
September 1995 

... , II 1 l 
':LL L 11 i1P·~1· 

.----l'L---, I' ' r r 111111 

~~M -I n st i t u u t v o o r P I a s m a I y s i c a R i J n h u I z e n • A s s o c I a Ii e E u rat o m - F 0 M 

Postbus 1207 
3430 BE Nieuwegein 
Nederland 
Edisonbaan 14 
3439 MN Nieuwegein 
Tel. 30-6096999 
Fax. 30-6031204 

ELIXER, a simulation code for the 
spatial structure of light pulses 
in Free-Electron Lasers 

G.H.C. van Werkhoven 

The author likes to thank prnf.dr. T.J. Schap, dr. B. Faatz for discussions regarding the 
development of the FEL model, and prof.dr. J.P. Goedbloed and dr.S. Poedts for the 
availability of the REVISE package. 
This work was performed as part of the research programme of the Stichting voor 
Fundamenteel Onderzoek der Materie (FOM) with financial support from the 
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). 

RIJNHUIZEN 
REPORT 
95-226 



Abstract 

This report discusses the simulation code ELIXER, which was developed to study the 
spatial evolution of radiation in pulsed-beam Free-Electron Lasers. ELIXER includes 
the full spatial structure of the radiation by means of a set of orthogonal axisymmetric 
Gauss-Laguerre functions. Reflection and transmission on realistic cavity mirrors is 
included by means of a matrix formulation. The code differs from other spatially 
three dimensional models by calculating the longitudinal electron dynamics for each 
electron separately, whereas the transverse motions are approximated by the variation 
of the radial beam envelope. This approximation leads to a significant reduction of the 
numerical effort. 
An overview of the physical model is presented, and the numerical implementation of 
the FEL equations in the 'code is discussed. Particular emphasis is put on the input 
file, which describes the FEL device that is to be simulated, and on the output files 
that contain the spatial and spectral properties of the radiation, as well as the energy 
spectrum of the beam electrons. 
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Chapter 1 

Free-Electron Laser Model 

1.1 Introduction 

Simulation codes for the self-consistent computation of the electron and wave dynamics 
in Free Electron Lasers (FELs) are important tools for understanding of FEL physics in 
realistic geometries, as well as for the design of new FEL experiments. The most basic 
simulation code, which has been developed by Colson [l ], describes the longitudinal 
dynamics of the radiation and electron beams, and the induced transverse velocity. 
The model depends on only one spatial coordinate (the position along the undulator 
z) and is therefore generally referred to as the lD model. The model describes most 
basic features of FEL operation, as gain and saturation, sideband modes and finite 
pulse effects, and can be used for basic understanding or to make rough estimates of 
FEL parameters. 
The lD approximation has only a limited validity for a quantitative comparison with 
FEL experiments, for two reasons. In the first place, a more realistic description of 
the transverse motions of the electron is required for realistic beam sizes. When the 
beam is injected into the undulator, 'warm' beam effects as emittance cause the beam 
to diverge. The focussing property of the undulator magnet compensate for this effect, 
but leads to a slow periodic modulations of the beam, the betatron oscillation. In the 
second place, the electron beam tends to focus the optical beam towards the electrons. 
This implies that the radial profile of the light will change due to the interaction. 
Also diffraction of the radiation on the cavity mirrors leads to a time-dependent radial 
profile. In a hole coupled resonator, the radial structure of the intra-cavity radiation will 
change from pass to pass. In such a cavity geometry, the radial profile is determined by 
the competing mechanisms of power loss through the aperture, which tends to reduce 
the on-axis field intensity, and by the gain due to the interaction with the electrons, 
which tends to restore the radial profile. 
The influence of these three dimensional (3D) effects have sofar been investigated for 
long and uniform electron beams, thereby neglecting finite pulse effects [2]. The latter 
assumption is valid as long as the pulse length is larger then the slippage length L,tip = 
Nund>., which is the distance between the light and electron pulses that is induced by 
the velocity difference between the pulses. However, the length of electron pulses that 
are accelerated by an rf-linac (which is used most existing FELs) can be a fraction of 

3 
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the slippage length. For instance, the pulse length in both FELs of the Dutch FEL 
user facility FELIX [3] can be down to one tenth of the slippage length. This implies 
that the radiation pulse overtakes the electron pulse while traversing the undulator, 
and thus, interacts with the electrons for a fraction of the transit time. This affects 
the balance between gain and aperture loss and has important consequences for the 
spatial structure of the generated optical pulses [4, 5]. However, 3D simulation codes 
that include finite pulse effects are hardly tractable from the computationally point of 
view, although a few of them exist [6, 7]. The required computing time is typically 
several hours of Cray-time. 

For this reason an approximate simulation code has been developed, ELIXER, that 
limits the computational effort to acceptable proportions. The code includes short 
pulse effects and accounts for a number of 3D effects. The main assumption is that 
the transverse electron dynamics are modelled by the radial envelope of the electron 
beam, rather than by the transverse motion of each electron separately. Emittance 
and betatron oscillations are included through a variation of the beam envelope. The 
radial inhomogeneity of the radiation field, which yields a different ponderomotive 
force for on-axis and off-axis electrons, is accounted for by averaging the longitudinal 
motion over the radial density profile of the beam. This procedure, in combination 
with the beam envelope formulation, reduces the electron dynamics to effectively one 
dimensional motions. The spatial structure of the paraxial radiation is accounted 
for by means of a finite number of radially orthogonal basisfunctions. Although this 
approach allows to simulate a-symmetric cavities and waveguides, ELIXER employs 
axisymmetric Gauss-Laguerre basisfunctions. This restricts the applicability of the 
code to an axisymmetric FEL resonator FEL, which consists of two circular, sferically 
curved mirrors that are perfectly aligned. The intra-cavity radiation can be coupled 
out through a on-axis hole in either one of the mirrors. The code was tested against 
a spatially one dimensional model in case the radial profile is dominated by a single 
transverse mode, and against the simulation code TDA, which assumes a continous 
electron beam. For FEL parameters close to those of FELIX, ELIXER was found is 
excellent agreement with TDA [8]. Recently, the code has been used to interpretate 
experimental results regarding the transverse structure of the radiation in the FEL 
resonators of FELIX [9, 10, 11]. 

