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Atte ta amai,

“Education is a progressive discovery of our own ignorance.”
-William James Durant. 1965.





iv

Originality Statement
I declare that I am the sole author of this work. This is a true copy of the final document, including
any revision which may have been ordered by my examiners. I understand that my work may be
available to the public, either at the university library or in electronic format.





Abstract

There are many disorders that directly affect people’s behaviour. The people that are suffering from
such a disorder are not aware of their situation, and too often the disorders are identified by relatives or
co-workers because they notice behavioural shifts. However, when these changes become noticeable,
it is often too late and irreversible damages have already been produced. Early detection is the key
to prevent severe health-related damages and healthcare costs, as well as to improve people’s quality
of life.

Nowadays, in full swing of ubiquitous computing paradigm, users’ behaviour patterns can be
unobtrusively monitored by means of interactions with many electronic devices. The application of
this technology for the problem at hand would lead to the development of systems that are able to
monitor disorders’ onset and progress in an ubiquitous and unobtrusive way, thus enabling their early
detection. Some attempts for the detection of specific disorders based on these technologies have
been proposed, but a global methodology that could be useful for the early detection of a wide range
of disorders is still missing.

This thesis aims to fill that gap by presenting as main contribution a global screening methodology
for the early detection of disorders based on unobtrusive monitoring of physiological and behavioural
data. The proposed methodology is the result of a cross-case analysis between two individual valida-
tion scenarios: stress in the workplace and Alzheimer’s Disease (AD) at home, from which conclusions
that contribute to each of the two research fields have been drawn. The analysis of similarities and
differences between the two case studies has led to a complete and generalized definition of the steps
to be taken for the detection of a new disorder based on ubiquitous computing.
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Laburpena

Jendearen portaeran eragin zuzena duten gaixotasun ugari daude. Hala ere, askotan, gaixotasuna
pairatzen duten pertsonak ez dira euren egoerataz ohartzen, eta familiarteko edo lankideek iden-
tifikatu ohi dute berau jokabide aldaketetaz ohartzean. Portaera aldaketa hauek nabarmentzean,
ordea, beranduegi izan ohi da eta atzerazeinak diren kalteak eraginda egon ohi dira. Osasun kalte
larriak eta gehiegizko kostuak ekiditeko eta gaixoen bizi kalitatea hobetzeko gakoa, gaixotasuna
garaiz detektatzea da.

Gaur egun, etengabe zabaltzen ari den Nonahiko Konputazioaren paradigmari esker, erabiltza-
ileen portaera ereduak era diskretu batean monitorizatu daitezke, gailu teknologikoekin izandako
interakzioari esker. Eskuartean dugun arazoari konponbidea emateko teknologi hau erabiltzeak gaixo-
tasunen sorrera eta aurrerapena nonahi eta era diskretu batean monitorizatzeko gai diren sistemak
garatzea ekarriko luke, hauek garaiz hautematea ahalbidetuz. Gaixotasun konkretu batzuentzat
soluzioak proposatu izan dira teknologi honetan oinarrituz, baina metodologia orokor bat, gaixotasun
sorta zabal baten detekzio goiztiarrerako erabilgarria izango dena, oraindik ez da aurkeztu.

Tesi honek hutsune hori betetzea du helburu, mota honetako gaixotasunak garaiz hautemateko,
era diskretu batean atzitutako datu fisiologiko eta konportamentalen erabileran oinarritzen den be-
haketa sistema orokor bat proposatuz. Proposatutako metodologia bi balidazio egoera desberdinen
arteko analisi gurutzatu baten emaitza da: estresa lantokian eta Alzheimerra etxean, balidazio egoera
bakoitzari dagozkion ekarpenak ere ondorioztatu ahal izan direlarik. Bi kasuen arteko antzekotasun
eta desberdintasunen analisiak, gaixotasun berri bat nonahiko konputazioan oinarrituta detektatzeko
jarraitu beharreko pausoak bere osotasunean eta era orokor batean definitzea ahalbidetu du.
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This chapter introduces the work carried out in this PhD thesis which deals with the aspect of
the early diagnosis of disorders based on behavioural shifts and biomedical signals. In this chapter,
we first present the reasons and motivations for this thesis, followed by a statement of the main
hypotheses and objectives. Then, the research methodology followed for the conclusion of this work
is explained. Finally, the organization of this dissertation is exposed.

1.1 Motivation

There are many disorders (e.g. diseases such as Alzheimer’s Disease (AD), stress, Attention Deficit
Hyperactivity Disorder, Parkinson’s Disease, eating disorders, depression, autism...) that directly
affect users’ behaviours. Usually, people suffering from such a disorder are not aware of their situation,
and too often those disorders are identified by relatives or co-workers because they notice behavioural
shifts. However, when these changes become noticeable, it is often too late, when the disorder has
progressed too much and irreversible damages have been caused. Early detection of these disorders
allows one to take measures to prevent them completely or to slow down their progress, reducing the
consequent health-related damages and economic costs, as well as improving people’s quality of life.

In the last decade, thanks to the emergence and continuous improvement of smart electronic
devices, smart environments are becoming increasingly known and frequent around us. Smart envi-
ronments are surroundings that have been enhanced with sensors integrated in the environment and
in specific devices and objects. These embedded sensors, acquire knowledge about the environment
and its inhabitants, so that the gathered information can be applied in order to improve users’ experi-
ence [1]. Therefore, smart environments provide an excellent infrastructure to monitor users’ activity
and behaviour in a completely transparent and ubiquitous way. Based on this monitoring, systems
that detect users’ frequent behaviours and shifts have been developed, and validated, for example,
in work environments (in an office [2]) and in home environments with patients with AD [3].

Nonetheless, these behavioural shifts are yet to be mapped to the disorders that might be pro-
voking them. From the point of view of healthcare and biomedical fields, a great opportunity is being
seen in the use of these smart environments to, among other things, detect disorders in time. For
that purpose, it is necessary to develop smart environments that are capable of detecting changes in
the behaviour of people indicating the onset of a disease.

Towards this goal, there is much work to be done in several research and organizational areas.
Some of these include:

1. Research on the development of new smart devices, environments and cities, towards their
massive use and expansion

2. Research on the Big Data area, for the development and/or improvement of the current tech-
nical infrastructure to store, transfer and process the big amounts of data that the smart
environments can collect.

3. Research on the many individual disorders to understand the behavioural shifts that they
provoke and, therefore, be able to implement systems that recognize these symptoms when
they arise.

4. Perform a reorganization of the current health-care system to adopt and normalize the use of
new technologies and smart environments as support assistance in health-related applications.

5. Begin a sensitization process to increase users’ acceptance towards these emerging technologies.

This PhD thesis aims at contributing to the third and fourth point by proposing a multidomain
methodology for the early detection of disorders, which defines the procedure to follow for the
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research and implementation of smart environments able to detect specific disorders. The use of this
methodology can ease the implementation of smart environments providing decision support to the
health-specialists, hence, help in introducing these technologies to the current health-care system.

1.1.1 Trends in this research area
Awareness of the advantages that the monitoring of behavioural biomarkers involves for the early
detection of disorders (most importantly the possibility to monitor them in an unobtrusive and
ubiquitous way) is increasing, and therefore, more and more effort is being done on the research
aimed at discovering new behavioural biomarkers for specific disorders. In this sense, changes in in-
home activity patterns of the elderly have been associated to dementia [4], changes in computer [5]
and smartphone [6, 7] use patterns to stress, specific traits in gait to Parkinson’s Disease [8, 9], and
certain patterns in the interactions with smart tablets to autism [10]. All these research suggest
that changes in behaviour might be the earliest observable symptoms for many disorders and are
therefore important to monitor and understand. Some European research projects are also aligned
with this hypothesis, e.g. i-Prognosis [11], ICT4Life [12] or Brainview [13], which aim at predicting
Parkinson’s Disease, Alzheimer’s Disease and other dementias, as well as autism and attention deficit
hyperactivity disorder from behavioural traits.

Nonetheless, all existing works focus on the detection of a single or few specific disorders, without
taking into account the similarities and analogies that exist between them allowing to define a mul-
tidomain methodology. Currently, the actively used methodology for the early detection of multiple
disorders is the screening method, defined by the World Health Organization in 1968 [14]. This
methodology is not up to date with the technological advances that have taken place in recent years.
We believe that a methodology for the early detection of multiple disorders that provoke behavioral
shifts could be defined making use of technologies such as Smart Environments.

The widespread use of such a methodology for different disorders can highly contribute to the
discovery and understanding of the correlations and/or causalities that may exist between the be-
havioural and physiological shifts and the status of the disorders. Consequently, this can lead to
increase our current knowledge level about the disorders, to find out new behavioural biomarkers
for an earlier diagnosis and to monitor their progress unobtrusively. This would lead to developing
ubiquitous and unobtrusive monitoring systems for specific symptoms of disorders, with the resulting
early detection.

1.1.2 Scenarios
The development of this PhD thesis will be held focusing on two disorders: workplace stress and
AD in home environments. The in-depth analysis of these individual scenarios will allow to focus on
the steps to follow in order to give a solution to each one of the two cases, while allowing to infer a
global solution by comparing them.

The more individual scenarios analysed, the better and the more robust global solution could be
inferred. Nonetheless, for having limited time and space, the work has had to be limited to two case
studies. The reasons why such different scenarios have been chosen are the following:

I The workplace and the home environments are the places where people spend most of their
time.

I The implication of such different scenarios allows to validate the non-specific methodology that
will be useful for a wide variety of disorders.

I Data of stress in the workplace are much more accessible so that they can be used for acquiring
experience and developing the first algorithms, in order to minimize the problems that can arise
when working with AD patients.
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1.2 Hypotheses and Objectives
This section presents the objectives and hypotheses that compose the foundation of the upcoming
research work. In order to address this question, we take into account the problem first presented in
Section 1.1 and also the trends in current research exposed in Chapter 2.

The central hypothesis of this work is:

“Correlations can be found between physiological and behavioural shifts and the status of the
disorders, so that a multidomain methodology for the early detection of disorders can be defined
based on shifts detected on unobtrusively collected physiological and/or behavioral data”.

In order to validate the hypothesis, the general goal of this research work is:

V To define a mutidomain methodology for the early detection of disorders based on unobtrusively
collected physiological and behavioural data.

This objective can be divided into several sub-objectives:

I Research the current state of the art in stress detection and AD diagnosis, especially the types
of symptoms that are measured and how they are used for the recognition of the aforementioned
disorders.

I Select the behavioural and physiological signals for each of the two considered scenarios, and
develop the required processing algorithms for their characterization and further use.

I Define the characteristics of the required data for the research and collect the data or obtain
access to existing datasets of such characteristics.

I Analyse the data using Artificial Intelligence (AI) and machine learning techniques in order to
search for correlations and patterns between the state of the disorder and the physiological and
behavioural data.

I Integrate and validate the knowledge extracted from the data analysis process in the two
scenarios.

I Deduce a global methodology to find useful correlations and markers for the early diagnosis of
several disorders.

1.3 Methodology
The research methodology selected for this PhD thesis is the Case Study Research. This strategy
can be defined as “An empirical inquiry that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between phenomenon and context are not clearly
evident” [15].

Such a study is characterized by the following traits [16]:

I One or few instances are investigated in depth.

I The instances are examined in their natural setting.
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I It is a holistic study, where the researcher focuses on the complexity of relationships and
processes and how they are interconnected and inter-related, rather than isolating individual
factors.

I Multiple data sources and methods are used.

The methodology has been slightly modified from its original version [15] in order to adapt it to
the needs of the current research, leading to a more iterative strategy.

Figure 1.1 shows the resulting research method followed in this work, with details about the tasks
carried out in each stage and the planning of the publications. As shown in the figure, after a first
literature review about the early diagnosis of disorders, specific case-studies have been chosen. Later,
a thorough review of the selected cases has been done, and the data sources to be analysed have
been identified. Then, individual analyses have been performed for each case, validating the proposed
data analysis solution and drawing case-specific conclusions. Finally, a general methodology for the
early detection of disorders has been presented generalizing the knowledge acquired on the analyses
of individual case-studies.

1.4 Thesis Outline
This dissertation is divided into six chapters. In this section, we provide a short summary of the
contents of each of the chapters.

Chapter 1 is this introduction.
Chapter 2 reviews the literature on the early detection of the two disorders under study (i.e. stress

and AD) from a multimodal point of view, as well as the current strategies for the early detection of
disorders, and highlights the gaps of the State of the Art in this area.

Chapter 3 presents the work performed for the first case-scenario on stress detection in office
environments.

Chapter 4 explains the work on the early AD detection from smart home data performed for the
second case-scenario.

Chapter 5 exposes the multidomain methodology defined for the early detection of disorders based
on unobtrusive physiological and behavioural measurements resulting from a cross-case analysis of
the two case-studies presented in the previous chapters.

Chapter 6 concludes the thesis by summarizing the main findings and contributions of this dis-
sertation, and provides some possible lines for further work.
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The literature review presented in this chapter is structured into six main parts. First, a brief
section giving the definitions of some basic concepts to understand the following work is exposed.
The following two sections explain the current state of the art on the detection of the two disorders
under study: stress in the workplace and Alzheimer’s Disease (AD) at home. Later, a section about
the data mining process and the steps followed to model the disorders is provided. Then, a section
explaining the current methodology for the early detection of disorders is exposed. Finally, the open
research areas are listed.

2.1 Definitions
This section aims at introducing and clarifying the definitions of some of the basic concepts that will
be used throughout this document. These terms could be understood in multiple ways, and therefore,
this section tries to clarify the definition that has been taken into account during the development
of this thesis to avoid any kind of ambiguity.

“Multidomain” and “multimodal” terms are extensively used throughout the document, thus, it
is important to clearly define them.

In this thesis document, the term “multidomain” is defined as:

Definition 2.1.: A system involving or providing a solution for several domains or disorders,
which could be stress, AD, depression, bipolar disorder, and so on.

Whereas the term “multimodal” is defined as:

Definition 2.2.: A system involving information sources from several modalities, which are
psychological, physiological and behavioural.

The terms “psychological”, “physiological” and “behavioural” are used to present the taxonomy
of the symptomatology of the disorders under study in this thesis project. Below, a definition of each
one of the modalities is given.

“Psychological” symptoms are defined as:

Definition 2.3.: “Of or relating to the mind or mental activity” [17] and they do not involve the
execution of an action.

“Physiological” responses are defined as:

Definition 2.4.: Part of the normal functioning of a living organism or bodily part [18], there-
fore, they are non-voluntary actions or responses, and very hard or impossible to notice by external
observation.

“Behavioural” is interpreted as:

Definition 2.5.: “The manner of conducting oneself” [19], so that, unlike physiological responses,
they involve an action that could be controlled or relatively easily observed externally (i.e. by
colleagues, by family members).
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2.2 Stress detection

This section aims at responding the following Research Question (RQ)s:

What is stress? What are its symptoms? How can these symptoms be measured in order to
detect stress?

Introduction
Stress was defined for the first time by Hans Selye as “the non-specific response of the body to
any demand for change” [20]. When these demands come from job-related sources, we are talking
about “occupational stress”, which has more specifically been defined as “the emotional cognitive,
behavioural and physiological reaction to aversive and noxious aspects of work, work environments
and work organizations. It is a state characterized by high levels of arousal and distress and often by
feelings of not coping” [21].

Three levels of stress can be distinguished depending on the time of exposure to stressors:

I Acute stress: It is the innate “flight-or-fight” response in face of stressors, and it is not
considered harmful [22]. It is provoked by punctual stressors, for instance, a job interview. The
sympathetic nervous system, which is part of the human Autonomic Nervous System (ANS)
[23], is responsible for activating the glands and organs for defending the body from threat,
i.e. for the stress response [24].

I Episodic stress: It is said when acute stress episodes go from being punctual, to be more
frequent.

I Chronic stress: It appears when stressors persist for a long-time, causing physical and mental
problems on the worker. Hypertension, musculoskeletal disorders, depression, sleep problems,
and suicide attempts are only some examples of the health-related problems that it can provoke.

The Sympathetic Nervous System provokes the stress response in humans [24], provoking psy-
chological, physiological and behavioural symptoms [25]. Examples of these modalities include:

I Psychological symptoms of stress comprise the increase of strong negative emotions, such as
anger, anxiety, irritation or depression [26].

I Examples of physiological responses include changes in the hormonal levels of the body, sweat
production, increased Heart Rate (HR) and muscle activation [27]. Respiration becomes faster
and the Blood Pressure (BP) increases [28]. Skin Temperature (ST) and Heart Rate Variability
(HRV) vary [29], as well as the Pupil Diameter (PD).

I Behavioural symptoms include changes in facial expressions, head movements [30] and General
Somatic Activity. In an office environment, interaction patterns with the computer can also be
considered.

Figure 2.1 shows the multimodal nature of stress. It can be seen that stress is affected by the
context, i.e. by the personal characteristics of the subject and circumstances that are not subject-
dependent like events, places or moments. Stress responses are evidenced, at least, in the three
aforementioned domains.

Currently, stress is detected measuring some of these symptoms. Whereas psychological ques-
tionnaires and salivary cortisol measurements have been considered as the gold standard for a long
time, in the recent years, the search field has greatly expanded.

The following of this section reviews the signals that are being used to measure stress levels
following the presented taxonomy:
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Figure 2.1: The multimodal nature of stress. The figure is inspired from [30].

2.2.1 Psychological evaluation
Psychological evaluation of stress can be carried out by means of self-report questionnaires or by
being interviewed by a psychologist. The former is one of the most widely used ways to measure
stress levels in humans and it is considered a reliable method. Examples of these tests are: The
Stress Self Rating Scale [31], the Perceived Stress Scale and the Stress Response Inventory.

Strengths and Weaknesses of Psychological Evaluation to Detect Stress
The advantage of using psychological questionnaires to detect stress is their reliability. They are the
result of years of work by a whole branch of psychology, and their validity has been proven throughout
this time. Despite this, their weaknesses are more remarkable when the goal is the early detection
of stress.

On one hand, these questionnaires do not provide information about the stressors nor about the
evolution of the stress levels. On the other hand, these tests can be taken from time to time, but
this might not be enough to detect the subtle changes which could indicate an early stage of a major
problem. Actually, these tests are only taken when the affected or their colleagues realize about
the situation, and this is too late in the vast majority of the cases. Furthermore, questionnaires are
subjective and require users’ full attention.

2.2.2 Physiological measurements
Stress can be evaluated by a wide variety of physiological measurements. While some of them are
widely accepted for this purpose, the validity of others is still a research topic. This section presents
the most relevant physiological signals used for stress detection, which are shown in Figure 2.2.
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Hormone levels

The stress response changes the endocrine and immune systems by releasing adrenaline and cortisol
hormones [32] from the adrenal cortex and the adrenal medulla, respectively. Under stress, the ability
to regulate cortisol levels decreases [33] and consequently, people suffering from chronic stress have
elevated cortisol levels.

Cortisol levels are considered a reliable biomarker of psychological stress [33] and can be measured
in blood, urine or saliva, being the latter the preferred one due to its non-invasive nature [34].

Electrocardiogram (ECG)

The ECG is the recording of the electrical activity of the heart, which reflects directly the mechanical
activity of the heart function [35].

ECG is one of the most used signals in stress detection research because the activity of the heart
is clearly affected by ANS changes [36]. An ECG can be easily recorded placing some electrodes on
specific places of the body and measuring the potential difference. The number of electrodes and
their positions can vary, but one of the most simple and effective ways is the Lead-II configuration,
which consists of placing three electrodes: one on the right arm, one on the left arm and the last one
on the left leg. The most common features computed with an ECG are the HRV and its variants.

Effectiveness of ECG and HRV features for stress detection has been shown by several authors
[27, 37, 38].

EEG, fMRI

ECG, HRV

EDA, ST, BVP

PD, Eye Gaze, Blinking Rate

Cortisol levels

BP

EMG

Respiration

TI

Figure 2.2: Physiological measurements for stress detection

Electroencephalogram (EEG)

An EEG is a test that measures the electrical activity of the brain. It is monitored by placing an array
of electrodes on the subject’s scalp so that the electrical fluctuations are recorded. The number of
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electrodes depends on the application. EEG signals can be divided into four main frequency bands:
Alpha (8-13 Hz), Beta (13-30 Hz), Delta (0.1-4Hz) and Theta (4-8 Hz).

Alpha waves reflect a calm, open and balanced psychological state, so Alpha activity decreases
in stress situations [33]. Besides, Beta activity reflects cognitive and emotional processes [39] so
it increases with mental workload and thus with stress. Stress has also been related to changes in
Right Frontal Activity [40] provoking frontal asymmetry.

EEG has not only been used for stress detection [33] but also for emotion recognition based on
arousal and valance [40].

Electrodermal Activity (EDA)

The EDA, also known as Skin Conductance or Galvanic Skin Response, is defined as a change in
the electrical properties of the skin [41]. Under emotional arousal, increased cognitive workload
or physical activity, the level of sweating increases, changing the skin properties, i.e. increasing
conductance and decreasing resistance [36,42]. EDA can be measured placing two electrodes on the
skin surface next to each other and applying a weak electrical current between them. EDA can be
decomposed into Skin Conductance Level (SCL) and Skin Conductance Response (SCR) signals (also
called EDL and EDR), which are the background tonic and the rapid phasic components respectively.
SCR appear as a small wave superimposed on the SCL [43]. SCRs can be both Event Related or
Non-Specific, depending on whether they have been a response to a specific stimuli or not.

EDA measures activity in endocrine sweat glands, which are innervated by the sympathetic
sudomotor nerves [44], and is therefore one of the best real-time correlates of stress [45]. It is linearly
related to arousal [46] and it has been widely used in stress and emotion detection [24, 45, 47, 48].

Blood Pressure (BP)

BP is the pressure of the blood against the inner walls of the blood vessels and it can be measured
using a stethoscope and a sphyngomanometer [49].

It has been proven that stress increases BP [25] over time. Nevertheless, it might not be suitable
for detecting subtle stress responses in real-time [23]. This could be explained by the fact that unlike
HRV, which is regulated by the “central command”, BP is regulated peripherally and is influenced
by local conditions in working muscles which could mask the changes of mental workloads.

Skin Temperature (ST)

Physiological variations in the ST mainly come from localized changes in blood flow caused by
vascular resistance or arterial BP, which in turn are influenced by the ANS activity [50], suggesting
that stress level changes ST. ST can be easily measured placing a temperature sensor in contact
with the skin, usually on the hands.

The way ST responds under stress has been analysed in stress and emotion detection researches
[48, 50, 51, 52]. However, ambiguous results have been reported. Whereas some affirm that ST in
hands rises with stress [25] others have stated the opposite [53].

Facial skin temperature is also starting to be measured by emerging non-invasive technologies
such as Thermal Imaging (TI).

Thermal Imaging (TI)

Several existing studies have affirmed that stress can be measured from thermal images due to the
temperature changes suffered from stressed individuals [54,55,56]. Facial temperature can be easily
measured using an Infrared camera, which is a completely unobtrusive method, making it interesting
for office-place applications. In the past few years, this technique has been included in the set
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of stress measuring methods. Warming of the corrugator muscle has been reported as the best
indicator [55, 57]

The promising results obtained with TI, have led other researches to analyse facial blood flow
under stress situations with even more sophisticated methods such as Hyperspectral Imaging [58].

Electromyogram (EMG)

An EMG measures the electrical activity of the muscles by using electrodes placed over the muscle
of interest, which is usually the Trapezius. As it is known that stress elevates muscle tone, many
researches have been done to analyse the potential of EMG for stress level assessment.

These works have concluded that a significant increase in Trapezius muscle activity is suffered
during mental stress, provoking involuntary reactions [38]. This increase is translated into an in-
creased EMG amplitude and a decrease in the amount of gaps, i.e. short periods of relaxation. Low
frequency contents also increase significantly under stress situations, so EMG signals give a useful
information for detecting mental stress.

Respiration

In 1973 researchers from the department of psychology of Peking University discovered that when
the stress level changes, the speed and depth of respiration system also change [59]. Due to this
finding, respiration has been measured in many stress-related researches [27,45,59,60] together with
other physiological signals. Respiration can be measured with a pneumotachometer (or pneumota-
chograph).

Unfortunately, the literature suggests that respiration monitoring is not as worth as other physio-
logical signals. Healey et al. [45] found out that contribution of respiration signals to stress detection
was far from being as evident as EDA or HRV’s contribution. Wei [59] also qualified respiration
signals as less effective for stress classification than EMG signals.

Blood Volume Pulse (BVP)

BVP is the measure of the volume of blood that passes over a photopletismographic sensor with
each pulse [61]. Photopletismography, consists of measuring blood volume in skin capillary beds in
the finger, relying on the capability of blood for absorbing light.

BVP allows to measure information of Heart Rate Variability (HRV) non-intrusively [36] so that
it can be used instead of Electrocardiogram (ECG)s.

Pupil Diameter (PD), Eye Gaze and Blinking Rate

PD, eye gaze and blink rates can be measured with infrared eye tracking systems or with Image
Processing techniques applied to visual spectrum images of the eyes.

Pupil dilations and constrictions are governed by the Autonomic Nervous System (ANS) [36].
Thus, PD exhibits changes under stress situations [62] and literature suggests that it can positively
contribute to stress detection [52,63,64]. Eye gaze has also been measured in different situation such
as in reading [65], in driving [66] and in working with a computer [63]. Eye gaze spatial distribution
has been found to be positively correlated with stress levels. Regarding blinking rate, an increase
under stress has also been reported in several studies [57, 67].

Functional Magnetic Resonance Imaging (fMRI)

fMRI is a non-invasive imaging technique for the functional analysis of the brain. It consists of
measuring the oxygen concentration of the different brain areas when the subject is developing
different tasks or when he is at the rest state for evaluating the default mode network. A Blood
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Oxygen Level-Dependent (BOLD) image contrast that provides an indirect measure of neuronal
activity is achieved [68, 69]. This is also done with a Magnetic Resonance Imaging (MRI) scanner.
Therefore, fMRI can be used to produce activation maps showing the parts of the brain that are
involved in a particular mental process.

The number of research papers on functional brain activities associated with emotional stress
using fMRI has increased in the recent years for several reasons. On one hand, it is non-invasive and
it does not involve radiation, making it safer. On the other hand, it is easy to use and it has a good
spatial resolution. The downsides are its lack of temporal resolution and high cost. That is why the
use of EEG has been preferred [70]. Furthermore, this method is restrictive by nature and it does
not allow monitoring in the workplace [55].

Table 2.1 summarizes the aforementioned physiological signals and features present in the liter-
ature.

Strengths and Weaknesses of Physiological Measurements to Detect Stress
A wide variety of physiological measurements has been reviewed in this section. Even if all the
methods rely on different principles, they share most common strength and weaknesses.

In fact, most of the aforementioned techniques need a specific device to be placed in direct
contact with the user, making them obtrusive methods, as well as costly, due to the need of extra
equipment. Wearables are being developed so as to overcome the obtrusivity of these methods, but
the continued use of most of them is not realistic yet. Despite these drawbacks, such methods are
the preferred ones nowadays to detect mental stress due to their high reliability.

2.2.3 Behavioural responses

Behavioural responses may also be used to identify stress. Advances in technology increasingly allow
to measure the behavioural changes shown by people under stress, and although they are not as
present as the physiological signals, they have also been considered in the literature. This section
presents the most relevant behavioural signals used for stress detection, which are shown in Figure
2.3.

Keystroke and mouse dynamics

Keystroke dynamics refers to the study of the unique characteristics that are present in an individual’s
typing rhythm when using a keyboard or keypad [81]. The same way, mouse dynamics are affected
by the subject’s characteristics when moving the computer’s mouse or clicking on its buttons.

Keystroke and mouse dynamics have been widely analysed in the security area for authentication
of people [82,83]. Zimmermann et al. [84] first mentioned the possibility of using mouse and keyboard
dynamics information to measure the affective state of the user and thenceforth they have also been
widely used for emotion recognition [85] as Kolakowska et al. explain in their recently published
review [86]. Stress detection, although to a lesser extent, has also been the objective of some
researches based on keystroke and mouse dynamics. Small variations in these patterns have been
attributed to stress.

The biggest advantages of using a keyboard and a mouse for this purpose is that the developed
technique is not intrusive and there is no need of any special hardware.
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Table 2.1: Physiological features of the stress detection literature

Signal Domain Features

ECG

Amplitude µ, SD, power and energy [38]
HR µ [71], min, max [62, 72]

HRV

µ [71], LF/HF [23, 70, 73], HF/All [29], (LF+MF)/HF [45], tone, en-
ergy, complexity [29,74,75], kurtosis, skewness, κ2−4 [38], SDNN, SDANN,
RMSSD, pnn50, SDSD, triangular index (TINN), ULF, VLF, LF, HF [76]
and total power [29, 65, 76]

EEG

Amplitude µ, fractal dimension [77,78], higher order crossings [78], Hjorth parameters.
[77]

Event
Related
Potentials

Mean amplitude [70]

Spectrum Power of the absolute and relative αeeg, βeeg, δeeg, θeeg bands [77].

EDA

SCL
µ [71], SD, min, max, RMS [24, 36, 52, 65, 72], kurtosis, skewness, 1st
derivative [79], difference of the max and min from baseline, positions of
the max and min, zero crossings [6],

SCR

Onsets, peaks, durations, magnitudes, n°of peaks [6], peak height [24, 47],
mean magnitudes, mean durations [45], latency, rising time, recovery time,
sum of magnitudes, sum of durations, amplitude & duration percentiles,
sum of the estimated areas under the responses, the average area under the
rising half of SCRs [79]

BP Systolic Mean and SD [25]
Dyastolic Mean and SD [25]

ST µ [52], min, max, SD [38, 62]

EMG
Amplitude µ, median, SD, min, max [45], range, minRatio, maxRatio, 1st and 2nd

derivatives [27, 59, 80]
Contraction
signal µ, static, median and peak loads, gaps/min, time between gaps [27,59,80]

Spectrum Mean and median frequency [27, 59, 80]

Respiration Amplitude µ, SD, 1st and 2nd differential, median, min, max [27,50], range, maxRatio
[59], rate

Spectrum Power of 0-0.1Hz, 0.1-0.2Hz, 0.2-0.3Hz, 0.3-0.4Hz bands [45]

BVP

Amplitude
[52]
Inter-beat
Interval LF/HF, µ, SD

HR See ECG
HRV See ECG

Eye
dynamics

PD µ [52], SD [65], % dilation, ratio of variation [63]
Eye
position

Gaze distribution, % saccades [63], µ, SD, distance, n°of forwards and
backwards tracking fixations, and time fixed [65]

Blinks Blink rate, eye closure speed [63]

TI

Temperature
of facial
ROIs’
temperature

µ, SD, kurtosis, skewness, IQR, min and max [54, 56, 57, 77]

fMRI Activation
map Activation of ROIs [31]
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Posture

It has been shown that posture is a good indicator of the feelings of the worker towards the tasks they
are carrying out [87]. Thus, individuals’ postural behaviour may also provide important information
about their stress levels.

Anrich et al. [88] measured the posture of office workers using a pressure distribution measuring
system installed in their chairs and affirmed that the amount of fast movement increases during
stress tests compared to control tests. Others [47] have analysed the posture using visual techniques.
Specifically, a Kinect has been used to detect the interest levels of the office workers on the tasks they
were involved in. Using techniques such as depth information and skeletal tracking, the inclination
of the person and consequently an indicator of the workers’ motivation was deduced.

Posture can be analysed in a transparent way for the user, but the use of imaging techniques
might lead to privacy problems.

Facial expressions

Automatic recognition of facial expressions has been the subject of many researches [66,89,90]. They
can be estimated with computer vision techniques [47].

An optical computer recognition technique to detect facial expressions related to stress induced
by workload was tested [89], where eyebrow and mouth movements’ measurement were found to be
very useful. Facial expressions have also been used for emotion recognition [47], even in combination
with head movements [91].

Speech analysis

Many researchers agree with the fact that stress changes human vocal production [92, 93, 94]. It
has been found out that changes in pitch (fundamental frequency) and in the speaking rate are
usual under stress situations, together with variations in features related to the energy and spectral
characteristics of the glottal pulse [93]. Speech analysis has caused interest, principally, because
it can be easily measured in a completely unobtrusive way. Furthermore, results of some research
suggest that Electrodermal Activity (EDA) results can be overcame by speech features [24].

Nevertheless, voice-based stress analysis can be ineffective both in quiet and noisy spaces [95], due
to the lack of speech recordings and to the excessive noise, respectively. Most of the research done in
stress recognition from voice, has been carried out in laboratories [24] or in quiet environments [96].
As an exception, the research carried out by Lu et al. [93], aimed at detecting stress both in indoor
and outdoor acoustic environments, using mobile phones, with quite satisfactory results. Nonetheless,
the use of speech recordings might directly affect users’ privacy.

Smartphone use patterns

Nowadays, a huge amount of information related to users’ behaviour can be extracted from smart-
phones. Call logs, SMS, e-mails, internet browsing, app’s usage, location data and many other
knowledge can be easily obtained without the user even noticing it.

Recently, the usefulness of this unobtrusive information collecting method for stress detection
has been affirmed [7]. For example, Sano et al. [6] discovered a change in the amount and length of
both sent and received SMS, as well as in their screen on/off patterns.

1Figure adapted from ”ergonomics-at-work” by Lab Science Career used under CC BY 4.0

https://www.flickr.com/photos/lscareers/6302671377/in/photolist-aAWQBT-rfiM28-bn8K8c-ap4LcT-ap4LK4-bsKTHK
https://www.flickr.com/photos/lscareers/
http://creativecommons.org/licenses/by/4.0/
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Figure 2.3: Behavioural measurements for stress detection 1

Computer exposure

It is natural to think that computer exposure of workers changes under high stress levels because
high workload is one of the reasons for individuals to be stressed, and this could lead workers to
spend more time in front of the computer. Eijckelhof et al. [5] have studied whether stress levels
affect the overall human-computer interactions within a day, i.e. computer exposure times and
breaks’ frequency and lengths, using a specific software for this purpose. They affirmed that workers
suffering from individually oriented stressors, i.e. overcommitment and high perceived stress levels,
spend more time in front of the computer during the day, while the workday itself is not extended.
In addition, they suggested that these stressors do not affect on their break patterns. Besides, they
concluded that workers with high levels of organizationally oriented stressors, i.e. effort and reward,
tended to have fewer short (30s-5min long) computer breaks and slightly longer breaks (more than
15 min).

Environmental sensors

Cook et al. define smart environments as “one that is able to acquire and apply knowledge about the
environment and its inhabitants in order to improve their experience in that environment” [1]. For
this purpose, smart environments are surroundings that have been enhanced with sensors integrated
in the environment and in specific devices and objects. These environments have been used to detect
people’s behaviour patterns [3, 97].

Suryadevara et al. [98] were the first ones in carrying the emotion detection problem, including
stress, to a Smart House, suggesting that an initial change in regular daily activities can mean changes
in health, and hence, in stress levels too. They created a two part monitoring system, which included
on one hand, physiological information obtained from Heart Rate (HR), Skin Temperature (ST) and
EDA signals in order to determine the emotion of the person. On the other hand, a smart house with
wireless sensors to monitor house appliances’ using patterns in order to detect abnormal behaviours.
Unfortunately, both parts of the system as described in the article were completely independent, and
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a method for integrating their results was not even mentioned.
Smart offices are the scenarios where workers’ stress levels can be best observed. Thus, some

research work have been lately placed in office environments [2, 99, 100, 101]. Nonetheless, most
of the reported conclusions do not result from real office-work settings but from experiments under
artificial conditions where participants were not performing their usual work and/or stress was elicited
with atypical stressors for an office worker.

To overcome this obstacle and get to know stress in the most natural environment possible,
Saskia et al. [71] recently analysed the possibility of detecting stressful situations and estimating
mental states from unobtrusively collected smart office physiological and behavioural data. More
specifically, they built a smart office environment where workers’ ECG, EDA, facial expressions,
posture and body movements and computer use patterns were recorded all together. These data
were collected in an experiment where the participants performed real office-work and were being
stressed with common real office-related stressors such as time pressure and e-mail interruptions.
They succeeded in accepting their hypothesis and built both stress and mental workload prediction
models from the smart office data. They also analysed the importance of building individual stress
detection models instead of generic models, concluding that specialized models for particular groups
of people with similar characteristics might be much more effective on this task. However, as most of
the existing literature does, these authors ignored the temporal nature of stress and only considered
the use of instantaneous values of the physiological and behavioural data to create the prediction
models.

