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Abstract 
 

Diamond is a promising candidate for enhancing the negative-ion surface production in the ion 

sources for neutral injection in fusion reactors; hence evaluation of its reactivity towards 

hydrogen plasma is of high importance. High quality PECVD single crystal and polycrystalline 

diamond samples were exposed in Pilot-PSI with the D+ flux of (4‒7)·1024 m-2s-1 and the impact 

energy of 7‒9 eV per deuteron at different surface temperatures; under such conditions physical 

sputtering is negligible, however chemical sputtering is important. Net chemical sputtering 

yield Y = 9.7·10-3 at/ion at 800°C was precisely measured ex-situ using a protective platinum 

mask (5x10x2 µm) deposited beforehand on a single crystal followed by the post-mortem 

analysis using Transmission Electron Microscopy (TEM).  The structural properties of the 

exposed diamond surface were analyzed by Raman spectroscopy and X-ray Photoelectron 

Spectroscopy (XPS). Gross chemical sputtering yields were determined in-situ by means of 

optical emission spectroscopy of the molecular CH A-X band for several surface temperatures. 

We observed a bell shape dependence of the erosion yield versus temperature between 400°C 

and 1200°C, with a maximum yield of ~1.5·10-2 at/ion attained at 900°C.  The yields obtained 

for diamond are relatively high (0.5−1.5)·10-2 at/ion, comparable with those of graphite. XPS 

analyses show amorphization of diamond surface within 1 nm depth, in good agreement with 

molecular dynamics (MD) simulation. MD was also applied to study the hydrogen impact 

energy threshold for erosion of [100] diamond surface at different temperatures.  
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1. Introduction 

Deuterium negative ion generation is of a primary interest for fusion reactors as an essential 

component of the Neutral Beam Injection (NBI) system. The standard solution to produce high 

negative-ion current is to inject cesium (Cs) onto extraction grid, which has certain drawbacks 

for the long-term operation, such as Cs diffusion in the accelerator stage of NBI system and 

plasma contamination; hence, the development of cesium-free negative-ion sources is a major 

issue for future fusion reactors. It has been shown that diamond is a good negative-ion surface-

production enhancer material when exposed to a low pressure hydrogen plasma [1,[2]. In 

negative-ion sources for fusion the plasma grid on which negative-ions are formed is biased 

between the floating and the plasma potential, therefore most of positive ions impinges on the 

grid with a quite low energy of few eV. Under such plasma conditions the flux of positive ions 

is important while their energy remains in the eV range. In view of the use of diamond for 

fusion applications such as negative-ion sources, a proper evaluation of diamond erosion under 

high flux of ions at low energy is proposed here.    

Diamond has been barely studied as a plasma facing material (PFM) [3,[4,[5,[6]. It has 

outstanding thermal properties; the chemical erosion rate of diamond by thermal hydrogen 

atoms is 2-4 orders of magnitude lower than that of graphite depending on the surface 

temperature [7], although in case of 200−800 eV hydrogen ions the physical sputtering yields 

of diamond and graphite are comparable [8]. The previous studies in the linear plasma device 

Pilot-PSI have shown that diamond could be a suitable PFM for a fusion reactor [3]. 

Unfortunately, these measurements have lacked the control of the surface temperature during 

the exposure and only polycrystalline diamond samples have been investigated. In addition, 

the spectroscopic measurements of the erosion yield have not been absolutely calibrated. 

Therefore, a new revised experiment is described here. This study is focused on the damage 

and erosion of diamonds film during interaction with hydrogen plasma under experimental 

conditions that demonstrate high ion-flux (~5.1024 m-2s-1) and low energy (~ 7-9 eV). The goal 

is to add value to the knowledge on diamond behavior under exposure to high-flux low-energy 

plasmas through the control of the surface temperature during measurements, through 

measurement of the absolute erosion yields and through the use of high quality PECVD 

diamond film (both polycrystalline and single crystals with different orientations). We also 

used molecular dynamics (MD) study to have an insight of erosion process under similar 

conditions. 

In Section 2 the processes involved in chemical sputtering of carbon and diamond are 

reviewed; Section 3 presents experimental set-up and diagnostics. Measurements of the 

diamond erosion rate are given in Section 4 together with molecular dynamics modelling. 

2. Chemical sputtering of carbon and diamond 

Erosion of carbon has been widely studied in view of its potential application as a plasma-

facing material in fusion reactors, in particular under well-controlled conditions using low-flux 

ion beams, as well as in high-flux experiments in tokamaks and linear plasma devices [9]. 

