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Abstract 

Neon and deuterium plasma irradiation of polycrystalline tungsten targets have been performed 

at high fluxes of ~1024 ions m-2s-1 to study the interaction of neon with tungsten and the 

influence of neon on deuterium retention. Tungsten exposure to neon plasma leads to the 

formation of wavy nanostructures on the surface. Subsequent exposure to high-flux deuterium 

plasma leads to blister formation of micrometer size on top of the wavy structures. The total 

deuterium retention is decreased by neon pre-irradiation for all surface temperatures used in the 

present experiments. It is suggested that a barrier of trapped Ne is formed that interrupts the D 

transport and reduces D retention. 
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1. Introduction 

Tungsten (W) is the material selected for the divertor target plates in ITER [1]. To avoid 

divertor damage by excessive heat flux the radiative power removal by means of impurity 

seeding (predominantly neon and nitrogen) is needed [2]. Understanding the interaction 

between seeded impurities such as neon (Ne) and tungsten, and their influence on the fuel 

retention and plasma-induced morphology changes is of particular interest. Experimental data 

exist for the interaction between another noble gas helium (He) and W and its influence on fuel 

retention. Strong reduction of deuterium (D) retention is observed for the cases of pre-exposure 

to He plasma as well as in the case of simultaneous D/He irradiation [3] [4] [5]. In the case of 

neon however, those data do not yet exist. The present paper describes the results from 

exposures of W targets to sequential Ne and D plasmas under ITER-like conditions in the linear 

plasma generator Pilot-PSI. The effect of Ne pre-irradiation on D retention at different surface 

temperatures and for a range of Ne fluences is investigated. Also the change of the W surface 

morphology induced by Ne-only, D-only and Ne-D sequential plasmas at different surface 

temperatures will be presented. 

2. Experimental details 

Polycrystalline tungsten targets (>99.95 wt.% purity) cut from a rolled sheet [6] were 

mechanically polished until the surface was mirror-like. An image depicting the typical surface 

after polish is shown in Fig. 1. Subsequently the targets were annealed at 1273 K for one hour 

at a background pressure of 5×10-4 Pa. The dimensions of the targets are 20 mm in diameter 

and 1.0 mm in thickness. The average grain size was 2-5 μm. 

The W targets were exposed to neon (Ne) and deuterium (D) plasma in the linear plasma 

generator Pilot-PSI located at the FOM-Institute DIFFER. A detailed description of the machine 

can be found in [7]. The plasma is produced by a cascaded arc source and confined by an axial 

magnetic field of 0.4 T. Electron density and temperature of the plasma beam are measured by 
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Thomson scattering at a distance of ~20 mm from the surface. For exposure at surface 

temperatures of 400 K and 523 K, the plasma beam has a Gaussian profile with a peak electron 

density of about 3-4×1020 m-3 and a full width half maximum of ~1 cm. The peak electron 

temperature of the Ne and D plasmas are 2 and 1 eV respectively. The Ne and D ion fluxes are 

estimated from TS measurements, assuming that the ions are accelerated to sound speed at the 

sheath entrance (Bohm criterium), yielding 0.8 and 1.2 ×1024 m-2s-1 respectively. For exposure 

at the surface temperature of 850 K the plasma was confined by a magnetic field of 0.8 T, 

yielding a flux of (2-3)×1024 m-2s-1 for both Ne and D plasmas.  

The incident ion energy is dominated by the target bias as the plasma potential is relatively 

small (a few V). For the Ne plasma, a bias of -20 V was used while it was set at -40 V for the 

D plasma case. The lower ion energy for the Ne case was chosen to avoid physical sputtering 

of the tungsten target and of the molybdenum clamping ring which is used to mount the tungsten 

target on the cooling unit. The temperature profile of the target surface is measured by an 

infrared camera (FLIR A645 sc) with an emissivity set to 0.05. The determination of the 

emissivity has been checked with other diagnostics (pyrometer and fast IR camera FLIR 

SC7500-MB). The shape of the temperature profile is similar to that of the electron density,  a 

detailed description of the temperature profile can be found in [8]. The temperature difference 

between the center and the edge of the target was 80 K at 400 K and 523 K, and 200 K at 850 

K. The reported surface temperatures as well as the ion fluxes and fluences are the ones at the 

center of the plasma beam, where the SEM observations were performed.  

The targets were sequentially exposed to Ne plasma and to D plasma. Experiments were carried 

out for three surface temperatures of 400 K, 523 K and 850 K in the center of the plasma beam. 

For all three temperatures, two Ne fluences of 0.5×1026 m-2 and 1×1026 m-2 were used while the 

D fluence was kept constant at 1×1026 m-2 to be able to quantify the effect of Ne pre-exposure 
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on D trapping and retention. The 0.5×1026 m-2 and 1×1026 m-2 cases will be referred to as low 

and high Ne fluence in the following paragraphs. 

The surface morphology of the tungsten targets was studied by a scanning electron microscope 

(SEM, Hitachi S-4700). The images were taken in the center of the plasma spot by using 

typically a 5 kV electron beam in secondary electron mode. Images of areas of 12 and 120 µm2 

were scanned to analyse the D blistering density on the surface. 