This report is organized as follows. In this Chapter the FEL model is presented. An 
overview of the density-averaged set of electron-wave equations is presented in Section 
1.2, and in Section 1.3 the model is applied to an axisymmetric FEL resonator. Section 
1.4 discusses the initial conditions of the electron and radiation pulses. Aspects of the 
numerical implementation of the FEL model in the ELIXER code, which is written in 
FORTRAN 77, are presented in Chapter 2. Particular emphasis is put on integration 
schemes and numerical control parameters. Chapter 3 discusses how the code can be 
obtained, its (pre- )compilation using the REVISE package, the FEL parameters in the 
input file, and the output files that contain the spatial and spectral structure of the 
radiation pulse, and the energy spectrum of the beam electrons. 
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1.2 Density-averaged FEL equations 

In this Section an overview of the FEL model that is implemented in ELIXER is given 
since the model has been discussed extensively elsewhere [4, 12]. An FEL is considered 
with a static undulator, with Nu periods of size Au· The undulator has either helical 
or planar geometry. The helical polarized magnetic field in a helical undulator is 
represented by the vector potential 

Au(x, z) = -Au(x)[e, cos(kuz) + e, sin(kuz)], ( 1.1) 

and the linear polarized magnetic field (in they-direction) of the planar undulator is 

Au(x,z) = -v'2Au(x)e, sin(kuz), (1.2) 

where the undulator strength Au = !Aul is given by 

(1.3) 

All potentials are normalized to units of e/mc. The values of kx and ky depend on 
the undulator geometry, i.e. kx = ky = ku/./2 in a helical undulator and kx = ku, 
ky = 0 in a planar geometry. The radiation field is assumed to be dominated by a 
single longitudinal mode with frequency w = ck 

(1.4) 

where u is slowly varying complex amplitude, and e± = (ex± iey)/2 are circularly 
polarized vectors. The radial dependence of u is described by a set of transverse 
basisfunctions 

U = L Unm Wnm, 
n,m 

that satisfy the paraxial wave equation in vacuum 

(a;+ a;+ 2ik8,)'Wnm = 0. 

(1.5) 

(1.6) 

The latter result can be obtained from Maxwell's equations under the assumption that 
the radiation propagates within an angle of 30° from the longitudinal axis. 

1.2.1 Electron Dynamics 

Starting point for the description of the model are the electron equations of motion. The 
longitudinal electron dynamics is determined by the ponderomotive potential, which 
arises due to the coupling between electro-magnetic field and the induced transverse 
current. The longitudinal motion is described by the ponderomotive phase 

,P = (k + ku)z - wt= (k + ku)(z - Vpont), (1.7) 

where Vpon = w/(k + ku) is the phase velocity of the ponderomotive wave, and by the 
energy 

0/ = 1-1,, (1.8) 
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where Ir is the resonant energy. The latter is defined as the energy where the longi­
tudinal electron velocity Vz '.::'. c(l - p;/21;) is equal to Vpon· This resonance condition 
implies that 

( 1.9) 

where the effective mass p; consists of the 'cold' contribution 1 + A~0 , and of a 'warm' 
part that is arises due to the transverse motions ( x, Px), (y, Py) of the beam electrons. 
ELIXER differs from other 3D models by including the full longitudinal electron mo­
tion, whereas the transverse electron motion is only approximately accounted for. The 
main assumption is that the transverse motion of the electron beam can be described 
by a Gaussian radial density profile 

1 
n <X ---e[-(x2 /2u; + y2 /2u;)], 

27ru xU y 
(1.10) 

where u x( z, z - Vpont) = jM is the beam envelope in the x-direction. The brackets 
(· · ·) denote a density average over the transverse dimensions of the beam, and the 
time-coordinate z - Vpont is used to emphasize the pulse character of the electron beam, 
which velocity must be close to Vpon for FEL interaction to occur. The z-dependence 
of the beam envelopes Ux and Uy is governed by the natural divergence of the beam 
electrons, due to a finite emittance, and by the focusing properties of the undulator 
field, which will give rise to a slow 'betatron' oscillation of the electron orbits. The 
evolution of Ux is given by the following expression [4] 

(1.ll) 

where Uxo(z-Vpont) is the typical spotsize of the beam at the entrance of the undulator, 
Kf3x = Auokx//r is the betatron wavenumber and T(Jx = ( Ex/47r Auokxu;0 ) determines 
the amplitude of the oscillation. Here Ex is the normalized emittance of the electron 
pulse1 

(1.12) 

Px being the electron's generalized transverse momentum (normalized to me). Equa­
tion ( l. ll) is obtained by neglecting the small variation in energy in the equations 
of transverse motion, such that they can be solved independently of the longitudinal 
motion, and by averaging the resulting equations over an undulator period. A similar 
equation describes the evolution of the envelope Uy in the y-direction. The betatron 
parameters Kf3 and Tf3 are explicitly written down for the different undulator geometries. 
In the case of a helical undulator, an electron beam is considered with equal radii and 
emittance in both directions, Uxa= Uyo and E =Ex= Ey. This leads to (Kf3 = Kf3x = Kf3y 

and r13 = T(Jx = Tf3y) 

Auoku 
Kbeta = 12' , 

V"'/r 

l 1 
Tf3 = ----2-. 

47r/r Kf3Uxo 
(1.13) 

1The normalized emittance is a constant of transverse motion in the case of an undulator with a 
linear focussing force, i.e. Eq. {1.3). 
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For the planar undulator, the result is (Kf3y = roy = 0) 

(1.14) 

The expressions for the beam envelopes are used to define the effective mass p~, which 
enters the FEL-relation Eq. (1.9). In a 'warm' beam, the effective mass is in principle 
different for each electron, since each electron has its own 'temperature' [12]. Thus, 
each electron has its own resonant condition. This phenomenon is partially accounted 
for in the FEL relation Eq. (1.9) by including the effective mass, averaged over the 
cross-section of the beam 

(1.15) 

This expression is valid for a helical undulator, but can also be used in a planar undu­
lator, upon replacing r f3 by r f3x-

The longitudinal ( 1/J, 81) electron dynamics is coupled to the transverse motions 
mainly through the radial inhomogeneity of the undulator and radiation fields. This 
causes on-axis electrons to experience a different ponderomotive force as compared to 
off-axis electrons. This effect is approximately accounted for by averaging the equations 
of longitudinal motion over the radial density of the beam. Since the transverse profile 
of the radiation is determined by the basisfunctions Wnm, the density-average can be 
calculated analytically. The resulting averaged equations of motion are 

di/! 81 
(1.16) = 2ku-, 

dz Ir 
d81 kAuo L (I ;,p J* * -i,P) ( 1.17) = i-- nmUnme - nmunme ' 
dz 2/r n,m 

where the radiation amplitudes Unm has to be evaluated at the electron's pulse position 
z - Vpont = 1/!/(k + ku), and the complex function 

I (z z - v t) = jd2 rv l e[-(x'/2o;+Y
2 / 2o~)] lj) (rv z) 

nm , pon 2 nm ' 
'lraxay 

(1.18) 

denotes the density average. The terms (k;x 2 + k~y2 ), which arise from the radial 
inhomogeneity of the undulator, have been neglected in Eq. (1.18). Note that Inm 

includes the beam envelopes rJx and rJy, which vary along the undulator according to 
Eq. (1.11). 