Text Linguistics

People’s writing patterns can vary depending on their stress levels. On one hand, some pressure
can enhance the writing abilities of a person, making writings of better quality, using a more diverse
lexicon, etc. On the other hand, mood can be directly reflected on the text being written, especially,
in free texts. Therefore, analysing text linguistics can be an added value for a stress recognition
system.

Currently, there exist many tools that allow to automatically analyse linguistic features, as,
for example, LIWC [102], Harvard General Inquirer [103], Semantria [104], SentiStrength [105],
Synesketch [106]. These tools can be used both to measure writing performance in users by means
of lexical diversity measures, or to directly analyse the “feelings” of the text, which is their main
purpose. They count the word-type rate (such as the self-reference rate, or article rate), as well as
their polarity, i.e. their positivity or negativity, and strength (the degree in which they are positive
or negative) ( [102, 105]). There is a whole scientific branch dedicated to the Sentiment Analysis of
texts, which could be considered the neighbour of stress detection. We refer the user to the review
of Taboada et al. [107] for further information.

Whereas Sentiment Analysis techniques have been widely used for analysing, for example, de-
pressive moods [108, 109], only a few studies have focused on inferring stress levels from texts: this
is the case of Saleem et al. [110] and Vizer et al. [111]. The former used this technology to analyse
online forum posts and detect user stress levels from them.

The latter analysed timing, keystroke and linguistic features in free texts, in order to distinguish
between physical stress, cognitive stress and no stress situations. An improvement on lexical perfor-
mance under both types of stress was found, reducing the number of mistakes, increasing lexical and
content diversity and decreasing pause lengths.

Table 2.2 shows a summary of the behavioural measurements and features used in the state of
the art.
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Strengths and Weaknesses of Behavioural Responses to Detect Stress

Behavioural measurements for stress detection are much less in number than the physiological ones.
Nonetheless, the rapid advances in technology are allowing to broaden the field. Behaviour can
be monitored unobtrusively and most of the time in a completely transparent way for the user.
Furthermore, for certain measurements such as computer usage patters, no extra equipment is needed,
which makes them more affordable. Nonetheless, sometimes, privacy issues can arise, for instance,
in the case of methods that require the use of vision techniques or mobile phones.

Table 2.2: Behavioural features for stress detection used in the literature

Signal Domain Features

Keyboard use Keystroke

(Average) duration between keystrokes, (average) dwell
times (the time a key is pressed), number of keystrokes,
typing speed, use of particular keys, pause rate, time be-
tween two consecutive keystrokes, duration of digraphs and
trigraphs, n°of events [71, 112, 113]

Pressure [46]

Mouse use

Movement

[x,y] coordinates, total distance, stillness, horizontal, vertical
and total velocity, acceleration, jerk, angular velocity and
average speed against the movement direction [46, 71, 112,
113]

Distance

Covered distances, euclidean distances, difference between
covered and euclidean distances and time elapsed between
the following events: two button presses, a button press and
the following button release, two button releases, a button
release and the following button press [112]

Clicks n°of clicks , menu and toolbar clicks [112]
Wheel use n°of wheel events [46, 112, 113]

Posture
Chair
Pressure µ of several frequency bands [88]
Lean
direction

Gradient front-to-back, gradient side-to-side [47], distance
[71]

Joint
coordinates
& angles

µ and SD of joint angles, µ and SD of bone orientations [71]

Facial
Expressions

Points of
Interest

Mean smile intensity, mean eyebrow activity, mean mouth
activity [47, 66, 89]

Facial
information
and emotions

Head orientation, facial movements, action units, emotion
[71]

Speech

Amplitude Speaking rate, voiced and unvoiced speech [24, 92]
Intensity µ, range and variability [93]

Pitch (f0) µ, min, max, SD, median, jitter, range, 1st derivation [24,
93, 96]

Spectrum Spectral centroid, smoothed energy, energy > 500Hz

MFCC 2 µ, σ2, min, max of the first 12 cepstral, δ and δ-δ coefficients
[24, 92]

2Mel Frequency Cepstral Coefficient
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Signal Domain Features
TEO-CB-
AutoEnv
features 3

f0 and harmonic related parameters. [93]

RASTA-PLP 4 µ, σ2, min, max

Calls
n°of calls, time spent in calls, µ, σ2 and median of call
duration [7], incoming/outgoing calls, µ, SD and median of
unanswered calls and n°of people contacted by call

Smartphone
use SMS

µ, SD and median of time spent writing SMS, µ, SD and
median of the SMS’ length, n°SMS, received/sent SMS,
n°of people contacted by SMS [6]

Screen use µ, SD and median of time spent with screen on and n°of
times the screen went on [6]

Contacts list Changes of the n°of contacts, n°of phone numbers, and n°of
mail addresses

Battery Ratio between time not charging and charging

Computer
exposure

Interaction
Total interaction, (n°of short breaks, n°of medium breaks,
n°of long breaks) / workday [5], use of applications (n°of
app and tab changes) [71]

Log on/off Length of workday

Environmental
sensors

Activity Frequency and time spent in ADLs [114]
Inactivity
times Wellness function [98]

Text
linguistics

Free text [111]

Lexical & content diversity, average word length, average
sentence length, polarity, strength, rates of: nouns, verbs,
function words,conjunctions, cognition operations, emotive
words, modifiers, adjectives, intensity words, positive and
negative affect, sensory information, passive tense, other
references, modal verbs, negations, group references, self-
references, generalizing terms [110]

Summary

� Stress’ symptoms are evidenced psychologically, physiologically and on people’s behaviour.

� Psychological symptoms are assessed by interviews or self-reported tests.

� A wide variety of physiological symptoms exist and their measurement vary depending on their
nature. In general they are obtrusive methods and might be costly, but they are the most
reliable.

� Behavioural symptoms can be measured in a completely unobtrusive and transparent way but
their effectiveness must be further researched. Moreover, care must be taken to always ensure
users’ privacy.

3Teager Energy Operator based non-linear transformation
4Relative Spectral Transform - Perceptual Linear Perception
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2.3 Alzheimer’s Disease (AD) diagnosis

This section aims at responding the following Research Question (RQ)s:

What is AD? What are its symptoms? How can these symptoms be measured in order to detect
AD?

Introduction

AD is a progressive, degenerative disorder that attacks brain’s nerve cells, or neurons, resulting in
loss of memory, thinking and language skills, and in behavioural changes [115]. It mostly affects
people over 65 years old and its incidence rate grows exponentially with age [116]. It is the most
common form of dementia [117] and despite what some people may think, AD is not a normal part
of ageing.

People developing AD undergo three different stages:

I Preclinical AD: Changes in the brain may start happening, but the patient does not show
any symptoms [118]. Therefore, nowadays, this phase can not still be detected. In fact, it is
believed that this stage can start 20 years before any symptom is evidenced.

I Mild Cognitive Impairment (MCI): In this stage, symptoms related to thinking ability may
start to be noticeable for the patients themselves and for the nearest family members, but they
do not affect their daily life [118]. Not all the people diagnosed with MCI develop AD, but
only an estimated %10-%15 of them every year [119, 120] and the reason why some people
develop dementia and others do not, remains still unknown. Two different types of MCI are
distinguished: amnesic MCI and non-amnesic MCI [121]. The former refers to patients who
have impairment in the memory domain, and the latter to patients who have impairment in one
or more non-memory domains of cognition, as, for example, attention or language processing.
It is believed that subjects suffering from amnesic MCI are more likely to develop AD [122].

I Dementia due to AD: Memory, thinking and behavioural symptoms are already evident and
affect the patient’s ability to function in daily life.

People suffering from AD, show symptoms of several types and in different degrees, depending
on the progression level of the dementia. These symptoms can be distinguished into three main
modalities, which are physiology, psychology and behaviour. Figure 2.4 shows the multimodal nature
of AD.

I Psychological symptoms include changes in mood and personality. Depression is the common-
est symptom, but apathy, irritability, agitation, euphoria, disinhibition, delusions and hallucina-
tions are also part of AD symptomatology [123]. These patients can also become suspicious,
confused, fearful or anxious [124].

I The physiological symptoms of AD include accumulations of big amounts of Amyloid plaques
(Aβ) and Neurofibrillary Tangles (aggregates of hyperphosphorylated tau protein) [124], neu-
ronal death [118] with its consequent cortical and hippocampal atrophies [121] and cerebral
hypoperfusion. Reduction of the volume of the hippocampus is probably the most common
pronounced change [125], being a symptom which is already evidenced in the mild stage (re-
ductions of about 15-30%) and which worsens over time [126].
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Figure 2.4: The multimodal nature of AD

I Behavioural symptoms include the cognitive changes and their direct consequences. The clinical
hallmark and earliest manifestation of AD is episodic memory impairment [127]. People in
early AD stages may also have difficulties solving daily problems, for example, with number-
related tasks as managing finances. As the disease progresses, this cognitive symptoms become
much worse, and the patients start having troubles recognizing people nearby, including family
members [124, 128]. Progressive deterioration of cognition leads to incoherent behaviour and
limits the patient’s capacity to perform his tasks of everyday life, who may take much more time
than before performing daily activities, start being much less sociable due to communication
difficulties, or have problems in driving due to deteriorated vision. Gait and balance dysfunction
[123] might also arise.

Currently, AD is detected measuring some of these symptoms. Whereas questionnaires about the
cognitive impairment such as the Mini Mental State Examination (MMSE) have been widely used,
protein levels in Cerebrospinal Fluid (CSF) have been measured for a more objective diagnosis. In the
recent years, neuroimaging modalities are gaining strength and Positron Emission Tomography (PET)
and MRI are already considered essential for a reliable AD diagnosis.

The following section reviews the signals/images and features that are being researched for the
early diagnosis of AD.

2.3.1 Psychological evaluation

As depression is one of the most frequent non-cognitive symptoms in AD, psychological evaluation
is mainly focused on depression measurement.

Tests like the Montgomery and Åsperg Depression Scale, the Geriatric Depression Scale (GDS),
the Cornell Scale for Depression in Dementia and the Nurses Observation Scale for Geriatric Patients
are some possibilities to assess depression levels in AD patients [129].



26 CHAPTER 2. STATE OF THE ART

Strengths and Weaknesses of Psychological Measurements to Detect AD

Psychological questionnaires are not the commonest methods used to evaluate the presence of de-
mentia in the patients. Even if they can reliably measure depression levels, this is just a typical
symptom of AD, but its incidence does not always mean that there is a cognitive impairment prob-
lem. Furthermore, as it happens with other questionnaires and measurements, this are not realistic
for a continuous monitoring of the patients. Therefore, they are not the most suitable method for
the early detection of dementia.

2.3.2 Physiological measurements

The use of measurements and imaging modalities that reflect the physiological state of AD patients
is probably the most reliable method to verify the real state of the disease. While some of these
methods are already accepted for the clinical use, the validity of others is still a research topic. In
this section, the current use and state of the physiological measurements that have been considered
for AD research is introduced (See Figure 2.5).

Cerebrospinal Fluid (CSF)

Reliable and valid biomarkers of AD have been found in biofluids, including CSF [130]. CSF is a
clear fluid that surrounds the brain and spinal cord mainly for protection, and it must be obtained
by lumbar puncture [131]. CSF “is the only body fluid in direct contact with the extracellular space
of the brain and thus biochemical changes due to pathological brain processes are more probable to
be reflected in CSF than in other body fluids” [132].

Decreased Aβ42 values have been found in the CSF of AD patients compared to healthy subjects
[133], as well as increased total tau and some specific tau epitopes (p-tau231, p-tau181 and p-
tau199) [133,134]. Other chemical components like CSF Isoprostanes have been found to be increased
in AD patients even in the preclinical stage [135]. The amount of CSF in the Hippocampus region
is also related to AD [136], probably due to the decreased size of the Hippocampus, which leaves
space for more CSF.

Blood tests

Blood samples can be obtained in a less intrusive and less costly way [131] and more frequently than
CSF samples, and thus, AD biomarkers on blood have also been searched.

Features extracted from blood samples are similar to the ones extracted from CSF, but, so far,
it is no clear if blood samples could help in discriminating AD and healthy patients, neither if they
could serve as a predictor. Blood-based biomarkers of AD have not been still accepted due to the
“failure to replicate findings” [131] and to the ambiguous results obtained in different studies.

Structural Magnetic Resonance Imaging (sMRI)

sMRI is a non-invasive imaging technique for structural analysis. Shortly, it consists of applying strong
magnetic fields to the area that is wanted to image (e.g. the brain) while the different tissues are
distinguished thanks to their particular relaxation responses, i.e. the radiofrequency signal emitted
by the protons of each tissue, [69] when the magnetization stops. This is done with an MRI scanner.

sMRI is currently used for the diagnosis of AD [137]. This technique can help diagnosing AD
in two ways: on one hand, it allows to measure Medial Temporal Lobe (MTL)’s atrophy, which is
closely related to cognition and memory, with very high definition [138,139] and on the other hand, it
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enables changes on tissue characteristics due to vascular damage to be detected [69]. MTL’s atrophy
is earliest evidenced in the Hippocampus and the Entorhinal Cortex [137, 140, 141, 142].

Making use of image processing techniques applied to sMRI, Computer-Aided Diagnosis (CAD)
systems have been developed, achieving satisfactory results distinguishing AD patients from nor-
mal controls [125, 137, 140, 141, 143, 144, 145, 146] and less convincing (yet promising) results in
distinguishing MCI from normal controls [125, 137, 140, 141, 145].

Currently, MRI’s role is quite blurry in the early disease stages [147]. Atrophy of the Hippocampus
can be differenced clearly in AD patients compared to healthy people, but, unfortunately, it may not
be so obvious at the early stages, hindering the use of sMRI for early detection. Furthermore, brain
atrophy is not specific to AD [69]. Despite all this, MRI scanners are highly available nowadays and
the results that are being achieved are encouraging, so further research is worth.

Functional Magnetic Resonance Imaging (fMRI)

The use of fMRI in AD research has contributed to brain activity-related discoveries. AD patients
have reduced activity in the MTL [148], particularly in the Hippocampus [148,149,150,151,152], but
also in the Entorhinal Cortex [148], while an increased activation has been reported in the Prefrontal
Cortex, probably, due to a compensation mechanism [153, 154]. Deactivation in Posteromedial
Cortical areas such as the Posterior Cingulate Cortex and the Medial Parietal Cortex has also been
found to be anomalous in AD patients [155, 156].

Nevertheless, these anomalies are much less evident in MCI patients, which could difficult the
use of fMRI as an early detection component.

Some few examples of automatic analysis of fMRI images in AD detection can be found in the
literature. These include the works of Khazaee et al. [157] and Tripoliti et al. [158, 159].

The biggest advantages of fMRI are probably its noninvasive and no radioactive nature because
as they can be used safely in a repetitive manner [68], they facilitate the longitudinal studies. Fur-
thermore, it offers a relatively high spatial and temporal resolution [121] of the activation map of
the brain.

Magnetic Resonance Spectroscopic Imaging (MRSI)

MRSI, is a non-invasive imaging method that can be performed in a standard MRI scanner. It can
detect biochemistry by using signals from organic molecules, allowing in-vivo detection and measure
of concentration of some low molecular weight metabolites [68,160,161]. Based on the phenomenon
of “chemical shift” [162], MRSI provides a spectra in which each peak represents a metabolite or
group of metabolites. The area under the peak is related to the concentration of the metabolite.
These metabolites include Myo-Inositol (mI), Choline (Cho), N-acetyl Aspartate (NAA), Creatine
(Cr), glutamate and Glutamine (Glu) [163].

MRSI has allowed to find in AD patients metabolite abnormalities like decreased NAA or NAA/Cr
levels [164,165,166,167,168,169,170], elevated mI/Cr ratio [165,168], increased or decreased Cho/Cr
ratio levels depending on the stage of the disease [171] and decreased Glu levels [168, 169, 170] in
the Grey Matter (GM). NAA/mI ratio has been found to be useful for distinguishing between AD
patients and healthy subjects. In fact, some affirm [172,173,174] that this is the most robust marker
of the disease. MRSI could also help in the prediction from MCI to dementia. Some studies have
reported lower NAA/Cr [175,176,177,178,179] and higher Cho/Cr [180] levels in several brain regions
in MCI patients who developed dementia than stable MCI subjects. Nevertheless, some disagree with
these findings [181, 182] so further research is needed to verify MRSI’s predictability from MCI to
AD. Some researches have also affirmed the potential of MRSI to help in distinguishing different
types of dementia from AD, such as Frontotemporal Dementia [183].
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Nevertheless, MRS has some drawbacks. The low signal-to-noise ratio of the images, the long
acquisition times [161], which in turn makes this system sensitive to motion artifacts [160], and their
low spatial resolution are some of them. Consequently, MRS “is little used in the clinical evaluation
of subjects with dementia” [184]. Furthermore, for the best of our knowledge, CAD systems based
on MRSI have not been reported up to date.

Transcranial Doppler (TCD) Ultrasonography

TCD ultrasonography is an imaging technology that has been used to image direction and speed
of Cerebral Blood Flow (CBF) [185]. It is based on the Doppler effect, and it is executed with an
ultrasound probe [186].

An increased carotid intima-media thickness in AD patients compared to healthy subject has been
found [187] by this method, as well as a higher degree of carotid atherosclerosis [188]. The total
CBF [189, 190], the cerebrovascular reserve capacity and the mean flow velocity [185, 191, 192, 193]
are decreased whereas the pulsatility index has shown increased values [185].

Vascular impairment can be detected by several imaging methods like PET or Single Photon
Emission Computed Tomography (SPECT), but ultrasonography is a non-invasive and cheaper al-
ternative. Unfortunately, nowadays, it can just serve to monitor the vascular system’s state for AD
prevention and it is no clear if this technique could really serve as an AD diagnosis method.

Diffusion Tensor Imaging (DTI)

DTI is a MRI technique that can provide information about brain tissue microstructure. It can be
obtained non-invasively using an ordinary MRI scanner. It takes advantage of the Brownian motion
phenomenon suffered by water molecules in human tissues, who affirms microstructure of the human
tissues can be inferred from the water molecules’ diffusion patterns [194]. In other words, DTI
identifies indirectly “the microscopic aspects that provide measures reflecting the patterns in size,
orientation and organization of tissue which are supposed precursors to the final stage of macroscopic
tissue atrophy” [195, 196].

DTI can provide relevant information about a person’s cognitive state, being Mean-Diffusivity
(MD) and Fractional Anisotropy (FA) the most important measures used for it [68]. FA has shown
significant differences in the cingulum, splenium of the Corpus Callosum, uncinate fasciculus, superior
longitudinal fasciculus and frontal lobes between AD patients and healthy controls, and MD in the
Hippocampus, splenium of the Corpus Callosum, parietal lobes and temporal lobes. MD has been
found to increase with cognitive performance decline, especially in the temporal structures while FA
decreases [197]. The Hippocampus area, the Posterior Cingulate Cortex and the Corpus Callosum
have also shown moderate early cognitive dysfunction evidence in DTI images [195, 198], which
could allow early detection of AD. For this purpose, DTI has shown superior effect sizes compared
to volumetric MTL measurements [199].

Machine learning methods have been applied to DTI images in several researches both for auto-
matic MCI and AD diagnosis. O’Dwyer et al. [120] and Dyrba et al. [200] made use of DTI images
whereas Wee et al. [201] combined both DTI and fMRI images.

DTI has shown to be a very potential tool in the early diagnosis of AD, because it can detect
alterations that cannot be detected, for example, by conventional sMRI [202]. It still presents some
drawbacks, because there is still uncertainty about the best choice of diffusion parameters and about
the methods to use to manage crossing fibers [68]. Nevertheless, efforts to overcome these obstacles
are being done, so, DTI could be soon accepted as a clinical diagnosis tool.
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Positron Emission Tomography (PET) Scans

PET imaging is a nuclear imaging technique that provides three-dimensional images of a brain at
the molecular and cellular level [203]. It consists of injecting or making inhale a substance, called
radiotracer, that contains a positron emitter to the patients, detecting the emitted radiation by a
scanner and computing a digital image that represents the distribution of the radiotracer in the
body [204]. This distribution might show anomalies in the brain tissues. Depending on the chosen
radiotracer, different kinds of PET scans can be done. PET Scans are done with PET scanners and
cyclotrons are used for the preparation of the radiotracers.

In AD diagnosis, many different radiotracers have been used for four main purposes: mainly
the 11C-PIB to image the accumulation of the Aβ plaques on the brain, the 18F-fluorodeoxyglucose
to image the glucose consumption of the brain, 11C-PMP, 11C-MP4A, 11C-MP4B, 11C-Nicotine
and others to image the neurotransmitter systems of the brain and finally 11C-(R)-PK11195 to
image the inflammation in the central nervous system which can cause neuronal death [205]. The
glucose consumption imaging is based on the idea that as brain mainly uses glucose for energy
production, glucose metabolism is closely related to neuronal function, both at rest and during
functional activation [206, 207].

CAD systems have been developed to try to automatically diagnose AD and MCI with PET
scans [208] even combining both 18F-fluorodeoxyglucose and PiB PET scans [209]. A group of
investigators of the University of Granada has published several important works proposing automatic
PET based AD diagnosis tools [210, 211, 212], reporting high accuracies.

The advantage of PET is that it has the ability to display very mild symptoms [209]. Unfortu-
nately, while theoretically is not a high risk for the patients, it involves exposure to radiation, and,
therefore, it is a method that should better be avoided. Furthermore, it is an expensive method and
is not highly available, although this fact is changing in recent years [69]. These reasons lead us to
believe that PET imaging is not the best-suited method for massive monitoring of the population.

Single Photon Emission Computed Tomography (SPECT)

SPECT or perfusion SPECT is also a nuclear imaging method that tracks CBF and measures brain
activity [213]. Its principle is very similar to PET, as both consist on introducing short-lived radionu-
clides into an amyloid binding molecule, being different the radionuclides used for the two techniques:
while PET uses emitting positrons, SPECT uses photons [214]. The two most common radiotracers
used for SPECT are 99mTc-hexamethylpropyleneamine Oxime (HMPAO) and 99mTc-ethylcysteine
dimer (ECD) [215].

SPECT has shown to be a valuable aid for the early diagnosis of AD [216], because it allows to
image the hypoperfusion suffered by AD patients. A correlation between the progression of AD and
the loss of cortical CBF in various brain regions [217] has been found with SPECT. A significant
correlation was also found between the total tau and phosphorylated tau concentrations in CSF
and perfusion in the left parietal cortex [218]. Nevertheless, it is not yet clear in which brain areas
this hypoperfusion is most evidenced and thus which one would be the most accurate one for AD
diagnosis. Temporo-parietal region has been considered practical for the early detection of AD [219],
but its sensitivity and specificity is still questioned [216]. Some suggest that Posterior Cingulate
Cortex and precunei regions could be more useful [220] while MTL and Hippocampus regions can
not be analysed due to the depth to which they are located [221].

CAD systems have been developed using SPECT images and machine-learning techniques [210,
212, 219, 222, 223].

SPECT shows lower resolution and higher variability [224] than PET, but its radiotracers are
cheaper and easier to acquire [225], being probably better suited for longitudinal repetitive studies.
Furthermore, SPECT can be carried out by means of a Gamma camera, a device that is already
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available in most of the greater hospitals [226]. SPECT has also shown the potential to aid distin-
guishing between AD and other dementias, namely, Frontotemporal Dementia, Vascular Dementia
and Lewy Body Dementia, as well as between AD patients and healthy controls [215, 226]. Nev-
ertheless, the heterogeneity of the results suggest that it should be combined with other methods.
Weih et al. suggested in their review [226] that SPECT could be better used to rule out AD instead
of for diagnosing it, as it presents a much higher specificity than accuracy both in distinguishing AD
patients from healthy controls and in predicting progression from MCI to AD. The results reported
above encourage SPECT-based AD diagnosis research. Nonetheless, this can be questioned due to
its invasive nature provoked by the use of radiotracers.

Electroencephalogram (EEG)

EEGs are the recordings of the electric field of the scalp caused by the electrical signals exchanged
between neurons [227]. Thus, they reflect the communication activity between nerve cells, which is
of great importance in neurological diseases like AD.

Studies have shown that Electroencephalogram (EEG) may have the potential for an early AD
detection. It has been widely accepted that at least 3 types of changes occur in AD patients’
EEG signals: the power of low frequencies is found to be increased while the power of the high
frequencies is decreased; their complexity, which is the measure of the number of different patterns
in the signal [227], is reduced and synchrony or correlation between EEG signals of the different parts
of the brain is reduced [227, 228].

Despite these findings, only a few examples of CAD techniques which rely only on EEG signals
can be found in the literature [229, 230, 231, 232].

Many researchers [227, 233] support the use of EEG for a longitudinal monitoring of changes in
the brain, due to the cheap and non-invasive nature of this method and because of the ease with
which anybody can take samples without the need of going to a medical facility each time. It is
a “simple, relatively inexpensive and potentially mobile brain imaging technology” [234] but further
research is needed for EEG to be included in a clinical AD diagnosis.

Magnetoencephalogram (MEG)

MEG is a non-invasive medical imaging technology. MEG identifies the brain activity by measuring
the magnetic field created by the electric current flowing within the neurons. Thus, measurements
follow a similar principle to the ones obtained by EEG because both measure the same sources of
brain activity. A MEG scanner is needed for this imaging purpose.

MEG findings related to AD are similar to those of EEG. Increased delta and theta activity [235,
236,237,238] in frontal and central areas [239] and decreased alpha activity in posterior and temporal
regions [239], i.e. slower signals, has been reported in several pieces of research. A generalized loss
of functional interactions (i.e. decreased synchrony) has also been found [235,240,241]. People with
MCI have also been investigated with MEG, verifying that their symptoms are somewhere between
those of AD and controls [236, 242, 243].

Even if MEG has probably been less studied than EEG, its potential for positively contributing
to a computer-aided AD recognition system has been proven. Gómez et al. [244, 245, 246, 247, 248]
have highly contributed to the use of these signals on AD diagnosis, concluding that MEG really has
the potential to discriminate between AD and normal controls. No results were provided for the MCI
case.

MEG can be done without placing uncomfortable electrodes and it is less affected by conductivity
issues related to the skull and scalp [249], they do not require a reference, they are less affected by
volume conduction, and furthermore, they can obtain more sensitive measurements of the cortical
activity than scalp EEG. The disadvantage of MEG is the interference that Earth’s magnetic field or
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the electrical devices can introduce, so measurements must be done in a heavily shielded room with
all the electrical devices around switched off, which complicates its use as part of a global routine
monitoring system.

Eye dynamics

It has been hypothesized that “the pattern of AD-specific neurodegeneration may affect neural
circuitry of the eye movement system in a unique manner that allows the clinical differentiation of
AD from other cognitive disorders” [250]. In order to verify this hypothesis, eye movements of AD
patients have been compared to those of healthy subjects in many studies and effectively, it has been
proven that AD patients suffer from changes in oculomotor and pupillary functions [251]. Specifically,
changes in saccades, smooth pursuit function and in the pupillary response have been found by some
researchers. Saccades are “rapid, conjugate movements of the eyes, which serve to orient the high
acuity foveal region of the retina onto a specific region of visual space” [252]. It is thought that
saccades are of particular interest because they are very related to attention and thus, they are likely
to be disturbed by cognitive impairments associated with neurodegenerative disorders such as AD,
as well as by dysfunctions related purely to oculomotor execution [253]. All these behaviours can
be measured easily and in a non-invasive way in a laboratory, making the patients perform specific
tasks like the reflexive paradigm, the memory-guided paradigm [253], the gap/overlap task or the
antisaccade task [254] while their eyes are being tracked by cameras or infrared systems [255] and
image processing techniques.

Despite the promising AD detection power of eye dynamics, only few works (e.g. [255]) based on
this method are present the literature.

The problem with these measurements is that these anomalies are not always present in AD
patients and furthermore, they are not unique to them [253]. Moreover, it is not clear if MCI
patients also show signs of these anomalies because while some refuse this fact [256], others have
found some evidences [254, 257]. Crutcher et al. [258] have also found that some MCI preferred
the new images the same as the control patients, demonstrating the variability between patients’
patterns. Consequently, further research is needed to verify if they might be used both as AD
biomarkers and as predictors in the early stages.

Strengths and Weaknesses of Physiological Measurements to Detect AD

A wide variety of physiological measurements are being researched for AD and MCI diagnosis, due
mainly to the development of new imaging modalities. A review of the measurements can be found
in Table 2.3.

Despite all the methods rely on different principles, they share most common strength and weak-
nesses. Nearly all the reviewed technologies are obtrusive methods that require the use of specific
devices. Thus, they are mainly expensive methods, and not practical because the patient must move
to the hospital each time a test should be done. Therefore, they are not realistic for a longitudinal
and massive monitoring of the elderly. Nonetheless, they are the most objective methods and where
we can find the most reliable biomarkers because they directly show the state of the brain.
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Table 2.3: Physiological features for AD detection used in the literature

Signal Domain Features

sMRI

Intensity µ and SD [146, 158, 159] of GM intensity
Volume GM voxel locations [146], GM, White Matter (WM) and to-

tal eigenbrains, GM, WM and total Partial Least Squares
-brains [137], GM ICA basis functions [141], hippocam-
pal volume [145], CSF volume [125], relative GM vol-
ume [158, 159], medial temporal lobe’s intensity and vol-
ume change estimation [143], cortical thickness within ROIs
[145], structural thickness, contour area, volume and struc-
tural curvature of ROIs [140]

Manifold-based
learning features

Coordinates [145]

Atrophic voxels Mean intensity, Jacobian of ROIs [145]

DTI
Intensity (mean [120, 201]) FA [200], (mean [120]) MD [200, 201],

(mean [120]) Axial Diffusion, (mean [120]) Radial Diffusion
[201], fiber connectivity network [201]

PET All brain voxels or
voxels of interest

Eigenbrains (PCA) [210, 211, 212], ICA based feat. [211],
Linear Discriminant Analysis projections [210], intensity of
ROIs [208, 209]

fMRI

Head motion Length of the path [158, 159] (see [259])
Activation
patterns N°of activated voxels, max z-score, size of the cluster where

the max z-score belongs to, n°of significant clusters, % of
activated regions that belong to a ROI, total activation of
ROIs [158,159], atlas based ROIs’ clustering coeffs. of func-
tional connectivity networks of several f sub-bands [201]

BOLD response Amplitude, undershoot and transit time, and amplitude of
the regional CBF, of the venous volume, of the vascular
signal and of the deoxyhemoglobin signal [158, 159]

Brain network
graph

Measures of functional segregation (clustering coefficient,
(normalized) local efficiency), of functional integration
(characteristic path length and global efficiency), local nodal
measures (degree, participation coefficient, betweenness
centrality) and network small-worldness. [157]

Eye
dynamics

PD SD/µ during tests and outside them, pupil dilatation [255]
Fixations Median duration, mean re-fixation depth, total duration

[258], total n°of fixations, total time of fixations, novelty
preference [255, 258]

Saccades Orientation [255]

SPECT
Histogram µ, σ2, entropy [222]
Co-ocurrence
matrix Angular second moment, contrast, inverse difference mo-

ment, entropy, ρxy [222]
Voxels of interest Eigenbrains (PCA) [210, 212], normalized MSE

MEG
Temporal signals SampEn, Lempel-Ziv Complexity (LZC) [245, 260], ApEn,

MSFD5 [260], HFD6 [260, 261], Cross-ApEn [244]
Spectrum Shannon Spectral Entropy [260]

5Maragos and Sun’s fractal dimension
6Higuchi’s Fractal Dimension
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Signal Domain Features

Speech

Hesitation and
Puzzlement

Question rate, confusion rate, no answer count, rate of
pauses in utterances, filler sounds [262]

Words Verb, noun, pronoun, adverb, adjective, particle, and con-
junction rates, unintelligible word rate [262]

Complexity Phonemes per word, words per recording, standarized word
entropy, phone entropy [262]

Fluency Length of voice segment, length of pause, short time energy
and spectral centroid, average of the voiced and unvoiced
segments, % voiced/voiceless and spontaneous speech evo-
lution along the time [127, 263], maximum and minimum
voiced and unvoiced segments [127]

Emotional
temperature Average, SD, max and min of pitch and intensity, mean and

SD of the period, and RMS, shimmer, local jitter, NHR7,
HNR8 and ρxx, fraction of locally unvoiced frames, degree
of voice breaks [127]

HFD Max, min, σ2, SD [127]

EEG
δ, θ, α, β and γ
bands’ spectrum

Power densities [229, 264], total spectral power [264], spe-
cific spectral power ratios (see [264]), coherence between
several combinations of pairs of electrodes [231], peak α
band [264], spectral peaks of biauricular references, spectral
peaks of bipolar references [231], median frequency, spectral
entropy [264]

Temporal signals
of ROIs

Connection weights derived from IFAST methodology [230],
Hjorth parameters, SampEn, LZC [264]

First derivative Total spectral power, peak α band frequency, median fre-
quency, spectral entropy, SampEn, LZC [264]

2.3.3 Behavioural responses

Methods to measure the behavioural symtomps that can be evidenced in AD have been searched, in
order to track the cognitive impairment of the patients. Some of these methods rely on tests and
specific tasks that might be tested from time to time, whereas other methods are much more recent
and rely on unobtrusive and ubiquitous technologies. This section presents the behavioural signals
that could be used for AD diagnosis, which are shown in Figure 2.5.

General behaviour assessment tests

Behavioural changes suffered by AD patients might be measured by means of questionnaires or tests.
These tools may help the patient himself and his relatives to take conscience of the real state of
the disease. Tests like the Behavioural Pathology in Alzheimer’s Disease Rating Scale (BEHAVE-
AD) [265], the Brief Psychiatric Rating Scale (BSRS) [266], the Behaviour Rating Scale for Dementia
of the Consortium to Establish a Registry for Alzheimer’s Disease [267], Neuropsychiatric Inventory
(NPI) [268] and the Dementia Behaviour Disturbance Scale [269] are questionnaires used to measure
the behavioural anomalies that the AD patients can undergo [270].

7Noise-to-Harmonics Ratio
8Harmonics-to-Noise Ratio
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Figure 2.5: Physiological and behavioural measurements for AD diagnosis

Nevertheless, as these assessments are based on questionnaires, they are not realistic for a con-
tinuous monitoring and thus, their diagnosis might come too late.

Cognition analysis

There are some specific tests to measure the cognitive abilities of the people at risk of AD. Some
examples are the MMSE [271] which is the most frequently used test for AD diagnosis, the Severe
Cognitive Impairment Scale [272], the Alzheimer’s Disease Assessment Scale - Cognitive (ADAS-
Cog) [273] which focuses on attention, orientation, language, executive functioning and memory
skills, the Neuropsychological Test Battery [274] which includes treatment effects’ measurements, the
Blessed Test which assesses memory, attention, concentration, and the ability to complete Activities
of Daily Living (ADL)s and the Severe Impairment Battery [275] which alternatively focuses on
measuring the unaffected cognitive functions [270].

These type of neuropsychological tests have shown to be effective in the assessment of AD.
Nevertheless, they present some drawbacks. The most important one is that the assessment by
means of these tests is lengthy and complicated [270]. Furthermore, they are not suitable for all the
patients in all the stages of the dementia. Moreover, even if they can measure the state of progress
of the dementia in a certain moment, it can be complicated to early detect AD because they may not
show enough sensitivity or because as in many cases, it may be too late when the test is performed.

Activities of Daily Living (ADL) scales

Tests that aim at measuring the progress of dementia by analysing the abilities of the patients to
perform typical ADLs with normality have been designed. These tests offer additional information to
the one given by cognitive tests, because patients may have problems integrating visual, motor and
cognitive skills, performing poorly in ADLs. Many times, the real state of the dementia can be better
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assessed and the level of support needed can be much better understood seeing them in action and
recording the level of cognitive support required to complete a certain task successfully [276]. ADL
performance can be assessed both by means of questionnaires and by specifically designed tasks.

Some tests are based on the most basic activities (i.e. ADL), like feeding, walking or dressing,
while others measure the abilities for more complex tasks, called instrumental activities (IADL) [270].
Examples of IADL are cooking, tasks which involve the use of money, and so on. Katz Index of
ADL [277] and the ADCS-ADL19 [278] tests are examples of the former group while the ADCS-
ADL23 [278] is suited for the IADL activities.