Thermally activated chemical erosion occurs through hydrogenation of carbon atoms on the 

surface, formation of intermediate spx centers with dangling bonds and subsequent release of 
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mainly CH3 radicals [10,[11,[12]. This process is hindered at elevated temperatures by 

hydrogen recombination on the surface. As a result, a typical dependence of the chemical 

erosion yield of carbon Ytherm on the surface temperature Tsurf is a bell-shaped curve with a 

maximum at Tmax [9]. The chemical erosion rate is enhanced if the surface is amorphous or if 

it is damaged by impinging ions, which leads to formation of dangling bonds for hydrogen 

attachment. The latter requires ion energy above a certain damage threshold. It has been also 

shown that Tmax shifts to higher temperatures and Ytherm gradually decreases with the ion flux 

increase [9]. 

The total chemical sputtering yield of carbon, Ytot, includes physical sputtering, chemical 

erosion Ytherm enhanced by damage production and the near-surface process, Ysurf. The latter 

corresponds to sputtering of sp3 CHn groups from the surface via breaking the weakly bound 

C-C bonds by ion impacts. The process itself is not thermally activated, however Ysurf strongly 

depends on the surface density of sp3 hydrocarbons which decreases at high Tsurf due to the 

dominance of hydrogen recombination and desorption. 

A number of Ytot(Tsurf) curves have been calculated with a model of Roth [12] for several 

fluxes of deuterons impinging on graphite with energy of 8 eV, see Figure 1. Each curve has a 

bell-shaped contribution Ytherm and a sigmoid-like contribution Ysurf. One could expect the same 

type of behavior for diamond if the topmost layer of its surface is amorphized under ionic 

bombardment. 
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Figure 1. Total chemical sputtering yield Ytot of graphite under 8 eV D+ ion bombardment, calculated with the 
model of Roth [12] as a function of the surface temperature for different fluxes of incident ions. Ychem is 
thermally activated chemical erosion yield and Ysurf is the yield of near-surface sputtering of weakly bound sp3 
CHn groups. 
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Experimental evidence of chemical erosion of diamond under hydrogen or deuterium impact 

at low energy (few eV or less) is limited. Donnely has shown that a polycrystalline CVD 

diamond film is quite resistant under the flux of thermal H atoms of 8.9·1021 m-2s-1 with erosion 

yield of the order of 10-7-10-6 C/H with a slight increase towards Tsurf = 1100 K, while graphite 

under the same conditions revealed a bell-shaped curve with Ymax = 3·10-3 C/H at Tmax = 800 K 

[7]. Takeguchi studied graphite erosion in a high power Ar + H2 ICP plasma with a low-energy 

neutral flux of 1023–1024 m−2s−1 and an ion flux of 1019–1020 m−2s−1 with incident energies of 

few eV; he found that deposition of boron-doped diamond film on top of graphite reduces its 

chemical sputtering yield at 850 K by 2 orders of magnitude down to 3·10-5 C/H [13[20]. He 

also observed a significant modification of the surface morphology (formation of pyramidal 

pits) and H penetration 20 nm deep in the diamond layer. In previous experiments on Pilot-PSI 

the nano-crystalline and microcrystalline diamond CVD films were exposed to high flux 

hydrogen plasma: electron density ne = 2×1019 m−3, electron temperature Te = 0.3−1.4 eV 

(giving energy below 10 eV), ion flux of 2×1023 m−2s−1. CH emission produced by erosion of 

diamond films was found to be reduced by a factor 2 compared to graphite if Te was less than 

1 eV [3]; unfortunately, Tsurf could not be measured at that time. Partial amorphization of the 

diamond structure within the penetration depth of ions (appearance of sp2 carbon in XPS) 

occurred at Te = 1.5 eV [3]. When dealing with higher ion energy, above ~10 eV, more studies 

devoted to erosion of diamond and defect creation on diamond can be found. Yudo et al [14] 

observed in CVD reactor that the size of diamond particles were reduced to one third when the 

bias was set to -100 V and the growth of diamond crystal was completely suppressed when the 

bias was set to -200 V,  suggesting that the effect of sputtering and erosion by hydrogen is very 

large at high ion enerngy. V. Yamada used high energy H2
+ ion beam of 2·1015 m-2s-1 with 

200−800 eV/H and he observed similar chemical sputtering yields both for graphite, sintered 

diamond and diamond film, of the order of 10-2-10-1 C/H, depending on the ion energy; he also 

evidenced a bell-shaped curve Y(Tsurf) with Tmax around 500°C [8]. Yamazaki exposed high-

pressure and high-temperature (HPHT) synthetic [001] diamond substrates to 50 W RF plasma 

discharge at 10 Pa of H2, with ion energies up to 500 eV at room temperature; subsequent XPS 

and FTIR analysis showed that such exposure leads to a structural change of a diamond 

structure towards an a-C:H-like one within 10 nm depth [21]. Microcrystalline CVD diamond 

films were exposed to a hydrogen ion flux of 1020 m−2s−1 in the linear magnetized plasma device 