1.2.2 Radiation Dynamics 

Using the decomposition Eq. (1.5), the following set of coupled wave equations for the 
radiation coefficient Unm can be obtained [4] 

(1.19) 
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where the radiation coefficient llnm is considered to be a function of time coordinate 
z - ct instead of z - Vpont. This has the advantage that both the wave equation can be 
written as an ordinary different equation. The relation between the time-coordinates, 

C [ Upon ) 
Z - ct= - (z - Vpont) - (1 - -)z 

Vpon C 
( 1.20) 

expresses the slippage between the electron and radiation pulses. The source term 
(right hand side of Eq. (1.19)) consists of the product of the beam density, which has 
been approximated by the Gaussian profile Eq. (1.10), and the basisfunction Wnm, 

averaged over the transverse dimensions. This average, which is similar to the density 
averaging procedure that was applied to the electron equations of motion, can be 
denoted by the complex conjugate of the density average Inm, divided by the spotsize 
w~m = J d;n IWnm 12 of each transverse mode. The spatial bunching of electrons, which 
is measured by the bunching factor exp(-ii,bj) of each electron j, is the driving force 
for coherent amplification of the radiation. The radiation and the source term are 
averaged over a distance t. in the coordinate z - Vpont, thereby keeping the position 
z fixed. This implies that, at position z, the source term consists of the contribution 
e-i,P, of all N(z, z - Vpont) electrons that are located within the interval 

(1.21) 

The longitudinal density profile of the electron pulse is represented by the dimensionless 
function 

1 N 
X(z, z - Vpont) = , 

nO 2ira xOO' yo6' 
(1.22) 

where 2iraxoO'yo is the radial cross-section of the beam at the entrance of the undulator, 
and no= I/(ec2iraxoO'yo) is the peak beam density, I being the peak current. The 
segment size t. depends on the longitudinal homogeneity of the electron pulse. This 
will be discussed in Section 1.2.3. Furthermore, w~ = e2n0 / tom/, is the relativistic 
plasma frequency, and the parameter f 8 arises from averaging the electron and wave 
equations over an undulator period2 . 

1.2.3 Segment division and mode of beam operation 

Due to its slowly varying character of the radiation, the optical pulse can be thought 
of as being divided into segments of constant Unm with size of an optical wavelength 
>. = 2ir / k in the z - ct-coordinate. This segment size corresponds to segments t. = 
Apon = 2ir /(k + ku) of a ponderomotive wavelength in the electron coordinate z - Vpont. 

Whether this segment division can also be applied to the electron pulse depends on 
the level of non-uniformity A of the longitudinal beam density, where 

( 1.23) 

2 This parameter is equal to unity for a helical undulator (/B = I), and is given by fB = Jo(~) -
l1 (~) in a planar undulator type, ~ being equal to A~ 0/2(1 + A~ 0 ). 
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It can be shown that the number of electrons N per segment is constant for all values 
of the energy detuning of practical interest, if the electron pulse is nearly constant over 
a ponderomotive wavelength (A « 1) [12]. This implies that, besides the radiation 
pulse, also the electron pulse can be divided into segments with size L'l. = Apon, over 
which the beam density X is constant. This constant density approximation allows 
to compute the source term at each segment, which is also a ponderomotive bucket 
since 1/J increases with 27r over the segment, from the number N of electrons that were 
initially in the bucket. All electrons in the bucket are assumed to experience the same 
radiation amplitude. 
A special case of A « 1 is a continuous electron beam, in which the electron pulses 
are long and uniform such that A = 0. The generated light pulses will have the same 
pulse profiles. This implies that the slippage between the pulses is a subdominant 
process, such that the difference between the time coordinates z - ct and z - Vpont can 
be neglected. Only the electron-wave dynamics in a single ponderomotive bucket has 
to be considered, since the electrons experience the same radiation field throughout 
the pulse. 

The division of the electron pulse into Apon-segments can not be used if the beam 
density profile changes considerably over a ponderomotive wavelength (A= 0(1)), as 
for pulses that are several wavelengths long. In that case the electron and radiation 
pulses have to be divided into smaller segments, ti. < Apon· Although the radiation 
amplitude is constant over this time interval, this is certainly not the case for the beam 
density since the electrons migrate to neighbouring segments due to a non-zero energy 
detuning or due to the electron synchrotron motion. Therefore a particle tracking 
method is used, in which the source term in a particular segment z -Vpont is constructed 
by tracking down all electrons that are presently located in that segment, and in which 
the electrons experience the radiation field at their present position in the pulse, given 
by 1/J;/(k + ku)· 

Summarizing the discussion above, three different modes of (electron beam) operation 
can be distinguished : 

• Pulsed beam operation with particle tracking (A= 0(1)), 

• Pulsed beam operation with constant density approximation (A« 1), 

• Continuous beam operation with constant density approximation (A= 0). 

The segment size for the latter two modes of operation is ti. = Apon, whereas smaller 
segments are allowed in the first case. 

1.3 Application to a hole-coupled axisymmetric 
resonator 

The model is applied to an FEL in an axisymmetric resonator configuration. The res­
onator consists of two circular, spherically curved mirrors, which are perfectly aligned. 
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Figure 1.1: Schematic layout of the resonator. 

The hole is in either one of the mirrors, as is shown in Fig. 1.1. An axisymmetric 
radiation field u(r, z) can be considered, in the case that the interaction with the elec­
tron beam does not give rise to asymmetries. This requires in principle an FEL with 
a helical undulator, electron pulses with equal emittance in both transverse directions, 
and an axisymmetric Gaussian density profile. However, also a planar undulator can 
be considered, as long as betatron oscillations remain at a low level. 