Among the specific tasks that allow to evaluate the abilities of the patient in vivo, the most
well known is probably the Kitchen Task Assessment [276]. It is a functional measure that aims to
evaluate the processing skills of initiation, organization, inclusion of all steps, sequencing, safety and
judgement, and completion of a cooking task to measure the cognitive aspects of performance by
means of behaviour.

Smart Homes

A smart home is a regular home that has been augmented with various types of sensors and actu-
ators [279], being its main objective to overcome the cognitive disorders of people to enhance their
autonomy [280].

Smart devices and environments allow to capture the actions of the residents while actuators can
serve for automation or for providing comfort, making tasks easier or finishing the tasks that have
not been accomplished by the patients, for example, for security reasons (turn off the oven after a
certain time). Prompts or suggestions can also be made to recall to the patients how to continue
an interrupted task and to provide them punctual assistance when needed [281]. All these actions
should be carried out in a non-intrusive [282] and transparent way, respecting the privacy of the
patients, to make it easier for adults to accept this technology in their daily life. Hence, monitoring
systems such as video cameras are not desirable and the selected system should not interfere at all
with the normal activities of the patients.

Even if specialized institutions where caregivers are available 24 hours a day exist, both seniors
with dementia and their family members normally prefer the patients to be at home as long as possible
[281]. Governments also prefer this option due to economical [283] and social reasons. Because of
these reasons, Smart Homes and Ambient Intelligence (AmI) technology are being increasingly used
in order to give assistance to elderly who suffer from dementia or cognitive impairment, to help
them accomplish their ADL successfully and to reduce workload to the caregivers. For this purpose,
it is necessary to predict these people’s actions, and therefore, to learn their frequent behaviour
patterns [3]. Learning these patterns can also be useful to detect abnormal behaviours [282] and to
ease AD diagnosis.

Smart Home projects aimed at assisted living both for demented and non-demented elderly
currently exist [279] in Europe (Grenoble Health Smart Home [284], Dem@care project [285]) and
beyond (CASAS [286], DOMUS [287], MavHome [288]).

Smart Homes have been considered as a possibility for MCI detection by a few researchers. Some
biomarkers have been found, indicating that this technology could be successfully used in early AD
detection. Suzuki et al. [289] placed infra-red sensors in a smart home for monitoring ADL with an
emphasis on people’s sleep patterns and concluded that MCI patients went out of home with less
frequency and had a shorter sleep time. Wadley et al. [290] measured the performance of healthy
people and MCI patients carrying out ADLs like using the telephone, locating nutrition information
on food labels, dealing with money, grocery shopping or medication managing and have observed that
it took significantly longer for MCI patients to complete the tasks. Hayes et al. [291] also measured
healthy people’s and MCI patients’ behaviour patterns in smart homes, including walking speed and
measures of daily activities. Several markers were found in these case: walking times’ variation of a



36 CHAPTER 2. STATE OF THE ART

week showed to be twice as high in the MCI group compared to the healthy group, the time spent
out of home was less for the MCI group than for the healthy group and the day-to-day pattern of
activity of MCI subjects was more variable than for healthy subjects. Furthermore, MCI subjects
had longer walking activities in the evening while this was not true for healthy subjects. Galambos
et al. [4] discovered associations between overall in-home activity and outing patterns with both
dementia and depression, which is also known to be a common AD symptom. GDS, MMSE and
Short Form Health Survey-12 scales were used to determine subjects’ state. Dawadi et al. found that
the overall cognitive and mobility skills of older adults could be predicted by unobtrusively collected
in-home behavioural data [292]. For that purpose, they introduced an algorithm called Clinical
Assessment using Activity Behaviour (CAAB) and tested its validity for global cognition measured
by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and mobility
measured by the Timed Up and Go (TUG) scores’ prediction using time-series statistics of several
activities of daily living as predictors.

Moreover, previous research has demonstrated that longitudinal monitoring of smart home-based
behavioural data can also be useful to assess older adults’ overall health status. Petersen et al. [293]
found emotional states in terms of mood and loneliness to be correlated to outing patterns, whereas
they also verified the possibility of predicting other overall health predictors such as physical activity
from these data. Loneliness of older adults has also been predicted by analysing behavioural data by
Austin et al. [294].

Gait monitoring

As seen in the precedent section, smart homes can be used, among other things, to monitor walking
activity of the demented elderly. Nevertheless, parameters such as walking speed may not be accurate
enough to predict dementia. Gait monitoring takes into account the manner of walking of the person,
where much more parameters apart from speed can be analysed. It has been recently found out that
cognitive functioning and gait are closely related, so gait should not be longer considered a simple
motor activity that is independent from cognition but as a complex cognitive task [295]. This
hypothesis has been reinforced by dual-task tests [296]. This relationship is achieving more and more
importance, and scientists are recently focusing on gait analysis for early AD diagnosis.

Gait can be monitored using an electronic walkway or force platforms placed on the floor, using
cameras and image processing algorithms or by means of wearable sensors like force sensors, ac-
celerometers, gyroscopes, extensometers, inclinometers, goniometers, active markers or electromyo-
graphy [297].

Changes in gait behaviour have been reported in AD. Decreased velocity and step length, static
and dynamic postural instability, and hesitation in starting and in turning and a widened base have
already be found. Nonetheless, all these symptoms are part of a cautious walking, and they can
also be found in normal ageing elderly. Scherder et al. [298] reported that AD patients differ from
the healthy elderly in that they may show gait apraxia/ataxia, shuffling gait, lymbic discoordination,
bradykinesia and rigidity. Increased support time has also been found [298, 299]. More recently,
stride-to-stride variability has been reported to be an even more specific biomarker [300, 301, 302].

There are not many references in the literature affirming gait disturbances at the early stages
of AD. Some report that these are inexistent and that gait is not useful for AD prediction [303],
while others report interesting results that could be used for AD prediction. Camicioli et al. [304]
affirmed that subjects developing cognitive decline walked more slowly than healthy people, and that
they presented limbic coordination impairment. Scherder et al. [298] affirmed this information and
added that rigidity is already present in the first stages of the dementia. Further research is needed
to verify the predictability of gait disturbances for AD.
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Table 2.4: AD biomarkers of the literature

Signal Biomarkers

CSF
Aβ42 ↓, Aβ40, Aβ42/Aβ40 ↓, total tau ↑, p-tau231 ↑, p-tau181 ↑, p-tau199 ↑,
[p-tau231, p-tau181, p-tau199]/Aβ42 ↑, Isoprostanes ↑, α1- antichymotrypsin,
Interleukin-6, markers of inflammation, amount of CSF in the hippocampus ↑

Blood Aβ42, Aβ40, Aβ42/Aβ40, α1- antichymotrypsin, various markers of inflamma-
tion, Isprostanes and Interleukin-6

sMRI MTL’s atrophy, vascular damage
fMRI Activity in the MTL ↓, prefrontal cortex ↑, capacity of deactivation in posterome-

dial cortex ↓
MRSI NAA ↓, NAA/Cr↓, mI/Cr↑, Cho/Cr↑, Glu ↓, NAA/mI ↓
TCD Carotid intima-media thickness ↑, total CBF ↓, cerebrovascular reserve capacity

↓, mean flow velocity↓, pulsatility index ↑, cerebral microenbolization ↑
DTI MD↑, FA↓
PET Aβ plaques ↑, glucose consumption ↑, anomalies in neurotransmitter systems,

inflammation in the central nervous system ↑
SPECT CBF ↓,CSF ↑, perfusion ↓

MEG/EEG Delta and theta activity ↑, alpha activity ↓, complexity ↓, synchrony↓

Speech Word recall/finding difficulties, repetitions, reading and writing skills ↓, problems
following a conversation, non-verbal communication skills ↓

Eye
dynamics

Prosaccades’ and antisaccades’ latency ↑, velocity ↓ and accuracy ↓, n°of in-
correct saccades ↑, n°of corrections ↓, obliquity↑, frequency↑ and amplitude↑ of
microsaccades and saccadic intrusions, gaze-fixations’ stability ↓, anomalies in
smooth pursuit function, pupillary responses’ latency↑, amplitude↓, velocity↓ and
acceleration↓

Gait
Velocity ↓,step length ↓, support time↑, postural stability ↓, hesitation ↑,
apraxia/ataxia, shuffling gait, lymbic coordination ↓, bradykinesia, rigidity ↑,
stride-to-stride variability↑
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Speech

The speaking and conversational skills of the AD patients deteriorate from the early stages of the
disease [127]. They are likely to lose vocabulary, make big pauses while they are speaking or just
stop abruptly because they are not able to continue the conversation. Thereby, speech recording
aims at detecting these difficulties in speaking from the very beginning of the symptoms to facilitate
an early diagnosis of AD. More specifically, their objective is to detect aphasia, which is the inability
to communicate effectively [305]. Speech can be recorded continuously and in a non-invasive way,
and can be analysed automatically with speech recognition and signal processing techniques.

Language and communication disturbances suffered by AD patients include [306] word recall
and word-finding difficulties [307, 308, 309, 310], repetitions during speech [307, 308, 309, 311], loss
of both reading and writing skills [310], problems to follow a conversation due to deterioration in
concentration and comprehension skills [309, 310] and decline in non-verbal communication skills
[312]. These problems are present from the very early stages of the disease, and progress and worsen
at the same time that the cognitive decline [306, 313].

Due to the ease with which voice recordings can be obtained, in the recent years, speech features
have been used in CAD systems for MCI and AD diagnosis [127, 262, 263, 314, 315, 316, 317].

One of the drawbacks of speech analysis for AD recognition is that aphasias are not unique to
AD, but they can be caused by other factors. Nevertheless, it is true that “AD may be one of the
primary causes responsible for a high proportion of aphasic patients in the human population” [318],
so it can be of great interest to continuously keep an eye on people’s speech features automatically,
to later verify or discard the presence of dementia. Furthermore, speech can be easily and non-
invasively measured, nowadays, almost continuously, which can be a big advantage for continuous
monitoring and early diagnosis systems. It remains to be seen if the accuracy reported above would
be reachable in a general population, but it is clear that speech features can provide important clues
for a diagnosis.

Strengths and Weaknesses of Behavioural Responses to Detect AD

The same way as it happens in stress detection, behavioural measurements for AD detection are
much less in number than the physiological ones. Two kinds of measurements can be distinguished
in this group: the ones that are done by means of questionnaires, or specific tasks’ performance and
the ones that rely on emerging technologies. Whereas the former present the same drawbacks as
psychological questionnaires (not realistic for a continuous assessment, and consequently, diagnosing
too late), the latter provide a basis for creating an unobtrusive and ubiquitous monitoring systems,
without the need of expensive equipment. Nonetheless, ethics and privacy issues can arise as with
all the systems that are continuously gathering data, so the necessary measures must be taken into
account. Despite this, the great advantages that this kind of technologies offer should definitely be
seized, and further research is required so as to arrive to a correct AD diagnosis using such a system.

Summary

� AD’s symptoms are evidenced psychologically, physiologically and on patients’ behaviour.

� Psychological symptoms are assessed by several tests.

� Physiological symptoms’ measurement rely mostly on CSF biomarkers and brain imaging
biomarkers. Whereas the first method is very intrusive and might take a long time, the latter
are very costly and obtrusive.

� Behavioural symptoms have been measured by assessment tests for a long time, but nowadays
ways of measuring them in a completely unobtrusive and transparent way are being developed.

A summary of the reviewed AD markers can be found in the Table 2.4.



2.4. MODELS FOR THE DIAGNOSIS AND PREDICTION 39

2.4 Models for the diagnosis and prediction

This section aims at responding the following RQs:

How are the disorders under study modeled? How are the data of the reviewed measurements
exploited?

Introduction

Other than reviewing information about the kind of signals and features that can be used for detecting
disorders such as stress and AD, it is important to analyse how these signals and features are exploited
and used to create CAD systems that help make a correct decision about the diagnosis.

For this purpose, it is necessary to follow a data analysis process. Data analysis refers to extracting
or “mining” knowledge from large amounts of data [319], producing insights and understanding
about their structure. The term “structure” means statistical patterns, predictive models and hidden
relationships. Data analysis is also known as knowledge mining from data, knowledge extraction,
data/pattern analysis, data archaeology, and data dredging. In other words, the objective of data
analysis is to identify valid novel, potentially useful, and understandable correlations and patterns in
existing data [320].

In the knowledge discovery process, additional steps apart from the data analysis itself should
always be followed [321]. These include data preparation, data selection, data cleaning, and proper
interpretation of the results of the data analysis process, in order to ensure that useful knowledge
enabling to make good final decisions is derived from the data. Figure 2.6 shows this process.

Data acquisition 

• Physiological  

• Behavioural 

• Multimodal 

Signal 
preprocessing 

• Filtering 

• Completing 

• … 

Feature extraction 
+ selection 

• Signal’s 
characteristics 
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• … 
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• K fold 

• … 
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Figure 2.6: The common process of the stress detection and AD diagnosis researches

2.4.1 Data acquisition

The first step of such a system is the data acquisition, which has to be meticulously carried out in
order to ensure its quality.

These data can come from both physiological measurements or behavioural measurements, and
might be used alone or combined to make a multimodal analysis. These signals have been reviewed
in the preceding sections, namely, in the Subsections 2.2.2 and 2.2.3 for stress detection from physi-
ological and behavioural data, and in the Subsections 2.3.2 and 2.3.3 for AD detection. These data
are frequently the result of cross-sectional experiments, where subjects with the selected disorders
and normal controls take part so as to spot the differences between them.
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For data to be of high quality, it must be “accurate, complete, relevant, timely, sufficiently
detailed, appropriately represented, and must retain sufficient contextual information to support
decision making” [322]. Nowadays’ physiological monitoring devices, such as the BIOPAC System
[323] or the FlexComp System [324], allow high quality data acquisition. Nonetheless, some varying
factors can affect and thus, they have to be taken into account.

The incorrect placement of electrodes would derive in meaningless measurements, so in order to
avoid ambiguities, standards for the correct measurement of physiological data have been defined and
are internationally used. It is the case of the International 10-20 EEG System [325] or the standard
12-lead ECG. For sensors that do not have any standards defined, trials must be done to verify the
best placement. It has been verified that different body placement of the sensors result in different
signal patterns and classification accuracies [326]. Sensor placement is also crucial to the quality of
the behavioural signals’ recording in smart environments [327].

Sampling frequency of the data must also be adequate to the signal being collected, in order to
establish a compromise between the amount of data to be treated and the quality obtained from
them. Khusainov et al. [328] affirmed that for ADL monitoring a sampling frequency of 20 Hz is
sufficient, while audio, speech and biomedical signals must be sampled with a higher frequency of
up to 40KHz.

2.4.2 Signal preprocessing

Signal preprocessing step includes dealing with some issues, such as missing values in the data, noise
or artifacts. In case of disease-related datasets, difficulties like inter-subject variability, imbalanced
data distributions or temporal nature of the data are often present and must be taken into account
in order to take full advantage of the information that they contain.

Signals are easily corrupted by instrumentation noise, random noise, electric and magnetic noise,
etc., as well as by poor electrode-skin contact and body movements [328], resulting in noisy and
artefact containing data. Signal processing techniques are needed to remove all these undesired effects
from the signals. Noise can be filtered by means of several filters, like Kalman filters, Butterworth
low-pass filters, Median filers, Wiener filters, Wavelet Decomposition, etc. The selection of the best
filter in each case depends on the nature of the signal, the features to be extracted, and on the type
of noise [328]. Power line interference can be removed by means of a notch filter.

For artefact removal, algorithms like least mean squares algorithm, regression analysis, indepen-
dent component (ICA) and Principal Component Analysis (PCA) can be used, or pressure sensors or
accelerometers can be used in order to detect movement artefacts [329] and reject the corresponding
recordings.

Several normalization methods have been used to deal with inter-subject variability. These are
necessary when the data of several subject is being used to create a general model. These meth-
ods include the use of range-corrected scores, the use of the proportion of maximal response and
transforming the data into standard values using the z-scores [330].

In order to overcome the problems that missing values may pose, these must be replaced by some
other values. Depending on the nature of the data, these missing values can be computed by means
of interpolation, or can be replaced by the average values of the corresponding signal or dataset.

Other data transformations might also be required in some cases to correct the signs of non-
normal distributions.

2.4.3 Feature extraction and selection

Feature selection consists on choosing the best set of features from the data. These subsets contain
only those features that provide complementary information regarding the data classes, such that
adding new features to the classification should not improve the overall result, and removing the
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chosen ones should degrade it [331]. Feature selection helps in improving classification accuracy,
in making the processing faster, in creating simpler classifiers which are more generalizable and in
gaining insight into the models when they are analysed more closely.

In order to select the most relevant features from the initial data set, algorithms such as the
Sequential Forward Selection (SFS) [6,332] and the Sequential Backward Selection (SBS) [79] have
been used. These techniques start from an empty or complete subset of features, adding or removing
them one by one until any further addition or removal does not improve the result significantly. Other
algorithms, such as the Correlation Based Feature Selection (CBFS), rank feature subsets according
to the correlation with the class and with the other variables, so as to select the best uncorrelated
subset of features. This algorithm has been used to select a subset of features in the context of
mental workload monitoring in an office environment [37], as well as in the keystroke dynamics’
feature selection with the purpose of detecting emotional states [85]. Alternative algorithms like the
Random Subset Feature Selection exist, where “features are obtained by repetitively classifying the
data with a k Nearest Neighbors (kNN) classifier while using randomly chosen subsets of all possible
features and adjusting the relevance of each feature according to the classification performance of the
subset that the feature participates in” [331]. This algorithm tests each feature in different contexts
so that the result is less dependent on the order in where features are tested.

Genetic Algorithms choose a subset of features, starting from a random subset and adding and
eliminating features iteratively using genetic operations like crossover and mutation. This technique
works well in selecting the optimal set of features, but it normally takes a long time to find the
minimal subset [65, 333].

An alternative approach to reduce the dimensionality of the data is to use a set of Principal
Component (PC)s instead of directly using the features of the data. This way, PCA has been used
to analyse PCs of ECG and sound signals [334], as well as of PET Scans [209]. Even if this type of
analysis can work well in many cases, its performance depends on the nature of the data [81].

2.4.4 Classification

Data analysis uses both classical statistical procedures (such as logistic regression) and machine
learning techniques which often overlap. Machine learning is the study of computational methods
for improving performance by mechanizing the acquisition of knowledge from experience [335], and
it has a major role in the process of data analysis. Statistical procedures are not less important,
as they are needed to develop and asses models, construct rules and trees, and for validation and
evaluation processes. Correlation analysis and regression analysis, fall under the umbrella of classical
statistic procedures. The reader is referred to [336] for further information on this subject.

Both stress and AD detection are considered in most of the cases as a two-class classification
problem, where stressed and not-stressed subjects and AD-patients and normal controls should be
distinguished. For this purpose, several machine-learning algorithms have been used in the literature.

Decision Trees have been used to recognise stress from speech [24] and from physiological sig-
nals [52], as well as to recognise emotions from Keystroke dynamics [81]. These algorithms are
very transparent and can be visualized graphically [337]. Random Forests (RF) were also used by
Salmeron-Majadas et al. [338] to predict affective states from keyboard and mouse dynamics.

Näıve Bayes algorithms have been used with the same purposes [52, 62, 338]. Both kNN [37, 38]
and Artificial Neural Networks (ANN) [65, 88, 339] are also some of the commonest algorithms
for stress detection. Algorithms based on ANN have also been tested for AD and MCI diagnosis
[229, 230]. Whereas the main characteristic of kNN and Näıve Bayes is their simplicity, ANNs are
powerful tools able to model complex relationships between variables but which lack transparency in
the sense that they do not provide information to the user about the contribution of each feature to
the model.

K-means has been tested for three 2−class stress classification problems from EDA and speech
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data [24], but the achieved results suggest that the algorithm might be too simplistic for the problem
aimed to be solved. Linear Discriminant Analysis (LDA), which is an easy method to use but with a
limited ability to only model linear or quadratic relationships between variables, has also been used
for AD recognition with MEG features [246].

Support Vector Machines (SVM) has been widely used both in stress and emotion recognition
research [37, 50, 65, 78, 340] with satisfactory results in most cases. This algorithm follows a similar
principle to LDA, but enables the use of kernels in order to model non-linear relationships. In the
case of AD diagnosis, it is definitely the dominant method. It has been used with fMRI [158,159] and
DTI imaging alone [200], as well as with combination of both [201]. Nuclear imaging has also been
analysed with SVMs, both PET [209, 210, 211, 212] and SPECT [210]. Prediction from EEGs [231]
and eye dynamics [258] has also been tested with these algorithms, as well as from behavioural
features derived from speech [262].

More sophisticated algorithms have started to be used in this area. For instance, De Santos
Sierra et al. [72] used fuzzy logic to detect stress and no stress situations from EDA and HR signals,
achieving very satisfying results (99.5% correct stress detection rate) and demonstrating the validity
of the algorithm for stress recognition. ANFIS, a neuro-fuzzy algorithm, has also been proposed for
AD recognition with MEG features [244]. These algorithms are notable because they do not require
a training process [337].

Hidden Markov Models are another promising choice for these purposes [32], due to their ability to
model and classify temporal sequences, such as stress and dementia. It has already been successfully
used to detect stress-related facial patterns [89] and to calculate subjects’ instantaneous stress levels
within a scale of 1-7 [42] and of 1-5 [74] based this latter only on ECG related features.

Salmeron-Majadas et al. [338] used AdaBoost classification (i.e. a “strong” classifier built from
a linear combination of “weak” classifiers) for emotion recognition from Keyboard and mouse inter-
action patterns, being the one that achieved the best results together with a Decision Tree.

Gaussian Mixture Models have been used by Kurniawan et al. [24] and Lu et al. [93] for stress
detection purposes. Nevertheless, this algorithm may fail when the dimensionality of the data is big,
and furthermore, it requires a prior knowledge about the existing number of mixture models in the
data.

2.4.5 Cross-validation

Cross-validation is a model validation technique that aims at estimating the prediction accuracy
of the input models. It consists of training the classifier’s model with part of the data and their
corresponding labels and evaluating the model in the remaining data, and comparing its estimated
response to the real labels’ values [341]. This process is repeated several times changing the training
and testing datasets to be used, and the average performance of the classifier is computed. The
commonest cross-validation methods in the State of the Art are on one hand, the “leave-one-out”
[245, 342, 343], which consists on using each time a single data observation to test and training
with n-1 observations, repeated n times. On the other hand, K-fold cross-validation can be found,
normally with K=10 [7,62,77], which consists of separating the data into K subsets, and using one of
the subsets for testing while the rest are used for training purposes. The process is repeated K times,
once for each fold. The former is useful for small datasets and it provides unbiased error estimates
but with high variance, whereas K-fold cross-validation with a small K offers much less variance in
the error estimates, but the bias of the estimator will be large [344].
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Summary

� The common process of the state of the art consists of: data acquisition in cross-sectional
studies, preprocessing, feature extraction and selection (dimensionality reduction), classification
and cross-validation.

� Care must be taken in order to ensure high quality data in the data collection process, and
specific signal processing techniques should be applied to overcome common health-related
datasets’ problems such as noisy, incomplete, imbalanced, subject-dependent or temporal data.

� The most repeated algorithms for dimensionality reduction include both feature selection meth-
ods like the SFS, SBS or CBFS and alternative dimensionality reduction methods such as PCA.

� The final modeling and classification is done by a wide range of algorithms, starting form the
very simple ones such as the Näıve Bayes, to the more complex ones like Fuzzy algorithms or
Hidden Markov Models.

� Two cross-validation methods are the commonest: leave-one-out and 10-fold, which should be
chosen by a compromise between bias and variance.
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2.5 Early detection of disorders: The screening methodology

Current strategy for the early diagnosis of disorders, also called secondary prevention, is based on
population screening [345]. Together with opportunistic detection or case finding strategy of primary
care, in which a series of tests are performed according to age, sex and possible risk factors present
in the person consulting for any reason, forms the passive methodology group for the detection of
diseases. It is the only non-specific methodology for the early detection of disorders contemplated
to date and it is still actively used [14]. Its purpose is the detection and treatment of the disease in
very early stages by detecting potential disease indicators, in a large number of asymptomatic, but
potentially at risk individuals [346].

Many diseases have a slow clinical evolution during which, although the disease already exists, it
does not produce any manifestation (symptoms) that makes the person suffering from it suspect its
presence. This phase of the disease is said to be asymptomatic. However, it is sometimes possible
to apply certain diagnostic techniques to demonstrate the presence of the disease. Some diseases
are congenital, that is, people are born with them, although they may take several years to manifest,
even when the patient is already adult (e.g. some heart disease). Other diseases are acquired, they
arise after birth, but are slow to debut (e.g. cancer) although they evolve over months or years.
Some diagnostic procedures (e.g. mammography in the case of breast cancer) can identify these
lesions when the carrier is not yet aware of them.

The activities linked to the screening method will depend on the nature of the disease. They can
be activities of diagnostic anticipation or early detection when an effective treatment for the disease
exists, while they will be of postposition when attempting to delay the course of the injury because
there is no possible cure in the stage where the disease is detected [347].

2.5.1 Benefits and drawbacks

The use of screening methodology for the early detection of disorders brings certain benefits [345].
These include the following:

I It can reduce mortality from certain diseases that can be detected in the early stages.

I The chances of success in treatment increase.

I The complications and sequels of the disease decrease.

I It can let us know the incidence of some diseases that were previously unknown, such as in
congenital diseases. When pre-testing all newborns, you can know the actual number of these
diseases.

I The complications and sequels of the treatment decrease.

I In many cases complete restoration of health is achieved.

I Healthcare costs are reduced.

Nonetheless, the use of screening method also implies some inconveniences, such as the following:

I Technical limitations: Sometimes early detection techniques are not completely accurate.
Sometimes the result is positive but then it is checked that there is no disease (false pos-
itive). In the case of a positive result, additional tests must be carried out. In contrast,
sometimes a false negative occurs and a sick patient is not diagnosed. Both the sensitivity
and the specificity of all the diagnostic tests accepted in the clinic are very high and this
inconvenience is well outweighed by the benefits achieved.
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I In the specific case of cancer, tumors that may never have evolved may be diagnosed, e.g. many
cases of prostate cancer. In order to reduce over-treatment as much as possible, other more
exhaustive studies are currently being considered so as to assess whether or not this diagnosed
cancer may evolve, and especially if an intervention is justified when all tests indicate that the
cancer has no tendency to worsen.

I Side effects and complications due to treatments (they are rare) may arise.

I It can increase psychological and emotional burden during the period of time that lasts the
emission of a diagnosis or while a false positive result is not discarded by a diagnostic test.

I False negatives (they are minimized) might give a false sense of security and even delay a real
diagnostic.

I It involves an “unnecessary” cost for people who will never be diagnosed.

2.5.2 Indications

In order to justify the use of this methodology, and to make sure that its use may actually benefit
the disadvantages it may entail, the disease to be detected has to meet certain requirements.

Wilson and Jungner of the World Health Organization (WHO) published back in 1968 a guide
about the principles and practice guidelines of the screening method for the early detection of diseases
[14], also known as the Wilson’s criteria. In these guidelines, they specified the requirements to fulfill
for a screening process to be justifiable and launched. These principles are still applicable today, but
usually, an updated principle list presented by Frame and Carslon in 1975 [348] is used. Both criteria
are summarized in Table 2.5 [349]:

Recently, Andermann et al. [350] reviewed the modifications presented since the introduction of
Wilson’s criteria, and proposed an additional list of principles, more in line with current reality, to be
considered. These additional terms are listed in Table 2.6.

2.5.3 Test methods

Screening test methods should not be confused with diagnostic methods [346]. The main purpose
of screening tests is to detect early disease or risk factors for disease in large numbers of apparently
healthy individuals, while the purpose of a diagnostic test is to establish the presence (or absence) of
disease as a basis for treatment decisions in symptomatic or screen positive individuals (confirmatory
test). Therefore, a positive result in a screening test indicates suspicion of disease, not a confirmed
case. A diagnostic test is required for a confirmed diagnosis.

The test methods used for screening depend on each specific disease. Screening instruments can
vary from technological procedures (e.g. radiography or laboratory tests), simple clinical examinations
(e.g. blood pressure) to a set of standardised questions (e.g. depression screening in primary care).

Nonetheless, all screening tests must have certain characteristics. First, they must always be
simple and acceptable to patients and staff. They must also be cheap since large numbers of people
will need to be screened to identify a small number of potential cases. The tests must ensure
sensitivity (true positives) in order not to miss any potential disease case, hence, the positive result
is not a confirmed case. In contrast to screening test-methods, diagnostic tests have high specificity
(true negative rate) and might be invasive or expensive, but yet justifiable as they are necessary for
a confirmed diagnosis.

Screening has been used for the early detection of a wide variety of disorders, like, cervical [351],
breast [352] or colorectal cancer [353], tuberculosis [354], depression [355], social anxiety disorder,
dental caries [356], diabetic retinopathy [357], or abdominal aortic aneurysm [356]. Test-methods
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Table 2.5: Wilson’s criteria and Frame and Carlon’s criteria for screening

Wilson and Jungner [14] Frame and Carslon [348]

1.- The condition should be an important health
problem.

1.- The disease represents a significant health
problem with a marked effect on the quality and
duration of life.

2.- There should be a treatment for the condi-
tion.

2.- There should be a treatment for the condi-
tion.

3.- Facilities for diagnosis and treatment should
be available. -

4.- There should be a latent stage of the dis-
ease.

3.- There must be a latent or early recognizable
period in which detection and treatment reduce
morbidity and / or morbidity.

5.- There should be a test or examination for
the condition.

5.- A diagnostic test should be available at a
reasonable cost.

6.- The test should be acceptable to the popu-
lation. -

7.- The natural history of the disease should be
adequately understood.

3.- There must be a latent or early recognizable
period in which detection and treatment reduce
morbidity and / or morbidity.

8.- There should be an agreed policy on whom
to treat. -

9.- The total cost of finding a case should be
economically balanced in relation to medical ex-
penditure as a whole.

4.- The cost of early detection and treatment
should be lower than the late equivalent.

10.- Case-finding should be a continuous pro-
cess, not just a “once and for all” project. -

Table 2.6: Additional list of principles summarizing the guidelines of the last 40 years

Andermann et al. [350]
1.- The screening program should respond to a recognized need.
2.- The objectives of screening should be defined at the outset.
3.- There should be a defined target population.
4.- There should be scientific evidence of screening program effectiveness.
5.- The program should integrate education, testing, clinical services and program management.
6.- There should be quality assurance, with mechanisms to minimize potential risks of screening.
7.- The program should ensure informed choice, confidentiality and respect for autonomy.
8.- The program should promote equity and access to screening for the entire target population.
9.- Program evaluation should be planned from the outset.
10.- The overall benefits of screening should outweigh the harm.
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used for these screenings include liquid-based cytology, mammographies, colonoscopies, PPD (i.e.
purified protein derivative) tests or inventories such as the Beck Depression or Social Phobia Inventory.

Nonetheless, all these screening test methods share some drawback. First, they are all obtrusive,
even some are highly invasive. Second, not all of them are inexpensive as they should be. Moreover,
they also require the patient to move to a medical center to get tested, limiting the performance of
the tests to a certain periodicity.

Summary

� Current early detection of disorders is based on screening.

� So that the benefits gained outweigh the drawbacks of the screening method, the disease to
detect must fulfill a certain criteria.

� Screening test-methods are not diagnostic methods: the former are simpler and cheaper than
the latter, but only a diagnostic test can confirm the presence or absence of a disease.

� Most of the current screening tests are obtrusive, invasive, too costly and they require the
patient to move to a medical center.
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2.6 Open Research Areas

This section aims at highlighting the research gaps and open research areas on the early disorders’
detection based on the literature reviewed in Sections 2.2, 2.3, 2.4 and 2.5.

2.6.1 Diagnosis of the disorders

Nowadays stress is diagnosed psychologically by means of self-report questionnaires or by being
interviewed by a psychologist. The former is one of the most widely used ways to measure stress
levels in humans and it is considered a reliable method. A more objective alternative to the use of
questionnaires is the measurement of the salivary cortisol levels.

As in the case of stress detection, nowadays, AD diagnosis relies on cognitive assessment by
means of tests such as the MMSE, on the use of CSF-based biomarkers and in the last years, on
the use of some medical imaging modalities, namely, PET, computed tomography and sMRI for
brain imaging. All these methods are considered as reliable biomarkers. However, they present some
drawbacks that make impossible their use for early stress detection.

On one hand, they only offer information about the current health condition of the patient and
not about the evolution of the disorder (nor about the stressors in the case of stress). Data can be
sampled from time to time, but may not be suitable for detecting the subtle changes which could
indicate an early stage of a major problem [111] neither realistic to carry out a continuous monitoring
of the disease progress [29]. Actually, they are only measured when the affected themselves or the
people around them realize or suspect about the severity of the situation, and this is too late in the vast
majority of the cases. Consequently, the appreciation of both being over-stressed or suffering from
cognitive impairment often comes too late, when health problems already manifest themselves [48].

On the other hand, psychological or cognitive assessment questionnaires can be too subjective
and may lack sensitivity [358] whereas they require the full attention of the user. Regarding both
cortisol and CSF measurements, they are intrusive, costly and slow methods of analysis [46]. Fur-
thermore, all of these current tests, are “usually administered in a physician’s office or a rehabilitation
facility, causing inconvenience for the patient, using valuable healthcare resources, making frequent
monitoring unrealistic” [111] and therefore, precluding an early diagnosis.

An early detection of these disorders would bring many benefits. First, if the disorder is detected
at an early stage, symptoms might be in some cases reversible, and in other cases, at least, treatable.
There are enough evidences that show that treatments are much more effective when they are
applied in the early stages. In the case of stress, for example, the treatment might consist on putting
aside work for a while or simply, reducing workloads, and avoiding this way, the long-term health
consequences that may provoke. Moreover, enterprises would save much money. It should be noted
that stress is the second most frequent work-related health problem in Europe [359] and that annual
work-related stress costs of 20 billion euro have been reported by the enterprises of EU159 [360].

In the case of AD, the efficacy of medical treatments can highly increase, stopping or slowing
down the cognitive decline. Furthermore, diagnosis can be more accurate in its early stages, when
the patient is still able to answer to questions and to recall the order in where symptoms appeared.
Patients’ quality of life can also greatly improve, allowing them to make choices about their future
(legal and financial decisions, how they want to be cared,...). It is estimated that AD will double its
frequency in the next 20 years [233] and that 115.4 million people will suffer from it in 2050 [361],
due to the increasing life expectancy. Moreover, while deaths attributed to other health problems
such as heart disease have decreased in the last years, deaths attributed to AD between 2000 and

9EU-15 area countries are: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxem-
bourg, Netherlands, Portugal, Spain, Sweden and United Kingdom.
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2010 have increased in 68 % [118]. This will bring serious consequences both in terms of medical
services’ cost and the increasing need for caregivers.

All these facts show the great importance of the early detection of these disorders.
As a conclusion, it is necessary to develop an ubiquitous monitoring system for these diseases

so that even the possible decisive subtle changes can be detected. Such a system should work in a
completely unobtrusive and transparent manner, i.e. embedded in every day’s environment, in order
to be practical the massive real use.

2.6.2 Multimodal analysis

Most of the recent research on both stress detection and AD diagnosis has been mainly focused on
the search for biomarkers in physiological signals. A field much less present in the literature is that
of behavioural markers. Furthermore, historically, behaviour assessment has been done by means of
tests and scales whereas automatic behaviour assessment is a much more recent research subject.

This latest development has allowed to incorporate behavioural features in systems that were
once created using only physiological features, leading to multimodal analyses. Examples include
the works of Okada et al. [29] and Kocielnik et al. [48], who have made use of accelerometer data
in combination of physiological signals for stress detection, or Kaklauskas et al. [25] who combined
computer usage data with physiological signals. Nonetheless, these studies use both physiological and
behavioural features as input for a supervised learning algorithm for the sole purpose of improving the
detection accuracy, whereas the underlying relationships between the variables remain unanalysed.