MAGPIE with target biases between 0 V to −500 V leading to ion energy in the range 18 eV 

to ~500 eV; the ion-induced damage to the surface of the diamond films occurred only within 

the ion penetration depth (10-15 nm), in agreement with the SRIM modelling [5]. After 

exposure to 1023 deuterons per m2 in MAGPIE a lot of 10 nm–100 nm sized hemispherical and 

conical features appeared on the CVD surface, which was explained by re-deposition of the 

eroded carbon [5[6]. Surface analysis of CVD diamond films exposed in tokamak DIII-D 

showed that the bulk micro-crystalline nature of the sample is unaltered while a continuous 10-

15 nm thick interfacial layer was formed at the surface; a structural composition of 24% 

diamond and 76% amorphous carbon in the layer was measured [4]. Finally, many other studies 

have also been devoted to damage creation in diamond upon exposure to heavier ions (carbon, 

oxygen, argon, xenon, …) in a wide range of impact energies  [15[16[17[18[19]. 
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To summarize the experiments listed above, it is expected that the chemical sputtering of 

diamond occurs through amorphization of the sub-surface layer within the ion penetration 

depth. It is also suggested that there is a certain ion energy threshold to create the damaged 

layer; that is why diamond erosion by thermal H atoms was found to be negligible in contrast 

to the case of exposure to energetic hydrogen or deuterium ions. Indeed, the displacement 

energy of a carbon atom in diamond lattice is 52 eV [22]; in order to transfer such energy to a 

C atom through an elastic collision, an H atom must have at least 183 eV [5]. In case of graphite 

an ion energy of 15–30 eV is required to displace a C atom permanently [23], which 

corresponds to an H atom with a minimum energy of 53–106 eV [5]. On the other hand, even 

low-energy H ions can cause erosion of amorphous carbon and graphite via breaking C–C 

bonds in the near-surface process; the latter requires approximately 2–8 eV, depending on the 

bonding configuration [24]. Previous exposures of fine-grain graphite to high flux hydrogen 

plasmas in Pilot-PSI showed the threshold energy of chemical sputtering of 1.1 eV obtained by 

fitting the experimental data [25]. The near-surface sputtering occurs on a timescale of ps, 

hence it can be perfectly simulated with molecular dynamics (MD) approach. On the other 

hand, MD cannot describe long-term thermally activated processes, such as diffusion and 

desorption of hydrogen. MD simulation results will be presented in the paper together with 

experimental results. 

3.  Experiment 

Diamond samples have been exposed in Pilot-PSI in order to measure the erosion rate and 

to study the modification of the surface properties induced by particle bombardment. Two 

different types of diamond layers were prepared by means of plasma-assisted chemical vapour 

deposition (PACVD). First one is a single crystal, either 3x3 mm² with [100] orientation or 2x2 

mm² with [111] orientation, deposited on a low quality HPHT diamond substrate which in turn 

was brazed on a molybdenum substrate. The thickness of the crystal ranged from 20 to 64 µm, 

some of them were boron-doped with 1019−1020 B/cm3 (see Table 1). The second type of 

sample is a polycrystalline layer with a grain size of 20−100 µm and a thickness of around 100 

µm, brazed on a molybdenum substrate. One of the polycrystalline samples was boron-doped 

with 1021 B/cm3; the shape of its crystallites is slightly different compared to non-doped 

samples. The polycrystalline samples were circular with a diameter of 10 mm, see Table 1. 
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Table 1. Properties of the exposed diamond samples and the parameters of D2 plasma exposure in Pilot-PSI. 

The linear plasma device Pilot-PSI (Figure 2) has been chosen to expose the diamond 

samples as it provides a huge particle flux at low energy of impact and low electron temperature 

of D2 plasma [26]. Plasma generated by a cascaded arc source [27] expands towards the target 

along a magnetic field of 0.8 T. The source current and the deuterium flow were adjusted to 

obtain the reproducible plasma parameters: the electron temperature Te of 1.4‒1.7 eV, the 

electron density ne of (0.6‒1.0)·1021 m-3 as measured by Thomson scattering in front of the 

target. The D+ flux Γ� was calculated from the generalized Bohm criterion assuming Te = Ti 

[28]: 

Γ� = 0.5��	
1 + ����� ��⁄ �. (1) 

�� is the ion mass, ��  is the Boltzmann constant and  is assumed to be 5/3 (adiabatic flow 

with isotropic pressure). The target was at floating potential, hence the ion impact energy was 