1.3.1 Gauss-Laguerre basisfunctions 

ELIXER describes the radial dependence of the radiation in terms of a finite number 
of Gauss-Laguerre (GL) basisfunctions3 Wn with z-dependent coefficients (the index m 
is neglected because of axisymmetry) 

u(r, z, z - ct) 
M 

LUn(z,z -ct)Wn(r,z), 
n=O 

So e-i(n-(1-ia)</2 Ln(fl, 
s 

(1.24) 

( 1.25) 

where Ln(~) is then-th Laguerre polynomial with argument~ = 2r2 / s2 , s2 = s6(1 +a2 ), 

s6 = 21r / k is the minimum spotsize of the field, a = ( z - Zw) / lr and (n = (2n + 
1) arctan a. Note that since L 0 = 1, the lowest GL function (n = 0) has a Gaussian 
radial profile. The Rayleigh length lr and waist position Zw can be chosen such that the 
optical phase front exactly matches the radii of curvatures Ru and Rd of the 'upstream' 
(z = 0) and 'downstream' (z =Le) mirrors 

(Rd - Le)Le . I 
Zw = , lr = yzw(Ru - zw), 

Ru+ Rd - 2Lc 
( 1.26) 

Le being the cavity length. The radial intensity profile of each GL function is shown in 
Fig. 1.2. Note that the radial extension of the GL functions increases with the mode 
number n. 

3The GL functions are solutions of the wave equation (r- 18,riJr + riko,)>Irn = 0. 
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Figure 1.2: The power distribution l1Jinl 2 as a function of the radial coordinate ( Only 
the lowest GL functions are shown (n = 0, 1 and 2). 

The density averaged Inm and the spotsize w~m, which enters the set of averaged 
equations, can now be calculated since the basisfunctions are explicitly known. The 
result is (neglecting the index m) 

In(z, Z - Vpont) 

2 
wn 

1 (1-ia-crb)n 
1 + ia + CTb 1 + ia + crb ' 
w 2 = 7f S~/2, 

(1.27) 

(1.28) 

where CTb = 4cr:(z, z - Vpont)/ s~. Nota that the spotsize is independent of the mode 
number. 

1.3.2 Power and spectral power distributions over the trans­
verse modes 

The expansion of the radiation into GL functions can be employed to obtain the distri­
bution of the radiation power and the spectral power over the transverse modes. The 
radiation power, Ptot, is the energy density of the electro-magnetic field that flows with 
speed c through a plane perpendicular to the ( z )-direction of propagation 

00 

J 1 2 11 2 P1o1(z,z -ct)= 27f rdr 2(Eo IEI + µ0 Bl )c. (1. 29) 
0 

Upon inserting the electric and magnetic fields E and B 

M 
E = -81A '.:o' ick z]un Wne+ik(z-ct)e+ - u~IJl~e-ik(z-ct)e_J, (1.30) 

n=O 

M 

B \7 x A '.:o' k z]unlJlne+ik(z-ct)e+ + u~IJl~e-ik(z-ct)e_J, (1.31) 
n=O 
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where only the time and spatial derivatives of exponent exp[ik(z - ct)] are taken into 
account, the radiation power P,0 , can be written as 

2 1 2 M oo 
7l'S0 ( me) ~ • -i((n-(m) Jd -< ( )L ( ) Ptot = TCEo ck-J --;:-- _ ~ _ 1ln1lme { e Ln ( m ( . 

B n-0,m-0 o 
(1.32) 

00 

Since the integral over (expresses the orthogonality of the GL functions, J d( e-< Ln (()Lm (() = 
0 

Dnm, Eq. (1.32) can be written as a sum of the power Pn of each GL function 

M 

Ptot(z,z-ct) = LPn 
n=O 

Pn(z, z - ct) = ?l's
2 

( 1 me) 2 

-
0 cto ck-- lunl 2 

2 fa e 
[W]. 

( 1.33) 

( 1.34) 

Note that the z-dependence of Pn is determined by ttn only. This implies that Pn is 
constant outside the undulator (leaving the effect of diffraction at the mirrors out of 
the discussion for simplicity). 

The spectral power, P,~, is the spectral energy density that flows with speed c 
through a transverse plane 

( 1.35) 

where K denotes the frequency with respect to the frequency w = ck of the fast phase 
exp[ik(z - ct)], and E and B are the Fourier transforms of the electric and magnetic 
fields Eqs. (1.30-1.31). Upon estimating these fields by 

M 
E = -8,A c:: ick L [un \jJ ne+ik(z-ct) e+ - u~ w: e-ik(z-ct) e _ J, (1.36) 

n=O 

M 

B V' x Ac:: k L[iin\)Jne+ik(z-ct)e+ + u:w:e-ik(z-ct)e_J, ( 1.37) 
n=O 

where 

Un(z, K) = jd(z - ct) ttn(z, z - ct)e-i,(z-ct), (1.38) 

is the Fourier transform of the radiation coefficient ttn(z, z - ct), P1~1 can be written as 
the sum of the spectral power of each transverse mode 

M 

LP~(K,z) (1.39) 
n=O 

1l'S
2 

( 1 mc)
2 

-
0 ceo ck-- liinl 2 

2 fa e 
(1.40) 

Note that P~ is constant outside the undulator, just as the radiation power Pn. 
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1.3.3 Reflection and transmission 

The reflection and transmission of radiation on the cavity mirrors plays an important 
role in a resonator since multiple round trips are required to reach saturation. In case an 
aperture is used, the radial mode structure changes upon reflection. This 'scattering' 
process is described by reflection and transmission matrices, which can be calculated 
analytically from the Huygens-Fresnel integral upon expanding both the incident and 
the reflected or transmitted signals into GL functions. 

Reflection on the downstream mirror is considered first. Let A; = Ln u~ ill n exp[ +i k( z -
ct)] be the radiation propagating to the right that is incident on the mirror, and let 
Ard= Ln u~di!J~ exp[-ik(z +ct)] be the reflected radiation that propagates to the left. 
The radial mode structure of the incident { u~} and reflected { u~d} radiation is changed. 
This scattering process is described by 

rd [ 'k ? ] """ (1 -ia)m-n (l:d 1:d ) i 
Un =-rd exp 2i z - 2i":.n L... . Rnm ":.ma'l.,,mr um, 

m=O 1 + W 

( 1.41) 

where the minus sign arises from the boundary condition Ard+ A; = 0 at the mirror, 
rd is a real reflection coefficient that accounts for the finite conductivity of the mirrors, 
and a and (n have to be evaluated at the position of the downstream mirror. The 
matrix 

{mr 

Rnm(ema,emr) = j de e-<Ln(OLm(O (1.42) 

<ma 

describes the changing mode structure. The quantities e~. = 2(r~.) 2 I s2 and e~r = 
2(r~, )2 

/ s2 are the normalized aperture and radius of the downstream mirror. The inte­
gral Eq. (1.42) is calculated analytically using the recurrence relations of the Laguerre 
polynomials. 
The reflection on the upstream mirror is described by an equation similar to Eq. (1.41). 
Let A1 = Ln u~ iii~ exp[-ik(z+ct)] be the radiation pulse propagating to the left that is 
incident on the mirror, and let A, = Ln u~ ill n exp[ +ik( z -ct)] be the reflected radiation 
pulse that propagates to the right. The scattering of the radial mode structure of the 
incident {u~} into the structure {u~u} of the reflected radiation is described by 

u~u = - exp[-2ikz + 2i(n] L (1 
+ ia)m-Rnm(e;:..,~;:.r) u~ 

1-w m=O 

(1.43) 

where ru is the reflection coefficient, a and (n have to be evaluated at the position of 
the upstream mirror, and ~;:.. = 2(r':,.