Correlational studies of the literature between physiological and behavioural or psychological
symptoms affirm that there exist relationships between symptoms of the different domains. Examples
include the work of Tagai et al. [362], who used MRI and SPECT imaging modalities to relate anxiety
of AD patients to the brain biomarkers or Poulin et al. [363] who also studied anxiety in relation
to MRI markers. Delusions, apathy and agitation were also compared to markers on MRI images
by others [364], as well as disinhibition and eating disorders with fluorodeoxyglucose-PET. In all of
these cases, psychological and behavioural symptoms were assessed by means of tests such as the
BEHAVE-AD or the Neuropsychiatric Inventory.

These type of studies have highly contributed in understanding the nature of these disorders.
Nonetheless, as the emergence of ubiquitous computing and smart environments is very recent, there
are not yet studies in where these both types of symptoms are related using automatic behaviour
assessment methods. Therefore, such a study would be desired, not only to increase knowledge
about the disorders and their effects, but also to progress towards an ubiquitous system for the early
detection of these affections.

2.6.3 Temporal nature of the disorders

Current work related to both AD diagnosis and stress detection using physiological signals, are mostly
cross-sectional studies. The problem is posed as a classic supervised classification problem, where
samples of people belonging to different groups (stressed and no stressed for the first case, and
control, MCI and AD groups for the second case) are taken at a given time, and after applying signal
processing algorithms and feature extraction techniques, part of the data is used for training purposes
for the selected classifier whereas the remaining data is used for the final classification and validation
purposes. This way, the validity of the signals or image modalities, the signal processing techniques,
the selected features and the chosen classifiers and other parameters used in the classification model
are evaluated. This process has allowed for a long time to increase our understanding and knowledge
levels about the physiological process behind these disorders, as well as to move towards an earlier
and more accurate detection.
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Both stress and AD are disorders that progress over time, so that their state in a certain point
in time is not independent from the state in a previous point in time. Nonetheless, the vast majority
of the research do not take their temporal/sequential nature into account and only a few exceptions
that have used Hidden Markov Models have been found in the literature. Furthermore, latencies
from triggers to the occurrence of symptoms are never taken into account: The correlation between
multivariate signals is only analysed taking into account their values in paired moments, and not
analysing how they evolve over time. Longitudinal studies allow to see these changes over the course
of time, both to analyse how the situation under investigation affects an individual or to see the
group differences that can be found over time, as well as to clarify the sequences in variables and
deduce correlations and causalities.

Therefore, it is necessary to focus more on methods that exploit the behaviour of symptoms
longitudinally, treating them as temporal or sequential signals and applying the correspondent analysis
techniques, which could help discover heretofore unknown patterns.

2.6.4 A multidomain methodology

A final remarkable gap in the State of the Art is the lack of multidomain methodologies for the early
detection of disorders based on AmI technologies. All the aforementioned studies focus on a specific
disease and in the search of biomarkers and interesting patterns for their diagnosis. Nontheless, it
has never been contemplated the possibility of taking advantage of the many analogies that can be
found in several diseases so as to draw global conclusions. Stress and AD are only two examples of a
collection of disorders that provoke behavioural changes, as are also Parkinson, depression, Attention
Deficit Hyperactivity Disorder and many others. All of them could benefit from an ubiquitous
monitoring system that learns behaviours of the patients and detects interesting shifts in their usual
behaviour patterns. Nonetheless, traditional screening method ignores the fact that most of these
disorders provoke behavioural shifts. We believe that a test-method based on the detection of
unobtrusively detected physiological and behavioural shifts can provide many benefits to the current
screening methodology. Hence, it would be desired to determine a multimodal methodology that
defines the steps to be followed for the physiological and behavioural data collection and analysis,
as well as for the correct interpretation of the discovered correlations and patterns. Among other
things, the proposed approach can provide a cheap, ubiquitous and transparent method for screening,
which can be continuously supervising, without requiring the patients to get out from their usual
environment.
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This chapter exposes the analysis performed for the first case study: stress detection in smart
office environments. First, in Section 3.1, it presents an introduction to the scenario. Then, in
Section 3.2, a dataset composed by some of the unobtrusively collected measurements reviewed in
the State of the Art (see Section 2.2) is presented and a proposal for the data processing and stress
detection model building is done. Finally, in Section 3.3, the methodology of proposal is evaluated
for the scenario under consideration and the resulting conclusions are exposed in Section 3.4.

3.1 Introduction

The pace of modern-day life, the competitiveness in the workplace, poor working conditions and
the immense number of tasks with inaccessible deadlines that are assigned to workers are causing
work-related stress to become increasingly frequent in our work environment.

The International Labour Organization defines stress as the harmful physical and emotional
response caused by insufficient perceived resources and abilities of individuals to cope with the
perceived demands, and is determined by work organization, work design and labour relations [365].
It is the second most frequent work-related health problem in Europe [359], presenting in 2005 a
prevalence of 22% among working Europeans. In a recent opinion poll [366], 51% of the workers
confessed that stress is common in their workplace and the 6th European Working Conditions Survey
[367] exposed that 36% of European workers deal “(almost) all of the time” with high pressure to
meet tight deadlines.

If timely action is not taken, occupational stress can provoke serious physical and mental problems
on the worker [26], but also important economic losses in the companies. Musculoskeletal disorders,
depression, anxiety, increased probability of infections [27], chronic fatigue syndrome, digestive prob-
lems, diabetes, osteoporosis, stomach ulcers and coronary heart disease [28, 42, 360] are only a few
examples of occupational stress’ long-term health consequences. Occupational stress can also result
in increased absenteeism and presenteeism, reduced motivation, satisfaction and commitment, along
with a greater rate of staff turnover and intention to quit, costing high amounts of money to the
enterprises [368]. An estimate of e617 billion a year is what work-related depression costs to Euro-
pean enterprises, including costs of absenteeism and presenteeism (e272 billion), loss of productivity
(e242 billion), healthcare costs (e63 billion) and social welfare costs in the form of disability benefit
payments (e39 billion) [359]. An estimate of 50-60% of all lost working days in European enterprises
are due to work-related stress and psychosocial risks [359].

In this context, methods to detect occupational stress in time so as to take the required measures
and to avoid its negative health-related and economic consequences are necessary. Often, stress
levels are evaluated by means of self-reported questionnaires, which are performed from time to
time, and therefore, are not adequate to detect subtle changes that might end up in a more serious
problem [369]. Usually, the diagnosis comes too late with these methods, when damage has been
done. Moreover, self-reported questionnaires are subjective and rely on subjects’ recall abilities and
awareness of the situations, which is not guaranteed [47], leading sometimes to incorrect stress level
measurements.

In recent years, technology to unobtrusively and ubiquitously monitor users’ behaviour is being
developed as Smart Environments [370]. Future work environments are supposed to be intelligent,
adaptive, intuitive and interactive [371]. In this sense, a smart office has been defined as an environ-
ment that is able to adapt itself to the user’s needs, release the users from routine tasks they should
perform, change the environment to suit their preferences and access services available at each mo-
ment by customized interfaces [372]. In addition, we also see an opportunity based on its potential
to avoid health-related problems for workers and improve their quality of life. As a great percentage
of workers develop their tasks in an office environment, smart offices represent a useful infrastructure
to continuously monitor workers’ behaviour in a completely transparent way, gathering real work-life
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data throughout the working day and therefore, to overcome the main disadvantages of the usual
assessment methods. The collected data can provide a complete view of workers’ behaviour in a
real-world work environment, the efficiency and ecological validity of the resulting stress assessments
and reducing stress detection delays.

Our goal in this chapter is to build and validate stress and mental workload prediction models
based on unobtrusively collected physiological and behavioural data in a smart office environment.
As all other disorders, stress progresses over time. Usually, in stress detection research, the temporal
nature of the disorder is not taken into account, and only a snapshot of the symptoms is considered
for prediction. In contrast, in this work we hypothesize that changes over time of these symptoms
can predict the mental states of the subjects and the conditions they are undergoing.

To support this hypothesis, we propose the use of the Clinical Assessment using Activity Behaviour
(CAAB) approach adapted to smart office environments to create stress prediction models [114]. This
algorithm consists of the application of a sliding window to extract five different time-series statistics
from physiological and behavioural data, describing the change and variability of these patterns.
This allows the construction of models to predict self-assessed stress and workload levels from the
change features instead of using the usual instantaneous feature values. Although it is out of the
scope of this work, the computation of these behavioural and physiological change parameters not
only provides a method to take the temporal nature of stress into account, but it is also a way
to standardize data coming from different subjects, facilitating generalization of the models over a
population group.

As a second goal of this work, we also determine the possibility of automatically detecting a
workload condition change using these changes in physiological and behavioural data.

The CAAB algorithm has been validated in other scenarios and has been shown to be useful for
cognitive state and everyday functioning assessment [114]. The validation of the approach for early
stress detection would result in a system that could alert both workers and managers enabling to
take timely action. Moreover, this would define the path to follow towards the final development and
implementation of a global early detection system for disorders that provoke behavioural changes,
among which stress is just an example.

Therefore, the Research Question (RQ)s we aim to address in this chapter are:

� Can we predict users’ perceived stress and mental workload level from changes in their unob-
trusively collected behavioural and physiological data?

� Which physiological or behavioural changes are the most informant about stress and mental
workload levels?

� Can physiological and behavioural variability as monitored by ambient sensors be used to detect
the conditions under which a participant is working, both from a predefined set of conditions
and from reliably differently perceived conditions?

� Can these data be used to detect a change in workload settings? Can they also detect the
direction of these changes? And a reliably perceived workload change?

The main contributions of this chapter are: 1) Use of the CAAB algorithm to evaluate the
possibility of measuring self-assessed and standardized stress and mental workload from changes
in unobtrusively collected real-life smart office data. 2) Analysis of the predictability of a wide
variety of stress and mental workload assessment scores. 3) A feature selection-based analysis of the
contribution of each type of behavioural and physiological change to the prediction of each of the
self-assessment test scores. 4) Analysis of the predictability of an objective and reliable workload
condition, change in these conditions and their directionality from unobtrusively collected data. 5)
Testing of specific algorithms (i.e. SMOTEBoost [373] and RUSBoost [374]) to boost models’
sensitivity for mental workload detection.
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The remaining part of the chapter proceeds as follows. First, Section 3.2 explains the methods
used for the data collection, preprocessing and model building process. Next, in Section 3.3, predic-
tion models’ results are presented. Finally, in Section 3.4, results are discussed and the conclusions
are presented.

3.2 Proposed approach

3.2.1 Data collection in the Smart Office environment

The SWELL Knowledge Work Dataset for Stress and User Modeling Research (SWELL-KW) [375]1
collected in the ‘Smart Reasoning for Well-being at Home and at Work’ (SWELL) project was used
for the current study. We decided to use this dataset for two reasons. First, it reflects real office
workers’ state performing their natural office work under real-life stressors, instead of being collected
in an experiment where they are asked to perform artificial tasks or being submitted to non-common
stressors. Second, the data gathered in the experiment can be easily collected with unobtrusive and
easily accessible sensors that could be deployed in real office environments. Thus, this could facilitate
the exploitation of the results obtained from this analysis.

SWELL-KW consists of multimodal data of 25 people who were submitted to a real work-setting
experiment in a smart office environment. The participants were asked to perform common office
work while they were being subjected to different workloads and different stress levels elicited by
means of e-mail interruptions and time pressure. In addition to an initial relaxed state (R), three
different conditions were simulated: a neutral condition where the subjects were asked to perform
some ‘normal work’ without any stressors (N), a condition where they were forced to work under
time pressure (T ), and a third condition with e-mail interruptions as stressors (I). In the meanwhile,
their physiological signals, computer use patterns, facial expressions and body posture were recorded
by means of computer logging, video recordings, a Kinect 3D sensor and specific minimally-intrusive
body sensors. Participants’ perceived levels of stress and mental workload were assessed once per
condition by a variety of self-reported questionnaires: Self Assessment Manikin (SAM) [377], Rating
Scale Mental Effort (RSME) [378], NASA Task Load Index (NasaTLX) [379] and a stress level
assessment by means of a visual analog scale. Table 3.1 summarizes the data collected in SWELL-
KW.

3.2.2 Preprocessing

Minute-level feature extraction

Physiological and behavioural data of the 25 participants were collected continuously during the
experiments, resulting in a raw data collection of 138 min (3 x 6 min R + 45 min N + 45 min I +
30 min T ) for each one of the participants in the form of a computer log file, a FaceReader [380] log
file, a Kinect SDK [381] joint coordinates file and a log registering the angles of the upper body and
physiological data from Mobi [382]. Along with this raw dataset, SWELL-KW provided aggregated
minute-length features as specified in Table 3.1 and whose extraction is explained in detail in the
literature [375]. In this study, we made use of these minute-level features, but other time-window
lengths for data aggregation could also be considered.

1Available online at [376].
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Table 3.1: Raw-level and minute-level data available in the SWELL-KW dataset.

Modality Source Minute-length aggregated features

Physiology Body sensors
(3 features)

Heart Rate (HR), Heart Rate Variability (HRV),
Skin Conductance Level (SCL)

Behaviour

Personal Computer
(16 features)

Mouse use patterns (all mouse events, left clicks,
right clicks, double clicks, wheel scrolling, drag
events, distance), keyboard use patterns (all
key events, n°of letter types, n°of special keys,
n°direction keys, n°error keys, n°shortcut keys,
n°of spaces typed) and applications (n°of app.
changes, n°of tabfocus changes)

Facial expressions
(8 features)

The degree of detection of the following emo-
tions: neutrality, happiness, sadness, anger, sur-
prise, scare, disgust and valence

Head and facial movements
(32 features)

Head orientation (3), mouth opening, eye open-
ing(2), eyebrow raising (4), gaze direction (3) and
amount of activation of several facial points (20)

Body posture and movements
(94 features)

Proximity to the computer, forward inclination,
shoulders’ state (2), relative skeletal angles’ av-
erage values describing the participants’ posture
(43) and standard deviations describing move-
ments (47)

Subjective/
Psychological

Self-reported tests
(12 features)

SAM scores (Valence, arousal, dominance), stress,
RSME score (mental effort), NasaTLX scores
(mental demand, physical demand, temporal de-
mand, effort, performance, frustration and global
NasaTLX)
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Behaviour statistics’ computation

As mentioned previously, we had available a set of minute-length physiological and behavioural fea-
tures for each participant, as well as the subjective levels of perceived stress and mental workload
under each condition for each participant. From this minute-level dataset, we computed two differ-
ent summarizing datasets with two different goals using two different configurations for the CAAB
algorithm. First, a dataset summarizing the physiological and behavioural responses of each partici-
pant under each condition was computed, aimed at creating prediction models for the self-reported
mental states, perceived stress and conditions. Second, a dataset summarizing the physiological
and behavioural response of the participants every 5 minutes was computed. The goal of this sec-
ond component was to create prediction models for objective and reliable condition changes from
physiological and behavioural data.

In order to extract the physiological and behavioural statistics for each participant under each
condition, we implemented the CAAB [114] algorithm adapted to smart office data in Matlab.
The minute-length physiological and behavioural data was processed using this algorithm as follows.
First, each participant’s minute-length physiological and behavioural features for each condition were
extracted. Second, five summarizing time-series statistics were computed for each physiological and
behavioural feature in this period using a sliding window of length (w) 5 minutes with a skip size (s)
of 1 minute: variance, skewness, kurtosis, autocorrelation and change. While the first four are well-
known time-series processing methods [383], the change statistic was first introduced by Dawadi et
al. [114]. In brief, computation of the change feature is to apply a change detection algorithm between
the two halves of the piece of time-series data that falls into the sliding window, so that we receive
a ‘1’ if a significant change is found between the two halves, and a ‘0’ otherwise. For this purpose,
we used an implementation of the Hotelling-T test [384] change algorithm available for Matlab2. In
order to stabilize data variance and remove the effect of non-stationary (e.g. periodic) components,
a log-transform followed by a linear detrending was applied to each physiological and behavioural
variable falling inside the sliding window before the computation of summarizing statistics. Finally,
the average of each time-series statistic for the length of the condition period was computed. The
set of time-series statistics’ averages was used for the final predictions. Note that the sliding window
length (w=5) was selected empirically in a preliminary test, but other window sizes could also be
considered. This process is highlighted in Figure 3.1a.

For the second dataset, only the last two steps differed from the previous process: after the
application of the log-transform and linear detrending, the same five summarizing time-series statistics
were computed, but this time, using a non-overlapping sliding window of five minutes’ length (s=5,
w=5). Condition-level averages were not computed this time, and the five minutes’-level dataset
was considered as the final version for the condition change detection (see Figure 3.1b).

Thus, the resulting preprocessed datasets for further analysis were: 1) a collection 100 data
instances of 780 (5 time-series statistics of 156 physiological and behavioural features) summary
statistics modeling each one of the 25 participants who went through the four conditions of the
SWELL experiment, and 2) a collection of 616 data instances of 780 summary statistics describing
the physiological and behavioural output of the 25 participants for 5 minute non-overlapping intervals
during the length of the whole experiment.

We made sure that none of the variables in any of the two datasets exceeded 30% of missing
data, to remove it from the analysis if it was so. The remaining missing values were imputed by the
mean value for each attribute using the ‘ReplaceMissingValues’ filter in Weka.

2Available online at https://github.com/brian-lau/multdist
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(a) The first data preprocessing configuration.
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(b) The second data preprocessing configuration.

Figure 3.1: The two configurations used for the computation of the two summarizing behavioural
statistics datasets. The first configuration extracts summarizing statistics by applying a sliding-
window of length w = 5 minutes with a skip-size s = 1 minute, and computes statistics’ averages for
each condition. The second configuration uses s = 5 minutes to compute non-overlapping statistics
and use them as final predictors.



3.2. PROPOSED APPROACH 59

Stress and mental workload assessment scores’ set up

The goal of this chapter is to create prediction models that map physiological and behavioural changes
of data collected in a smart office to the subjective stress and mental workload ratings self-reported
by the participants, as well as to objectively measure working conditions and condition changes. Our
target variables are therefore defined as explained hereafter.

• Self-reported stress and workload levels:
The self-reported valence, arousal and dominance levels measured by the SAM test, the stress
level, the mental effort measured by the RSME questionnaire, and the mental demand, the physical
demand, the temporal demand, the effort, the performance, the frustration and the global task
load levels measured by the NasaTLX questionnaire were all collected once for each condition
setting. As self-reported questionnaires might be very subject-dependent, we also computed
the standardized version of the ratings by applying min-max normalization per subject to the
questionnaire responses.

• Simulated workload condition settings:
On the other hand, a label objectively indicating the condition under which the data were collected
was used. This one takes the form of a four-class nominal variable, representing the four workload
condition settings implemented during the experiments: R, N, T and I. Nonetheless, the effect
provoked by each condition setting may depend on each subject, i.e. a participant might feel much
more stressed under time pressure (T ) than under a condition with frequent e-mail interruptions
(I) while another one feels the opposite. To reduce this type of inter-subject variability, we
computed the standardized versions of the condition settings. For this purpose, we ordered the
conditions from the least to the most stressful for each participant (as measured by the ‘stress’
label) and assigned corresponding numbers: ‘0’ for the least stressful and ‘3’ for the most stressful
one (see Figure 3.2).

• Change in workload condition settings:
For the second configuration, a condition change variable was computed, indicating whether the
subject was being submitted to a workload condition change in each one of the five-minute length
data instances. Data were labeled with ‘1’ if this was true and with a ‘0’ otherwise. Finally, we
also decided to make an attempt on detecting the directions of these condition changes, i.e.: for
each 5-minute period, we computed whether the user was increasing (positive label), decreasing
(negative label) or maintaining (neutral label) his/her self-reported perceived workload levels (as
measured by the ‘NasaTLX’ label), and assigned ‘-1’, ‘0’ or ‘1’ to each data instance.

• Reliable change in perceived workload levels:
Despite the more ecologically valid experimental conditions that are used, the objectively mea-
sured condition might not necessarily be reflecting a significant workload change for all of the
participants. To standardize the effect of each condition on the perceived task load for each
participant, we computed the Reliable Change Index (RCI)es [385] for the NasaTLX scores. RCI
informs whether a participant’s perception (in this case, perceived workload levels) has experi-
enced a significant change in an assessment score based on his/her own previous perception. RCI
discards changes that might have appeared due to reasons other than an actual change in scores
(such as measurement unreliability, repeated-testing or practice effects) by applying a threshold to
the scores’ differences. We looked for two different RCIs, one for each post-processed dataset. For
the first case, we computed whether each participant was reporting a reliable change in the per-
ceived task loads for each condition compared to the relaxed state (R). We assumed the NasaTLX
score to be null for that initial condition. The RCI per condition and subject was computed as
shown in Equation 3.1,
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C= ‘R’ C= ‘N’ C= ‘T’ C= ‘I’ C= ‘R’

stress = 0.5 stress = 5 stress = 9 stress = 7

Cstd= ‘0’ Cstd= ‘1’ Cstd= ‘3’ Cstd= ‘2’

C= ‘R’ C= ‘N’ C= ‘T’ C= ‘I’ C= ‘R’

stress = 1 stress = 4 stress = 6 stress = 10

Cstd= ‘0’ Cstd= ‘1’ Cstd= ‘2’ Cstd= ‘3’

Figure 3.2: Two examples for the standardization of the ‘condition’ (C) label. The C variable shows
the objective condition the participant is undergoing, whereas stress variable shows the perceived
stress levels for that condition by the participant. Cstd represents the standardized condition value
calculated from the user’s perceived stress level in each condition.

Table 3.2: Test-retest reliability (r) and standard deviation (SD) of the NasaTLX scores.

r SD
NasaTLX [386] 0.77 14.6

RCIbaseline(i) = NasaTLX(i)− NasaTLX(R)√
2SEmNasaTLX

(3.1)

where NasaTLX(i) and NasaTLX(R) are the self-reported task-load level for the condition i and for
the relaxed condition respectively, and SEmNasaTLX or Standard Error of Measurement represents
the expected variation of the observed NasaTLX scores due to measurement error, being computed
as shown in Equation 3.2,

SEmNasaTLX = SDNasaTLX

√
1− rNasaTLX (3.2)

where rNasaTLX is the test-retest reliability measuring the consistency of the NasaTLX scores over
time. Test-retest reliability parameters for the NasaTLX scores can be found in Table 3.2.
For the second case, we analysed whether the participants were undergoing a significant workload
change in each 5-minute length period. For this purpose, we computed the RCI in self-reported
NasaTLX scores at the beginning and at the end of each consecutive 5-minute time slot. This
change was computed as shown in Equation 3.3,

RCIcons.(j) = NasaTLX(jend)− NasaTLX(jinit)√
2SEmNasaTLX

(3.3)

where NasaTLX(jend) is the self-reported task-load index at the end of the 5-minute length period
j and NasaTLX(jinit) is the self reported task-load index at the beginning of the 5-minute length
period j.
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3.2.3 Building stress and mental workload prediction models

The preprocessed datasets resulting from the previous steps were analysed using Weka [387].

Self-reported stress and workload levels: First, a regression analysis between the self-assessed
stress and mental workload levels and smart office based physiological and behavioural data was
performed. The models utilized linear and Radial Basis Function (RBF) kernel Support Vector Ma-
chines (SVM), Linear Regression (LR) and k Nearest Neighbors (kNN) algorithms. For this purpose,
four models were built for each self-assessed score using all features extracted from the experiment
data. The models were validated following a 10-fold CV approach and their correlation coefficients
(r) and Mean Absolute Error (MAE) were compared. We searched for statistical predictability of the
smart office data models comparing the results to a baseline model based on the ZeroR algorithm
with a paired t-test. ZeroR is an algorithm aimed at creating prediction models based only on the
distribution of the response variable and ignoring the data attributes [388]. It is commonly used as a
basis of comparison for the other algorithms that have to overcome its performance to be considered
useful. When it is being used for regression purposes, its error metric must be beaten. Adjusted
p-values (*p<0.01, **p<0.001) were used to check for statistical significance in order to avoid Type
1 error rate due to the number of correlation analyses being run. Unless otherwise stated, the same
validation approach based on 10-fold CV and t-test comparison to the corresponding ZeroR baseline
classifier was used for all models in this work.

We then performed feature selection by analysing the predictive power of each type of feature
for each self-assessment score. For that purpose, we built source-specific models based on only:
(1) physiological features, (2) computer use patterns, (3) facial expressions, (4) head and facial
movements, and (5) body posture and movements. A RBF SVM algorithm was used to build the
models.

Next, all the previous steps were repeated to build prediction models of the standardized self-
assessment scores. Models using all the collected data and source-specific models were created and
validated.

The huge number of features coming from only five sources that are being used as attributes
in this work, might result in highly collinear models which have the risk of not being optimal. To
avoid this issue, we computed a Principal Component (PC) based reduced dataset explaining the
95% of the variability of the whole dataset. We built and evaluated the prediction models for this
PC-reduced dataset.

Simulated workload condition settings: Regarding the detection of the objective mental-workload
conditions from smart office data, we built and evaluated several classification algorithms. In this
case, as subjects were submitted to four different workload conditions, we were facing a multi-class
classification problem, where a random guess classifier would yield 25% accuracy. Näıve Bayes, linear
SVM, AdaBoost and C4.5 tree algorithms were selected for this purpose. In addition, we tested a
multi-class classifier trained following the one-against-all approach with a logistic classifier as weak
classifier. As all the four conditions were considered of equal importance, the weighted versions of
the area under the ROC curve (wROCauc), the area under the precision-recall curve (wPRauc), and
Fscore were computed for comparison, as well as the overall accuracy (Acc.) of the models. We
considered the classification models useful when they beat baseline models’ accuracy and ROCauc
values. This process was then repeated for the standardized condition labels.

Change in workload condition settings: In the case of the second configuration, there were
very few data instances representing a workload condition change available: only 17.8% of all data
instances were of this type, resulting in highly imbalanced data. This is a very common problem in
health-related machine learning tasks, where a disease is a rare event, and it is very difficult to collect
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enough data instances representing the affected class. Usual machine learning algorithms tend to
create biased models towards the majority class when being applied to imbalanced datasets, resulting
in high prediction accuracies but, very low sensitivity. Notwithstanding, the main goal is often to
detect the rare event, i.e. the presence of the disease or disorder.

To overcome this imbalanced data issue, alternative machine learning approaches must be used.
In this work, in addition to some usual machine learning algorithms, two alternative algorithmic
approaches called SMOTEBoost and RUSBoost were tested aiming at improving models’ sensitivity.
SMOTEBoost [373], is a method that combines boosting techniques with SMOTE [389] oversampling
techniques. The objective of boosting is to create a “strong” classifier using a set of “weak” classifiers
while SMOTE aims at reducing class imbalance by creating synthetic data instances to oversample the
minority class. By combining these processes iteratively, SMOTEBoost often improves the sensitivity
of the models without affecting the overall accuracy of the models.

In contrast, the second approach, uses the combination of boosting and RUS undersampling
technique to reduce class imbalance [374]. RUS, randomly removes data instances from the majority
class until a desired balance is achieved, resulting in training datasets of smaller size, and thus, greatly
reducing complexity and training time of the models. Despite its simplicity, RUSBoost has demon-
strated its effectiveness in previous works [390]. Therefore, we first built condition change prediction
models using usual machine learning algorithms, namely, Näıve Bayes, linear SVM, AdaBoost and
C4.5 tree. We evaluated the accuracy, ROCauc, PRauc, Fscore and sensitivity metrics of the models
by means of a 10-fold CV approach. Next, we built models based on SMOTEBoost and RUSBoost
algorithms using kNN, logistic algorithm, linear SVM and C4.5 tree as weak classifiers. This time, a
5-fold CV was used for validation purposes and the performance of the models was compared to a
baseline algorithm by means of a McNemar’s test.

Not all condition changes aimed to detect in the previous part imply the same risks: whereas a
condition change from neutral or relaxed to stressful is an event of “high risk”, the change in the
opposite direction means an improvement in the workers’ status. Both events are of interest, being
the first one necessary to be detected in order to take preventive measures, and the second one,
useful to track workers’ status. Thus, we aimed at detecting the direction of the condition changes
previously modeled. For that purpose, we built models based on Näıve Bayes, linear SVM, AdaBoost
and C4.5 tree algorithms to solve the three-class classification problem (negative class: change to a
more stressful condition, neutral class: no change, positive class: change to a less-stressful condition).
We also added a logistic multiclass algorithm based-model which follows a one-vs-all approach.

Reliable change in perceived workload levels: Finally, we performed the detection analyses
for the RCIs in perceived task-loads for each participant. First, we built and evaluated prediction
models for the reliable NasaTLX score changes from baseline (i.e. classification of data instances
representing relaxed states vs. significant workload states) using unobtrusively collected smart office
data and Näıve Bayes, linear SVM, AdaBoost, C4.5 tree and Multilayer Perceptron (MLP) algorithms.
We repeated the process for source-specific models. Second, we performed reliable perceived task-
load change detection among consecutive 5 minute-length time periods using unobtrusively collected
physiological and behavioural smart office data and the same algorithmic approaches as in the previous
case.

3.3 Validation

This section presents the results obtained from the regression and classification models described
in Subsection 3.2.3, which analyse the predictability of the self-reported and objective stress and
workload condition levels from smart office data.
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Table 3.3: Regression results for the self-reported test scores using all smart office features for 10-
fold CV. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to a
baseline algorithm.))

Linear SVM RBF SVM LR kNN
r MAE r MAE r MAE r MAE

SAM
Valence 0.65** 1.87* 0.71** 1.75** 0.62** 1.94** 0.13 3.22
Arousal 0.53** 1.88 0.56** 1.91* 0.55** 1.86* 0.10 2.87
Dominance 0.57** 2.06* 0.66** 1.83** 0.54** 2.15 0.24 3.09

Stress
Stress 0.31* 2.01 0.35** 1.78 0.33** 1.96 0.06 2.41

RSME
MentalEffort 0.64** 2.13** 0.68** 2.06** 0.62** 2.16* 0.30* 2.66

NasaTLX
MentalDemand 0.59** 1.90** 0.62** 1.86** 0.58** 1.92** 0.33* 3.02
PhysicalDemand 0.47** 1.35 0.49** 1.23** 0.47** 1.36 0.07 1.65
TemporalDemand 0.53** 2.47* 0.59** 2.37** 0.54** 2.45* 0.26* 3.48
Effort 0.74** 1.72** 0.75** 1.70** 0.75** 1.70** 0.02 2.85
Performance 0.37** 2.66 0.50** 2.37 0.32** 2.78 0.13 3.01
Frustration 0.43** 1.89 0.50** 1.70* 0.42** 1.87 0.31* 2.61
NasaTLX 0.71** 16.27** 0.71** 16.41** 0.72** 16.12** 0.11 27.73

Self-reported stress and workload levels:

Table 3.3 shows the results of the regression analyses for the self-reported scores using all features
available in the first-configuration dataset. Regarding algorithms, kNN is the one which is performing
worst, and its MAE never beats the baseline classifier. On the contrary, RBF SVM is working
the best in almost all cases, but the linear SVM and LR algorithms are also giving competitive
results. Valence, mental effort, effort and global NasaTLX scores were found to be strongly correlated
to the smart office data while dominance and mental demand were showing moderate to strong
correlations. Arousal, physical demand, temporal demand and frustration were moderately correlated
to the unobtrusively collected data, whereas correlation for performance label was weak to moderate
and for stress only weak. In fact, for these last two scores, enough statistical significance was not
found after adjusting the p-values, and therefore, they can not be considered to be predictable from
the collected data.

Table 3.4 shows the prediction results for the self-assessed scores from the dataset of 82 PCs
explaining the 95% of the variance of the whole dataset. Overall, correlation results are low, and
none of the MAE values has shown enough statistical significance to be considered a useful model.

Table 3.5 shows the results for the regression analyses on the standardized self-reported scores.
Generally speaking, the correlations obtained by these standardized scores are higher than the ones
obtained using absolute values. Effort raised up to very strong correlation levels, while dominance
raised to strong correlation levels. Valence, mental effort and NasaTLX were also found to be
strongly correlated to the collected data. Moderate to strong correlation were found for arousal,
mental demand, physical demand, temporal demand and performance, while frustration was only
showing moderate correlations. Stress was the score showing the lowest correlations, but this time
was found to correlate weak to moderately. Moreover, this time, all the scores showed statistically
significant improvement in terms of prediction error compared to a baseline classifier, concluding that
all scores can be predicted from smart office data after standardization.

Table 3.6 shows the results of the feature selection analysis for the self-reported scores. Valence
and dominance were best predicted by body posture and movements followed by computer use
patterns. Dominance was also predictable by facial and head movements, and arousal only showed
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Table 3.4: Regression results for the self-reported test scores using the PC-reduced dataset for 10-
fold CV. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to a
baseline algorithm.))

Linear SVM RBF SVM LR kNN
r MAE r MAE r MAE r MAE

SAM
Valence 0.05 3.89 0.12 2.60 0.33 3.77 0.07 3.75
Arousal 0.01 4.06 0.00 2.40 0.13 4.30 0.00 3.17
Dominance 0.01 4.21 0.04 2.45 0.36* 3.41 0.06 4.11

Stress
Stress 0.11 3.60 0.11 1.93 0.07 3.63 0.11 2.56

RSME
MentalEffort 0.04 4.75 0.06 2.75 0.15 4.86 0.11 3.52

NasaTLX
MentalDemand 0.03 4.31 0.01 2.45 0.10 5.02 0.03 2.59
PhysicalDemand 0.16 3.00 0.16 1.40 0.09 4.39 0.09 1.96
TemporalDemand 0.22 3.89 0.03 3.03 0.16 5.17 0.10 3.47
Effort 0.24 3.57 0.24* 2.51 0.40* 3.53 0.06 3.05
Performance 0.11 5.67 0.08 2.80 0.16 4.25 0.04 4.31
Frustration 0.18 3.56 0.15 2.03 0.23 4.04 0.07 2.63
NasaTLX 0.21 31.03 0.07 22.35 0.19 57.12 0.05 25.49

Table 3.5: Regression results for the standardized self-reported test scores using all smart office
features for 10-fold CV. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in
comparison to a baseline algorithm.))

Linear SVM RBF SVM LR kNN
r MAE r MAE r MAE r MAE

SAM
Valence 0.69** 23.80** 0.74** 22.02** 0.66** 24.93** 0.19 37.34
Arousal 0.56** 26.66* 0.64** 25.52** 0.56** 26.66* 0.03 39.32
Dominance 0.65** 25.35** 0.72** 23.06** 0.63** 26.19** 0.16 37.04

Stress
Stress 0.38** 33.55 0.51** 30.80** 0.39** 32.95 0.10 48.56

RSME
MentalEffort 0.66** 25.08** 0.73** 23.27** 0.65** 25.21** 0.11 35.64

NasaTLX
MentalDemand 0.59** 27.24** 0.68** 24.61** 0.58** 27.50** 0.11 38.81
PhysicalDemand 0.49** 30.50* 0.61** 27.17** 0.49** 30.92* 0.01 42.03
TemporalDemand 0.55** 28.48** 0.63** 26.83** 0.56** 28.47** 0.14 37.91
Effort 0.78** 20.68** 0.81** 20.24** 0.78** 20.88** 0.10 35.88
Performance 0.53** 29.14 0.62** 26.92** 0.50** 30.33 0.20 36.36
Frustration 0.52** 29.26 0.57** 28.71** 0.55** 28.62** 0.05 45.71
NasaTLX 0.67** 23.84** 0.70** 23.23** 0.67** 23.87** 0.06 34.56
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enough statistical significance for the computer use pattern-based models. Self reported stress was
only found to be predictable by computer use patterns, beating the results obtained with the whole
set of features. Mental effort measured by the RSME test was best predicted by the body posture
and movement parameters, but was also statistically significant for the model based on computer
use patters.

Next, regression results for the self-reported NasaTLX score and subscores are reviewed. The
global score was best predicted by body posture and movements, followed by computer use patterns,
as well as the mental and temporal demand. Performance was also predictable by computer use
patterns and body posture and movements, in decreasing order. Physical demand was most correlated
to facial and head movements, followed by body posture and movements and computer use patterns
whereas effort was best predicted body posture and movements, computer use and facial and head
movements. Finally, frustration was found to be only predictable by facial and head movements,
followed by computer use patterns.