The targets were analyzed by thermal desorption spectroscopy (TDS). The tungsten targets 

were heated up to 1273 K with a ramping rate of 1 K/s. The residual gases such as D2 (mass 4), 

HD (mass 3), and Ne or D2O (mass 20) were monitored by a quadrupole mass spectrometer 

(Balzers QMA 124). A calibration leak was used to determine the absolute sensitivity of the 

mass 2 and 4 signals. The sensitivity for mass 3 is assumed to be the average of the sensitivities 

for masses 2 and 4. When calculating the total D retention, D from HD and D2 is taken into 

account. 

3. Results 

3.1. Surface morphology 

Fig. 1 shows SEM images of the targets exposed to the different plasma species at different 

temperatures. In the Ne-only case, the W surface morphology is dominated by wavy 

nanostructures whose appearance depend on the grain orientation. While at 400 K the structure 

is only visible on a few grains, it is much more pronounced on the surfaces for exposure 

temperatures of 523 K and 850 K as shown in Fig. 1(b) and (c). The period of the wavy 

nanostructures is 9-26 μm-1, while the height was measured to be 2-10 nm by atomic force 

microscopy. The Ne fluence did not seem to have an influence on the surface morphology. In 

the D-only case, at 400 K, the surface is covered by a large number of small blisters having an 

irregular shape and a diameter of 0.1-0.5 μm as shown in Fig. 1(d). At 523 K, 0.1-0.5 μm sized 

blisters are still visible, but larger blisters with a diameter of 1-1.5 μm are also present as shown 
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in Fig. 1(e). A blister density calculation has been performed on the grains which show the most 

densely packed blisters, by calculating the total number of blisters divided by the corresponding 

grain area. At 400 K, the blister density is about 4 µm-2, and decreases to 2.8 µm-2 at 523 K. 

Targets exposed at 850 K exhibit no blister. The surface morphology of the targets sequentially 

exposed to Ne and D plasmas is characterized by a combination of the morphology changes 

induced by Ne- and D-only exposures. At 400 K and 523 K, blisters and wavy nanostructures 

co-exist on the surface, while at 850 K only the wavy nanostructure is observed. The blister 

density and size at 400 K and 523 K in the Ne-D sequential case are similar as they are in the 

D-only case, indicating the D blistering is not affected by Ne pre-irradiation. 

3.2. Deuterium desorption 

The D2 desorption spectra for the targets exposed to D-only and Ne-D sequential plasmas are 

shown in Fig. 2 and grouped according to the exposure temperature. The targets exposed to D-

only plasma at 400 K show a main desorption peak at 500 K and a small shoulder at higher 

temperature around 600-700 K. A deconvolution of the desorption spectrum was made using 

Gaussian curves revealing three desorption peaks at 500, 585 and 655 K with the 500 K peak 

being dominant. The intensity of the fitted 500 K peak is reduced by about 30% and 22% by 

Ne pre-irradiation with low and high fluence, respectively. The 585 K and 655 K peaks are also 

reduced in intensity and almost disappear in the Ne-D sequential case. The target exposed to 

D-only plasma at 523 K shows similar D desorption behavior compared to 400 K. Upon Ne 

plasma pre-irradiation, a decrease of the 500 K peak is observed whereas at 700 K a distinct 

peak is present. Applying the same fitting process as in the 400 K case, three desorption peaks 

at around 500, 600 and 700 K are found to reproduce the measurements. The integrated fitting 

results are shown in Table 1. In the fitting curves, besides the reduced 500 K peak intensity, the 

700 K peak intensity increases from 6.7×1016 m-2 to 2.4×1017 m-2 and 1.7×1017 m-2 with the low 

and high Ne fluence pre-irradiation, respectively. The samples exposed at 850 K show a 
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different desorption behavior as compared to the previous cases. A peak at 620 K and a broad 

distribution at around 800-1000 K are observed in the D-only exposed target. Pre-irradiation 

with Ne leads to a strong suppression of the 620 K peak and to a reduction of the 800-1000 K 

distribution. 

During the TDS experiments, the mass 20 signal was also recorded. We found that the 

desorption spectra of the mass 20 signal was very similar in all targets exposed to D-only and 

Ne-D sequential plasmas, suggesting that it predominantly consists of D2O. The detection limit 

of Ne in the TDS experiments was estimated to be ~1018 m-2, from which we conclude that, at 

the time of the TDS (~1 week after plasma exposure), the total amount of Ne in W is lower than 

1018 m-2.  

3.3. Total deuterium retention 

The total D retention is plotted in Fig. 3 as function of the Ne fluence. The D retention varies 

with exposure temperature as well as with Ne pre-irradiation, i.e., the total retention is reduced 

in all targets exposed to Ne plasma. At 400 K, the reduction of the D retention does not vary a 

lot with the Ne fluence. 35 % and 32 % reduction is found in the low and high Ne fluence, 

respectively. In the targets exposed at 523 K and 850 K, the total retention is 2×1020 and 

6.4×1019 D m-2 in D-only exposure, respectively. With the low and high Ne fluence pre-

irradiation there is a reduction of 10 % and 30 % at 523 K and 68 % and 80 % at 850 K. 