7‒9 eV per deuteron. Neutrals have 10 times lower energy than the ions since they are not 

accelerated in the sheath. Their flux is supposed to be much lower than the ion flux since the 

ionization degree is very high in Pilot PSI (85% measured in [29]). Therefore neutrals are 

expected to contribute much less to the erosion. The neutrals were also neglected in previously 

published papers about Pilot-PSI, e.g. in [25]. The experimental conditions are close to those 

predicted for the ITER divertor plasma close to the strike point. Under such conditions physical 

sputtering is negligible, however chemical sputtering is important. The chemical sputtering 

yield strongly depends on the surface temperature, hence different surface temperatures and 

fluences were tested with the sample of each type. The target in Pilot-PSI is water-cooled; in 

order to vary the surface temperature a different number of graphite foil layers were introduced 

between the sample and the target for a fixed plasma condition. The temperature was measured 

 
Polycrystalline 

Single crystal 

 [100] [111] 

 B-doped Non-doped B-doped 
B-

doped 

Non-

doped 

Reference MCD1 MCD2 MCD3 SCD1 SCD2 SCD3 SCD4 SCD5 

Thickness 100 µm 100 µm 100 µm 20 µm 20 µm 20 µm 64 µm 22 µm 

Dimensions Ø10 mm Ø10 mm Ø10 mm 3×3 mm2 3×3 mm2 3×3 mm2 2×2 mm2 2×2 mm2 

Te (eV) 1.5 1.4 1.4 1.4 1.7 1.1 1.5 1.7 

ne (m
-3) 7.5·1020 9.0·1020 9.0·1020 6.0·1020 7.0·1020 6.0·1020 6.0·1020 8.0·1020 

D+ flux 

(D/m2/s) 
5.2·1024 6.0·1024 6.0·1024 4.0·1024 5.2·1024 3.6·1024 4.2·1024 5.9·1024 

D+ energy 

(eV) 
7.8 7.3 7.3 7.3 8.8 5.7 7.8 8.8 

Exposure 

time (s) 
10 10 40 10 10 10 40 10 

D+ fluence 

(D/m2) 
5.2·1025 6.0·1025 2.4·1026 4.0·1025 5.2·1025 3.6·1025 1.7·1026 5.9·1025 

Surface 

temp. (°C) 
890 >900 1200 800 730 380 500 550 
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during the exposure by means of a multi-wavelength pyrometer (FAR Associates, FMPI 

SpectroPyrometer) and a fast infrared camera (FLIR, SC7500-MB). 

 

Gross chemical sputtering yield was determined in-situ by means of optical emission 

spectroscopy of the molecular CH A-X band (431.42 nm) [30]. The line was measured with 

Avantes AvaSpec-2048 spectrometer as well as with fast visible-range Phantom camera with 

a bandpass filter from 430.0 to 431.5 nm. Photon efficiency was calibrated by means of the 

methane (CH4) injection close to the target without sample during the plasma pulse with the 

same conditions.  

Single crystal [100] sample SCD1 was coated with a tiny platinum mask (5×10×2 µm3) 

before exposure using a focused ion beam (FIB) setup HELIOS 600 Nanolab. After exposure 

FIB was applied again to cut a thin foil cross-section including exposed and unexposed 

diamond surfaces; the differential height between both surfaces was accurately measured by 

means of transmission electron microscopy (TEM) on FEI Titan 80300. Surface properties of 

the samples were studied with scanning electron microscopy (SEM) using a Philips XL30 

SFEG, atomic force microscopy (AFM) using a NT-MDT apparatus, Raman 

microspectrometer Horiba-Jobin-Yvon HR LabRAM using λ = 633 nm and X-ray 

photoelectron spectroscopy (XPS) with Al-Kα source (1486.7 eV). 

4. Results and discussion 

4.1. Measurements of the chemical sputtering rate 

SEM images of the platinum mask in the center of the SCD1 sample before and after 

exposure to 4.0·1025 D+/m2 at Tsurf = 800°C during 10 s are shown in Figure 3. The mask 

protected the diamond from erosion, its rectangular shape became a bit smeared probably due 

 
Figure 2. Scheme of the experiment in Pilot-PSI. 
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to a localized heating and melting of platinum; physical sputtering of Pt by deuterons with 7 eV 

is not possible. Small droplets of Pt were deposited on the distance of ≥10 µm around the mask 

during the exposure, see Figure 3b. The area around the mask was coated with another layer of 

platinum to protect the diamond surface and a thin foil cross-section was cut with FIB, which 

was further analyzed with TEM (Figure 4). 