Table 3.7 shows the results of the feature selection analysis for the standardized scores. Overall,
results improved, but follow the same trend. In this case, arousal became more predictable by
means of body posture and movement-based models instead of computer use pattern-based models
as in the previous case, which now occupies the second place. Standardized stress scores also
showed statistically significant predictability using RBF SVM models based on only body posture
and movements in addition to the one built using only computer use patterns. Standardized mental
effort as measured by the RSME score was found to be predictable using only body posture and
movement-, computer use pattern- and facial and head movement-based models, in decreasing order
of performance. For the standardized NasaTLX questionnaire responses, models based on body
posture and movements gained importance, as all subscores as well as the global task load index
showed highest correlations with this feature type. The global score followed the same trend as the
non-standardized scores, but correlations were slightly improved. Standardized mental demand was
found to be only predictable by body posture and movements, and physical demand became most
predictable with body posture and movements, followed by computer use patterns and facial and
head movements. Standardized temporal demand and effort were most correlated to body posture
and movements followed by computer use patterns as in the non-standardized case, but effort also
showed enough statistical significance to be considered predictable by means of facial and head
movements. Standardized performance scores became only predictable by the body posture and
movement-based model whereas frustration gained enough statistical significance to be considered
predictable by body posture and movements, computer use patterns and facial and head movements,
in decreasing correlation order.

Simulated workload condition settings:

Table 3.8 shows the results for the objective and standardized workload condition detection models
using all physiological and behavioural features and by feature type. Regarding the objective scores,
overall, Näıve Bayes and AdaBoost based models were achieving the highest accuracies and the
highest number of models with enough statistical significance. In fact, Näıve Bayes based models
using all features, only computer use patters, only facial expressions and only body posture and
movements were able to predict the workload condition. In the case of AdaBoost, physiological data-
based models also showed statistical significance for prediction but facial expression-based model did
not. Linear SVM based models were only useful using body posture and movement data, whereas
C4.5 tree algorithm only resulted in statistically significant models using computer use patterns and
the combination of all features. Against expectations, the logistic multi-class classifier based on one-
vs-all approach was not overcoming the rest of the algorithms and only computer use pattern-based
models showed enough statistical significance to accept workload condition predictability.

For the standardized scores, models show improved prediction accuracy compared to the non-
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Table 3.6: Regression results for the absolute test scores by behavioural feature type for 10-fold CV
and RBF SVM. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison
to a baseline algorithm.))

Physiology Computer
use

Facial
expressions

Facial and
head

movements

Body
posture

and
movements

r MAE r MAE r MAE r MAE r MAE
SAM

Valence 0.21 2.55 0.55** 2.35* 0.10 2.64 0.38** 2.48 0.71** 1.75**
Arousal 0.17 2.33 0.55** 2.03** 0.03 2.38 0.42** 2.20 0.47** 2.05
Dominance 0.29 2.34* 0.53** 2.28* 0.00 2.42 0.42** 2.25* 0.64** 1.85**

Stress
Stress 0.17 1.88 0.50** 1.63** 0.14 1.91 0.33** 1.81 0.25 1.85

RSME
MentalEffort 0.21 2.70 0.58** 2.46** 0.16 2.71 0.45** 2.54 0.62** 2.22*

NasaTLX
NasaTLX 0.39** 21.45 0.64** 19.6** 0.03 22.58 0.47** 21.15 0.67** 16.22**
MentalDemand 0.35** 2.30 0.52** 2.16* 0.05 2.44 0.35** 2.29 0.59** 1.84**
PhysicalDemand 0.19 1.40 0.36** 1.28* 0.03 1.44 0.49** 1.26* 0.41** 1.26*
TemporalDemand 0.33** 2.93 0.53** 2.66** 0.04 3.03 0.42** 2.80 0.56** 2.38**
Effort 0.31* 2.46 0.64** 2.14** 0.08 2.52 0.55** 2.20** 0.70** 1.79**
Performance 0.17 2.75 0.57** 2.45** 0.08 2.83 0.25* 2.72 0.53** 2.28*
Frustration 0.19 1.99 0.46** 1.75** 0.16 2.03 0.48** 1.76* 0.40** 1.84

Table 3.7: Regression results for the standardized test scores by behavioural feature type for 10-
fold CV and RBF SVM. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in
comparison to a baseline algorithm.))

Physiology Computer
use

Facial
expressions

Facial and
head

movements

Body
posture

and
movements

r MAE r MAE r MAE r MAE r MAE
SAM

Valence 0.17 33.48 0.60** 31.13* 0.06 34.06 0.41** 32.08 0.72** 22.58**
Arousal 0.21 32.56 0.57** 31.08* 0.12 32.40 0.40** 31.26 0.62** 25.39**
Dominance 0.22 32.77 0.59** 31.30* 0.04 33.96 0.43** 31.21* 0.73** 22.67**

Stress
Stress 0.12 38.74 0.56** 34.07** 0.07 38.86 0.25 37.55 0.46** 31.86*

RSME
MentalEffort 0.19 31.64 0.63** 30.11* 0.13 31.76 0.46** 29.71* 0.70** 24.06**

NasaTLX
NasaTLX 0.29* 30.80 0.59** 29.25* 0.13 32.06 0.36* 31.40 0.69** 22.80**
MentalDemand 0.27* 33.88 0.54** 32.30 0.04 35.13 0.42** 32.58 0.67** 24.11**
PhysicalDemand 0.02 38.06 0.48** 34.65* 0.05 37.58 0.38** 34.67* 0.61** 27.16**
TemporalDemand 0.26 35.11 0.54** 32.37* 0.06 35.89 0.38** 34.00 0.61** 26.64**
Effort 0.34* 31.99 0.66** 27.59** 0.04 33.66 0.52** 30.05** 0.77** 20.60**
Performance 0.14 35.30 0.56** 32.88 0.08 36.07 0.36** 33.39 0.63** 26.41**
Frustration 0.20 35.85 0.51** 32.14** 0.07 36.94 0.45** 33.00* 0.58** 28.09**
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standardized scores, and more statistical significances are found. In addition to those significances
found for the non-standardized case, computer use pattern-based linear SVM, facial expression-based
AdaBoost and logistic multiclass algorithm using all features and only body posture and movement
features also showed prediction power. AdaBoost seems to be the best working algorithm for this
case.

Change in workload condition settings:

Table 3.9 shows the results for the workload condition change detection using the usual machine-
learning algorithms, whereas Table 3.10 shows the results for the SMOTEBoost and RUSBoost
algorithms aimed at dealing with class imbalance. Usual algorithms gave better results than ex-
pected. Whereas some of the models showed too low sensitivities for the negative class, others
where able to detect these events within an acceptable rate (>0.60). A computer use pattern-based
Näıve Bayes model showed enough statistical significance to accept predictability of the objective
workload changes, with a good sensitivity for the negative class. AdaBoost showed predictability of
the target variable for all feature-, computer use pattern-, and body posture and movement-based
models, in decreasing order of accuracy and sensitivity. C4.5 tree was the best in predicting the
condition changes with a computer-use pattern-based model, followed by a model built using all
the features. Linear SVM was not showing enough statistical significance in terms of accuracy to
accept it was working better than a baseline model. Regarding SMOTEBoost and RUSBoost models,
overall, we achieved higher sensitivity rates towards the negative class: some models even yielded
100% sensitivity. Nonetheless, only two of them showed enough statistical significance to accept
predictability of the workload change, which were a SMOTEBoost based model using computer use
patterns and a C4.5 tree as weak classifier, and a RUSBoost based model using the combination of
all features and a C4.5 tree algorithm as weak classifier. Note that these significances were tested
by means of a McNemar’s test instead of the t-test as in the other models. However, these models
were not highly improving the results obtained previously with the usual algorithms.

Table 3.9: Classification results for the workload condition change by behavioural feature type for
10-fold CV. (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to
a baseline algorithm.)

Näıve Bayes Linear SVM
Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 83.30 0.80** 0.47** 0.57** 0.62** 84.84 0.74** 0.42** 0.57** 0.57**
Physiology 81.62 0.56 0.30** 0.23** 0.16** 82.20 0.50 0.18 0.00 0.00
Computer use 88.02** 0.89** 0.73** 0.70** 0.78** 84.02 0.63** 0.33** 0.40** 0.31**
Facial expressions 78.24 0.62** 0.31** 0.24** 0.20** 82.17 0.50 0.18 0.00 0.00
Facial and head movements 73.05 0.63** 0.32** 0.28** 0.30** 80.91 0.55* 0.23 0.21** 0.15**
Body posture and movements 80.58 0.75** 0.41** 0.46** 0.48** 79.50 0.66** 0.31** 0.44** 0.46**

AdaBoost C4.5
Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 89.29** 0.90** 0.77** 0.66** 0.60** 86.56* 0.77** 0.56** 0.60** 0.58**
Physiology 82.01 0.64** 0.32** 0.01 0.00 81.60 0.52 0.22 0.06 0.04
Computer use 87.24** 0.86** 0.66** 0.58** 0.51** 90.44** 0.84** 0.69** 0.71** 0.66**
Facial expressions 81.13 0.63** 0.31** 0.15** 0.05 78.27 0.53 0.24* 0.15** 0.12**
Facial and head movements 80.65 0.65** 0.32** 0.11 0.08 81.00 0.56 0.23 0.06 0.04
Body posture and movements 86.53** 0.85** 0.64** 0.55** 0.48** 83.35 0.69** 0.45** 0.52** 0.50**

Table 3.11 shows the results for the task load change directionality detection. AdaBoost algorithm
was performing worst, as all models based on this algorithm were biased towards the majority class.
Some other models were showing statistically significant improvement in terms of accuracy compared
to a baseline classifier, but were performing very poor in terms of F-score and/or sensitivity, making
them useless for our purpose. Only a Näıve Bayes- and a linear SVM-based model built using the
combination of all features showed statistical significance for all metrics, leading us to accept their
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prediction power for the positive, negative and null task load changes. Nonetheless, these models
were yet showing low sensitivity rates.

Reliable change in perceived workload levels:

Table 3.12 shows the results for the reliable perceived task load index change detection. The reliably
different task-loads from baseline situation (relaxing vs. stressful) were found to be detectable using
models based on all features, computer use patters and body posture and movements, whereas
physiology-, facial and head movement- and facial expression-based models did not show enough
statistical significance to accept the hypothesis. The highest accuracies were achieved by means
of MLP, AdaBoost and Näıve Bayes-based models, and regarding feature selection, computer use
patterns were found to be more useful than body posture and movement based models. A reliable
change between consecutive 5-minute periods was harder to detect and fewer useful models were
found. Näıve Bayes classifier was performing best by means of body posture and movement-based
models, followed by computer use and facial and head movement based models. Models built using
linear SVM, AdaBoost and C4.5 algorithms were not significantly improving the detection accuracy
achieved by a baseline classifier. Regarding MLP based models, only a computer use pattern-based
model was showing significantly increased performance compared to a baseline model. Nonetheless,
it still showed a low sensitivity rate.

3.4 Discussions and conclusion

In this chapter, we analysed the possibility of predicting workers’ stress and workload levels, as well as
changes in these conditions, by means of time-series statistics computed from unobtrusively collected
physiological and behavioural data in a smart office environment. The RQs in hands are of great
interest to today’s society where stress is becoming increasingly present and harmful, but are also
pertinent to the current state of the art in Ambient Intelligence (AmI) and smart environments.
Unobtrusive monitoring of peoples’ behaviour and physiology is already possible, but we yet need to
associate these patterns to the disorder of interest. Moreover, it is still necessary to clarify and limit
the use of the proposed system to avoid ethical and privacy issues before is implementation [369].
Results show that the prediction of perceived stress and workload levels is possible using change and
variability patterns of data collected unobtrusively from smart offices.

A regression analysis of the target scores from smart office data showed many statistically sig-
nificant results, enforcing the hypothesis that this kind of collected data can actually predict the
perceived stress and workload levels. The correlations found by this analysis vary from moderate to
strong, depending on the nature of the objective label. NasaTLX scores, together with effort, mental
effort and valence were the best-predicted scores, whereas self-reported stress and performance did
not show enough statistical significance to be considered predictable. In case of stress prediction,
this is not surprising, as this label was acquired by means of a single-question visual analog scale,
which unlike NasaTLX, RSME or VAS questionnaires, is not a questionnaire whose reliability has
been verified and might be too subjective to be well capturing the real perceived stress levels of
the users. Nonetheless, the analyses on the standardized scores improved the previous results, even
demonstrating predictability for the self-reported stress and performance levels. This reasserts the
fact that there is some inter-subject variability present on every score used for the study, but also
suggests that controlling for this variability by means of standardization methods, can make their
prediction possible.

A reduced dataset using PC approach showed a highly decreased performance on the predictability
of the models. This might be due to several reasons. On one hand, it suggests that actual feature
values are much more correlated to the self-reported scores than the PCs representing this data.
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On the other hand, it might also suggest that there is no much collinearity among the initial set of
features. Nonetheless, the reason can also be an excessive standardization of the input data which
might have provoked the loss of machine-learning algorithms’ mapping ability to subject-specific
response data. This can be verified by validating the previous models based on actual feature values
following a Leave-One-Subject-Out Cross-Validation (LOSOCV), which is a well-known procedure in
the field. LOSOCV consists of excluding one participant at each time from the model-training step,
while using their data in the model-testing part. This process is repeated until all users’ data is used
both for training and for testing, and models’ average performance is computed. This would allow
to verify the usability of the current approach to detect stress and workload levels of new workers
without the need of collecting their data. The literature shows that LOSOCV based validation usually
gives much more moderate results [375]. Hence, the importance of building user-specific models,
models based on data from a small group of people which is as similar as possible to the final user
or to build general models that can benefit from users’ feedback to adapt gradually to each of them.

Regarding feature selection analyses performed in the regression models, computer use patterns
and body posture and movements are the most correlated type of behaviour, followed by head and
facial movements. These results agree with previous research that report a relationship between
perceived stress levels and computer-use patterns [5, 63, 86, 111], body posture [88] and head and
facial movements [63]. In fact, models based on only physiological measurements and facial ex-
pressions were never significant by themselves, while literature affirms the predictability of stress
levels both from facial expressions [89, 91, 391] and physiological signals [23, 27, 52, 65, 392]. This is
an important finding, as physiological measurements based on Skin Conductance Level (SCL) and
Electrocardiogram (ECG)s are the most widely used signals in stress detection [369]. These results
suggest that behaviour might be much better in predicting stress under the circumstances of this
case study. However, we must first understand the nature of the experiment used to collect the data
of the current study and the steps taken to process it, to interpret the results consequently. The
reason why physiological signals might not be showing high correlations as usual, can be that the
time-series statistics extracted from them are not reflecting an increase or decrease in the signals but
the amount of absolute change.

The directionality of the change in physiological signals might be very important as far as stress
detection is concerned. For example, it is well known that stress provokes an increase in SCL signals,
or a reduction on the Heart Rate Variability. Due to the data processing approach used herein, we
might be missing this valuable information. Furthermore, the amount of imputed data in physiological
signals was higher than in the behavioural statistics, which might have also blurred the correlations in
this domain causing a significance loss. Moreover, results based on the computer use patterns must
be interpreted carefully: i.e., due to the nature of the experiment, where the participants were asked
to perform a set of specific computer tasks under each condition and then evaluate the perceived
stress and workload levels per condition too, results based on computer use patterns are much more
likely to be correlated to the self-reported scores.

Unlike body posture and movements, facial expressions, head and facial movements and physio-
logical signals, computer use patterns were not varying completely freely but were being conditioned
by the tasks that had been assigned to the participants. It would be interesting to analyse whether
the same patterns of behaviour are repeated in an experiment where other methods are used to induce
stress in the users, or in a longitudinally collected dataset where no stress is being induced in the
participant nor is being subjected to any special condition, but all their behaviour only depends on
their daily work and hypothetically, their stress levels. Another solution would be to use alternative
statistical analysis methods to control the variability on the behavioural data caused by the condition
to which the participants are subjected and to quantify the part of behavioural variability that cor-
responds to the level of stress suffered. Moreover, the insufficient predictability of facial expressions
for the self-reported stress and workload levels might not be due to the lack of correlation among
the two but to the lack of reliability of the method used to estimate the facial expressions from video
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recordings. Other methods to map each segment of the recordings to a facial expression should first
be tested before discarding an existing useful correlation between these data.

Following with feature selection, self-reported stress levels were found to be best predicted by
computer use patterns, even better than using the whole set of features, to the point of becoming a
statistically significant prediction model. As mentioned, this is something to be interpreted cautiously.
The rest of the labels were best predicted by models based on the whole set of physiological and
behavioural features.

Examining the results of the feature analysis performed on the standardized self-reported scores,
in addition to finding higher correlations than in the non-standardized case, the use of body posture
and movements to build prediction models showed improved results. In fact, self-reported stress
showed enough statistical significance to be considered predictable by means of these measures.
Interestingly, all NasaTLX questionnaire-based responses showed to be best predicted by body posture
and movements, above models based on computer use and facial and head movements. Again,
physiological measurements and facial expressions by themselves were not found to be useful to
create prediction models for the target labels.

In terms of objective condition detection from smart office data, results show a highly significant
prediction ability of the models. The Näıve Bayes and AdaBoost algorithms appear to be the best
algorithms for this problem, whereas against expectations, a specific multiclass classifier following a
one-vs-all approach was not showing any advantage over the rest of the algorithms. In this case, both
facial expressions and physiological features also showed prediction ability, whereas head and facial
movements did not. Therefore, we notice a difference in features’ ability to predict self-reported
stress and workload levels to objective condition settings’ prediction. However, as in previous cases,
the most repeated feature sets in terms of statistical significance are computer use patterns, body
posture and movements and the whole set of features.

Results for the standardized condition detection case were improved in comparison to the non-
standardized versions. In terms of algorithms, AdaBoost was found to be the most effective for
this purpose, and regarding feature types, all except head and facial movement-based models were
found to be statistically significantly predicting the target labels. Note that the standardization
technique used for this purpose is similar to performing a discretization of the self-reported stress
values. Therefore, results are transferable to the prediction of these scores.

Regarding objective condition change detection, overall, usual algorithms were performing better
or similar than the SMOTEBoost and RUSBoost class-imbalance specialized algorithms. Notwith-
standing, a significant improvement in the sensitivity of the models was noticed with these latter
algorithms, as promised. Useful prediction models were achieved for computer use pattern-based
models, as well as for models based on the combination of all features and on only using body
posture and movement features. As for the detection of the direction of these changes, models’
performance is worsened. Only models built using all features extracted from the experiments were
showing enough prediction power, along with a fairly reduced sensitivity. This is not surprising,
because, on one hand, the three-class classification problem that poses the detection of changes’
directionality is more complex than the two-class classification problem of the absolute changes’ de-
tection, both due to an added class to classify and to the reduced number of instances available for
each class. On the other hand, the time-series statistics extracted from the data are not necessarily
reflecting the directionality of the physiological and behavioural features, but an absolute change.
As the directionality of some of the features used in the study can be directly related to the outputs’
directionality (e.g., increased SCL levels to increased stress levels), the use of only absolute change
statistics might difficult the resolution of this problem.

Reliable change detection was found to be predictable both from a relaxed state and between
consecutive 5-minute time intervals. For the first case, we saw that the best predictors were computer
use patterns followed by body posture and movement features. The rest of the source-specific
models did not show enough statistical significance to accept their predictability of this target, but
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the combination of all features also showed to be useful for this purpose. Regarding reliable change
detection between consecutive 5-minute time intervals, we found less significances, thus a harder
problem to solve. Also, we noticed a decrease in the sensitivity of the models for this detection
problem compared to the previous approach. Nevertheless, computer use patterns, body posture and
movements and head and facial movements were predicting this change. Surprisingly, the combination
of all features was yielding lower and not statistically significant results.

Note that we only performed all our analyses with a single time-window length combination (1
minute for data aggregation, 5 minutes for time-series statistics’ computation). Results might vary
depending on the length of these temporal windows, and therefore, an analysis of the effects of these
window-size choices and the estimation of the best values to use would be highly required.

Summing up, this work has demonstrated the possibility of predicting the perceived stress and
workload levels of office workers, as well as the objectively measured conditions they might be
undergoing or the significant workload condition changes that they might be suffering from changes in
unobtrusively collected smart office-based physiological and behavioural data. Three main conclusions
can be drawn from all these analyses: first, the importance of the use of standardization methods to
reduce the intrinsic inter-subject variability of stress and workload assessment methods. Overall, all
analyses of this work found improved results for these type of labels. Second, the repeated statistical
significance of the computer use patterns and body posture and movements suggest the relevance
of these data for stress and workload prediction, while surprisingly, physiological measurements did
not highly contribute to the task. Nonetheless, as previously mentioned, computer use patterns
might be biased due to the experiment’s nature and must, therefore, be verified with alternative
datasets or data analysis methods. Also, physiological signals might better reflect users’ stress levels
when time-series statistics that take into account the directionality of their change are used. Finally,
the importance of the use of highly-reliable and well-established stress and/or mental workload
assessment methods must be ensured to build the final models. Results presented herein suggest
that NasaTLX questionnaire captures in a relatively objective way the perceived mental workload
levels of the workers and thus, is a good candidate for this purpose.

Summary

� Stress and mental workload levels can be predicted from changes in smart office behavior data,
as well as a reliable change in the analysed scores.

� Behavior showed much more predictability than physiological measurements.

� Computer-use patterns and body posture and movements are the most predictive behaviors for
this purpose.

� NasaTLX test is a good basis for ground-truth, but all the analysed standardized tests’ results
can be predicted from behavior.
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This chapter explains the work carried out for the second case study: AD diagnosis in smart
home environments, and contributes to the State of the Art presented in Section 2.3. After a brief
introduction of the context in Section 4.1, the use and adaptation of the approach presented in
Chapter 3 for this specific case is exposed in Section 4.2. In Section 4.3, models for the detection
of AD symptoms’ are built and validated in an unobtrusively collected real-life dataset. Finally, in
Section 4.4, conclusions for this scenario are drawn.

4.1 Introduction

Increasing life expectancy in developed countries has resulted in a growing number of cases of people
affected by age-related neurodegenerative diseases, such as AD. An estimate of 115.4 million people
will suffer from AD in 2050 [361], which can result in devastating consequences in terms of health-
care costs and quality of life of patients and relatives given that there is no known cure [227]. As a
matter of general interest, the search for methods of early detection and a cure for AD are currently
high priority issues.

AD manifests symptoms in multiple domains, including mood, behaviour, and cognition [393].
These symptoms and the associated pathology are usually measured by means of self- and informant-
report questionnaires, clinical assessments conducted by health care professionals and medical exam-
inations that may involve brain imaging. Often evaluations are initiated after symptoms have been
prominent for some time, resulting in a delayed diagnosis [394]. Currently, only treatments to delay
and reduce cognitive and behavioural symptoms of AD are available [395]. Given that AD pathology
in the brain accumulates slowly over time, a key for these treatments to be effective is early detection
of the disease and implementation of available treatments.

Smart homes are an emerging technological solution, enabling the monitoring of people’s be-
haviour unobtrusively and ubiquitously [396]. Real-life data can be gathered non-stop throughout
the day in a completely naturalistic way for the user, offering a complete view of older adults’ be-
haviour and allowing the detection of changes that might indicate the onset of a disorder. If smart
home-based behaviour shifts were mapped to AD, the main disadvantages of the usual assessment
methods could be overcome, making an early diagnosis of the disorder possible.

Our goal in this chapter is to assess the possibility of detecting changes in psychological, cognitive
and behavioural symptoms making use of unobtrusively collected smart home behaviour data. The
affirmation of this hypothesis would result in development and implementation of an early detection
system for disorders that provoke behavioural changes, such as AD. Such a system could alert
patients and relatives of likely changes, making it possible to take timely action.

The main contributions of this chapter can be summarized as follows. We analyse the predictabil-
ity of several multimodal symptoms often found to be impaired in AD, we analyse the contribution
of behavioural features to the prediction of these health assessment scores, and we introduce and
assess new smart home-based behaviour features to quantify global daily routine. In addition, we
offer an approach to detect a reliable change in the health assessment scores based on unobtrusively
collected behavioural data and to address the imbalanced class distribution problem that is common
in health-related data.

4.2 Proposed approach

4.2.1 Data collection in the Smart Home environment

First, we unobtrusively collected in-home behavioural data of 40 older adults living in 38 smart
homes from two senior-living communities and we gathered biannual neuropsychological assessment
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Table 4.1: Modality, test-retest reliability, and standard deviations of the scores used in the study

Domain Score rscore SDscore Ref.

Mobility Arm Curl 0.96 4.98 [403]
TUG 0.96 3.18 [402]

RBANS - total 0.84 15.58

[404]

RBANS - attention 0.16 19.0
RBANS - delayed memory 0.77 13.29

RBANS - immediate memory 0.75 16.58
Cognition / RBANS - visuospatial 0.76 15.31

Memory RBANS - language 0.33 15.31
PRMQ - total 0.89 9.15

[405]PRMQ - prospective memory 0.85 4.91
PRMQ - retrospective memory 0.89 4.98

Digit Cancellation 0.85 37.20 [406]
Mood GDS 0.68 2.20 [407]

data. This data was collected by the Center for Studies in Adaptive Systems (CASAS) and the
Neuropsychology and Aging Laboratory at Washington State University (WA, USA). Part of this
data (N= 18 older adults) was analysed in previous work [114]. For this work, a larger sample is
available thanks to a longer monitoring time and to the inclusion of more subjects in the study.

The current study focuses on cognition, mobility, and mood (depression) scores (see Table 4.1),
which were collected as part of the biannual assessment and have been found to be affected by
AD [393]. Cognitive abilities of the older adults were measured by means of the Repeatable Battery
for the Assessment of Neuropsychological Status (RBANS) [397], the Prospective and Retrospective
Memory Questionnaire (PRMQ) [398] and a Digit Cancellation test, while mobility was assessed by
Timed Up and Go (TUG) [399] and Arm Curl [400] tests. The Geriatric Depression Scale - Short
Form (GDS-15) [401] was used to assess the depression level of the elderly under study.

The smart home sensor data collection used for this study was from 2011 through 2016, a period
in which the data were collected continuously for lengths ranging from <1 month to 60 months (M=
19.95 months, SD=17.98 months) depending on each apartment. As data coming from homes with
multiple habitants poses some additional challenges for correctly estimating each individual’s activity
level, these participants were not included in our analyses. Subjects with missing health assessment
data or with behavioural data collected for less than 6 months were also removed. Hence, the final
dataset contained the behavioural and health assessment data (cognition, mobility, and mood) of 29
older adults (21 females, 8 males) who were living independently and alone in their own smart home
residences (M=26 months, SD=17.5 months, range=6-60 months). All participants were 73 years
of age or older (M = 84.34, SD = 5.70, range 73-97) and have a mean education level of 17.46 years
(SD = 2.06, range 12-20). Participants were classified as either cognitively healthy (N = 13), at
risk for cognitive difficulties (N = 10) or experiencing cognitive difficulties (N = 6). One participant
in the cognitively compromised group was diagnosed with a brain tumor with marked reductions in
cognition proceeding diagnosis. The remaining 5 individuals in the cognitively compromised group
met criteria for Mild Cognitive Impairment (MCI) as outlined by the National Institute on Aging-
Alzheimer’s Association workgroup [402]. Participants in the risk group had data suggestive of
lowered performance on one or more cognitive tests (relative to an estimate of premorbid abilities),
but did not meet criteria for MCI or dementia.
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2011-06-18 12:45:10.959930 LivingRoom LivingRoom MA003 ON Work 

2011-06-18 12:45:12.653415 LivingRoom LivingRoom MA003 OFF Work 

2011-06-18 12:45:13.406246 LivingRoom LivingRoom MA003 ON Work 

2011-06-18 12:45:14.544843 LivingRoom LivingRoom MA003 OFF Work 

2011-06-18 13:23:16.338151 WorkArea WorkArea M005 ON Work 

2011-06-18 13:23:18.041338 WorkArea WorkArea M005 OFF Relax 

2011-06-18 13:23:18.587922 WorkArea WorkArea M005 ON Relax 

2011-06-18 13:23:24.956352 WorkArea WorkArea M005 OFF Relax 

2011-06-18 13:23:31.533091 Kitchen Kitchen MA006 ON Cook 

2011-06-18 13:23:34.531439 Kitchen Kitchen MA006 OFF Cook 

2011-06-18 13:23:35.468449 Kitchen Kitchen MA006 ON Cook 

2011-06-18 13:23:37.725703 Kitchen Kitchen MA006 OFF Cook 

2011-06-18 13:23:55.332816 Kitchen Kitchen MA006 ON Cook 

2011-06-18 13:23:56.459425 Kitchen Kitchen MA006 OFF Cook 

2011-06-18 13:24:03.583423 Kitchen Kitchen MA006 ON Cook 

2011-06-18 13:24:05.268921 Kitchen Kitchen MA006 OFF Cook 

2011-06-18 13:24:11.082793 WorkArea WorkArea M005 ON Eat 

2011-06-18 13:24:18.597894 WorkArea WorkArea M005 OFF Eat 

… 

2011-07-28 08:39:39.277723 Bathroom Bathroom MA008 ON Personal_Hygiene

2011-07-28 08:39:40.408324 Bathroom Bathroom MA008 OFF Personal_Hygiene

2011-07-28 08:40:39.410092 Bedroom Bedroom MA007 ON Sleep 

2011-07-28 08:40:41.827160 Bedroom Bedroom MA007 OFF Sleep 

Figure 4.1: Extract of an AR activity-labeled raw sensor data stream

4.2.2 Preprocessing

Day-level behaviour feature extraction

Smart homes were set up to collect all sensor events that took place in each residence during the
study period. Each raw-sensor data stream event was an entry specifying the event’s timestamp,
ID of the sensor detecting the event and type of event (activation/deactivation). In order to make
the raw-sensor data streams interpretable, it was first necessary to assign a specific activity to each
sensor entry. For that purpose, the AR activity recognition algorithm specified in [408] was used.
This algorithm maps each one of the sensor events to a value from a predefined set of activity labels
in real-time, by applying an adaptive length sliding window to the raw sensor data stream. The
predefined set of activities include both ambulatory activities (such as mobility inside the home) and
specific Activities of Daily Living (ADL)s (e.g. cook, eat, sleep, or relax). This approach allows not
only to take into account the actual sensor events to identify the activity being performed but also
contextual information such as the activity performed in the previous time-window. The reliability
of this algorithm has been demonstrated in previous work, where accuracy greater than 98% was
achieved on 30 testbed smart homes using three-fold cross validation [408]. Figure 4.1 shows an
extract of an AR activity labeled sensor data stream.

Once the activity-level information was available, we computed 17 daily behaviour features for
each subject, explaining their daily sleep and mobility patterns, time spent in several specific ADLs
(e.g., cook, eat) and overall characteristics of their routines. A detailed list of the computed features
can be seen in Table 4.2.

The daily distance that the subjects were traveling inside their homes was estimated by creating
sensor mapping files based on the floor plan and sensor layout for each residence (see example in
Figure 4.2), where the x-y coordinates of the motion sensor’s positions were specified. Three of the
apartments lacked specific information about the positioning of the sensors and/or the distribution
within the houses. In those cases, it was first necessary to estimate the positions of the sensors,
which was done by considering the apartments to be of a similar shape to the rest and checking the
activation order of the sensors in the raw sensor data files. Once all sensor positioning information
was available, we computed the daily sum of the Euclidean distances between the consecutively
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Table 4.2: Day-level activity features included in the study

Type Day-level features
Duration of specific

activities (6 features)

Time spent per day in cooking, eating, relaxing, carrying out
personal hygiene activities, being out of home and nighttime
toileting activities

Sleep-related (2 features) The daily sleep duration and frequency
Mobility-related (2 features) The total number of activated sensors and the total distance

covered walking inside the apartment per day

Routine-related (7 features)
Complexity of the daily routine, number of total and of non-
repeated activities performed per day, maximum and minimum
inactivity times, day length and similarity with the previous day

Figure 4.2: Floor plan and sensor layout of one of the residences of the study

activated motion sensors in order to estimate the total walking distance traveled by the inhabitants.
Note that this approach only provides an approximation of the real covered distance, as it doesn’t
take into account the existence of walls or other obstacles between the sensors that must be avoided
or surrounded.

To compute daily-routine features, we first extracted the daily activity sequence from the AR-
labeled sensor data stream. We then encoded the daily activity sequence by replacing each activity
with a number from 1 to 12 (i.e., Sleep=1, Cook=2, Relax=3, ..., Other = 12). Shannon entropy
was used as the measure of complexity of the daily routine. To get this entropy value, we computed
the daily probability distribution (histogram) of the activity sequence (P) and we then applied the
Shannon entropy as shown in Equation 4.1,

Complexityroutine =
12∑

activity=1
Pactivity − log2Pactivity (4.1)

where Pactivity was the probability of a certain activity to happen during the day based on the actual
day’s histogram.

The same encoded activity-sequence was used to compare the daily routines of consecutive days.
For this purpose, we used an implementation of the “gestalt pattern matching” algorithm [409]
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available in Python as a “SequenceMatcher” function, which expresses the similarity of any two
sequences as a ratio between 0 and 1. This allowed us to measure the degree of similarity between
consecutive days. Finally, we checked the timestamps of the daily activity events and computed the
day-length as the time elapsed from the first to the last detected activity of the day. We believe that
the remaining features in Table 4.2 are self-explanatory.

Between-assessments behaviour statistics’ computation

At the end of the previous step, we had available a set of daily activity features for each subject.
We then applied the Clinical Assessment using Activity Behaviour (CAAB) algorithm, which was
introduced in [114], to the daily activity data in order to extract the behavioural statistics of each
between-assessment period. RStudio for R was the selected environment for this purpose.

In short, the CAAB algorithm was used to apply the following processing steps to the daily
behaviour data: 1) Take each subject’s between-assessment daily behaviour data (which was 6
months in length as assessments were performed twice a year), 2) Apply a log transform and a
Gaussian detrending to each time-series (behavioural variable), 3) Compute five summarizing time-
series statistics (variance, skewness, kurtosis, autocorrelation, and change) for each behavioural
feature in this period using a sliding window of length 7 days and 4) Compute the average of each
time-series statistic for the 6-month period and use the set of averages for the final predictions.

The resulting preprocessed dataset for further analysis was a collection of 85 (5 time-series
statistics of 17 behavioural features) biannual summary behaviour statistics for each of 29 older
adults who were living alone in their sensorized apartments for a period of 24.0± 13.68(SD) months.

Health assessment scores

Our goal is to create prediction models that map smart home-based behaviour features to health
assessment values that might capture AD symptoms. In this study, our target variables are the Arm
Curl and TUG mobility test scores, cognition assessment based on Digit-Cancellation test, RBANS
and PRMQ scores and subscores, as well as depression symptoms represented as GDS test-scores. All
these values were collected from the participants at the end of each corresponding 6-month period.

In order to take into account the inter-subject variability between time points, we standardized
the data by computing a Reliable Change Index (RCI) [385] that informs whether a participant’s
performance has suffered a significant change in an assessment score based on his/her own previous
performance that cannot be accounted by repeat testing or practice effects. The RCI discards changes
that might have appeared due to reasons other than an actual change in scores (such as measurement
unreliability) by applying a threshold to the scores’ differences. We looked for both reliable absolute
changes compared to baseline values (RCIbaseline) and compared to the previous assessment point
(RCIconsecutive) of each subject for all tests’ outputs.

In order to calculate the RCIs for the scores used herein, we gathered test-retest reliability (rscore)
and standard deviation (SDscore) that the tests have shown in their development cohorts and/or in
previous works, as shown in Table 4.1. Therefore, the RCIs for each subject were computed as:

RCIbaseline(i) = Scorei − Scorebaseline√
2SEm

(4.2)

RCIconsecutive(i) = Scorei − Scorei−1√
2SEm

(4.3)

where SEm or Standard Error of Measurement represents the expected variation of the observed
test scores due to measurement error and is computed as SEm = SDscore

√
1− rscore , rscore is the

test-retest reliability measuring the consistency of the test-scores over time, Scorei is the test score
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at assessment point i, Scorebaseline is the test score at the first/baseline assessment and Scorei−1 is
the test score at the previous assessment point.

There were few positive instances (data instances where a reliable change was observed) for some
of the assessment scores, resulting in highly imbalanced data. For the following analyses, we removed
from the study those tests which were extremely imbalanced (<5% of positive instances). We
distinguished the remaining tests as imbalanced (5%-30% of positive instances) and not-imbalanced
data (30%-50% of positive instances).