0 
)

2 
/ 8

2 and e;;,, = 2( r':nr )2 / 8
2 are the normalized 

aperture and radius of the upstream mirror. 
After being reflected by the downstream and upstream mirror, respectively, the radial 
mode structure { u~'} of the pulse at the exit of the undulator is scattered into the 
radial structure { u~n} at the entrance of the undulator according to 

in _ """ i¢"(n,k,m) .,,., (<u 1:u ).,,., (i:d 1:d ) out 
Un - r uT' d L.,. e 1\...nk ':.ma' l.,,mr 1\...km l.,,ma' l.,,mr Um ' ( 1.44) 

k=O,m=O 
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where 

¢''(n,k,m) = 2kLc (
Le - Zw) 

2(m + k + l)atan I, 

2( n + k + 1 )a tan ( ~~) 
is the roundtrip phase, which is completely determined by the cavity geometry. 
of a closed resonator (~ma--+ 0 and~"''--+ oo), Eq. (1.44) simplifies to 

( 1.45) 

In case 

(1.46) 

which demonstrates that the distribution over the radiation coefficients lun 12 /lun+i1 2 

is constant. This implies that the reflection is determined by the roundtrip phase 
¢''( n, n, n) only. 

The reflection and transmission of the radiation at the cavity mirrors requires a 
large number of GL functions, in particular when an aperture is present. The maximum 
number of GL functions that can be taken into account is limited to approximately 
15 - 20, depending on the accuracy of the computer system. The limit is imposed 
by the algorithm used to compute the matrix elements (see Chapter 3). The main 
reason why one is allowed to perform numerical calculations with a finite number of 
GL functions is that the scattering of energy of a GL function n into other functions, 
which is determined by the off-diagonal (m # n) matrix elements Rnm '.'.::: O(~ma) ~ 1, 
is much smaller than the energy scattered into itself. The latter is determined by the 
diagonal elements Rnn '.'.::: 0(1). This implies that, if the incident radiation consists of 
the fundamental mode n = 0 or of the lowest higher order modes, the reflected light 
will be dominated by these modes for a large number of roundtrips through the cavity, 
before the energy distribution lunl 2 of the higher n GL functions becomes comparable 
to that of the initial functions. In addition, mirror edge loss will become important for 
the high n GL functions, since their radial extension increases with the mode number. 
This leads to a strong reduction of the reflection coefficient Rnn· The resulting energy 
loss is significantly larger then the fraction of energy scattered into this mode, so that 
the higher order GL functions will remain at a relatively low power level. 

To describe the radiation amplitude that is transmitted through the hole, or along 
the edge of the mirror, one requires to take a large amount of GL function into account 
due to the fact that all matrix elements of the transmission matrix are of the same order 
of magnitude. This problem is overcome by computing the transmitted radiation power 
from radiation intensity that is incident on the mirror. For instance, the radiation power 
P~a that is coupled out through the aperture in the downstream mirror is obtained 
from Eq. (1.29) using the appropriate boundaries 

( 1.4 7) 

where { u~} are the GL coefficients of the intra-cavity radiation, and the matrix Rnm 
is given by Eq. (1.42) with ~ma and ~mr set to 0 and ~;;,a, respectively. The power that 
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is lost along the edges of the mirrors is also calculated from Eq. (1.47), upon replacing 
~ma and ~me to ~~' and oo, respectively. 

1.3.4 Optical beam clipping by the vacuum tube 

The metal vacuum tube inside the undulator will affect the radial mode structure if 
the diameter of the vacuum tube is comparable to or smaller than the spotsize of the 
radiation at the entrance or exit of the tube. In that case the radiation amplitude 
inside the tube must vanish at the tube edges due to a finite conductivity. This would 
make a decomposition of the transverse radiation profile into wave guide modes more 
appropriate than an expansion in GL functions. Furthermore, upon entering the tube, 
the radiation outside the tube edges will be cut-off. 
This 'clipping' of the optical beam and the imposed boundary condition can be expected 
to have a small effect on the radial profile of the radiation if the optical mode structure is 
dominated by the lowest G L function ( n = 0) and if this mode this mode is sustained 
by the cavity. Under these conditions the radiation losses on the vacuum tube are 
estimated as mirror edges losses with effectively smaller radii, by following the lines of 
equal intensity (lines of constant~= 2r2 /s 2

) of then= 0 GL function from the tube 
edge to the cavity mirror. The effective radii are 

r~rleff = Ttube 
1 + a 2 (0) 

1 + a 2(Ztubet)' 

1 + a 2 (Lc) 
1 + a 2(Ztube2), 

(1.48) 

where Ttube is the tube radius, and Ztubel and Ztube2 is the entrance and exit of the tube 
with respect to the downstream mirror. This procedure leads to an increase of the 
transmission loss for GL functions with high (n > 0) mode numbers. Note that the 
real mirror radii are to be used if they are larger than the effective mirror radii above. 