On the cross-section a light-grey layer on top is platinum, a dark-grey layer on bottom is 

diamond. On the right the diamond [100] surface was protected by the mask during the 

exposure in Pilot-PSI: a clear erosion step can be observed with respect to the unprotected area 

on the left. The height of the step is (2.2 ± 0.2) µm, which yields in the sputtering rate of (220 

± 20) nm/s. Given the D+ flux to the surface of 4.0·1024 m-2s-1 and the diamond density of 3.5 

g/cm3, the chemical sputtering yield of [100] surface bombarded by 7 eV deuterons at 800°C 

is Y = (9.7 ± 0.9)·10-3 at/ion. The interface between the coated platinum layer and the diamond 

substrate was investigated in detail by means of high-resolution TEM, see Figure 5.  

  

Figure 3. SEM image of the single crystal [100] diamond surface of the SCD1 sample with a Pt mask on top 
before (a) and after exposure (b) in Pilot-PSI. The image (b) was taken at the tilt angle of 52°. 

 

Figure 4. TEM image of the thin foil cross-section of the SCD1 sample, showing the platinum mask and the 
underlying diamond surface after exposure in Pilot-PSI. The erosion step is highlighted with yellow lines. 
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The only difference between the diamond layer protected with Pt mask during plasma exposure 

(Figure 5a) and non-protected area, covered with Pt after exposure (Figure 5b) is a light-grey 

interface layer of 1-2 nm thickness in the latter case. This could be due to amorphization of the 

diamond surface during plasma exposure. Raman spectroscopy showed a well-pronounced 

diamond peak before and after exposure with no signature of amorphous C in the spectra, which 

may be explained by its limited sensitivity: Raman scattering originates from the probing depth 

of a few hundreds of nm, while the amorphous layer thickness is possibly of the order of 1 nm. 

On the other hand, XPS spectra reveal a certain change of C1s line shape between unexposed 

[100] sample (Figure 6a) and the exposed SCD1 (Figure 6b). The spectrum was fitted with four 

Gaussian/Lorentzian peaks with 70% Gaussian contribution each; the major peak corresponds 

to sp3 binding, it is located between 284.2 and 285.5 eV depending on the sample. Such 

variation can be firstly due to the charging of the diamond surface during the XPS analysis, 

though it is less probable as most of the samples are boron-doped. Another reason is that due 

to the 5.5 eV band gap in diamond the presence of surface states or dopants determines the C1s 

binding energy, which can range from 283.7 to 289.2 eV [32]. The difference of doping levels 

across the samples could explain the shift of the Fermi level, hence the shift of the binding 

energy peaks. Another recent review about the origins of sp3 peaks in C1s XPS of carbon 

materials shows that the binding energy reported for sp3 in the literature ranges from 283.3 to 

287 eV [33]. However the shift between sp2 and sp3 peaks is reproducible by different 

experimenters: 0.7−1.1 eV [33], so we adopted the commonly used approach [34]: the absolute 

binding energies were allowed to change from sample to sample, however the relative shift 

between sp2 and sp3 peaks positions was fixed to 0.7−0.8 eV. FWHM for both peaks was found 

to be in the range of 0.5−1.1 eV. 

While the shape of the diamond sp3 peak remains unmodified for both samples in Figure 6, 

the peak of sp2 is more pronounced for the exposed sample; sp2/sp3 ratio raised from 0.018 to 

0.34 after exposure. Inelastic mean-free-path of 1.2 keV photoelectrons in amorphous carbon 

is 2 nm [31], which means that 65% of the measured signal originates from the topmost 2 nm 

 
Figure 5. High-resolution TEM image of the interface between the platinum layer and the underlying 
diamond surface of the SCD1 sample: (a) masked area, (b) area exposed in Pilot-PSI. The yellow rectangle 
shows a light-grey interface layer which is probably due to the local amorphization of the diamond surface. 
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layer and 95% within the depth of 6 nm: therefore, XPS provides more precise measurement 

of the surface composition compared to Raman in our case.  

 

Sample C1s: sp2/sp3 O1s 

SCD4: [111] at 500°C 0.12 ± 0.01 9.8 at.% 

SCD1: [100] at 800°C 0.34 ± 0.02 8.7 at.% 

MCD3: polycrystalline at 1200°C 0.043 ± 0.003 6.6 at.% 

[100] unexposed 0.018 ± 0.002 3.0 at.% 
 

Table 2. The ratio of sp2 to sp3 hybridization of C atoms and the quantity of oxygen measured by XPS. 