Additionally, we also considered the possibility of detecting improvement and decline in tests’
scores among consecutive assessment-points as a method to reduce inter-subject variability. In this
case, the difference between each consecutive assessment point was computed for each self-reported
test score of each subject. Every data instance with an improvement in the scores (>0) was considered
as a positive point whereas a decline in the performance of the skill being evaluated by tests (<0)
was labeled as a negative point.

4.2.3 Building cognition and mobility change prediction models

The preprocessed dataset resulting from the previous steps was analysed using Weka [387]. First, we
performed a correlation analysis between the mobility, cognition, and mood assessment scores and
the smart home behaviour data. For this purpose, we used four different regression models using all
behavioural features computed in the previous step for each one of the scores. The four models we
evaluated were Support Vector Regression (SVR) with a linear kernel, Linear Regression (LR), SVR
with a Radial Basis Function (RBF) kernel and k Nearest Neighbors (kNN) algorithms. We compared
the correlation coefficients (r) and Mean Absolute Error (MAE) of the models using 10-fold Cross
Validation (CV) approach. Corresponding pairwise random algorithms were built and evaluated in
our dataset following the same process. These random algorithms provided a basis of comparison
to ensure that performance results are not due to chance. The random algorithms were built using
a uniformly distributed random data-matrix of the same size as the real behavioural data while
respecting each variable’s data range as in the original dataset. A corrected paired t-test was used
to detect a significant improvement of smart home-based algorithms in comparison to the random
data algorithms. Adjusted p-values (*p<0.01, **p<0.001) were used to avoid Type 1 error when
checking for significance.

In order to analyse the types of behavioural features that are most correlated with each one of the
tests, we built and evaluated activity-specific models for the main test scores with 10-fold CV. The
behavioural features that were included in each one of the models are shown in Table 4.3. Again, we
searched for statistically significant improvement in comparison to pairwise random algorithms using
a corrected paired t-test and adjusted p-values (*p<0.01, **p<0.001).

Regarding RCI detection, we used different approaches for the imbalanced and not-imbalanced
datasets. First, not imbalanced datasets containing all behavioural features were reduced by means
of a Principal Component Analysis (PCA). Principal Component (PC)s explaining 95% of the
variability in the behaviour data were kept to create the reduced datasets. Support Vector Machines
(SVM), AdaBoost, Multilayer Perceptron (MLP) and Random Forests (RF) algorithms were trained
and validated following a 10-fold CV approach. Area under the ROC curve (ROCauc), area under
the Precision-Recall curve (PRauc), Fscore and sensitivity were selected as the metrics for model
evaluation. The combination of these metrics offers an excellent overview of both the models’
overall performance and the capability to detect the event of interest (the reliable change event),
and are especially suitable when the data distribution is skewed. A corrected paired t-test was used
to detect a significant improvement of smart home-based algorithms in comparison to the pairwise
random data algorithms, and an adjusted p-value (*p<0.0125) was used to avoid Type 1 error.

For the imbalanced datasets, a different approach was required. Common machine-learning
algorithms tend to create biased models towards the majority class when being applied to imbalanced
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Table 4.3: Task-specific grouping of the daily features

Group Day-level features

Daily-routine

Complexity of the daily routine, number of total activities
and number of non-repeated activities performed per day,
maximum and minimum inactivity times, day length and
similarity with the previous day

Mobility The total number of activated sensors and the total
distance covered walking inside the apartment per day

Outings Time spent per day in being out of home
Mobility & outings Mobility + Outings

Sleep The daily sleep duration and frequency
Overnight toileting Time spent per day in nighttime toileting activities
Overnight patterns Sleep + Overnight toileting

Cook & eat Time spent per day in cooking and eating

datasets, resulting in high-accuracies but, very low sensitivity. In most of the health-related machine
learning applications, the event in which we are more interested is the rare event or the minority class,
highlighting the need to use alternative methods to improve the detection of these minority events.
Two algorithmic approaches are tested in the current work to overcome this issue. The first one,
SMOTEBoost [373], is a method combining boosting techniques with SMOTE [389] oversampling
techniques. Whereas boosting aims at creating a “strong” classifier using a set of “weak” classifiers,
SMOTE is a technique to oversample the minority class by creating synthetic data instances and
thus, reduce class imbalance. SMOTEBoost combines these processes iteratively in order to improve
the sensitivity of the models without the overall accuracy being affected.

The second approach, the wrapper-based Rapidly Converging Gibbs sampler (wRACOG) [410],
is a minority-class oversampling algorithm based on Gibbs sampling. Unlike SmoteBOOST and
most of the minority-class oversampling techniques, wRACOG takes into account the underlying
probability distribution of the minority class and the interdependencies of the data attributes when
synthetically generating rare-event samples. This results in a better representation of the minority
class. Moreover, wRACOG learns the models iteratively, selecting from the Markov chain generated
by the Gibbs sampler the samples that have the highest probability of being misclassified by a learning
model (wrapper) at each step, often leading to better classification rates. wRACOG stops iterating
when there is no further improvement with respect to a chosen performance metric.

First, we built prediction models for imbalanced datasets using SMOTEBoost and kNN with k=5
as the “weak” classifier. A 3-fold CV was performed for validation purposes. Pairwise random algo-
rithms were also built using the previously mentioned random data and were validated for prediction
of our data following the same 3-fold CV process. Again, ROCauc, PRauc, Fscore and sensitivity
of the models were computed for models’ performance screening. McNemar’s test was applied to
check whether a significant improvement (for an adjusted p-value (*p<0.005)) was observed using
smart home data in the prediction of reliable change in the scores in comparison to random data
algorithms.

Next, we built the prediction models for the same imbalanced datasets following the second
approach, i.e. using the wRACOG algorithm. For this purpose, it was first necessary to discover
the interdependencies of the data attributes. In order to reduce the dimensionality of the data and
to make it easier to map the interdependencies between the attributes, we used the PCA-based
reduced datasets explaining the 95% of the data variance. Moreover, wRACOG assumes that the
data attribute values are categorical, so we first discretized all of the PCs into five uniform bins. We
then constructed the Bayesian tree of dependencies following the Chow-Liu algorithm in Weka. The
Chow-Liu algorithm [411] aims at constructing a maximal weighted spanning tree in a graph, allowing
each attribute to have exactly one parent on which its value depends. Thus, the interdependencies
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Figure 4.3: Chow-Liu tree for the PCA-reduced dataset

between the PCs were discovered. Figure 4.3 shows the Chow-Liu interdependency tree for the
PCA-reduced and discretized baseline dataset.

A kNN algorithm was used as the wrapper classifier and two different stop criteria for the iterative
process were tested: 1) First, as in many applications the detection of the reliable change might be
critical, we searched the maximum sensitivity of the models. 2) Second, for cases where the overall
prediction ability of the models might be more interesting, we used the maximized ROCauc metric
as the stop criteria for the algorithm. A 5-fold CV was performed this time for validation purposes
and ROCauc, PRauc, Fscore, and sensitivity of the models were evaluated. As in previous cases, in
order to check for statistically significant prediction of reliable change in the scores using smart home
data, we compared models’ outputs to those of their pairwise random algorithms by means of a
McNemar’s test. Adjusted p-value (*p<0.005) was used to avoid family-wise (Type 1) error rate.
The PCA-reduced random dataset was discretized following the same process as the actual smart
home dataset.

Finally, for the analysis on elderly’s skills’ improvement/decline detection from smart home data,
we used the PCA-based reduced dataset as in the previous case. SVM, AdaBoost, MLP and RF
algorithms were trained and validated following a 10-fold CV approach for the labels indicating an
improvement (positive instance) or a decline (negative instance) in older adults’ scores. ROCauc,
PRauc, and Fscore were computed for each one of the algorithms and compared to the ones of
their pairwise-random algorithms. As the detection of a decline in the performance of the skills
aimed at measuring with the self-reported test might be more important than the detection of an
improvement, we also computed the sensitivity of the algorithms towards these negative events. All
statistical significances were checked for adjusted p-values (*p<0.01, **p<0.001).
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Table 4.4: Regression results for the absolute test scores using all behavioural features for 10-
fold CV (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to the
corresponding pairwise random algorithm.)).

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Mobility
Arm Curl 0.17 5.62 0.06 4.99 0.29* 4.18 0.14 5.91

TUG 0.51** 3.89 0.36** 3.92 0.57** 3.03** 0.42** 3.72
Cognition

PRMQ 0.26* 9.28 0.20 8.42 0.31** 7.01 0.31* 8.40
Prospective Memory 0.30* 4.72 0.12 4.55 0.26* 3.72 0.28* 4.50

Retrospective Memory 0.15 5.15 0.14 5.17 0.39** 3.57* 0.27 4.53
RBANS 0.27 15.97 0.34** 15.50 0.40** 13.07 0.34** 15.74

Attention 0.40** 16.14 0.33** 17.12 0.31** 15.52 0.22 16.80
Delayed Memory 0.13 15.01 0.04 17.65 0.31* 11.19 0.31* 16.39

Immediate Memory 0.00 16.23 0.03 15.43 0.08 12.04 0.29** 14.52
Language 0.47** 10.77 0.35** 13.25 0.47** 10.10* 0.26* 12.41

Visuospatial 0.01 18.25 0.04 17.51 0.21* 12.28 0.18 15.12
Digit Cancel - Speed 0.22 35.05 0.17 46.10 0.18 26.88 0.23 31.26

Mood
GDS 0.02 2.79 0.02 2.84 0.21 1.67* 0.12 1.97

4.3 Validation

Absolute test scores’ prediction

Table 4.4 shows the results of the regressions for all the absolute test scores using all smart home
behavioral features. For mobility tests, whereas Arm Curl had low correlation with behavioral data,
TUG demonstrated a moderate to strong correlation with behavioral data. For the cognition over-
all scores and subscores, the measures showed mostly moderate correlations with behavioral data.
Exceptions included the visuospatial and immediate memory subscores of the RBANS test and the
digit cancellation test scores, which were found to correlate weakly. In fact, the digit cancellation
test did not show any statistically significant improvement compared to random models. Finally,
depression showed a weak correlation with the global set of smart home behavioral data with only
enough statistical significance for a reduced prediction error on the SVR RBF regression model.

Regressions based on specific activities, which can be seen in Table 4.5, showed some interesting
results. The Arm Curl mobility test showed weak but, statistically significant correlations only with
outings and cooking and eating features. In contrast, the TUG test showed significant moderate
correlations with daily routine, overnight toileting and the combination of overnight toileting and
sleep, as well as a significant weak correlation with cooking and eating features.

Regarding the self-reported cognition questionnaires, the global PRMQ score was moderately
associated with daily routine and to the overnight patterns, as well as weakly correlated to sleep
and overnight toileting. RBANS was moderately correlated with overnight patterns, whereas it was
also showing weak yet statistically significant correlations with mobility, daily routine, and overnight
toileting behaviors. Digit Cancellation processing speed was found to be moderately correlated to
sleep and overnight patterns, and weakly yet significantly to overnight toileting features.

Finally, for the geriatric depression assessment, we did not find any significant correlations but we
perceived a significant reduction of the MAE of the models for mobility alone, mobility and outings
and sleep feature-sets.



88 CHAPTER 4. VALIDATING THE SYSTEM TO PREDICT AD IN SMART HOMES

Table 4.5: Regression results for the absolute test scores by behavioural feature type for 10-fold
CV (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to the cor-
responding pairwise random algorithm.)).

(a) Mobility - Arm Curl

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.28 4.35 0.17 4.83 0.16 4.43 0.05 6.52
Mobility 0.09 4.93 0.12 4.71 0.02 4.61 0.18 5.80

Mobility & outings 0.14 4.58 0.11 5.01 0.11 4.42 0.15 5.79
Outings 0.28* 4.30 0.20 4.46 0.23 4.40 0.00 6.45

Sleep 0.17 4.99 0.11 4.74 0.00 4.57 0.17 5.77
Overnight patterns 0.03 4.81 0.16 4.63 0.10 4.65 0.04 6.51
Overnight toileting 0.10 4.67 0.14 4.66 0.06 4.57 0.12 7.21

Cook & eat 0.06 4.85 0.20 4.55 0.27* 4.32 0.08 6.19

(b) Mobility - TUG
SVR LR SVR RBF kNN

r MAE r MAE r MAE r MAE
Daily routine 0.35** 3.77 0.33* 3.97 0.37** 3.52* 0.32 3.77

Mobility 0.12 3.74 0.04 4.21 0.14 3.68 0.08 4.71
Mobility & outings 0.18 3.74 0.11 4.19 0.16 3.70 0.10 4.61

Outings 0.00 3.96 0.07 4.08 0.08 3.76 0.08 4.73
Sleep 0.30 3.66 0.30 3.75 0.25 3.71 0.13 4.53

Overnight patterns 0.33* 3.59 0.30 3.78 0.32** 3.53 0.19 4.21
Overnight toileting 0.26* 3.54* 0.30* 3.81 0.29* 3.50* 0.14 4.62

Cook & eat 0.16 3.78 0.24* 3.91 0.10 3.73 0.19 5.92

(c) Cognition - PRMQ

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.18 7.96 0.20 7.93 0.21 7.42 0.32* 8.15
Mobility 0.12 7.84 0.21 7.45 0.16 7.35 0.01 10.63

Mobility & outings 0.09 8.03 0.14 7.91 0.14 7.44 0.17 10.28
Outings 0.05 7.74 0.10 7.88 0.04 7.59 0.19 8.73

Sleep 0.28* 7.13 0.19 7.56 0.24 7.57 0.11 9.86
Overnight patterns 0.30* 7.37 0.27 7.42 0.29* 7.47 0.25 8.51
Overnight toileting 0.29* 7.18 0.23 7.43 0.25 7.54 0.28** 8.13

Cook & eat 0.11 7.65 0.07 7.92 0.09 7.54 0.01 12.29

(d) Cognition (Self-Report) - RBANS

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.13 15.64 0.13 16.43 0.25* 14.27 0.18 17.86
Mobility 0.18 14.51 0.23 14.59 0.26* 14.21 0.18 19.00

Mobility & outings 0.14 15.24 0.22 14.73 0.25 14.11 0.15 17.69
Outings 0.01 14.62 0.09 14.6 0.01 14.45 0.16 16.37

Sleep 0.20 14.36 0.20 14.72 0.24 14.12 0.19 17.12
Overnight patterns 0.30* 14.18 0.31* 13.46 0.31* 13.61 0.17 17.17
Overnight toileting 0.26* 13.66 0.22 13.91 0.25* 13.72* 0.03 18.61

Cook & eat 0.02 14.78 0.10 14.72 0.04 14.23 0.02 18.83
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Table 4.5: Regression results for the absolute test scores by behavioural feature type for 10-fold
CV (Statistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to the cor-
responding pairwise random algorithm.)).

(e) Cognition - Digit Cancellation

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.23 26.86 0.20 32.44 0.16 27.08 0.05 37.28
Mobility 0.07 27.77 0.07 29.04 0.08 27.33 0.03 36.70

Mobility & outings 0.00 29.35 0.13 31.26 0.05 27.62 0.13 33.43
Outings 0.12 28.94 0.11 30.22 0.06 27.55 0.02 36.84

Sleep 0.22 26.98 0.30* 26.44 0.20 26.92 0.04 37.91
Overnight patterns 0.22 28.52 0.31* 28.03 0.20 27.10 0.09 33.83
Overnight toileting 0.22 27.49 0.29* 27.68 0.14 27.12 0.17 31.81

Cook & eat 0.21 30.06 0.17 31.59 0.18 27.56 0.02 46.91

(f) Mood - GDS

SVR LR SVR RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.16 1.85 0.15 2.38 0.16 1.67 0.07 1.92
Mobility 0.12 1.72 0.25 1.9 0.19 1.66* 0.13 1.97

Mobility & outings 0.21 1.68* 0.24 1.95 0.25 1.62* 0.07 2.07
Outings 0.14 1.73 0.17 1.98 0.19 1.67 0.03 2.55

Sleep 0.26 1.67* 0.21 1.97 0.25 1.66* 0.08 2.07
Overnight patterns 0.19 1.77 0.13 2.07 0.22 1.67 0.06 2.05
Overnight toileting 0.02 1.76 0.08 1.91 0.09 1.74 0.14 2.01

Cook & eat 0.08 1.83 0.04 2.07 0.09 1.70 0.01 2.24
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Table 4.6: Reliable change detection of Arm Curl scores from baseline (*: Statistically significant
improvement (adjusted p<0.0125) in comparison to the corresponding pairwise random algorithm.)

ROCauc PRauc Fscore Sens.
RF 0.58 0.73* 0.77* 0.92*

SVM 0.59 0.69* 0.77* 0.89*
AdaBoost 0.64 0.76* 0.76* 0.84*

MLP 0.58 0.75* 0.69* 0.71*

RCI detection

The detection of reliable change on attention and language skills were excluded from our objectives
due to the uncertainty that their low test-retest reliability would introduce in the results obtained
for these labels. Global PRMQ and subscores, consecutive global RBANS scores, RBANS subscores
related to immediate memory, Digit cancellation, and the GDS test score were excluded from the
RCI detection analyses as they were capturing less than 5% of the reliable change instances. Among
the remaining labels, only the reliable change in Arm Curl score from baseline had enough positive
instances to be considered a balanced dataset. The remaining scores (RBANS, RBANS delayed
memory, RBANS visuospatial and TUG change from baseline, and RBANS delayed memory, RBANS
visuospatial and TUG change between consecutive assessments) were considered imbalanced and
processed as such.

Table 4.6 shows the results for Arm Curl reliable change detection from baseline using 37 PCs
explaining the 95% variability of the data. All four classifiers showed a statistically significant im-
provement in terms of PRauc, Fscore and sensitivity for the adjusted p-value, whereas ROCauc showed
reasonable results surpassing the 0.6 barrier.

Table 4.7 summarizes the results for the prediction models for the imbalanced datasets that are
sampled based on the SMOTEBoost algorithm. McNemar’s tests found significant improvement of
the smart home based prediction models compared to random classifiers for an adjusted p-value of
0.005 for the reliable change detection between consecutive assessments in mobility measured by the
TUG test. However, and even having used a method to overcome class-imbalance, models remain
yet biased and lacking sensitivity.

Table 4.8 shows the results of the RCI detection models based on the wRACOG algorithms
for the imbalanced datasets, using the sensitivity maximization as the criteria for the algorithm to
stop. Compared to previous SMOTEBoost based algorithms, the sensitivity of the models is highly
improved, which might be very interesting for some applications. However, some models’ ROCauc lie
below or near 0.5, while their PRauc show low values, which might be again an indicator of a biased
model, in this case, towards the minority class. McNemar’s tests for an adjusted p-value of 0.005
only found enough statistical significance to accept predictability of delayed memory skills between
consecutive assessment points.

Table 4.9 shows the results of the RCI detection models based on the wRACOG algorithms for
the imbalanced datasets, using the ROCauc metric as the stop criteria for the iterative algorithm.
The sensitivity of the models using this second approach is, overall, higher than the SMOTEBoost
based models and lower than the models presented in Table 4.8. Interestingly, in some cases, the
ROCauc and PRauc, as well as the Fscores, are greater than the ones obtained with the previous
approaches. This suggests a better suitability of the wRACOG based models maximizing ROCauc for
some of the RCI detection problems. After controlling for the p-value to reduce the family-type error
rate, only the model for the detection of reliable changes on consecutive Arm Curl mobility scores’
was showing a statistically significant prediction ability.
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Table 4.7: Reliable change detection of the imbalanced scores using SMOTEBoost (*: Statistically
significant improvement (adjusted p<0.005) in comparison to the corresponding pairwise random
algorithm.)

ROCauc PRauc Fscore Sens.
RBANSbaseline - total 0.52 0.05 0.00 0.00

RBANSbaseline - delayed memory 0.69 0.18 0.31 0.5
RBANSbaseline - visuospatial 0.45 0.09 0.08 0.08

TUGbaseline 0.48 0.17 0.06 0.11
Arm Curlconsecutive 0.40 0.18 0.13 0.12

RBANSconsecutive - delayed memory 0.40 0.03 0.00 0.00
RBANSconsecutive - visuospatial 0.68 0.20 0.35 0.50

TUGconsecutive 0.56* 0.22* 0.15* 0.50*

Table 4.8: Reliable change detection of the imbalanced scores using wRACOG and sensitivity
maximization as stop criteria for the algorithm (*: Statistically significant improvement (adjusted
p<0.005) in comparison to the corresponding pairwise random algorithm.)

ROCauc PRauc Fscore Sens.
RBANSbaseline - total 0.72 0.07 0.09 1.00

RBANSbaseline - delayed memory 0.63 0.10 0.13 0.60
RBANSbaseline - visuospatial 0.72 0.20 0.21 1.00

TUGbaseline 0.52 0.21 0.32 0.84
Arm Curlconsecutive 0.54 0.22 0.40 0.83

RBANSconsecutive - delayed memory 0.69* 0.06* 0.11* 0.80*
RBANSconsecutive - visuospatial 0.52 0.09 0.17 1.00

TUGconsecutive 0.48 0.18 0.35 0.96

Table 4.9: Reliable change detection of the imbalanced scores using wRACOG and ROCauc maximiza-
tion as stop criteria for the algorithm (*: Statistically significant improvement (adjusted p<0.005)
in comparison to the corresponding pairwise random algorithm.)

ROCauc PRauc Fscore Sens.
RBANSbaseline - total 0.77 0.07 0.17 1.00

RBANSbaseline - delayed memory 0.66 0.10 0.19 1.00
RBANSbaseline - visuospatial 0.64 0.14 0.20 0.23

TUGbaseline 0.51 0.17 0.39 0.6
Arm Curlconsecutive 0.62* 0.22* 0.49* 0.63*

RBANSconsecutive - delayed memory 0.67 0.03 0.08 1.00
RBANSconsecutive - visuospatial 0.53 0.09 0.19 0.80

TUGconsecutive 0.59 0.18 0.29 0.48
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Detection of improvement/decline in cognition and mobility skills

Table 4.10 shows the results of the mobility and cognition scores’ improvement and decline detec-
tion. After adjusting the p-value for reduced family-wise error rate (*p<0.01,**p<0.001), only the
detection of improvement and decline in mobility as measured by the Arm Curl test seemed to be
possible. A significant improvement both in ROCauc and PRauc was detected using RF and AdaBoost
classifiers in comparison to their pairwise random data classifiers, as well as a significant improvement
in Fscore and sensitivity of the RF based model.

4.4 Discussions and conclusion

The problem addressed in this work is not an easy task to solve. Our goal was to predict the multi-
modal symptoms commonly seen in AD from unobtrusively collected behavioral data inside older
adults’ apartments. Despite the complexity of the task, our results show that measures of cognition,
mobility, and depression are predictable using activity-labeled smart home data.

A regression analysis of the smart home-based behavior data with all the tests under analysis
has shown several moderate yet significant correlations. As expected, behavioral data were the most
correlated to mobility assessment scores, followed by cognitive skills, whereas the most difficult task
seems to be mood prediction. Nonetheless, almost all models, with the exception of cognition level
prediction based on Digit Cancellation scores, showed a significant improvement compared to models
based on random data.

The feature selection analysis has brought to light such valuable information as the predictability
of mobility scores from outing patterns, daily routine and cooking and eating patterns. In the specific
case of TUG score, there was a significant correlation with global overnight activities including bed-
to-toilet transitions. This finding suggests that individuals who take longer to complete the TUG
(indicative of slowed movement) tend to be more active at night. This is supported by the AD
literature that finds both impaired mobility and sleep disturbances to be related to dementia [412,413].
In [292], TUG showed significant correlations with mobility, outings, sleep and ADL (cook, eat,
relax and personal hygiene activities) features. In our case, we did not achieve enough statistical
significance for outings, mobility and sleep after adjusting the p-value for reduced family-wise error
rate, but we did for global daily routine patterns, which were not analysed previously, and for cooking
and eating activities, which likely reflect part of the ADLs of the previous work. Cognition was mainly
correlated to sleep and overnight patterns, but also to daily routine, mobility, and outings. These
results also agree with previous work [292], where correlations between total RBANS score and smart
home activity data were analysed and statistical significance for sleep, mobility, outings, and ADLs
was found. Also in agreement with these results, sleep and sleep-related disturbances have been
found to be related to cognitive impairment in other research [414,415], as well as time spent out of
home to cognitive state as measured by the Clinical Dementia Rating (CDR) scale [293]. Finally, yet
lacking statistical significance for the correlation scores, depression assessed with the GDS scale was
found to be predictable with mobility, outings and sleep features in terms of prediction models’ error.
This agrees with previous work [4] where correlation of GDS score with overall in-home mobility and
outing patterns was discovered. Thus, our results validate those reported in the literature, in addition
to analysing more in detail each aspect of mobility and cognition skills thanks to the use of more tests
and their subscores. Part of the data used for these correlation analyses overlaps with the data used
in a previous work (N=18) [292], so similar conclusions would be expected. Nonetheless, we have
reaffirmed and given more strength to most of those conclusions by including data collected over a
longer period and from more subjects (i.e. using a bigger sample size), as well as discovering new
correlations with daily routine patterns. In fact, the novel overall daily-routine features presented in
this paper have shown predictability both for mobility and cognition skills of the elderly.
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Table 4.10: Positive and negative fluctuations’ detection between consecutive assessment points (Sta-
tistically significant improvement (adjusted *p<0.01,**p<0.001) in comparison to the corresponding
pairwise random algorithm.)

RF SVM
ROCauc PRauc Fscore Sens. ROCauc PRauc Fscore Sens.

Mobility
Arm Curl 0.65** 0.54** 0.33* 0.28* 0.60 0.38 0.38 0.34
TUG 0.41 0.49 0.38 0.39 0.46 0.45 0.45 0.48

Cognition
PRMQ 0.54 0.47 0.29 0.25 0.56 0.38 0.39 0.35
Prospective Memory 0.58 0.44 0.26 0.21 0.50 0.31 0.19 0.16
Retrospective Memory 0.55 0.44 0.22 0.18 0.60 0.40 0.41 0.35
RBANS 0.38 0.46 0.31 0.29 0.39 0.44 0.21 0.19
Attention 0.54 0.55 0.39 0.35 0.56 0.49 0.44 0.39
Delayed Memory 0.58 0.53 0.34 0.27 0.48 0.40 0.18 0.15
Immediate Memory 0.50 0.51 0.37 0.34 0.43 0.42 0.20 0.18
Language 0.48 0.50 0.32 0.30 0.47 0.44 0.26 0.23
Visuospatial 0.48 0.51 0.32 0.30 0.57 0.52 0.43 0.39
Digit Cancellation - Speed 0.44 0.45 0.28 0.25 0.51 0.43 0.36 0.32

AdaBoost MLP
ROCauc PRauc Fscore Sens. ROCauc PRauc Fscore Sens.

Mobility
Arm Curl 0.59** 0.47** 0.36 0.36 0.57 0.46 0.42 0.47
TUG 0.45 0.49 0.46 0.50 0.51 0.57 0.46 0.49

Cognition
PRMQ 0.51 0.45 0.41 0.43 0.55 0.46 0.44 0.49
Prospective Memory 0.58 0.42 0.35 0.37 0.48 0.39 0.43 0.58
Retrospective Memory 0.56 0.46 0.38 0.37 0.55 0.45 0.43 0.54
RBANS 0.36 0.42 0.32 0.35 0.39 0.46 0.44 0.49
Attention 0.53 0.56 0.44 0.46 0.61 0.62 0.55 0.61
Delayed Memory 0.55 0.48 0.35 0.35 0.53 0.50 0.50 0.61
Immediate Memory 0.51 0.48 0.38 0.45 0.40 0.45 0.38 0.45
Language 0.51 0.49 0.31 0.33 0.45 0.50 0.40 0.45
Visuospatial 0.43 0.48 0.35 0.36 0.59 0.61 0.51 0.56
Digit Cancellation - Speed 0.43 0.43 0.32 0.34 0.44 0.48 0.41 0.47
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Regarding reliable change detection, we see that activity-labeled smart home data can actually
be used to build quite accurate models when a complete and balanced dataset is available. This is
the case for the Arm Curl test change from baseline, which has been seen to be predictable in a
quite accurate manner and with a high sensitivity. We have verified in all four models built for this
reliable change prediction that the use of smart-home activity data significantly contributes to the
detection of such events. Unfortunately, a balanced dataset was not available for all cases. Despite
that problem, by applying the SMOTEBoost technique to overcome class imbalance, we were able
to demonstrate that consecutive reliable change on mobility measured by TUG test is predictable
using smart-home activity labeled data. A McNemar’s test with an adjusted p-value has supported
this hypothesis, yet we are aware that the model lacks sensitivity to be considered a final model. The
use of the wRACOG algorithm has resulted in some models with better prediction characteristics:
improved sensitivity and ROCauc and PRauc-s and Fscores have been found in some cases. Changes
in consecutive Arm Curl and delayed memory scores have also shown enough statistical significance
compared to random classifiers in a McNemar’s test to be considered reliably predictable from smart
home data. Now that we know that behavioral data can be used to at least automatically assess
changes in mobility and memory skills, we can keep collecting more longitudinal data to create better
models in the future. This might also result in the discovery of other significant associations. Note
that these results were also achieved by using all the behavioral features, whereas a feature-selection
process can also help in improving them. Also, we used a kNN algorithm as the wrapper model for
the wRACOG approach, but other algorithms can also be considered and might improve the results.
Maximization of PRauc and of Fscores could also be tested as stop criteria for the iterative process,
possibly leading to different conclusions.

The analysis on the detection of positive and negative changes in the various cognitive and
mobility skills has demonstrated the possibility of predicting a decline or an improvement in the
mobility of older adults’ skills’ as measured by the Arm Curl test. This not only confirms the results
of the previous RCI analysis, where we have seen that reliable changes in the Arm Curl tests were
detectable by smart home activity-labeled data but also adds value to the results suggesting that
the direction of the change is also predictable. Literature also supports the idea of the relationship
between Arm Curl test scores and ADLs [400]. This can be extremely helpful not only to monitor
the progress of a disorder like dementia but also to, for example, closely follow-up subjects who are
undergoing rehabilitation. None of the other tests have shown enough evidence of predictability after
adjusting the significance level. This highlights the difficulty of the task which might be due to several
reasons. On one hand, in this case, we were considering all fluctuations as labels (either positive
or negative) without considering their magnitude or without taking into account their reliability (i.e.
not only reliable changes were considered but all changes). This might have included “noise” in the
dataset by considering changes that might have appeared due to reasons other than an actual change
in the skills (such as low reliability on tests), making the classification task more difficult. On the
other hand, the time-series statistics that we’re extracting from the smart home behavior data are
not necessarily reflecting a positive or negative change in behavior, but an absolute change.

Summing up, this work has demonstrated the possibility of predicting mobility, cognitive, and
mood-related symptoms from unobtrusively collected in-home behavioral data. We believe that the
results shown herein are of high relevance, as they suggest the possibility of implementing a system
that could bring huge benefits to our aging society which is suffering increasing AD incidence. The
models shown in this paper are early models aimed at demonstrating the feasibility of such a system
and providing insight into the behavioral features that might be used for this purpose.
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Summary

� Common AD symptoms of mobility, cognition and mood decline can be predicted from changes
in smart home behavior data.

� Mobility symptoms are the most predictable, followed by cognition and mood.

� Mobility was found to be correlated to outing patterns, daily routine, cooking and eating
patterns and global overnight activities. Cognition showed correlations with sleep and overnight
patterns, daily routine, mobility and outings. Depression levels were found to be related to
mobility, outings and sleep.

� A reliable change in mobility and memory skills can be detected from smart home behavior
data, as well as the improvement and decline of mobility skills as measured by the Arm Curl
test.
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This chapter presents a multidomain methodology for the early detection of disorders based on
a cross-case analysis of the two scenarios analysed in this PhD thesis: detection of stress in smart
offices (Chapter 3) and diagnosis of Alzheimer’s Disease (AD) in smart home environments (Chapter
4). Therefore, it contributes to the State of the Art on the current methodologies for the early
detection of disorders presented in Section 2.5. After a brief introduction of the context in Section
5.1, the procedure for the cross-case analysis is presented (see Section 5.2). Based on this analysis,
a global methodological approach for the early detection of disorders is abstracted and presented in
Section 5.3, and the strengths, weaknesses and limitations of the proposed methodology are exposed.
Finally, in Section 5.4, conclusions about the work are drawn.

5.1 Introduction

There are many disorders that besides affecting patients’ health status, directly alter users’ behaviour,
for instance, AD, stress, Attention Deficit Hyperactivity Disorder or Parkinson’s Disease. People
suffering such a disorder are not aware of their situation, and usually, the problem is identified
by relatives or co-workers who notice behavioural shifts. However, when these changes become
noticeable, it is often too late, when the disorder has progressed too much and irreversible harm
has been caused. Early detection of these disorders allows one to take measures to prevent them
completely or to slow down their progress, reducing the consequent health-related damages.

In the last decade, thanks to the emergence of ubiquitous computing paradigm and the interaction
of users with many electronic devices, peoples’ activities can be unobtrusively monitored. Based on
Ambient Intelligence (AmI) technology and this monitoring, a system that detects users’ frequent
behaviours and shifts has been developed [3] and validated with AD patients. Nonetheless, the
possibility to use these systems for the early detection of disorders is currently under research. In
this sense, there are different EU projects (e.g. i-Prognosis [11] for the early detection of Parkinson’s
disease, ICT4Life [12] aimed at the early detection of anomalous behaviour related to Alzheimer’s,
Parkinson’s and other dementias or Brainview [13], to early detect signs of autism and attention
deficit hyperactivity disorder in babies) aligned with this objective. In turn, the miniaturization of
technology has allowed some of the physiological signals to be monitored in a totally transparent way
thanks to the development of wearables and E-textiles [416].

In order to early detect this kind of disorders from unobtrusively collected physiological and be-
havioural data it is first necessary to analyse and understand the underlying relationships between the
progress of the disorders and their behavioural and physiological symptoms. Once enough knowledge
gained, Artificial Intelligence (AI) and machine learning techniques can be applied to the gathered
data to construct robust disease detection and monitoring systems. This would lead to developing
ubiquitous and unobtrusive monitoring systems for specific symptoms of disorders, resulting in their
early detection.

Many efforts have been done in the recent years to apply AI and machine learning techniques to the
detection of several disorders. Nevertheless, most of the disease-related datasets show some common
particularities (e.g. missing data, repeated-measures data, inter-subject variability, imbalanced data
distributions, ...) that make the effort of pattern discovery and prediction model building more
complicated than in other research areas. However, there are some other characteristics that make
each disease-related dataset a particular problem. The awareness of all these shared characteristics,
as well as of the variability among specific cases, would allow to define a robust global methodology
able to deal with a big number of disorders.

Current literature in early disorders’ detection is mostly based on the predictability analyses of
specific diseases, without taking into account the similarities and analogies that can be found among
a wide variety of disorders, as, notably, the fact that they provoke behavioural shifts. In this sense,
we have spotted a gap in the current literature, where a global methodology for the early detection of
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disorders based on unobtrusively collected physiological and/or behavioural data is required. People
suffering from many different disorders can gain from such a methodology, with the consequent
benefits for the whole society, by means of a reduced number of ill people, reduced health-care costs,
reduced dependability and an increase in the global welfare.

In this chapter, we aim at presenting a novel screening methodology for the early detection of
disorders based on physiological and behavioural shifts. The proposed methodology, bridges the
gap between the traditional (yet currently used) screening methodology for the early detection of
disorders and the use of AmI techniques. For this purpose, an AmI-based test-method development
guideline which relies on the physiological and/or behavioural changes provoked by the disorders and
which is not specific to any disorder is specified.

The suggested screening method is the result of a cross-case analysis of two scenarios: stress
in smart offices and AD in smart home environments. Individual validation of the methodology on
each case study has given promising results. The thorough analysis of the similarities and differences
of the characteristics of each individual case-study has set the path to ask global questions and to
abstract the underlying methodology for its use in multiple applications.

The remaining of the chapter is structured as follows. In Section 5.2, the method followed for
the cross-case analysis is exposed. The chapter follows in Section 5.3 by explaining the answers
obtained for the Research Question (RQ)s. For that purpose, it first provides a summary (Subsection
5.3.1) and a comparative analysis of the two case studies (see Subsections 5.3.2 and 5.3.3), followed
by the definition of the steps for a global methodology (Subsection 5.3.4) and the strengths and
weaknesses (Subsections 5.3.5 and 5.3.6) of the new approach. Methodological and technological
issues and challenges are also reviewed in Subsection 5.3.7. The chapter concludes in Section 5.4 by
summarizing the inferred ideas and suggesting new lines for future work.