1.4 Initial conditions for the electron and radia­
tion pulses 

The electron beam in most rf-linac based FELs consists of a train of pulses. The pulse 
repetition rate is assumed to be such that the generated optical pulses do not interact. 
Under this condition, one is allowed to follow the evolution of a single radiation pulse 
that is repeatedly amplified by newly injected electron pulses on successive roundtrips 
through the cavity. 
The following initial conditions for the electron and radiation pulses are considered. 
The electron pulse has length h, thus 0 2: z - vpont ::0: Lb. The electron pulse is 
approximated by either a hat-shaped, a Gaussian or a parabolic longitudinal profile : 

Hat-shaped profile X = 1, 

Gaussian profile 

Parabolic profile 
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The transverse electron distribution is approximated by the Gaussian profile Eq. (1.10). 
The transverse profile is assumed to be axisymmetric upon entering the undulator, i.e. 
er xo = CT yo· The pulse is divided into segments over which the density is initially 
constant. The segment size fl. depends on the mode of operation, as was discussed in 
Section 1.2.3. Within each segment, the electron are distributed uniformly over the 
ponderomotive phase 1/J, or nearly uniformly by including a small random phase-noise. 
The electrons are assumed to have a Gaussian energy distribution, proportional to 

[ 
(81- (61)0) 2

] 
exp 2 2 , 

CT c 
( 1.49) 

where er, is the typical energy spread, and 

1 N 

(81) 0 = NL 6/j = 810..l'h(z - Vponi), 
J=O 

( 1.50) 

is the initial energy of the beam, averaged over all electrons in the segment. Here 610 

is the peak-energy detuning and the profile X8,, allows to variate the detuning over 
the pulse. The electrons have with finite normalized emittance E. For simplicity it is 
assumed that both the beam radii O"xo = CTyo, the beam emittance E, and the energy 
spread a, are constant over the electron pulse. The initial optical pulse is assumed 
to have the same length as the electron pulse. Its longitudinal profile can be chosen 
independently (the same profiles as for the electron pulse can be selected). The initial 
radial mode structure is assumed to be dominated by a Gaussian mode. 

The synchronization between the electron and radiation pulses at the entrance of 
the undulator plays an important role in the amplification process. In the absence 
of FEL interaction, the pulses will enter the undulator at the same instant in time if 
the roundtrip time Trt = 2Lc/c of the optical pulses exactly matches the repetition 
rate Trcp· However, since the effective velocity of the radiation is reduced due to the 
interaction with the electrons, the optical pulse tends to enter the undulator a time 
Lsliv/ c later than the electron pulse. This lethargy effect leads to a reduction of the 
gain of the radiation, in particular when the electron pulse length is a fraction of a 
slippage length. The gain can be restored by shortening of the cavity by an amount 
Ll.L, where Ll.L = 0 corresponds to matched pulses without FEL interaction. 



Chapter 2 

Numerical Implementation 

The FEL model that was presented in the previous chapter is implemented in the 
numerical code ELIXER, which is written in FORTRAN77. The code computes the 
evolution of a single radiation pulse that is repeatedly amplified by a newly injected 
electron pulse at each roundtrip through the cavity. The amplification process is shown 
schematically in Fig. 2.1. The FEL experiment to be simulated is described by the 
input file. Optical and electron data is stored in output files at several position in the 
resonator. The input and output files will be discussed in Chapter 3. The discussion 
in this Chapter is restricted to the numerical methods used in ELIXER. Particular 
emphasis is put on a group of input parameters that control the stepsize and the 
numerical integration scheme that is used. 

This Chapter is organized as follows. In Section 2.1 the normalized FEL equations that 
are implemented in ELIXER are derived. The numerical integration and the relevant 
input parameters are discussed in Section 2.2. The emphasis in Section 2.3 is on the 
electron and radiation grids, and on the dimensions of the data arrays involved. 

2.1 ELIXER working equations 

The system of FEL equations that was presented in Chapter 1 is solved by ELIXER 
after normalization to the so-called universal FEL scaling [13] 

u' u(2Auo/1i;p2
), 

p 

z' 

(z - ct)' 

(z-vpont)' 

81/(i,p/2), 

pkuz, 

pk(z - ct), 

p(k + ku)(z - Vponi), 

where p denotes the electron energy and the Pierce parameter 

_ [!2 4a xoO' yO ( Wp Au )2] l/3 
l 

P-a 2 --rr; « 
So cku/ y 2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

is related to the beam current. This parameter is small compared to unity in any 
Compton-FEL. Note that the normalized undulator length is equal to 2trpNund· This 
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( Input file ) 

---~ + 
Initialize radiation pulse and 

Inject new electron pulse 

Integrate FEL equations from 
beginning to end of undulator II 

Reffection on downstream 
mirror 

Reflection on upstream 
mirror 

Ill 

IV 

Shift light pulse w.r.I. electron V 
pulse due to cavity shortening 

GUN DUMP 

l 1v v Ill~ 

Figure 2.1: Schematic overview of the program structure. An electron pulse is bend into 
the optical beam line (I) and interacts with the radiation during one passage through 
the undulator (II). After being reflected on subsequently the downstream (II) and the 
upstream (IV) mirrors, the radiation pulse enters the undulator at the same instant as 
a newly injected electron pulse. The synchronization of the optical and electron pulses 
controlled by adjustment of the cavity length (V). Steps I- V are repeated to simulate 
the amplification over many roundtrips. 

normalization transform the FEL equations to a set of 'universal' equations that are 
independent of scale lengths. Suppressing all accents for simplicity, the wave equation 
(1.19) becomes 

f) ( t) - . I* v __!:_ ~ -i,p, - S ( t) zUn z, Z - C - i n '1. N ~ e - n z, Z - Vpon , 

J=l 

and the density averaged electron equations simplify to 

d1/J; 
dz 
dp; 

dz 

= P; 

M 

i "°'(I u e'"'' - J*u*e-i1',) L...Jnn nn' 
n=O 

Note that the relation between the time-coordinates (1.20) simplifies to 

Z - ct= (z - Vpont) - z, 

(2.7) 

. (2.8) 

(2.9) 

(2.10) 

upon using the normalization (2.1), where time coordinate (z-Vpont) and the undulator 
position z are considered to be independent variables. This system conserves the total 
energy of the electrons and the radiation' i.e. 

M 2 1 N d 
82 t; !uni + X N [; dzPj = 0. (2.11) 
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2.2 Numerical control parameters and integration 
method 

The normalized FEL equations (2. 7), (2.8) and (2.9) are solved numerically using the 
procedure that will be discussed below. This integration process is determined by the 
following numerical control parameters 

• OPMODE determines the mode of (electron beam) operation. Three modes of op­
eration are distinguished as was discussed in Section 1.2.3: 
OPMODE=i Pulsed beam operation with particle tracking, 
OPMODE=2 Pulsed beam operation with constant density approximation, 
OPMODE=3 Continuous beam operation with constant density approximation. 