XPS also shows a non-negligible amount of oxygen on the surface (3-10 at.%) which is 

higher for exposed samples. Besides, there are two small broad peaks in C1s line corresponding 

to C−O and C=O binding energies (Figure 6). Unfortunately the analysis was not performed 

immediately after the exposure in Pilot-PSI, which makes it impossible to deduce if the 

presence of oxygen in the vacuum chamber (base pressure 10-2 mbar) enhanced the chemical 

erosion or it was adsorbed later ex-situ.  

It has been demonstrated previously in Pilot-PSI that in case of graphite targets there are 

erosion dominated zones and re-deposition dominated zones [35]. Under the present 

experimental conditions we believe that the sample is within the erosion dominated zone, hence 

the amorphous layer on the diamond surface is not a deposited C:D layer. Indeed, if the 

temperature at the center of the target corresponds to the maximum erosion rate, then erosion 

is dominating, while for higher temperatures it is re-deposition dominated. The 3 x 3 mm2 

diamond sample ABJ44 was exposed at Tsurf = 800°C and demonstrated the sputtering yield 

close to the maximum value (see Figure 7 below), so we expect the sample to be in the erosion 

dominated zone (at least the analyzed area with the Pt mask). 
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To conclude, the experimental evidence suggests that amorphization of the diamond surface 

could occur within 1-2 nm depth. Calculations with the SRIM code [36] predict that the ion 

penetration depth lies within 1 nm in our conditions. However, SRIM model assumes 

amorphous carbon target and it does not work correctly in the range of energies lower than 

10 eV, so MD modelling was performed to account for the diamond [100] structure, as it will 

be shown in Section 4.2. 

The measurements of the CH emission during plasma pulses for all samples allowed to 

obtain gross chemical sputtering yield as a function of the surface temperature and the 

crystalline structure, see Figure 7. The yield follows a bell-shaped curve mentioned in Section 

2 with Tmax around 900°C. It should be noted that all measurements with  

Tsurf < 900°C were performed with single crystal diamonds, while polycrystalline samples were 

exposed at Tsurf  ≥ 900°C. The choice was determined by the type of Mo substrate and the type 

of diamond crystal brazing. Furthermore, Tsurf depended on exact heat flux for a given plasma 

pulse and thermal contact with the target, which made it hard to control.  
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Figure 6. XPS spectra of C1s line of single crystal [100] samples: unexposed (a) and exposed SCD1 (b). 
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There is an uncertainty of the measurement related to the choice of the effective area on the 

diamond surface which is eroded and contributes to the CH emission; in case of fast camera 

there is also uncertainty about the integration area. The error bars in Figure 7 mostly stem from 

the ~30% uncertainty of estimation of the effective flux area: the sample is smaller than the ion 

beam with Gaussian distribution, so the integrated ion flux over the target area is not accurately 

known. Nevertheless, the erosion yields measured by fast camera and spectrometer are in a 

reasonable agreement for most of the samples except for polycrystalline MCD2 and MCD3. 

The gross erosion yield for SCD1 is slightly higher than the net sputtering yield measured by 

TEM for this sample, shown by a star in Figure 7 (though it lies within the error bars): it implies 

local re-deposition of up to 25% of eroded carbon. Two crystalline orientations [100] and [111] 

did not show much difference in the sputtering yields in the range of Tsurf = 400−550°C. It 

should be noted that [111] surface at 500°C evidenced less amorphization (sp2/sp3) than [100] 

at 800°C, as given in Table 2; in fact, this is probably not related to the crystalline orientation 

but rather to higher Tsurf in case of [100] surface. 

4.2. Modelling of the diamond [100] surface sputtering 

Sputtering yields obtained for diamond are relatively high: (0.5−1.5)·10-2 at/ion and 

comparable with the value measured for graphite at 1400°C: 0.4·10-2 at/ion. Temmerman also 

observed similar levels of CH emission in case of diamond and graphite exposed to D2 plasma 

at Te = 1.3 eV in Pilot-PSI [3]. This suggests that the sub-surface layer facing plasma flux is 

modified by impinging D+ ions in a similar way for both diamond and graphite. In order to gain 

an insight into the diamond surface modification at these experimental conditions, we have 
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Figure 7. Gross chemical sputtering yield of diamond deduced from the CH emission measured in-situ with 
fast camera (black squares) and spectrometer (red circles) as a function of Tsurf and crystalline orientation. The 
star shows net sputtering yield measured ex-situ by surface analysis technique for one of the samples. 
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carried out molecular dynamic (MD) simulations [37] based on a Tersoff–Brenner type reactive 

empirical bond order (REBO) potential for hydrocarbons [38]. The REBO potential has been 

originally developed for simulating the PECVD deposition of diamond films [39]. This 

potential has been also used to model particle surface reaction [40], fullerene formation and 

properties [41], diamond melting [42], carbon nanotube properties [43], and polycrystalline 

diamond structure [44]. This formalism takes into account covalent bond breaking and 

formation with associated changes in atomic hybridization, providing a powerful method for 

modeling complex chemistry in large many-body systems.  