4. Discussion 

Wavy nanostructures are observed on the targets exposed to Ne-only plasma at different surface 

temperatures. The dependence of the nanostructure formation on the grain orientation is 

consistent with Bradley Harper’s model [9] based on Sigmund’s sputtering theory [10]. As the 

Ne incident energy (20 eV) is lower than the sputtering threshold energy for W by Ne (40 

eV [11]), the sputtering can be dominated by the high energy tail of the impacting Ne energy 

distribution. In Bradley Harper’s model, the effect of thermally activated surface self-diffusion 
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is incorporated, which may explain the formation of nanostructures being more pronounced at 

523 K and 860 K than at 400 K. The presence of a clamping ring made of molybdenum may 

affect the surface morphology by sputtering and deposition. Thus the target exposed to Ne 

plasma at 523 K was observed by X-ray photoelectron spectroscopy. The result shows no 

molybdenum peak, from which we conclude that the nanostructure is not affected by the 

deposition of molybdenum.  

D retention is reduced by Ne pre-irradiation for all three exposure temperatures although the 

desorption behavior varies with temperature. For targets exposed at 400 K, the desorption peaks 

at 500 K and 600-700 K are reduced in the Ne-D sequential exposure. This may be caused by 

a diffusion barrier of trapped Ne being formed during Ne exposure. The effect is more 

pronounced at an exposure temperature of 850 K as a large reduction of the 620 K peak is 

observed in the Ne-D sequential exposure. Similar effects of He pre-irradiation have been 

reported in [4]. A reduction of the desorption peak was found in the He-D sequential exposure 

at 473-523 K in PISCES-A. A reduction of the D transport into the W bulk due to He pre-

irradiation was proposed in [4].  

Targets exposed at 523 K with Ne pre-irradiation show different D desorption behavior. Besides 

a reduced 500 K peak, an additional peak at 600-700 K is observed upon Ne pre-exposure. The 

700 K peak corresponds to a trapping energy of 1.4-1.6 eV related to the plasma-induced 

modification, according to the measurement and simulation of D retention in W carried out in 

similar plasma and material conditions [12]. A trapping energy of 1.45 eV is related to atomic 

D trapped at a mono-vacancy or molecular D trapped at vacancy clusters [13]. Thus, an elevated 

700 K peak indicates a plasma-induced damage such as vacancy formation. Though vacancy 

formation by collisional events is not expected for Ne at an incident energy of 20 eV, it could 

be triggered via clustering of trapped Ne. When a Ne cluster is large enough, it is able to 

spontaneously create Frenkel pairs. This effect has not yet been confirmed by other experiments 
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or by simulations as research on Ne-W interactions is rather scarce. However, for He, creation 

of vacancies and formation of clusters has been shown to occur in atomistic calculations [14] 

to explain observations of He trapping in perfect Ni [15]. In our experiments, the effect is most 

pronounced at 523 K, indicating an important role of temperature on the process.  

5. Conclusion 

In the present experiments, effects of Ne plasma pre-irradiation on surface morphology and D 

retention of W have been investigated. Ne plasma pre-irradiation leads to the formation of wavy 

nanostructures on the surface. Blisters of micrometer size on top of the wavy nanostructures 

were observed on targets subsequently exposed to D plasmas. TDS measurements show the D 

retention in W depends strongly on the exposure temperature, and the total D retention is 

decreased due to the Ne pre-irradiation under all investigated surface temperatures. It is 

suggested that during Ne exposure a barrier of trapped Ne is formed, thereby reducing the D 

transport to the bulk and the retention. 
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Figure Captions 

Fig. 1: Surface morphology of (a)(b)(c) W targets exposed to Ne plasma of 1x1026 m-2, (d)(e)(f) 

exposed to D plasma of 1x1026 m-2, (g)(h)(i) exposed to Ne-D sequential plasma. The exposure 

temperature is shown on the top of the figure. An image of polished surface without plasma exposure 

is shown in the lower left. 

 

Fig. 2: TDS D2 desorption profiles for W targets exposed to D-only, Ne-D sequential plasmas at 400 K, 

523 K and 850 K. The heating rate was 1 K/s for all samples. The vertical axis scale of (c) is smaller 

than that of (a) and (b). 

 

Fig. 3: Total amount of D retained in W targets exposed to D-only, Ne-D sequential plasmas at 

exposure temperature of 400 K, 523 K and 850 K as determined by TDS. 
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Figure 1.
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Figure 2.  
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Figure 3 
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 Peak intensity at 

490-510 K 

(m-2 s-1) 

Peak intensity at 

581-594 K 

(m-2 s-1) 

Peak intensity at 

680-700 K 

(m-2 s-1) 

Without Ne 6.0 x 1017 1.8 x 1017 6.7 x 1016 

0.6 x 1026 /m2 3.6 x 1017 1.9 x 1017 2.4 x 1017 

1.0 x 1026 /m2 3.3 x 1017 1.3 x 1017 1.7 x 1017 

 

Table 1. Fitting parameters of TDS for targets at exposure temperature of 523 K. 