• NESCHM determines the integration scheme for the electron equations. For a fixed 
pulse position, both the wave and the electron equations are ordinary differential 
equations of the generic form 

dy/dz = f(y,z) 

that can be solved using standard integration schemes [14). One of the schemes 
listed below can be selected : ( fu is the stepsize) 
NESCHM=i Euler scheme 

y(z + Ci.z) = y(z) + Ci.z x J(y, z), 

NESCHM=2 Second order Runge-Kutta scheme 

J(y, z), 

J(y + k1, z + Ci.z), 
y(z) + Ci.z(k1 + k2)/2, 

NESCHM=3 Third order Runge-Kutta scheme 

J(y, z), 
J(y + (1/2)k1 ,z + (1/2)Ci.z), 

J(y + (3/4)k2, z + (3/4)Ci.z), 

y(z) + Ci.z(2k1 + 3k2 + 4k3 )/9, 

NESCHM=4 Fourth order Runge-Kutta scheme 

k1 J(y,z), 
k2 = f(y + (1/2)k1 ,z + (1/2)Ci.z), 

k3 = J(y + (1/2)k2, z + (1/2)Ci.z), 
k4 

y(z+ti.z) 
J(y + k3 , z + Ci.z), 

y(z) + Ci.z(k1 + 2k2 + 2k3 + k4)/6, (2.12) 
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• NUSCHM determines the integration scheme for the wave equations. Two schemes 
can be selected: the Euler scheme (NUSCHM=1) or the second order Runge-Kutta 
scheme (NUSCHM=2). 

• NZSTEP determines the integration step size. The position in the undulator is 
discretized according to z = IZ ~z, where IZ is an integer and 

~z = 2irp/NZSTEP, (2.13) 

is the stepsize of the integration, NZSTEP being the number of z-steps per undu­
lator period. 

• FSEGM determines the segment size in the optical and electron pulses. The time­
coordinates are discretized according to z - ct = IZA ~ and z - Vpont = IZB ~' 
where the integers IZA and IZB denote the segment position in the optical and 
electron pulse, respectively, and 

~ = 2ir p FSEGM, (2.14) 

is the segment size, FSEGM being the ratio of the segmentsize and the pondero­
motive wavelength. This ratio is set to unity if OPMODE>L Upon substitution of 
discretized position and time coordinates in Eq. (2.10), it is straightforward to 
show that the segment labels IZA and IZB are related according to 

IZA = IZB - nint(IZ ~z/ ~), 
IZA = IZB, 

(OPMODE < 3) 
(DPMODE = 3) 

(2.15) 

where the function nint implies a round-off to the nearest integer. Note that the 
difference between time-coordinates z - ct and z - Vpont is neglected if OPMODE=3. 

The working equations (2. 7), (2.8) and (2.9) are integrated according to four steps 
listed below. 

i At the beginning of the first round trip, U (N, IZA) is loaded with the initial radi­
ation amplitudes un(O,z-ct). The arrays PSI(J,IZB) and P(J,IZB) are filled 
with the electron phase and energy distribution, respectively, at the entrance of 
the undulator. The initial number of simulation electrons ( N) in each segment 
is the same for all segments in the electron pulse. This number is taken to be 
much smaller than in the experiment (typically 0(102 ) simulation-electrons are 
included, whereas this number is of the order of 0(107 ) in realistic beams). Hence 
each simulation particle represents the dynamics of many electrons. The initial 
density profile X(O, z - Vpont) is denoted by CHIN(IZB). 
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ii Using the radiation amplitude at position IZ, the electrons coordinates PSI ( J, IZB) 
and P(J, IZB) are 'pushed' to the new position IZ+l, using the integration scheme 
selected by NESCHM. The radiation field is evaluated at the present position1 

JZB =: nint[ PSI( J, IZB)/(2irFSEGM)], (2.16) 

of each electron in the electron pulse if OPMDDE=l, and at the electron segment 
position IZB under consideration if OPMODE>l. 

iii The radiation amplitudes U(N, IZA) are integrated for all IZA-positions m the 
pulse using the integration method selected by NUSCHM. The integration is per­
formed after the complex array BF(IZB), which contains the average bunching 

factor X-}t ~ e-•.P,, has been computed from the updated electron trajectories. 
j=l 

This array is constructed by adding the contribution of each electron to the source 
term at its present pulse position Eq. (2.16) if OPMODE=l, or, if OPMDDE>l, at its 
segment position IZB : 

Initialize BF array 
Loop over initial segments and electrons per segment 

Determine pulse position JZB of electron J 
DPMODE=l => JZB = nint( PSI(J,IZB)/(2PI FSEGM) ) 
DPMODE>l => JZB = IZB 

Add contribution of electron J to array BF at position JZB 
BF(JZB) = BF(JZB) + CHIN(IZB)/N EXP[ -i PSI(J,IZB)] 

iv Steps ii and iii are repeated until the end of the undulator is reached. After 
each integration step, the updated radiation coefficients and the electron coordi­
nates are stored in the arrays U(N, IZA), PSI (J, IZB) and P (J, IZB). The reflec­
tion on the downstream and upstream mirrors and the synchronization between 
the pulses upon entrance of the undulator is computed subsequently. 

2.3 Grids points and array dimensions 

The segment label of the arrays PSI (J, IZB), P (J, IZB) and CHIN(IZB) lies within 
the interval IZB = (0, · · · ,NZB), where NZB is the initial number of segments in the 
electron pulse. This number is computed from the input file. The array BF has been 
defined on a slightly larger interval than the electron and density arrays, i.e. IZB = 
(-NGEZB, · · ·, NZB + NGEZB). This grid is enlarged by three ponderomotive wavelengths 
in case particle tracking is selected. The extension is zero in the constant density 
approximation (DPMODE>l). The relative position of the bunching factor BF(IZB) and 
the radiation field array U(N, IZA) is shown in Fig. 2.2 at two positions in the undulator. 

1The time-relation Eq. (2.15) is used to switch from the electron to the radiation coordinates. 
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Figure 2.2: Relative position of the radiation and electron pulses at (a) the entrance 
and (b) the end of the undulator. 

