- Mechanics of Polymer Blends and Composites, pages 1–58.

Hanser, 2009. ISBN 978-3-446-41323-8. 58, 60
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1992. 22
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Appendix A

A.1 Viscoelastic models

Viscoelasticity is the property of materials that exhibit both viscous and

elastic characteristics when undergoing deformation [Flügge, 1967]. Viscoelastic

materials, such as amorphous polymers, semicrystalline polymers, biopolymers

and, by extension, polymer matrix composite materials can be modelled in order

to determine their stress and strain or force and displacement interactions as

well as their temporal dependencies [Christensen, 1982].

An ideal helicoidal spring, perfectly linear elastic and massless, represents Hooke

model (see Fig. A.1), which is expressed by means of:

σ(t) = Eε(t) (1)

where E is the elasticity modulus.

ε

E
σσ

Figure A.1: Hookean elastic spring; elastic model.

The dashpot (see Fig. A.2) is an ideal viscous element that extends at a rate
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A.1. Viscoelastic models

proportional to the applied stress, according to Newton equation:

σ(t) = η
dε(t)

dt
(2)

where η is the viscosity coefficient.

ε

η
σσ

Figure A.2: Newtonian viscous dashpot; viscous model.

Combining springs and dashpots we obtain different models of viscoelastic

behaviour. The simplest viscoelastic models are those formulated by J. C.

Maxwell and Lord Kelvin.

The Kelvin model combines a spring and a dashpot in parallel (see Fig. A.3(a)),

whereas the Maxwell model is the combination of a spring and a dashpot in series

(see Fig. A.3(b)).

ε

η

E

σσ

(a)

εe εi

ηE
σσ

(b)

Figure A.3: (a) Kelvin and (b) Maxwell viscoelastic models.
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Maxwell and Kelvin models are adequate for qualitative and conceptual analyses,

but sometimes poor for the quantitative representation of the behaviour of real

materials.

In order to get a more realistic response by the model, the number of parameters

must be increased by combining a number of springs and dashpots. A systematic

way to do that is to build generalized Maxwell and Kelvin models. The general-

ized Maxwell model is composed of n+ 1 constituent elements in parallel, being

n Maxwell models and an isolated spring (to warrant solid behaviour) (see Fig.

A.4(a)), while the generalized Kelvin model is composed of n Kelvin units in

series plus an isolated spring (see Fig. A.4(b)).

En ηn

E2 η2

E1 η1

E

σσ

(a)

En

ηn

E2

η2

E1

η1

E
σσ

(b)

Figure A.4: Generalized (a) Maxwell and (b) Kelvin viscoelastic models.
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The classic general differential representation of rheological models is [Marques

and Creus, 2012]
h∑
i=0

pi
∂iσ

∂ti
=

k∑
i=0

pj
∂jε

∂tj
(3)

where pi and qj are material constants dependent on the viscoelastic model,

being i and j the derivation orders, entire, of the derivatives of stress and stress,

respectively, with respect to time.

The generalized Maxwell and Kelvin models are the more complete among the

classical rheological models. They allow to model the viscous mechanical be-

haviour of polymer and polymer matrix composite materials considering effects

such as hysteretic phenomena [Bois, 2003].
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B.1 Euler’s Gamma function

In fractional calculus, the complete Euler’s Gamma function Γ(z) is a fundamental

function which is defined by an Euler integral of second kind:

Γ(z) =

∫ ∞
0

tz−1e−tdt (4)

This function is defined in the whole complex plane except for zero and negative

integers, where it has poles. Integrating by parts Eq. 4 leads to the following

recurrence relationship:

Γ(z + 1) = zΓ(z) (5)

Since Γ(1) = 1 by Eq. 4, Eq. 5 then provides the generalisation of factorial z!:

Γ(z + 1) = z! (6)

B.2 Definitions of fractional operators

As stated before, fractional calculus is a generalisation to non-integer order of the

integration and differentiation operator, which will be in general called integro-

differentiation operator within this work. The notation that will be used is the

one proposed by Davis [1936] which denotes the integro-differential operator of a
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B.2. Definitions of fractional operators

function f(x) by:

aD
α
b f(x)

where subscripts a and b denote the lower and upper limits or terminals of the

integral, respectively, which defines the integro-differentiation of order α. In

general, the use of subscripts becomes crucial in order to avoid ambiguities and in

the cases of no ambiguity they may be omitted, as it will be seen later in this work.

For positive values of α the integro-differential operator produces a fractional

derivative, whereas for negative values, the integro-differential operator produces

a fractional integral. In this case the following notation may be used:

aI
α
b f(x)

Thus, the following relation is obtained:

aD
−α
b f(x) = aI

α
b f(x) (7)

Fractional operators fulfill the following properties:

Property 1 If f(x) is an analytic function of the real or complex variable z, the

derivative aD
α
z f(z) is an analytic function of α and z.

Property 2 Fractional differentiation aD
α
xf(x) must produce the same result as

ordinary differentiation for positive integer values n of α and the same as ordinary

n-fold integration for negative integer values n of α.