5.2 Definition of the cross-case analysis procedure

After reviewing the wide variety of disorders that provoke unobtrusively measurable physiological
and/or behavioural shifts, we selected two case studies for our research: occupational stress in
knowledge workers and AD in older adults living alone. The main reasons to select these scenarios
were, first, that both cases are relatively easy to bound spatially: whereas knowledge workers usually
work in office environments, older adults often spend most of the time at home. This makes moni-
toring easier. Second, the monitoring of workplace and home is of particular interest as these sites
are the ones where people usually spend most of their time. This facilitates the use of the deployed
system for other future applications. Finally, the implication of such disparate scenarios allows to
validate a global methodology which is not specific to any disorder or environment an thus, will be
useful for a wide variety of disorders.

First, the most important ongoing research for both cases under study was reviewed. This allowed
us to spot the main characteristics of health-related datasets, namely, the temporal nature of the
data, high presence of missing data, imbalanced data distributions or subject-dependence.

Based on these particularities of health-related data, a first proposal of the algorithmic approach
for the use of unobtrusively collected physiological and behavioural data for the stress detection case
study was done. The proposed algorithm was aware of the common characteristics of health-related
data: temporal nature of the data was taken into account and a sliding window was used to extract
time-series statistics describing change over time. Methods to deal with missing data and imbalanced
datasets were also considered, as well as inter-subject standardization methods. The methodology
was first validated in that particular scenario. The validation was then performed for the second
scenario on AD detection where the required changes and refinements were done. Case-specific
reports can be found in Chapters 3 and 4.

Based on these two case-studies, a cross-case analysis was performed. The goal of this analysis
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was to answer the following RQs:

I RQ 1: Was the proposed approach successful (i.e. were statistically significant correlations
found following the proposed approach) in both scenarios?

I RQ 2: What are the similarities that can be found between the two cases?

I RQ 3: What differences are there between the two cases?

I RQ 4: Based on RQ2 and RQ3, how would be a global set of steps to follow for the early
detection of ‘any’ disorder defined?

I RQ 5: Which are the strengths of the proposed methodology?

I RQ 6: Which are the weaknesses of the methodology?

I RQ 7: Are there any methodological and/or technological challenges that prevent the imme-
diate widespread deployment and application of the proposed methodology?

After reviewing the results of the two case-studies, the required comparisons were made and
similarities and differences between the two cases were discovered, answering the proposed RQs.
Consequently, general conclusions about the steps to follow for the detection of any disorder from
unobtrusively collected physiological and/or behavioural data were drawn, as well as the strengths,
weaknesses and main issues that the methodology implies.

To bound the cross-case study, which could otherwise be extended indefinitely, the criteria to
use to perform the analysis has been defined (see Table 5.1). These criteria include disease-related
characteristics, as well as algorithmic and result-related characteristics.

5.3 Results of the cross-case analysis

This section exposes the answers given to the RQs defined in the previous section (Section 5.2).

5.3.1 Summary of the case-studies

This section aims at responding to RQ 1. For that purpose, we offer an overview and summary of
the two case studies considered for this work by reviewing the comparison criteria listed in Table 5.1.

Stress detection in smart office environments

The first case study considered for this work was the early detection of occupational stress. In this
case, office workers were identified as the risk group, and therefore, the office was selected as moni-
toring environment. Short-term stress (i.e. acute stress) was analysed in the study, which is reversible
if timely-action is taken. Co-workers were identified as people who usually detect behavioural shifts
in the worker suffering from stress, while managers were spotted as responsible for taking-action
following specialists’ recommendations along with the affected themselves.

Physiological and behavioural data were collected through minimally-obtrusive body-sensors,
computer logging, a Kinect 3D sensor and video recordings from a camera. A facial expression
recognition algorithm was applied to the video recordings before the extraction of all physiological
and behavioural minute-level features. The physiological signals were also preprocessed following
their specific requirements. Five time-series statistics were computed by means of a 5-minute length
sliding window, and condition-level statistics’ averages were computed. Missing data were imputed
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with features’ mean values where necessary. A manual feature selection analysis was performed, as
well as an investigation on the effect of self-reported scores’ standardization. A variety of machine
learning algorithms were tested for general purposes and SMOTEBoost [373] and RUSBoost [374]
algorithms were used for imbalanced classification problems.

Results were validated by means of cross-validation, and significant correlations were found for
the target labels. Nonetheless, results differed depending on the label, algorithm or on the use or
not of standardization methods. For more details in the work, the reader is referred to Chapter 3.

AD detection in smart homes

The second case study under analysis herein, was dementia due to AD. Older adults were spotted
as the risk group for this disease, and home environments were selected as the best scenario for this
group to be monitored. Although the speed of progress depends on each individual case, AD evolves
relatively slowly over time and is not reversible. Family and relatives are usually the ones noticing
behavioural shifts on people suffering it, and following the recommendations of a specialist, they
will also be the responsible along with a caretaker to ensure the well-being of the affected as far as
possible.

For this case-study, behaviour was monitored by means of environmental sensors embedded in
a smart-home environment and interpreted using an Activity Recognition [408] algorithm. Daily
behaviour patterns were extracted, and five time-series statistics were computed by means of a
week-length sliding window. Data instances with missing self-assessments were removed from the
resulting dataset, and manual feature selection and standardization analysis were performed. Several
well-known machine-learning algorithms were used to build the prediction models, and SMOTEBoost
and wRACOG [410] algorithms were tested to overcome the class-imbalance issue.

Results were validated through cross-validation, and even though significant correlations and
predictability were found for some models, overall, the lack of sensitivity was highlighted.

The reader can find the detailed explanation of this work in Chapter 4.
Table 5.1 summarizes the two case studies under analysis in this work from several points of view.

First, a comparison of the disorders themselves is given, followed by the methodological comparison
of the two case studies. Finally, a comparison of the results obtained in the two cases is shown.

5.3.2 Similarities between the case-studies

After comparing the two case-studies under analysis, we have listed the most notorious common
characteristics of both scenarios, and therefore, considered to be generalizable for the whole set of
disorders that provoke unobtrusively measurable physiological and/or behavioural changes. Following,
these shared characteristics for the two cases are shown classified in terms of disorder, approach and
results:

I Disorder
Naturally, no similarities have been spotted in terms of disorder’s characteristics between the
two cases. Therefore, we conclude that disorder-related traits depend on each specific case.

I Algorithmic approach

– The presence of missing data. This is a very common problem when data is being
collected from multiple sources and non-stop, as any sensor can fail at some point.
Fortunately, this was not a big deal in our two case studies. In the stress-detection
work, we had low rates of missing data spread across almost all variables, which were
replaced by the mean value. Nonetheless, we realized that the variables with the biggest
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Table 5.1: Comparison of the two case-studies under analysis in terms of disorders’ characteristics,
the analysed approach and the results obtained.

Comparison criteria Stress AD

Disorder

Risk group Office workers Older adults
Environment Office Home
Time
granularity Short-term Long-term
Reversibility Yes No

Stakeholders Oneself, co-workers, managers,
specialist

Oneself, family & relatives,
caretaker, specialist

Algorithmic
approach

Ground-truth

Valence, Arousal and Dominance
measured by the SAM test, Stress
measured by a visual analog scale,

Mental Effort measured by the
RSME test and task-load

measured by the NasaTLX test.

Mobility measured by the Arm
Curl and TUG tests, cognition
level measured by the PRMQ,
RBANS and Digit Cancel tests

and Mood measured by the GDS
scale.

Data-source Body-sensors, computer, camera,
Kinect 3D

Environmental smart-home
sensors

Unobtrusivity 3 3

Raw-data
interpretation

Physiological-data event
extraction, facial expression

recognition
Activity recognition

Temporal
windows

-Data aggregation: 1 minute,
-Sliding window: 5 minutes,

-Summarizing: length of
simulated condition

-Data aggregation: 1 day,
-Sliding window: 1 week,
-Summarizing: length of

between assessment period (6
months)

Temporal
statistics

Variance, skew, kurtosis,
autocorrelation, change

Variance, skew, kurtosis,
autocorrelation, change

Missing data Mean imputation Remove data instances with
missing labels

Feature selection Manual, per-type Manual, per-type

Standardization Min-max, Reliable Change
Index (RCI), others RCI

Machine-learning
algorithms

kNN, SVM, LR, NB, AdaBoost,
C4.5, MLP, Multiclass logistic

kNN, SVM, LR, RF, AdaBoost,
MLP

Algorithms for
imbalanced
datasets

SMOTEBoost, RUSBoost SMOTEBoost, wRACOG

Results

Validation Cross-validation. Cross-validation.
Existing

correlations
3 3

Feature selection
Computer-use patterns and body
posture & movements show the

highest predictability

-Mobility prediction: Outing
patterns, daily routine, cooking &

eating and overnight patterns
-Cognition prediction: sleep &

overnight patterns, daily routine,
mobility & outings -Depression

prediction: mobility, outings and
sleep for depression prediction

Models’
performance

Label-dependent, but even strong
correlations were found

Significant correlations were
found, but final RCI detection

models were still lacking
sensitivity.
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missing data amount were the ones extracted from body sensors (yet remaining below
the 30%), possibly indicating some failure in the physiological data acquisition during
some experiment. A sensor-failure might be critical for some applications and must,
therefore, be detected on time. In the second case study, we might have had some
missing behavioural data, but as our starting point was a sensor log file where a sensor
failure would be translated into a missing entry line, we could not identify them. The
result of such a failure will be a misinterpretation of the performed activities by the activity
recognition algorithm, and thus, a misinterpretation of the cognitive and mobility skills of
the user. Therefore, it would be interesting to implement a sensor-failure detection system
before the data acquisition process. Nevertheless, we did have some data instances with
missing self-assessment scores for this case study, which were removed from the model
building step.

– Importance of feature selection: Naturally, not all measurements and extracted fea-
tures contribute equally to the prediction of the objective labels. The feature analysis
performed in the two case studies confirmed this statement, as some groups of features
were more correlated to stress and mental workload assessments in the first case, as were
for the mobility, cognition and mood assessments in the second case. This highlights
the importance of the feature selection analysis. In our case-studies, we performed this
analysis by manually separating features of interest depending on their nature. This has
contributed to gain insight and knowledge of each specific disorder. Nonetheless, the
use of automatic feature selection algorithms might help in selecting the best subset of
features for the prediction of the disorder under study. A reduced set of selected features
can benefit the final system in many aspects: on one hand, this can reduce the number
of sensors or monitoring devices to be deployed in the selected environment, gaining in
aspects of unobtrusiveness and cost. On the other hand, the final prediction models can
see their accuracy enhanced, as redundant measurements only contribute to overfit the
developed models reducing their effectiveness for new cases. Finally, the resulting models
will also be computationally less expensive, as they will pose fewer problems of storage
and on-line processing, and will require less time to be built and used. Related to this,
the importance of the sensor placement must be remarked. No feature selection will be
efficient enough if the sensors used to collect the data are not placed in strategic locations
and therefore are not collecting useful data.

– Imbalanced datasets: In the two cases under study, we were facing a class-imbalance
problem. This is something usual in health-related machine learning problems, as con-
siderable health changes are rare events. Nevertheless, they are most of the time the
events of interest. Traditional machine learning algorithms tend to give biased results
towards the majority class when they are trained with imbalanced data, resulting in high
accuracies but very low or null sensitivity towards the events of interest. This results
in the need to use specific algorithms for this type of data. In our case studies, we
made use of three different algorithms to overcome class imbalance: SMOTEBoost [373]
based on Synthetic Minority Over-sampling Technique (SMOTE), RUSBoost [374] based
on Random Undersampling and wRACOG [410], a Gibbs sampling-based oversampling
technique. Whereas SMOTEBoost and RUSBoost were used for the first case study, the
reduced sample size in the second case study was not the most suitable for the application
of an undersampling method such as RUSBoost, so the wRACOG algorithm was tested
instead. Overall, the sensitivity of the models was improved by using these algorithms.

– Inter-subject variability: The physiological and behavioural data required by the sys-
tem under proposal might be highly subject dependent. And not only the sensor-collected
data but also the self-reported questionnaires that might be used as ground truth are.
The data processing approach proposed herein considers temporal shifts on the gathered
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sensor-data instead of actual data values, which might help in reducing the inter-subject
variability that might bias the models. Furthermore, we have been standardizing the dif-
ferent objective labels in both cases in order to reduce this type of variability. In both
cases but, especially in the stress-detection case-study, we have noticed the benefits of
performing label standardization. Although in this case it is has not been prioritized, it
would also have been interesting to see an analysis on the effect of the inter-subject vari-
ability by performing a leave one subject out cross validation (LOSOCV). It is something
to consider for future applications.

I Results

– The feasibility of the proposed approach: After comparing the two case studies, the
hypothesis on the feasibility of such a system has been affirmed. In both scenarios,
physiological and/or behavioural measurements that could be performed in a transparent
way for the user were spotted, as well as significant correlations between the unobtru-
sively collected and processed data with the corresponding objective or self-reported labels
found.

– Low-cost systems: The hardware used in both case studies have been sensors and devices
of relatively low cost and wide availability. For the first scenario, a personal computer,
a Kinect 3D sensor, a webcam and Electrocardiogram (ECG) and Electrodermal Activity
(EDA) body sensors were used whereas for the second, only proximity/presence sensors
and monitoring of some specific home appliances and furniture were used. Despite the
simplicity of the selected monitoring hardware, satisfactory results have been obtained in
both cases, as this has been compensated by means of the algorithmic approach.

– Validation from a specialist is always needed: After validating our models by means
of a cross-validation approach, we have seen that a prediction accuracy of 100% is too
far for the method to be considered a definitive diagnostic test. Therefore, the proposed
approach must be considered as an early alarming system so that the disease specialist
can be aware and can evaluate the situation to take the necessary measures. Such
an automatic disease detection system should never be considered as absolute truth or
definite diagnostic test.

5.3.3 Differences between the case-studies

After comparing the two individual case studies under analysis, we spotted some differences that
may be generalizable to the global set of disorders that provoke behavioural shifts. The following
list summarizes the terms in which the proposed methodology might vary for its use in a general
manner, and answers, therefore, to the RQ3:

I Disorder

– The risk group: Each disorder under analysis will have one or more specific risk groups
that will differ between disorders. In our first case study, office workers were in the
spotlight, while older adults living alone were in the second case study. This risk group
will have to be specified by a disease specialist and will have to be considered to decide
the details of the system deployment, such as the best environment for the purpose, or
the most suitable sensor elements to use.

– The environment: The environment in which the system should be deployed may vary
depending on the disorder that is aimed at detecting. The selected environment for the
two scenarios under analysis in the current work differed: whereas a smart office was
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used for early stress detection, a smart home was the preferred choice for people at risk
of dementia. These choices meet the requirements just mentioned: knowledge workers
spend most of their time in their office, as older adults with a slight cognition decline do
at their home. Similarly, occupational stress is caused and therefore most manifested in
office environments, while AD symptoms are manifested at home. Some interesting AD
symptoms would also be acquired from the monitoring of the external trips of the older
adults (e.g. wandering) but as it is not a limited space, the monitoring of the behaviour
patterns should be performed otherwise (e.g. by means of smartphones).

– Time granularity: Each disorder has its characteristic rate of progress. Although this
may vary from subject to subject, it will remain in the order of magnitude corresponding
to the disease. Consequently, whereas progress of some disorders need to be monitored
in terms of seconds, for others, it will suffice to acquire data daily or even monthly. Not
only that but also, this time granularity will affect on the sliding window-length to select
for the algorithmic approach.

– The reversibility of the disease: The early detection of a disorder will not bring the same
consequences in all cases. While some disorders can only be prevented from worsening
by the provision of the corresponding treatment, others are treatable and reversible, so
an early disorder can completely cure the disorder. In our case studies, the latter was
the case for stress. Stress can be cured and prevented from making irreversible damages
when it is detected and treated early. On the contrary, AD can not yet be cured, but
its symptoms can be alleviated and the progress slowed down. Whether the disease is
reversible or not, the benefits of the early detection of the disorder must be clear before
starting with the process presented herein.

– Stakeholders: People who take part in the development of such a methodology will
slightly differ between cases. Whereas there will always be a patient or a target person
to be monitored and a disease-specialist who will supervise the whole process, people
who interact with the target person in the selected scenario and consequently with the
monitoring process vary among cases. In our first case study, the patients interact mostly
with their co-workers and these are the ones that best see the alarming behavioural shifts
suffered by the patient. In addition to the workers themselves, their managers must also
be aware of the system and situation, to take the required measures. In the second
scenario, family and relatives are the ones who can best evaluate the daily functioning of
the patients, and both family or an external caretaker may appear in the scene as people
in charge of the wellbeing of the patient.

I Algorithmic approach

– The ground truth: In order to train supervised prediction models, data to be used as
ground truth must be collected. This ground truth must reliably measure the symptoms
of the specific disease under study. In our two case studies we were using well known
self-reported tests for this purpose, which were designed specifically to detect symptoms
related to each disease: whereas stress and mental workload levels were measured by the
Self Assessment Manikin (SAM) [377], Rating Scale Mental Effort (RSME) [378], NASA
Task Load Index (NasaTLX) [379] and a visual analog scale, AD symptoms were measured
by means of the Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS) [397], the Prospective and Retrospective Memory Questionnaire (PRMQ) [398],
a Digit Cancel test, Timed Up and Go (TUG) [399], Arm Curl [400] and the Geriatric
Depression Scale - Short Form (GDS-15) [401].

– The source of the collected data: Disease-related data can be collected from a wide
variety of sensors, starting from wearable devices that continuously collect physiological
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data to sensors embedded in a multitude of different points in the environment, which
can be related to a great collection of diverse activities. Each one of the signals must be
processed accordingly to create useful data for further use, i.e. applying signal-specific
feature extraction and activity-recognition algorithms. In the case-studies under analysis,
we have seen that unobtrusive measurement of behaviour was feasible in both cases, but
this was not true for the monitoring of physiological signals. The physiological signals
of interest in AD detection are currently measured by means of expensive tests (e.g.
brain imaging) or invasive methods (e.g. Cerebrospinal Fluid (CSF) extraction) in health
centers, or by obtrusive (e.g. Electroencephalogram (EEG) cap) and therefore not useful
technologies for the daily use. On the contrary, some signals such as ECGs or EDAs can
already be unobtrusively measured thanks to wearable technology. Therefore, the types
of signals to be used may vary among different cases, and an analysis on which ones to
select must be performed for every new case.

– Interpretation of raw data: Data coming from different sources must be preprocessed
and treated differently. It is very unlikely any collected signal to be usable in its raw
form. All physiological and behavioural data used in the two cases under study were first
interpreted and represented in a feature form. The way to make this interpretation or
translation to a feature form differ between data types. Physiological signals must usu-
ally be preprocessed to extract events of interest (e.g. RR intervals from ECGs or EDRs
from EDAs) so that they can be derived in new variables and aggregated with the de-
sired frequency. Video recordings might require the use of specific processing algorithms
depending on our objective, such as FaceReader [380], for facial expression extraction.
Sensors embedded in the environment usually require the use of activity recognition algo-
rithms adapted for each specific case, in order to translate sensor activation/deactivation
events on human interpretable behaviour or activity patterns. These can then be used
to derive new information or features of interest or can be aggregated per time periods.
Other computer or smartphone based behaviour measurements might luckily be given in
a more interpretable way. Otherwise, the specific algorithms to convert raw data to useful
data for each case must be developed.

– Temporal-windows’ length: As previously mentioned, the progress rate of the disor-
ders will affect the length of the temporal windows used for the computation of change
statistics. Regarding our two case studies, we could say that stress (or acute stress) is
a disorder that varies in short periods of time (even during the day) whereas AD is a
disorder that progresses over the years. Usually, the time-varying nature of the data and
of the disorders is ignored, and approaches for the prediction of disorders are built using
only instantaneous snapshots of the data. Instead, we considered and applied in the two
scenarios a methodology that is aware of the temporal nature of this data and which
exploits statistics describing behavioural or physiological shifts over time instead of single
data snapshots. The time windows to compute these statistics were chosen based on the
disorders’ progression pace and a coherent empirical analysis: the window-lengths for the
first case were of the order of minutes, whereas for the second case were of the order
of days, weeks and months. The AD methodology has been found to be effective in the
two scenarios, and as all disorders share this characteristic, it can be considered a good
approach for generalization.

– Performance of machine-learning algorithms: A wide variety of supervised machine-
learning algorithms have been developed in recent years [388]. Literature shows that it
is not possible to select a single best algorithm for every case: their performance varies
depending on the application. The same conclusion can be drawn from our cross-case
analysis. Whereas in the first case-study even a Näıve Bayes was doing a good job,
the second case-study showed much better results by means of linear and radial Support
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Vector Regression (SVR), Random Forests (RF) or AdaBoost. This means that for each
new specific case, a preliminary analysis on the performance of the different algorithms
before fitting the final models must be performed. A good starting point would be
the application of Support Vector Machines (SVM) or AdaBoost algorithms as they are
robust and often one of the best-performing methods across different applications areas.
However, care must be taken to avoid overfitting especially when AdaBoost is being used.

I Results

– Accuracies of the final models: The detection and monitoring of each specific disease
is by itself an individual problem and an individual research area. Each disorder has its
own characteristics and poses different levels of difficulties on their diagnosis even for
the traditional medicine and for the best specialists. Therefore, we can not expect the
methodology proposed herein to perform equally for all cases. From the comparison of
the two case-studies we might be tempted to affirm that stress detection is more feasible
with the proposed method: but this might not be true. We have to acknowledge that
in order to train our models, we have been considering some variables as ground truth.
In the first case of stress detection, we had available a set of self-reported questionnaire
ratings, as well as some objective variables indicating the conditions that the subjects were
undergoing every moment. In the second case, we only had available a set of self-reported
questionnaire scores, which were being reported by a group of users at risk of or even
suffering some cognitive decline. The considerable difference in the prediction abilities
might not be due to the lack of efficiency of the proposed model or the behavioural data
of the users, but due to the unreliability or subjectivity of the ground truth. For the
application of this methodology in a new case study, it would be interesting to use, as far
as possible, a reliable and objectively measured variable (e.g. resulting from a specialist
or some traditional diagnostic method) as ground truth to build efficient and well-trained
models.

5.3.4 Methodology for the early detection of disorders

Based on the answers given to RQ2 and RQ3, we have abstracted the underlying traits of the
methodology and we have defined a generalizable path to follow towards the detection of a new
disorder from physiological and/or behavioural shifts. This section answers the RQ4, by defining the
steps to follow and the things to take into account for the application of our methodology to a new
case-study.

The proposed methodology for the early detection of the disorders is a four-step process, which
has to be applied individually for every disorder under research: First, an important step where a
thorough analysis of the disorder under research will be performed is proposed, which will lead to the
definition of the iterative process. The second step is about the setting-up of the environment, where
knowledge from the first analysis will be used to define the monitoring environment. A learning step
where data about the disorder will be gathered and where prediction models for the next step will be
built follows. Finally, in the screening step, the developed models will be used for suspicious changes’
detection purposes. The process can be seen in Figure 5.1.

1. Perform preliminary analysis
Before starting with anything, it will be necessary to get to know the disease to be detected more
closely. For this purpose, a first analysis of the disease, the affected people and the environment
in which it develops will be convenient. As stated in the World Health Organization’s (WHO)
screening criteria [350], we will have to make sure that an early detection of the disorder can
bring benefits to the affected person. This is an essential requirement to begin the process,
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shifts
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and all candidate disorders with no existing effective symptomatic treatment or definitive cure
will be discarded. Once assured that an early detection would improve patients’ quality of life,
we will think about the usual pace of progress of the disease, the people who might be at risk
of suffering it and how and where these people spend their daily life. Finally, we will identify
the stakeholders of the process and define their role on it. Usually, the participants of the
methodology will be the following:

I The doctor or disease-specialist: Depending on the disease willing to detect, a general-
purpose doctor or a disease specialist will be the one in charge of selecting the cohort
to monitor and to evaluate the results given by the implemented approach and feedback
from people around the patient.

I The people at risk: Will be the protagonists of the story. They will have to collaborate
with the disease-specialist and engineers as much as possible and will have to accept the
ethical issues and risks that being continuously in a monitored environment poses. In
return, their progress will be closely monitored and the possible onset of the disease will
be detected in time.

I The engineers and data scientists: Will be in charge of designing and implementing the
smart environment and of building the prediction models.

I Family, relatives, co-workers, friends, others: People with whom the patient shares
his/her daily life. They will be in charge of collaborating with the disease specialist to
provide complementary information to the one offered by the monitoring system and of
taking care of the affected person when necessary.

2. Set-up the Environment
Second, it will be necessary to set-up the monitoring environment. This step is crucial for the
success of the methodology, as the gathered data and conclusions drawn from the data will
totally depend on the decisions that are taken in this step. Therefore, the execution of this step
is worth time to ensure that is being performed correctly. To gain reliability, to save time and
to improve the final results, the engineers and data scientists will perform the steps regarding
this section with the assistance or support of a specialist in the disease under research or a
physician.

I Identify signals to be measured: Each disorder will require different signals to be
measured, depending on its symptoms. For this purpose, it is first necessary to review
the literature about the disorder and discuss with the disease-specialist to identify those
symptoms that are convenient to be measured in each case, both those coming from the
physiological sources as well as those coming from the behavioural ones. Moreover, it
will be necessary to decide and identify if any psychological assessment test should be
periodically performed.

I Select the environment: Depending on the disease, the symptoms to be measured, and
the cohort to be monitored, an environment or another will be more convenient. The
selection of the adequate environment is crucial for the system to be useful and effective.
No measurement of interest can be acquired from a place where the subject is spending
almost no time. The selected environment for each specific case must be a spot where the
subject at risk is spending a large part of his time, (almost) daily, where the physiological
or behavioural symptoms are manifested and which can be easily bounded.

I Select sensor placement: Research has shown that it is of great importance to cau-
tiously select the placement of the sensors in smart environments in order to gather data
of interest [417]. The bad selection of sensor placements could lead us to miss important
physiological and/or behavioural shifts that might be highly correlated with the progres-
sion of the disease.
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I Select a cohort: The disease specialist or doctor can help in selecting a cohort of patients
that can be at risk of developing the disease under research regarding their age, gender,
work position, etc. Cohort selection criteria for many disorders is already defined for
classic screening processes [346]. The doctor may take advantage of this information at
the same time that he can make use of case finding. Moreover, the inclusion of control
subjects (people with a minimum probability of suffering the disorder under research)
in the screening process may be required for the statistical validation of the following
steps, i.e. discovery of physiological and/or behavioral biomarkers and validation of the
detection models. A screening consent and authorization form will have to be signed by
the selected cohort before starting the monitoring process.

I Monitor cohort of interest: The designed smart environment must be implemented for
each one of the selected subjects to collect data automatically. In addition to physiological
and/or behavioural data, information to use as ground truth will also be collected. This
ground truth must come from a reliable and preferably objective assessment method,
which will be selected by the disease-specialist. Enough ground truth data will have to
be collected until the reliability of the prediction models is assured. Assessment methods
other than self-reported test can also be used, e.g. reliable diagnostic tests based on
medical checkups or the diagnosis given by the disease specialist.

3. Learn
The execution of the first step in this methodology will give as result a preliminary database
of a specific disorder consisting of behavioural data collected from subjects at risk during an
established period of time. This database will be exploited in this second step to identify the
most useful measurements for the prediction of the disorder and to create disease-progression
monitoring models by AI and machine learning algorithms.

I Data preprocessing: The suggested data preprocessing approach for the computation
of physiological and/or behavioural and physiological time series’ statistics can be seen
in detail in Figure 5.2. As can be seen from the figure, the first step of the data prepro-
cessing is the raw data interpretation. Depending on the nature of the collected data,
one algorithm or another will be necessary, e.g. QRS detection algorithms for ECGs,
skin conductance response events’ detection algorithm for EDA, Activity Recognition al-
gorithms for environmental sensors or facial expression recognition algorithms for facial
camera recordings. Coming up next, is the feature extraction step where data will be
aggregated to make it significant. A time-window will be selected for data aggregation,
and features like the number of repetitions of an action or event (e.g. number of outings
per day, number of keyboard events per hour, number of eye-blinks per minute, etc.), or
time spent performing an action (e.g. time spent sleeping per day, time spent smiling per
minute, etc.) will be computed. Another type of aggregated data features can also be
considered, and ideally, an analysis on the effect of the data aggregation window-length
will be performed to search for optimal results. Then, a missing data imputation will be
performed if necessary. Depending on the approach followed for this purpose, this step
can be performed earlier or later. In this work, we have been using mean data impu-
tation to replace the few missing behavioural and physiological data instances whereas
we removed those instances where self-reported data was missing. Other approaches
like the predictive mean matching [418] might give better results when more data is
missing, and interpolation can be used to estimate missing assessment data. Once all
feature-level data is available, the Clinical Assessment using Activity Behaviour (CAAB)
algorithm [114] will be used to extract the five time-series statistics from physiological
and/or behavioural data. In short, the CAAB algorithm consists of applying the following
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processing steps to the aggregated behavioural or physiological data: 1) Take each sub-
ject’s aggregated behavioural and/or physiological data for the desired analysis period,
2) By means of a sliding window, apply a log transform and a Gaussian detrending to
each time-series (behavioural/physiological variable), and 3) Compute five summarizing
time-series statistics (variance, skewness, kurtosis, autocorrelation, and change) for each
physiological and/or behavioural feature in this period 4) Either compute the average of
each time-series statistic for the desired period and use the set of averages for the final
predictions or use the CAAB statistics directly without computing their average. In the
latter case, the use of a non-overlapping sliding window will be required so as to avoid
the use of redundant data. Moreover, the length of the sliding-window will have to be
selected, and ideally, an analysis or at least an empirical search for the best option will be
performed. Finally, the self-reported labels will be standardized to reduce the inter-subject
variability that might bias models’ results. For this purpose, Reliable Change Index [385]
can be computed, or in the absence of information to compute these values, a min-max
normalization based on each subjects’ baseline data can also work.

I Identify risk factors: Correlation analysis performed with the models built using activity-
specific or type-specific features allows to find out the physiological and/or behavioural
features that might have the best predictive power for the health-assessment of inter-
est. This might help giving an insight of the signals to be measured depending on the
objective of the system under development, as well as of the features to be extracted
from the collected data. Automatic feature selection algorithms can also help in this
process. Some examples include Sequential Forward Selection (SFS) [6, 332], Sequential
Backward Selection (SBS) [79] and Ridge Regression-based regularization [419]. Depend-
ing on the results achieved in this step, we might also want to refine the implemented
smart environment to improve sensor selection and placement or to reduce the number
of sensors.

I Model disease with machine learning: Once the best subset of signals and features to
be used for the prediction models have been selected, machine-learning based prediction
models can be built. It is interesting to test different algorithms based on different
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approaches, as there is no best algorithm for every case and their accuracy may really
vary from case to case. Usually, Näıve Bayes, SVM or AdaBoost based models are a good
starting point. In case we are facing an imbalanced data problem, algorithms that aim at
boosting models’ sensitivity (e.g. SMOTEBoost, RUSBoost or wRACOG) must be used.

4. Screen
The knowledge gained and the prediction models developed in the previous step will allow
to monitor people over time. This can be used to detect anomalies that might indicate the
onset of the disease or to monitor behaviours and/or physiological signals related to a health
improvement or decline. The progress being monitored by the system should be closely followed
by the disease-specialist or a physician to take the necessary decisions and perform additional
diagnostic tests when an alarm is triggered or at any given time when the specialists considers
appropriate.

I Identify people at high risk: Based on physicians or specialist’s recommendations, the
people at risk to develop the selected disorder will be identified and the system designed
in the previous steps will be deployed in the specified environment, where the selected
cohort can be monitored in their natural settings. All the participants must give consent
and authorization to be monitored in order to get involved in the process.

I Monitor high-risk group: Once the system deployed, the subjects under risk can be
longitudinally monitored in their natural settings as specified in the first step. The disease-
progression models that have been created in the second step will be applied to the data
being gathered from the smart environments, to see the progress that the disorder is
making on the subjects of interest and to early detect the onset of the disease in case
it is given. This progress must be closely followed by a specialist who will also require
feedback from the people around the patient. When an alarm is triggered by the behaviour
monitoring system, the specialist will perform the required diagnostic tests to confirm or
discard the presence of the disease.

Note that the proposed process can iterate in three ways. On one hand, once the first iteration
finished, the disease specialist can ask to start the process over (back to step 2), by applying
the requirements that might have appeared during the process. On the other hand, the data
being collected in the last step can be used to feed the initial database resulting from step 2,
so that new analyses can be performed iteratively, and more reliable knowledge and detection
models can be derived from it (back to step 3). Finally, new high-risk subjects can be invited
continuously and the monitoring process can be launched for them, repeatedly performing the
screening process (keep iterating in step 4).

5.3.5 Strengths of the new methodology

One of the main strengths of the methodology being presented herein is its independence from any
specific disease. The steps that have been defined should be repeated for any disease that provokes
physiological and/or behavioural shifts. Moreover, the consideration of AmI as a basis for monitoring
makes the systems generated have two very important advantages. On one hand, the resulting system
will be transparent to the user, improving peoples’ acceptance towards the system, causing them to
forget about it and consequently gathering more ecologically valid data. On the other hand, the
system can be deployed with a relatively low cost. Usually, smart environments can be implemented
by means of inexpensive sensors or even by means of already existing devices such as smartphones
or personal computers. This is a breakthrough compared to the use of more traditional diagnostic
methods, which are often costly and require patients to move to a specialized center. Linked to
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this, the proposed methodology will result in systems that are able to monitor patients non-stop,
in much of their daily lives. This will result in earlier diagnoses compared to traditional periodical
checkings. Moreover, if the deployed system would be verified to be reliable enough, all routine
checks for specific disorders could be avoided and be only applied when anomalies are detected, with
the resulting health-care savings.

Finally, the methodology proposed in this work is completely aligned with the path being followed
by the current technologies: internet of things, smart environments and big data are already the order
of the day. In the current information age, it is completely natural, useful and realistic the use of the
information being collected non-stop to prevent health-related issues and their consequences.

5.3.6 Weaknesses of the new methodology

As a specific case of a screening methodology, the proposed approach inherits some of the weaknesses
of screening methods. First, the implementation of the designed smart environment, as well as the
use of medical resources from people who will not develop the disease under research, involves
an ‘unnecessary’ cost. Nevertheless, our approach minimizes the cost of the screening procedure
by using inexpensive sensors or existing equipment as test method instead of the usual expensive
medical procedures. Second, false positives can provoke the patient to suffer from stress and anxiety,
as well as unnecessary investigations and treatments to be initiated. Finally, the false negatives might
provide a false sense of security which might consequently lead to a delayed diagnosis. To avoid this,
we have focused on the maximization of models’ sensitivity using specific algorithms for the purpose,
therefore reducing as much as possible the number of false negatives.

Furthermore, the effectiveness of a screening methodology always relies on the selected high-risk
group, and therefore, the selection of the wrong cohort will lead to a useless effort. The lesser the
people who convert in the selected cohort, the less information about the diseases’ physiological and
behavioural responses will be available and the worse prediction models will be built. Moreover, more
affected people will be out of the monitoring process and therefore too late diagnosed. To minimize
this problem, our methodology specifies that the groups at high-risk of disease will be selected by a
disease-specialist.

Depending on the objective disease, we might also need several iterations to build reliable models,
which might take a long time, especially, if the smart environment has to be completely redefined.

Finally, regarding the algorithmic approach, the selection of the best window-lengths for the
computation of the temporal statistics might be a bit tricky: ideally, a combination of the best
data aggregation window-length, sliding window-length and summarizing window length should be
selected, which might require to perform many analyses before the system can be implemented.

5.3.7 Issues and challenges

The development of a system based on the methodology being proposed herein involves a number
of technical and methodological difficulties. Although the technological advancement of the last
years has greatly facilitated the development of such a system, there are still some issues that must
be solved to enable the widespread use of smart environments and AI technologies for monitoring
purposes. Issues related to legislation, ethics or privacy policy must also be solved for the applicability
of the proposed system. Below, we list the main technical difficulties that must be taken into account
when building a system based on the methodology proposed herein, as well as non-technical issues
that must be solved.