The simulated D-terminated diamond [100]-2×1 cell is 2.8 nm × 2.8 nm × 2.5 nm; its side 

view before exposure is shown in Figure 8. The modelling was performed for three surface 

temperatures: 427°C, 627°C and 827°C. Before simulating the ion impacts the modelling cell 

was pre-heated up to the given Tsurf in a constant-temperature, constant-pressure (NPT) 

ensemble, which was followed by a relaxation in a microcanonical ensemble for 20 ps. In order 

to better reproduce the erosion process at high surface temperature, the simulation cell was 

separated into four different zones: a rigid zone of fixed atoms at the bottom, a temperature 

controlled zone to efficiently cool down the surface during impacts, an impact zone and a buffer 

zone in a microcanonical ensemble during the ion impacts (Figure 8). MD simulation includes 

a series of D+ impacts with impact energy of 8 eV; the cell is allowed to cool down and relax 

for 0.5 ps between each impact. The total number of impacts is chosen to be high enough (6500 

impacts corresponding to the fluence of about 6·1021 D/m2) to achieve a quasi-equilibrium state 

in terms of erosion rate and amorphization state (sp2/sp3 ratio).  

Figure 9a-c demonstrate the atomic configuration of the simulated cell after exposure to a 

fluence of 6·1021 D/m2 at different surface temperatures. Amorphization and formation of C:D 

chains was observed in the modified layer of the cell at Tsurf of 427°C and 627°C, while at 

827°C the sub-surface region becomes graphitized. Indeed, diamond undergoes phase 

transition to thermodynamically stable graphite through a thermally induced process [45]; bond 

breaking on diamond surface upon annealing can also initiate graphitization process [46]. Dunn 

et al. [47] also found that graphitization of diamond can be induced by ion impacts at surface 

temperatures above 727°C.  
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The distribution of deuterium atoms as a function of the cell thickness given in Figure 9d 

confirms the composition change of the sub-surface region within 0.7–1.0 nm depth for three 

different surface temperatures. D/C ratio on top of the simulated cell is around 3 when Tsurf < 

627 °C, which suggests formation of abundant CD3 groups on the surface. At Tsurf = 827 °C 

D/C ratio in the top surface layer is about 2, which means that CD2 groups are dominant. 

The degree of amorphization can be evaluated through the sp2/sp3 ratio, which is shown as 

a function of Tsurf in Figure 10b. The sp2/sp3 ratio rises from 0.036 to 0.35 as Tsurf increases 

from 427°C to 827°C. These simulation results are in a good agreement with those given by 

the XPS measurements. Carbon sputtering yields obtained by MD simulations agree with the 

gross erosion yields measured in the experiment (see Figure 10a). Both sputtering yield and 

sp2/sp3 ratio were evaluated within the sampling region shown by red dashed line in Figure 8. 

The error bars in MD simulations were estimated based on series of three independent 

calculations in each case. 

 

 
Figure 8. Atomic configuration of the simulated D-terminated C[100]-2×1 diamond cell (2.8 nm × 2.8 nm × 
2.5 nm). The atoms inside gray region at the bottom are fixed during the simulation; the thermostat region is 
placed above, marked in blue. Incident D+ ions bombard the surface within the impact region boundaries, shown 
in yellow. The rest of atoms between the impact zone and the thermostat zone are in the buffer region, where 
there is no temperature control. Red dash line defines the sampling region (1 nm × 1 nm × 2.5 nm) where atoms 
were sampled for the surface modification analysis.  
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Chemical sputtering of diamond by D impacts follows a layer-by-layer removal mechanism. 

The process begins with hydrogenation of the sub-surface region. As D atoms are incorporated 

into C-C bonds, the sub-surface region becomes amorphized and expands because of the 

creation of CDx chains. Weakly bound hydrocarbon molecules in the impact zone can be 

removed from the surface due to the C-C bond breaking via kinetic or thermally activated 

mechanisms; the latter mechanism occurs on a long-term timescale, therefore it is not included 

in the MD simulation. The binding energy between C atoms, hence chemical sputtering yield, 

is sensitive to the surface structure, namely to the number of neighbouring C, D atoms and 

bonds [48]. With the increase of Tsurf up to 827°C the fraction of sp2 bonding in the sub-surface 

region is increased and CD2 groups become dominant; consequently chemical sputtering yield 

of carbon may also increase. At Tsurf > 1000°C a lower surface concentration of D can be 

expected due to prevailing D2 recombination and desorption, therefore chemical erosion yield 

decreases, which is observed in the experiment. It is not observed in the MD simulation as D2 

recombination can occur through Eley–Rideal or Langmuir–Hinshelwood mechanisms and the 

latter is not included in the model. 