Property 3 After fractional integro-differentiation of order zero the function re-

mains unchanged:

aD
0
xf(x) = f(x) (8)
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Property 4 Fractional operators are linear:

aD
α
x

N∑
i=1

aifi(x) =
N∑
i=1

ai aD
α
xfi(x) (9)

Property 5 The composition rule for integration of arbitrary order holds:

aI
β
x

(
aI
α
xf(x)

)
= aI

α+β
x f(x) = aI

α
x

(
aI
β
xf(x)

)
α, β ≥ 0 (10)

or alternatively,

aD
−β
x

(
aD
−α
x f(x)

)
= aD

−α−β
x f(x) = aD

−α
x

(
aD
−β
x f(x)

)
α, β ≥ 0 (11)

Property 6 The composition rule for differentiation and integration of arbitrary

order holds:

aD
β
x

(
aI
α
xf(x)

)
= aD

β−α
x f(x) α, β ≥ 0 (12)

Thus, if β = α, then:

aD
α
x

(
aI
α
xf(x)

)
= f(x), aI

α
x

(
aD

α
xf(x)

)
6= f(x) α ≥ 0 (13)

i.e. the fractional derivative operator Dα is left-inverse and not right-inverse to

the fractional integral operator Iα with α a non-integer number. The same could

be said for integer order numbers n.

Property 7 The composition rule for differentiation of arbitrary order does not

generally hold but in the case of hybrid differentiation with n a positive integer
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and α non-integer, the following property holds:

aD
α
x (aD

n
xf(x)) = aD

n+α
x f(x)−

n−1∑
k=0

(x− a)k−α−nf (k)(a)

Γ(k − α− n+ 1)
α, n ≥ 0 (14)

If the derivatives f (k)(a) at the lower terminal vanish for k = 0, 1, . . . n− 1, then:

aD
α
x (aD

n
xf(x)) = aD

n+α
x f(x) α, n ≥ 0 (15)

As it has previously been seen, several different fractional operators have been

developed throughout history. In the following subsections the main operators

relevant to this work will be described: the Grnwald-Letnikov (GL) definition, the

Riemann-Liouville (RL) and the Caputo (C) definitions [Miller and Ross, 1993;

Oldham and Spanier, 1974; Podlubny, 1999; S. Samko and Marichev, 1993]. As it

will be seen in the following subsections, while the first one is a discrete approach

since it is based on a generalised difference quotient, the other two are based on

an integral formulation, that is, they constitute a continuous approach.
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C.1 Algorithms

Algorithm 1 Model algorithm for the quasi-static cyclic tensile and shear cases.
spacing

1: if (∆εij. n > 0 and σy(ε̄p trial
n ) = 0)︸ ︷︷ ︸

elastic−part

or (∆εij. n > 0 and σy(ε̄p trial
n ) < σy(ε̄p trial

n−1 )︸ ︷︷ ︸
plastic−part

,

then

2: ∆εij. n > 0 is supposed to be elastic: an elastic prediction is calculated.

–GO TO Algorithm 2–

Then, the plastic admissibility is checked.

3: if qtrial
n+1 − σy(ε̄p trial

n+1 ) ≤ 0 then

4: The elastic prediction is correct, so

(·)n+1 := (·)trial
n+1

5: else

6: The Return Mapping algorithm is applied.

–GO TO Algorithm 3–

7: end if

8: else

9: ∆εij. n occurs within the hysteresis loop.

–GO TO Algorithm 4–

10: end if
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Algorithm 2 Elastic predictor.
spacing

1: Given ∆εij. n > 0 and the state variables at tn, the elastic prediction is

calculated.

εe trial
ij. n+1 := εe

ij. n + ∆εij. n

ε̄p trial
n+1 := ε̄p

n

Y trial
ij. n+1 := Yij(ε

e trial
ij. n+1); Ȳ trial

ij. n+1 := max
τ≤t

(√
Y trial
ij. n+1(τ)

)
Ztrial
ij. n+1 := Zij(ε

e trial
ij. n+1); Z̄trial

ij. n+1 := max
τ≤t

(√
Ztrial
ij. n+1(τ)

)
dtrial
ij. n+1 := fij(Ȳ

trial
ij. n+1)

rtrial
ij. n+1 := gij(Ȳ

trial
ij. n+1)

qtrial
n+1 :=

√
(σ̃2

12 + a2
1σ̃

2
11 + a2

2σ̃
2
22)

Algorithm 3 Return Mapping
spacing

1: Solve numerically the system

εe
ij. n+1 := εe trial

ij. n+1 −∆γNn+1 (see Eq. 5.19 to determine Nn+1)

ε̄p
n+1 := ε̄p

n + ∆γ

qtrial
n+1 − σy(ε̄p trial

n+1 ) = 0

for εe
ij. n+1, ε̄p

n+1 and ∆γ (using e.g the Newton-Raphson method) and update

dij. n+1, dij. n+1 and qn+1.
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Algorithm 4 Hysteresis loops.
spacing

1: if i 6= j︸ ︷︷ ︸
unloading−or−reloading−shear

or (i = j and ∆εij. n < 0)︸ ︷︷ ︸
unloading−tensile

then

2: The F-SLS model must be applied.

εe
ij. n+1 := εe

ij. n + ∆εij. n

ε̄p
n+1 := ε̄p

n

εij. n+1 := εe
ij. n+1 + ε̄p

n+1

and the value of the material parameters are determined:

E∗ij. n+1 := E∗ij(ε̄
p
n+1)

Ev
ij. n+1 := Ev

ij(ε̄
p
n+1)

Em
ij. n+1 := Em

ij (ε̄
p
n+1)

αij. n+1 := αij(ε̄
p
n+1)

3: Then, the stress state is calculated based on the F-SLS model:

σij. n+1+
Ev
ij.

Em
ij. n+1

nDα
n+1σij. =

= E∗ij. n+1εij. n+1 +
E∗ij. n+1 + Em

ij.

Em
ij.

Ev
ij. n+1 nDα

n+1εij.

4: else

5: i = j︸ ︷︷ ︸
reloading−tensile

, so the linear elastic model is applied.

Er
ij. n+1 := Er

ij(ε̄
p
n+1)

σij. n+1 := Er
ij(ε

e
ij. n + ∆εij. n)

6: end if
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