I Data collection and quality
One of the first steps of such a system is the data collection, which has to be meticulously
carried out in order to ensure its quality. For data to be of high-quality, it must be “accurate,



5.3. RESULTS OF THE CROSS-CASE ANALYSIS 115

complete, relevant, timely, sufficiently detailed, appropriately represented, and must retain
sufficient contextual information to support decision making” [322]. Some of the current
physiological monitoring devices [323,324] allow high-quality data acquisition. However, there
are a few things to keep in mind to assure this.
Regarding physiological measurements, the correct placement of electrodes or monitoring de-
vices must be guaranteed. In order to avoid ambiguities, standards for the correct measurement
of physiological data have been defined and are internationally used. It is the case of the Inter-
national 10-20 EEG System [325] or the standard 12-lead ECG. For sensors that do not have
any standards defined, trials must be done to check the best placement. It has been affirmed
that different body placement of the sensors result in different signal patterns and classifica-
tion accuracies [326]. Sensor placement is also crucial to the quality of the behavioural signals’
recording in smart environments [327].
Moreover, the sampling frequency of the data must also be adequate to the signal being
collected, in order to establish a compromise between the amount of data to be treated and
the quality obtained from them. This sampling frequency will vary for each type of signal.
Khusainov et al. [328] affirmed that to monitor Activities of Daily Living (ADL)s a sampling
frequency of 20 Hz is sufficient, while audio, speech and other biomedical signals must be
sampled with a higher frequency of up to 40KHz.
Furthermore, signals are easily corrupted by instrumentation noise, random noise, electric and
magnetic noise, etc., as well as by poor electrode-skin contact and body movements [328],
resulting in noisy and artifact containing data. Signal processing techniques are needed to
remove all these undesired effects from the signals. Noise can be filtered by means of several
filters, like Kalman filters [420], Butterworth low-pass filters [421], Median filters [422], Wiener
filters [328], Wavelet Decomposition [328,420], etc. The selection of the best filter in each case
depends on the nature of the signal, the features to be extracted, and on the type of noise [328].
Power line interference can be removed by means of a notch filter [423]. For artifact removal,
algorithms such as the independent component analysis (ICA) can be used [424], as well as
additional sensors to detect unwanted movement artifacts (e.g. pressure sensors in chairs [329])
and reject the corresponding recordings.

I Integration of multimodal data
The data collected in a health monitoring system based on multimodal measurements will come
from a wide variety of sensors and devices, and the integration of all these data still poses some
challenges.
Different acquisition systems, rely on different physical phenomena and, thereby, the resulting
data is represented in different physical units. Furthermore, they do not offer the same time
and space resolutions, and what is more, datasets do not have the same dimensions. Even so,
these difficulties can be overcome working with features extracted from the data instead of
working with the raw data by itself, as proposed herein.
Another important issue when working with data coming from several sources is the presence of
missing data. This makes impossible to compare multimodal data at the same time points and
to ensure synchrony. However, possibilistic data fusion frameworks could allow to overcome
this issue [425, 426, 427] as well as a data imputation method as used in our case studies.
Moreover, inconsistency in the final decisions may arise from data of different sources. This
might be solved with a voting system [428], or by building single unified models from multimodal
data as we did in our approach. In fact, in which step to integrate the multimodal data in the
detection system is another issue. Data can be processed separately, and merged in the final
decision step; they can be sequentially processed and merged, adding new data to constrain
the prior solution or they might be fused from the very beginning using a few variables from
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each modality, multivariate features or minimally reduced raw data. This decision depends on
the nature of data to be fused.
For more details about the current challenges in data fusion, the reader is referred to [429]
and [430].

I “Big data” issues
One of the biggest problems of such a system is probably the huge amount of data being
collected non-stop. This problem might be avoided with on-board signal processing algorithms,
and thus, avoiding the transmission and storage of big amounts of data. Nevertheless, this
affects power consumption and battery lifespan of the individual devices, as well as their storage
requirements, and complexity of algorithms, so this would be a choice to make according to
the equipment availability. Moreover, in our approach storage of data is desired to iteratively
build more accurate prediction models. Dimensionality reduction of the data by means of a
manual feature selection as we did herein might help, to only use the pertinent features and ease
transmission, processing and storage. Automatic feature selection algorithms (e.g. SFS [6,332],
SBS [79], Correlation Based Feature Selection (CBFS) [85] or Genetic Algorithms [54]. For
an empirical study on feature selection methods the reader is referred to [431]) can also work
for dimensionality reduction, yet not that much to reduce the number of required sensors.
Algorithms such as Principal Component Analysis (PCA) [334] might also help in dimensionality
reduction but our case-study analyses showed that this might not be suitable for our approach,
as prediction accuracy was highly reduced, especially in the stress detection scenario. For the
successful use of these algorithms in behavioural data, data segmentation may also be a critical
issue: an incorrect selection of the segmentation window can lead to incorrectly infer ADLs.
The use of sliding window techniques as the one in our approach has been recommended to
avoid this issue [328].

I Unobtrusiveness and noninvasiveness for users’ acceptance
The unobtrusiveness and noninvasiveness of biomedical measuring devices are key factors on
acceptance and satisfaction from the subjects [432].
Nowadays, technology for making this monitoring system ubiquitous and completely transparent
to the user exists and that is what we have prioritized in our approach. Smart environments
allow to record behavioural data without disturbing the user by means of sensors integrated both
in the ambient and in objects (smart objects), for example, in ceilings [101], chairs [88,100,329],
or doors [100], and with simple monitoring software installed in computers allowing to sense
the interaction activity with the computer, i.e. computer exposure [5], keyboard and mouse
dynamics [46], etc. Physiological monitoring has been usually much more obtrusive and,
thereby, a bigger issue for this kind of applications. Nonetheless, the unobtrusive measurement
of physiological signals is also becoming increasingly easy thanks to the development of wearable
devices and physiological sensors integrated into devices and textiles (E-textiles) of everyday
use. Among the examples, it is possible to find a computer mouse with photo-plethysmographic
surfaces that allows to measure RR intervals enough accurately for computing Heart Rate
Variability (HRV) parameters [433], a belt for sensing breath [434], a shirt for Electromyogram
(EMG) sensing [435] or a wearable ECG recorder with acceleration sensors [29] .
Smart wearable systems are becoming more and more present. In fact, they have already been
considered for the monitoring of several diseases’ progress like cardiovascular [436], renal [437]
or respiratory diseases [438], diabetes [439], and even cancer [440]. They can be used to
monitor patients 24h a day, recording physiological or behavioural data, with sensors integrated
into jewelry, wrist watches [441], armbands [442], shoes [443], embedded in clothes [444]
and implanted in vivo [445, 446]. Unfortunately, not all the physiological data can yet be
unobtrusively acquired with wearable devices [447], e.g. EEG requires electrodes or an electrode
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cap to be worn, making its use in daily-life unrealistic. We refer the reader to the recent review
of Chan et al. [416] for a more detailed information about current wearable technology’s state.
Nowadays, smartphones also allow to acquire big amounts of data without the user being
aware of it. Furthermore, apart from monitoring the characteristic behavioural features of a
smartphone (e.g. the number of sent SMS), these devices can be used to unobtrusively monitor
other physiological or behavioural features as, for example, speech features [448] or traveled
distance [6].

I Interoperability
The system being proposed herein, apart from detecting specific disorders, could be useful
for a global health status checking, and data being collected and treated can be practical for
many other purposes. These secondary objectives might imply exchanging data between other
medical devices, or with experts of the health area. Consequently, it may be interesting to
consider the existing standards for physiological and medical data coding and storage during
the system’s design process.
Many standards have been defined in order to overcome interoperability problems and improve
the communication and data exchange between different devices all around the world. For
example, the European Data Format (EDF), which has already an extended version (EDF+),
was originally created for EEG and PSG recordings, but the new version also allows to store
information of ECG, EMG, and Evoked Potential data, as well as annotations [449, 450]. The
General Data Format (GDF) for Biomedical Signals [451] derived from EDF, aiming at sat-
isfying the needs of all the biomedical research community. An ISO standard has also been
defined to assign medical waveforms’ description rules in order to ensure interoperability be-
tween devices. This standard is known as Medical waveform Format Encoding Rules (MFER).
As it is a general specification, it is compatible with other standards. The Standard Commu-
nication Protocol for Computer Assisted ECG (SCP-ECG) is also defined by the ISO [452] and
specifies the conventions to interchange ECG signal data, measurements and interpretation
results. Nowadays, the most known standards are the Digital Imaging and Communications in
Medicine (DICOM) standard [453], which was created for the communication and management
of medical imaging information and related data, and the standard of annotated ECGs (aECG)
of the international organization Health Level 7 (HL7) [454], which is an XML-based format
for the exchange of data in hospitals.
Data to be appropriately represented and to avoid them to be lost or messed up, it is advis-
able the use of common terminology, and for this purpose, standards like the Systematized
Nomenclature of Medicine - Clinical Terms (SNOMED-CT) [455] of the International Health
Terminology Standards Development Organisation (IHTSDO) and the LOINC [456] which
stands for “Laboratory Observations, Identifiers, Names and Codes” have been created.
Nonetheless, standards are not yet available for all the necessary aspects of telemedicine [457,
458]. The European Commission affirms that interoperability problems are one of the most
important issues that avoid investments in these devices to be well-used and therefore, limit the
scalability of this kind of solutions. Interoperability is not guaranteed without globally accepted
standards, and hence, the existing standards must be adopted by systems all over the world.
This might be complicated due to the wide heterogeneity of health information systems, and
because millions of terminologies and vocabulary are required to describe and codify health
data [459]. Nevertheless, as it is a priority for the successful development of emerging health
services, the first steps towards interoperability of electronic health systems in the EU have
already been taken [460].
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I Privacy, security and ethical issues
As stated before, such a system implies people to be continuously monitored. Therefore, huge
amounts of information about the individuals and their lives can be inferred, and unfortunately,
this information may be the target of many people interested in things that have little to do
with the health of individuals [461]. In fact, a Financial Times investigation revealed that
9 of the top 20 health-related mobile apps have been used to transmit data to a company
interested on people’s mobile phone usage [462]. Currently, approaches are being developed
in order to avoid this information to be used for evil or non-ethical purposes [463, 464, 465].
This type of solutions must contain safety precautions such as the encryption of data and
patient authentication mechanisms. The awareness of the subjects being monitored must also
be assured [461], and their autonomy must be respected [466]. The current Personal Data
Protection Directive of the European Union is being revised in order to give a better response
to these issues posed by the development and globalization of the new technologies [459].

I Efficiency and reliability
Efficiency and reliability are key characteristics for the widespread use of the developed technol-
ogy [416]. It has recently been affirmed that many algorithms, for example, those used in smart
environments for activity recognition, need improvements in order to become more reliable and
more accurate for real life [279]. Other reports have also remarked that some solutions do
not work as expected or they have not been properly tested, which in some cases may pose
a risk to people’s safety [467]. The European Commission adverts that errors may arise from
many different sources due to the large list of stakeholders involved in the development and
use of these medical devices, such as the doctor who may make an incorrect diagnosis due to
inaccurate data, the IT engineer who might have introduced a bug in the code or the patient
who might have misused the device [459]. This becomes a real problem if due to any of these
reasons the patient is harmed, and in order to limit these risks the legal responsibilities of
each stakeholder should be clearly stated. Furthermore, safety must be demonstrated by safety
standards such as the IEC 82304-1 [468] or specific quality labels, and certifications might be
used for ensuring the credibility of the health solutions [459].

I Cost
Costs associated with such a system include the first investments, as well as maintenance and
operational costs. Even if the research stage of the disorder detection system might be funded,
the lack of financing structure for the continuation of the project can make all the work come to
nothing as it has already happened with some telemedicine applications [457,469,470,471]. It
has been affirmed that the high cost of current wearable system services limits their expansion
and that these economic issues have to be addressed to ensure the opening of the market to
these new technological systems [416]. The European Commission also accepts that the lack
of innovative and adequate refund models for electronic health solutions is a major obstacle
in their development and in their spread. Even if some insurance companies are adopting
measures, most of them do not yet have standard tariffs for these applications [459, 472, 473].

I Legislation
Legislation and policy for certain aspects of telemedicine are not yet available [279,457], albeit
they are a prerequisite for the development of the system described herein. Licensure, certi-
fication and protection must be standardized in terms of laws of the European Communities,
especially, if services are to be given over the internet [416].
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5.4 Conclusions

This work has presented a global screening methodology for the early detection of disorders based
on physiological and behavioural change. For this purpose, a cross-case analysis of two case-studies
analysed individually in previous work has been performed. These works were about early detection
of occupational stress from physiological and behavioural data monitored in a smart office environ-
ment, and early detection of AD from the monitoring of older adults’ behaviour in a smart home
environment. The analysis of such disparate scenarios has allowed to abstract the methodology from
its use in specific case-studies, and to draw conclusions on the steps to take from a global point of
view.

Research work aimed at predicting individual disorders from physiological data are widely present
in the literature, whereas unobtrusively collected behavioural data is gradually opening up a space
thanks to the advancement of smart environments. Nonetheless, each disorder is individually treated
and similarities among many disorders that provoke behavioural shifts are not taken into consideration.
To overcome this issue, this work has proposed the use of unobtrusive physiology and behaviour data
monitoring system as a test-method for a global screening process.

Therefore, the work has updated the current screening methodology [14] which relies on specific
test-methods for each specific disorder, to a new one which relies on a single test-method based
on unobtrusively collected physiological and behavioural shifts. This test-method of proposal meets
the requirements specified by the WHO [14, 350], as it is simple, cheap and can be acceptable for
patients and staff with a little awareness thanks to its unobtrusive nature. Sensitivity requirements
can also be fulfilled by selecting the correct algorithms for prediction model building, as explained in
this work. An overview of the guidelines to follow in order to design a smart monitoring system and
make use of changes detected in unobtrusively collected physiological and behavioural data has been
given.

The methodology consists of an iterative four-step process that will have to be applied for each
individual disorder. After a first reflexion step, the monitoring environment will have to be set-up.
Once the technological part is ready, a first cohort will be monitored, and their preprocessed data will
be used to build initial prediction models. The data preprocessing step has been specifically defined
to extract change statistics from the physiological and behavioural data. Once the initial prediction
models built, they will be used to detect suspicious changes on people at risk of the disease, while
the process will be monitored by a specialist who will also receive information and feedback from
the people around the patient. In case a positive alarm is triggered, the disease specialist will have
to perform the corresponding diagnostic test to verify or discard the presence of the disease. The
process can then iterate in three ways. If the disease specialist deems it necessary, the process will
start over, re-defining everything from the very beginning. If the technological approach is approved,
the data used in the last monitoring process can be used to feed the initial database and rebuild more
accurate prediction models. Once prediction models are stable and accurate enough, the iteration
can be limited to continuously identifying new people at risk of the disease and monitoring their
health status.

This new approach offers several advantages in comparison to the traditional screening method.
On one hand, it provides a way to monitor users continuously, detecting every subtle but suspicious
change and minimizing detection delay as much as possible. On the other hand, users can be
monitored in their usual environments, avoiding to make regular visits to medical or specialized
centers. Moreover, both physiological and behavioural symptoms can be monitored completely
unobtrusively or by means of minimally invasive body sensors, which greatly improves the methods’
acceptance among the users. For the same reason, the gathered data is ecologically more valid than
tests performed in artificial settings. Furthermore, the solution brings many economic advantages, due
to the inexpensiveness of the required hardware, and to the reduced number of periodical checkups
in medical centers that will have to be performed. Finally, the independence of the methodology
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from any disease makes it widely useful.
In contrast, the methodology also shows some disadvantages shared by all screening methodolo-

gies. These include the implementation cost and work for the people who will never be diagnosed,
the anxiety that a false positive might provoke in the patient and the false security sense provided
by a false negative. Moreover, the efficiency of the method will highly depend on the selected high-
risk group and temporal window lengths for signal processing, as well as the number of iterations
performed. In our approach, measures to reduce these disadvantages as far as possible have been
taken.

Technological and methodological issues and challenges that must be overcome for the widespread
use of this methodology have also been listed. Technological challenges include the necessity to
provide high-quality data, to integrate data from several modalities, to process and store big amounts
of data and to assure models’ reliability. Moreover, problems related to users’ acceptance towards
the developed systems, the interoperability with other medical systems and devices, privacy, security
and ethical issues, initial investments and legislation must be addressed.

For the best of our knowledge, this is the first time that a methodological approach for the early
detection of disorders based on unobtrusively collected physiological and behavioural data from a
global point of view, i.e. non-specific to any disorder, is presented. The proposed approach updates
the current method for the early detection of diseases to the technological level that we already have
today. The widespread use of such a methodology can help the healthcare system to get closer to the
technological solutions that are available to them, resulting in benefits for health specialists, patients
and people around them, and therefore, for society in general.

This chapter intends to be a first approach of a non-specific screening methodology based on
AmI and AI technologies, and will certainly need to be refined in the upcoming years. As it is not
possible to cover each and every one of the points that a methodology of such dimensions and
such applicability requires to be specified, we followed some predefined criteria for the analysis and
therefore, we admit that it has some limitations and there are several interesting points have been
left unanalysed in this work. For example, the inclusion of a sensor failure detection system would be
highly desired, as all the results will rely on the data collected from the sensors. Moreover, we did not
test our case studies following a Leave-One-Subject-Out cross-validation (LOSOCV) which might be
very interesting to validate the performance of the detection system for completely unseen people
by the system. Furthermore, some smart-environments might pose difficulties when there is more
than one person living or spending time in it. The differentiation of the activities performed by one
person or another by means of sensors is a very complicated task. Thus, in our second case study, we
were only considering older adults living alone. When designing the methodology, this factor must
be taken into account and either methods that allow individualized monitoring must be implemented
or its use must be limited to environments where there is no possibility of confusion in the person
being monitored. Finally, the signal preprocessing approach suggested herein only computes change
statistics reflecting the absolute value of change but not its directionality. For some of the features,
especially for the ones extracted from physiological data, the direction of the change might be highly
informant. It would be a valuable work to include new time-series statistics reflecting the direction of
the change (e.g. differential) to the five used in our approach, and analyse their effectiveness both in
physiological and behavioural data. This might help improving final models’ performance. Research
aimed at overcoming these limitations of the approach presented herein can be a good starting point
for future work.
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Summary

� A multidomain screening methodology for the early detection of disorders from unobtrusivelly
collected physiological and/or behavioral data has been presented.

� The presented approach provides a basis for the inexpensive early detection of many disorders.

� There are still some methodological and technological issues to overcome for the widespread
use of this methodology.

� The extension of such a methodology is huge by nature and has therefore been limited following
some predefined criteria. Future work must focus on expanding the work presented herein.
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A general abstract of the main results obtained from the attainment of the thesis is given in this
chapter. Section 6.1 presents a global description of the research work. The scientific contributions
that resulted from this work are then listed in Section 6.2 whereas the relevant publications are
presented in Section 6.3. Section 6.4 identifies some future research lines for further development of
the area and finally, Section 6.5 states the final remarks.

6.1 Conclusions

This dissertation has been centered on the definition of a global methodology for the early detection
of disorders based on unobtrusively collected physiological and behavioural data by means of a cross-
case analysis.

Since many disorders are detected by relatives and co-workers due to the behavioural changes that
the patient suffers, a system for the early detection of diseases that benefits from these behavioural
symptoms is desired. Towards this goal, we first selected two very disparate scenarios where this fact
is reflected, in order to analyse them individually: stress in office environments and AD at home.

We then performed a comprehensive literature review where we analysed the symptoms and their
assessment methods for the two case studies from a multimodal point of view. We analysed the
strengths and weaknesses of each assessment method, focusing, in addition to their prediction abilities
for the specific cases, on their usability for the implementation of a ubiquitous and unobtrusive user-
centered monitoring system. Moreover, we identified the common practices in current disorders’ early
detection research, which allowed us to spot some gaps and room for future improvements in the
current literature.

Once the main characteristics of health-related datasets and current disorders’ detection models
identified, we proposed a first algorithmic approach for early stress detection from unobtrusively col-
lected physiological and behavioral data in realistic work settings in a smart office environment, which
was aware of the identified common characteristics of health-related data. We performed specific
prediction analyses for this case-study, focusing on the contribution of each type of physiological and
behavioral measurement to the prediction of each of the self-assessed stress and workload levels. We
draw conclusions about the usability of the presented approach for the specific goal of early stress
detection, contributing to this precise research area.

Later, we applied the previously presented algorithmic approach in the second scenario on the early
AD detection in Smart Homes. This phase required the refinement of the approach by adapting each
data processing step to the characteristics of the new dataset. We then performed and evaluated the
predictions based on the presented approach for this specific case study and draw conclusions about
its usefulness for this individual objective. This allowed us to contribute a little to the understanding
of AD and to the development of early detection systems for this disorder.

Finally, we performed a cross-case analysis of the two case-studies. For this purpose, we analysed
their similarities and differences starting from the definition of the problem, through the application
and adaptation of the algorithmic approach, to the validation of the predictive models. This process
allowed us to abstract a global methodology for the early detection of disorders based on unobtrusively
collected physiological and/or behavioral data and to define the complete path to follow for the
analysis of a new case-study and the implementation of a ubiquitous and unobtrusive monitoring
system for its early detection.

The work exposed herein has filled the research gaps presented in Section 2.6 by presenting a
multidomain method for the early detection of disorders based on temporal statistics of multimodal
symptoms.
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6.2 Contributions

Based on the aforementioned conclusions, the main contributions of this work can be summarized in
the following items:

I An extensive review of stress’ and AD’s symptoms’ multimodal measurement techniques has
been performed, focusing on their usefulness for unobtrusive and ubiquitous monitoring systems
(see Chapter 2).

I Workload and stress prediction models have been built and evaluated based on unobtrusively
collected physiological and behavioral data in a smart office, in addition to performing an
analysis of the best predictor for this purpose (see Chapter 3).

I AD’s common symptoms’ prediction models have been built and evaluated based on unobtru-
sively collected behavioral data in a smart home, in addition to analysing the best predictors
for each symptom (see Chapter 4).

I A cross-case analysis of the previous stress and AD detection works has been done, resulting
in the definition of a multidomain methodology for the early detection of disorders based on
unobtrusively detected physiological and behavioral shifts (see Chapter 5).

6.3 Relevant publications

Parts of the works covered in this dissertation have already been published or have been sent for review
in different international peer-reviewed scientific journals. We now list the scientific publications that
are directly related to the work in this thesis:

I Ane Alberdi, Asier Aztiria and, Adrian Basarab. Towards an automatic early stress recognition
system for office environments based on multimodal measurements: A review. Journal of
Biomedical Informatics, 2015;59;49-75.

I Ane Alberdi, Asier Aztiria and, Adrian Basarab. On the early diagnosis of Alzheimer’s Disease
from multimodal signals: A survey. Artificial Intelligence in Medicine, 2016;71;1-29.

I Ane Alberdi, Alyssa Weakley, Asier Aztiria, Maureen Schmitter-Edgecombe and, Diane J. Cook.
Automatic assessment of functional health decline in older adults: a smart home approach.
Submitted for publication to the Journal of Biomedical Informatics, 2017.

I Ane Alberdi, Asier Aztiria, Adrian Basarab and, Diane J. Cook. Using Smart Offices to Pre-
dict Occupational Stress. Submitted for publication to the International Journal of Industrial
Ergonomics, 2017.

I Ane Alberdi, Alyssa Weakley, Maureen Schmitter-Edgecombe, Diane J. Cook, Asier Aztiria,
Adrian Basarab and, Maitane Barrenechea. Smart Homes predicting the Multi-Domain Symp-
toms of Alzheimer’s Disease. Submitted for publication to the IEEE Journal of Biomedical and
Health Informatics, 2017.

6.4 Future work

In this section we outline future research directions that can lead to additional contributions in
the field of early detection of disorders, both from a multi-domain point of view and regarding the
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specific case-studies analysed in this PhD thesis. This dissertation, though limited in scope, offers
development opportunities that deserve the attention of the scientific community for further advances
in the field. We now list the aforementioned opportunities arranged by topic. These opportunities
can be seen as a direct continuation of the work presented in this dissertation, and can therefore be
complemented with the research gaps identified in Section 2.6.

6.4.1 Improvements on the early detection of stress

The state of the art on stress detection has been mainly focused on the use of physiological mea-
surements, whereas our approach has shown much higher predictability from changes in behavioral
patterns. As stated in Chapter 3, this can be due to a higher prediction ability of behavior com-
pared to physiological signals, or can also be because our approach was not capturing well the main
information given by the physiolgical signals. We believe that the inclusion of time-series statistics
describing the directionality of change can highly improve the predictability of physiological signals,
thus, being interesting their analysis in future applications. Moreover, the validation of our approach
in a longitudinal dataset, as well as following a “leave-one-subject-out” Cross Validation (CV) ap-
proach, would be desired. Furthermore, some of the data were collected by means of techniques
that are, even if minimally invasive, on the borderline of obtrusivity (i.e. body sensors) or respect for
privacy (i.e. webcam). Methods to capture these data without any possibility of having problems
in this regard (e.g. with smart devices measuring physiological signals) must be analysed and tested
for the presented approach. In addition, we did not perform an analysis of the effect of the tempo-
ral windows for time-series statistics’ computation and processing, but would be highly valuable to
maximize the prediction ability of the models from the proposed approach. Finally, a more in-depth
feature analysis by means of specific algorithms for this purposes, and analysis on the best time-series
statistics to be used has not been performed, but would be highly required to reduce the amount of
data being processed by the final system.

6.4.2 Improvements on the early diagnosis of AD

Regarding the second case study, some improvements that could further contribute to this specific
research field have been identified. First, as mentioned in Chapter 4, the proposed system should be
enriched with a sensor failure detection system. With the current approach, a sensor failure would
be translated into incorrect activity recognitions, that could lead, at the same time, to incorrect
health status predictions. A sensor failure detection system could avoid this chain effect. Moreover,
the validation of our system in a bigger sample size would be required, mainly, because there were
no AD-diagnosed individuals in our dataset, but only elderly with commonly impaired symptoms in
AD. The availability of a bigger dataset would allow to develop more accurate detection models.
Furthermore, this could also contribute to overcome the imbalanced dataset issue that we have been
facing for this case study, although the testing of specific algorithms for this type of difficulties
is highly recommended. Finally, as in the previous case study, an analysis of the best behavioral
predictors by means of automatic feature selection algorithms or of the best temporal statistics for
AD symptoms’ detection has not been performed, nor has been analysed the effect of the temporal
widow’s size to compute the time series statistics for prediction, which would be highly interesting
as future work. A “leave-one-subject-out” CV approach for validation would also help in completing
the current work.

6.4.3 Improvements on the definition of a multidomain methodology

Regarding the methodological proposal for the early detection of disorders given in Chapter 5, there
are many threads that can be pulled to improve and complete, until it can be implemented and
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used in everyday life. Such a methodology, is huge in its nature, and has been strictly limited to a
few items (which resulted from the comparison of the two case studies from the point of view of
the selected disorders, applied algorithmic approach and obtained results) in this PhD thesis due to
restrictions on time, space and areas of knowledge. Subsection 5.3.7 has exposed the main challenges
that must be overcome for such a system to be widely used. Among other things, future work to
polish the proposed methodology and to make it usable in real life must give a solution to the big
data issues, to the uncertainty in their efficiency and reliability and to the privacy and ethical issues.
In addition, the extension of the presented methodology to multiple-user environments would be
required to implement the monitoring environment in some specific scenarios.

6.5 Final remarks

With this research work we have tried to do our part towards the widespread use of Ambient Intelli-
gence (AmI) technologies for the early detection of diseases, an area in which increasing research is
being done due to its importance. Interesting conclusions have been drawn both for the individual
case-studies and for the global applicability of these technologies for a wide variety of disorders. Dif-
ferent future research lines have also been defined to go a step further and get closer to the definitive
implementation and widespread use of smart environments to reliably control our health status.



List of Symbols

EEG Symbols
αeeg Alpha band energy
βeeg Beta band energy
δeeg Delta band energy
θeeg Theta band energy
All The whole spectral band

ECG Symbols
All The whole spectral band
HF High frequency (0.15 - 0.5 Hz band) power.
HR Heart Rate, Number of beats (or R peaks) per minute.
I Interruption-based stressor state
LF Low frequency (0.00 - 0.08 Hz band) power.
MF Medium frequency (0.08 - 0.15 Hz) power.
NN50 Number of NN intervals that are greater than 50 ms.
ULF Ultra low frequency (< 0.003 Hz) power.
VLF Very low frequency (0.003 - 0.04 Hz band) power.
pnn50 (%) Percent of NN50.

SDANN SD of the averages of NN intervals in all 5-minute segments of
the entire recording.

SDNN The SD of all NN intervals (normal R-R intervals).
SDNN index The mean of all the 5 minute SDs of NN intervals.
SDSD SD of differences between adjacent NN intervals.

Other Symbols
Aβ Amyloid-beta
All The whole spectral band
ApEn Approximate Entropy
Cho Choline
Cr Creatine
Glu Glutamine
κn n-th order cumulant
maxRatio n°of maxima / n°of total signal values
mI Myo-Inositol
minRatio n°of minima / n°of total signal values
µ Mean
N Neutral state
NAA N-acetyl Aspartate
p-tau Tau protein
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r Correlation coefficient
R Relaxed state
RASTA-PLP Relative Spectral Transform - Perceptual Linear Perception

RMSSD The square root of the mean of the sum of the squares of
differences between adjacent NN intervals.

s Skip-size
SampEn Sample-Entropy
SD Standard Deviation
T Time-pressure stressor state
TEO-CB-AutoEnv Teager Energy Operator based non-linear transformation
w Length of sliding window
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“Automatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification rules,”
Electronics Letters, vol. 45, no. 8, p. 389, 2009.

[213] C. Turkington and D. Mitchell, The Encyclopedia of Alzheimer’s Disease, 2nd ed. New York,
USA: Facts On File Inc, 2003, 2010.

[214] M. M. Svedberg, O. Rahman, and H. Hall, “Preclinical studies of potential amyloid binding
PET/SPECT ligands in Alzheimer’s disease,” Nuclear Medicine and Biology, vol. 39, no. 4,
pp. 484–501, may 2012.

[215] J. M. Yeo, X. Lim, Z. Khan, and S. Pal, “Systematic review of the diagnostic utility of SPECT
imaging in dementia,” European Archives of Psychiatry and Clinical Neuroscience, vol. 263,
no. 7, pp. 539–552, oct 2013.

[216] I. Goethals, C. Van De Wiele, D. Slosman, and R. Dierckx, “Brain SPET perfusion in early
Alzheimer’s disease: where to look?” European Journal of Nuclear Medicine and Molecular
Imaging, vol. 29, no. 8, pp. 975–978, aug 2002.

[217] J. W. Ashford, W. J. Shih, J. Coupal, R. Shetty, A. Schneider, C. Cool, A. Aleem, V. H. Kiefer,
M. S. Mendiondo, and F. a. Schmitt, “Single SPECT measures of cerebral cortical perfusion
reflect time-index estimation of dementia severity in Alzheimer’s disease.” Journal of nuclear
medicine : official publication, Society of Nuclear Medicine, vol. 41, no. 1, pp. 57–64, jan
2000.

[218] M.-O. Habert, L. C. de Souza, F. Lamari, N. Daragon, S. Desarnaud, C. Jardel, B. Dubois, and
M. Sarazin, “Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer’s disease,”
European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 3, pp. 589–593,
mar 2010.
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F. A. R. Garćıa, M. Gillman, J. Herzstein, A. R. Kemper, A. H. Krist, A. E. Kurth, D. K. Owens,
W. R. Phillips, M. G. Phipps, and M. P. Pignone, “Screening for Depression in Adults,” JAMA,
vol. 315, no. 4, p. 380, jan 2016.

[356] M. L. LeFevre, “Screening for Abdominal Aortic Aneurysm: U.S. Preventive Services Task
Force Recommendation Statement,” Annals of Internal Medicine, vol. 161, no. 4, p. 281, aug
2014.

[357] “Diabetic eye screening - NHS Choices,” NHS Choices, Tech. Rep., [Online] http://www.nhs.
uk/Conditions/diabetic-eye-screening/Pages/Introduction.aspx, (Date retrieved: 2017-08-13).

[358] M. Simard, “The Mini-Mental State Examination: strengths and weaknesses of a clinical
instrument,” The Canadian Alzheimer Disease Review, no. December, pp. 10–12, 1998.

[359] European Agency for Safety and Health at Work, “Campaign Guide: Managing stress and
psychosocial risks at work,” 2013.

http://www.sanitas.es/sanitas/seguros/es/particulares/biblioteca-de-salud/prevencion-salud/san041825wr.html
http://www.sanitas.es/sanitas/seguros/es/particulares/biblioteca-de-salud/prevencion-salud/san041825wr.html
http://www.nhs.uk/Conditions/diabetic-eye-screening/Pages/Introduction.aspx
http://www.nhs.uk/Conditions/diabetic-eye-screening/Pages/Introduction.aspx


BIBLIOGRAPHY 157

[360] B. C. Marlen Cosmar, Robert Gründler, Danny Flemming and K. Van, “Calculating the cost of
work-related stress and psychosocial risks,” European Agency for Safety and Health at Work,
Luxembourg, Tech. Rep., 2014.

[361] M. Prince, E. Albanese, M. Guerchet, and M. Prina, “World Alzheimer Report 2014. Dementia
and Risk Reduction. An analysis of protective and modifiable factors,” Alzheimer’s Disease
International (ADI), London, Tech. Rep., 2014.

[362] K. Tagai, T. Nagata, S. Shinagawa, K. Nemoto, K. Inamura, N. Tsuno, and K. Nakayama,
“Correlation between both Morphologic and Functional Changes and Anxiety in Alzheimer’s
Disease,” Dementia and Geriatric Cognitive Disorders, vol. 38, no. 3-4, pp. 153–160, 2014.

[363] S. P. Poulin, R. Dautoff, J. C. Morris, L. F. Barrett, and B. C. Dickerson, “Amygdala atrophy is
prominent in early Alzheimer’s disease and relates to symptom severity,” Psychiatry Research:
Neuroimaging, vol. 194, no. 1, pp. 7–13, oct 2011.

[364] P. D. Bruen, W. J. McGeown, M. F. Shanks, and A. Venneri, “Neuroanatomical correlates of
neuropsychiatric symptoms in Alzheimer’s disease,” Brain, vol. 131, no. 9, pp. 2455–2463, aug
2008.

[365] “Workplace Stress. A Collective Challenge.” International Labour Organization, Tech. Rep.
April 2016, 2016, [Online] www.ilo.org/safeday, (Date retrieved: 2016-08-25).

[366] European Agency for Safety and Health at Work, “European Opinion Poll on Occupa-
tional Safety and Health,” European Agency for Safety and Health at Work, Bilbao,
Spain, Tech. Rep. May, 2013, [Online] https://osha.europa.eu/en/safety-health-in-figures/
eu-poll-press-kit-2013.pdf, (Date retrieved: 2016-01-10).

[367] European Foundation for the Improvement of Living and Working Conditions, Sixth European
Working Conditions Survey - Overview report, A. Parent-Thirion, I. Biletta, J. Cabrita, O. Var-
gas, G. Vermeylen, A. Wilczynska, and M. Wilkens, Eds. Luxembourg:: Publications Office
of the European Union, 2016, no. November.

[368] “Drivers and Barriers for Psychosocial Risk Management: An analysis of find-
ings of the European survey of enterprises on new and emerging risks.” Euro-
pean Agency for Safety and Health at Work, Luxembourg, Tech. Rep., 2012,
[Online] https://osha.europa.eu/en/tools-and-publications/publications/reports/
drivers-barriers-psychosocial-risk-management-esener, (Date retrieved: 2016-04-06).

[369] A. Alberdi, A. Aztiria, and A. Basarab, “Towards an automatic early stress recognition system
for office environments based on multimodal measurements: A review,” Journal of Biomedical
Informatics, vol. 59, pp. 49–75, 2015.

[370] C. Ramos, G. Marreiros, R. Santos, and C. F. Freitas, “Smart Offices and Intelligent Deci-
sion Rooms,” in Handbook of Ambient Intelligence and Smart Environments, H. Nakashima,
H. Aghajan, and J. C. Augusto, Eds. Boston, MA: Springer US, 2010, pp. 1–31.
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