Given the synergetic effect of ion impacts and surface temperature, it is very important to 

understand the role of thermal effects when ion energy is low. Nakamura et al [49] studied the 

hydrogen injection to diamond surface with different impact energies (0.3 eV, 0.5 eV, 0.7 eV, 

1 eV, 5 eV) using an unconventional ion impact method where the surface temperature was 0 

K initially, and no cooling regime occurred after each impact (1750 impacts in total). It was 

found that carbon sputtering only occurred in the 5 eV impact energy case with a surface 

temperature saturated around 1227°C after 800 impacts. It is therefore interesting to examine 

the impact energy region below 5 eV with proper consideration of thermal effects. Using a 

conventional accumulative ion impacts method, MD simulation was employed to define energy 

threshold under conditions similar to our experiments.  Figure 11 demonstrates the threshold 

behaviour of the chemical sputtering yield as a function of the D impact energy at room 

temperature calculated on a 1.4 nm × 1.4 nm × 2.5 nm C[100]-2×1 cell. The diamond [100] 

surface is hydrogenated and slightly modified with the sputtering yield lower than  

2·10-3 at/ion when D+ energy is below 5 eV. This might be a promising result for the application 

of diamond layers in negative-ion sources for NBI where huge fluxes of low-energy deuterons 

on the convertor grid are expected. As Tsurf increases up to 827°C, the impact energy threshold 

decreases to 2 eV with a carbon sputtering yield of 1.7·10-3 at/ion. In the future work, an 

optimal combination of impact energy, surface temperature and ion flux should be found in 

order to achieve maximum negative ion surface production with minimum surface damage. 
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5. Conclusion 

In this paper, we studied surface damage of diamond exposed to low-energy high ion-flux 

hydrogen plasmas relevant for fusion applications. The chemical sputtering yield of diamond 

was measured while exposing high quality PECVD single crystals and polycrystalline coatings 

in Pilot-PSI to the ion flux of (4−6)·1024 D+/m2s with impact energies of 7−9 eV per deuteron 

for a wide range of surface temperatures: Tsurf = 400−1200°C. The spectroscopic relative 

measurements were put on an absolute scale by using a platinum mask deposited on one of the 

diamond samples. A bell-shaped dependence of the carbon sputtering yield vs. Tsurf was 

demonstrated, in agreement with a carbon erosion model of J. Roth [9]. The maximum carbon 

sputtering yield was observed at the surface temperature of about 900 °C. In contrast to 

experiments with thermal H atoms [7], chemical sputtering yields obtained in the present work 

are relatively high: (0.5−1.4)·10-2 at/ion, close to those expected for graphite. The measured 

gross erosion yields were in good agreement with the carbon sputtering yields obtained by MD 

simulations under similar conditions. Our measurements also suggested that at relatively low 

surface temperature (400-550°C), the initial crystal orientation ([100] and [111]) of the sample 

does not demonstrate much difference in carbon erosion yield. 

The XPS analysis suggested that the near surface region was modified during plasma 

exposure under our experimental conditions, which resulted in a ~1 nm thick hydrogenated 

amorphous carbon film. At surface temperatures less than 900 °C the sp2/sp3 ratio of the near 

surface region is increasing with increased surface temperature. MD simulation shows similar 

trend on the sp2/sp3 ratio, suggesting graphitization of the sub-surface region at 827 °C. At 

surface temperatures higher than 900 °C the polycrystalline sample was found to have similar 
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sp2/sp3 ratio with that of unexposed single crystal sample. This could be the result of surface 

reconstruction caused by the dominant process of hydrogen desorption at such high 

temperature. The diamond surface state at high temperature could be interesting for application, 

although it is hard to achieve experimentally. At lower temperature it would be necessary to 

further reduce ion energy to limit defect creation. MD simulation was used to predict energy 

thresholds of carbon erosion with different surface temperatures. The near-surface sputtering 

of diamond shows threshold behaviour as a function of the D+ impact energy; the chemical 

sputtering yield given by the model is below 3.3·10-3 at/ion, provided that the D+ impact energy 

is below 5 eV and Tsurf ≤ 400°C. With surface temperature ranging between 100°C and 400°C, 

diamond film can be a promising candidate for the production of negative-ion sources in NBI 

system where both ion flux and ion energy are lower (1021−1022 m-2s-1 and < 5 eV respectively) 

than in the present experimental conditions. 
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