At the entrance of the undulator, the field array U is shifted to the right with respect 
to the bunching array BF by an amount 

NDL = nint(2 fl-.L/Aponf /FSEGM) 

due to a finite cavity shortening L'-.L :':::'. 0. After one passage through the undulator, the 
radiation pulse has taken over the electron pulse by NSLIP = nint(Ls/ip/(FSEGMApon)) 
segments, Lslip = Nund Apon being the slippage length. The segment label IZA in the 
field array U lies within the interval IZA = (-NSLIPE, · · ·, NZAE), where 

NSLIPE - NSLIP + NGEZB + NGEZAft:.L>O' 

NZAE NZB + NGEZB + NGEZAft:.L'.':O' 

(2.17) 
(2.18) 

The extension NGEZA is used to describe the elongation of the radiation pulse due to 
a finite cavity shortening l-.L cl 0. The grid is extended on the leading edge side if 
l-.L :':::'. 0, and on the trailing edge side if L'-.L > 0. The grid extension NGEZA is computed 
as follows. When the laser reaches saturation, the radiation pulse begins to overtake 
over the electrons (assuming L'-.L :':::'. 0). The extension is equal to the interval set by 
the point where the pulses do not overlap anymore, and the point where the radiation 
power is reduced to 5% = exp(-3), i.e. 

NGEZA = int(fNDLf 3/a), (2.19) 

where a= (1- r~r~) +~;;,a+ ~~a accounts for absorption loss (first term) and aperture 
loss on the upstream and downstream mirrors, respectively (second and third term). In 
case perfectly conducting mirrors and zero aperture loss, the grid is extended assuming 
an artificial a = 5% power loss per pass. 

A limitation of FORTRAN is that array dimensions cannot be set dynamically. This 
implies that required array sizes, for instance for simulations with a large number of 
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segments, can exceed the pre-determined maximum values. In that case the array sizes 
must be enlarged in the ELIXER source code. 
The arrays have the following dimensions : 

\Name 
PSI(J,IZB) and P(J,IZB) 
CHIN(IZB) 
SN(IZB) 
U(N,IZA) 

Array Size 

J = ( 0, · · ·, NESMAX), IZB = ( 0, · · ·, NZBMAX), 
IZB = (0,- · ·, NZBMAX), 
IZB = (NZBGMX, · · ·, NZBMAX), 

N = (0, · · ·, MODMAX), IZA = (NSLPMAX, · · ·, NZAMAX). 

The minimum values of the arrays SN and U must be negative (NZBGMX<O and NSLPMAX<O). 
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Chapter 3 

Working with ELIXER 

3.1 Getting started 

The ELIXER package, consisting of the source code and a number of related files, 
can be obtained by anonymous ftp at zeus.rijnh.nl in the subdirectory revise. The 
package contains the files listed below. 

I Filename 

ce 
elixer.in 
elixer.in.FELl 
elixer.in.FEL2 
elixer.source 
rnanual.ps 
radprof.source 
readrne 
revise 

I Description 

UNIX script for ELIXER compilation 
Input file 
Input file for FELIX-FELl 
Input file for FELIX-FELl 
REVISE source code of ELIXER 
This manual 
REVISE source code of radprof 
General information 
Directory containing the REVISE package 

ELIXER is written with the aid of a pre-compiler from the REVISE package, which 
is located in the directory revise. The main features of the REVISE package, par­
ticularly of the pre-compiler, are discussed in Appendix A. The UNIX script file 
ce pre-compiles the ELIXER source code elixer. source and compiles the gener­
ated FORTRAN code consecutively into an executable file elixer. The input file, 
elixer. in, determines the FEL device that is to be simulated. The provided file 
elixer. in is to be used for testing purposes, since it computed only a few roundtrips 
through the cavity with a small amount of (simulation)-electrons and a short electron 
pulse. The input parameters for the two stages FELl and FEL2 of the Dutch FEL 
facility FELIX are stored in elixer. in. FELl-2. Adjust these files for the FEL device 
of your interest. All input parameters are discussed in Section 3.2. The file manual. ps 
contains the postscript version of this document, and radprof. source is a utility that 
computes the optical energy density as a function of radial position and time from the 
optical mode structure { un}, as will be discussed in Appendix B. 

25 
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INPUT FILE OUTPUT FILES 

i--i Parameter list para.out 
Error messages error.fog 

H Matrix elements matrlx.dala 

ELIXER Diagnostics (inside or end undufator) 
CODE optical mode sfrocture optlc1.data 

(Input file }-- [I] - optical speotrum ospec1 .data 
eflxer.tn f--- etec1ron orbits orbit.data 

electron energy spectrum 81pec.data 

Diagnostics (downstream mirror) 

- optioal mode slructure optlc2.data 
optical mode structure (aver.) opllc2a11.data 
optical spectrum ospec2.data 

Diagnostics (upstream mirror) 

- optical mocJB structure optlc3.clata 
optical mode s/nJCture (aver.) opllc3av .dlta 
oplical spec/rum otpec3.data 

Figure 3.1: ELIXER input and output files. 

3.2 Input file 

ELIXER reads a single input file, elixer. in, and generates a number of output files, 
as is shown in Fig. 3.1. These files contain the optical mode structure of the radiation, 
at several positions in the resonator, and electron data as the electron energy spectrum. 
The output files will be discussed in Section 3.3. The emphasis in this Section is on 
the input file. 
The input parameters are organised in six groups : (i) numerical control parameters, 
(ii) undulator parameters, (iii) cavity parameters, (iv) electron initial conditions, (v) 
radiation initial conditions and (vi) miscellaneous parameters. The parameters is each 
of these groups are discussed below. Only a summary of the numerical control param­
eters is given since they were discussed extensively in Chapter 2. 
Dimensional units are used : lengths are in meters ([m]), currents in Amps ([A]), and 
powers in Watts ([W]). 

3.2.1 Numerical control parameters 

• DPMODE determines the mode of beam operation : 
DPMDDE=1 Pulsed beam operation with particle tracking, 
DPMODE=2 Pulsed beam operation with constant density approximation, 
DPMODE=3 Continuous beam operation with constant density approximation. 

• NESCHM determines the kind of integration scheme for the electron equations 
Euler scheme (NESCHM=1), Runge-Kutta scheme, of second (NESCHM=2), third 
(NESCHM=3) and fourth order (NESCHM=4). 

• NUSCHM determines the integration scheme for the wave equations : Euler scheme 
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Figure 3.2: Schematic layout of the resonator. 

(NUSCHM=2) and second order Runge-Kutta scheme (NUSCHM=1). 

• NZSTEP is the number of z-steps per undulator period. 

downstream 
mirror 

• FSEGM is the ratio of the segment size ti. and the ponderomotive wavelength Apon· 

3.2.2 Undulator parameters 

• PHFLAG determines the undulator geometry : 
PHFLAG=O implies a planar undulator, 
PHFLAG=1 implies a helical undulator. 

• LAMB DU is the und ulator period Au = 27r / ku. 

• AU is the on-axis undulator strength Auo· The rms-value has to be used in a 
planar undulator. 

• NUND is the number of undulator periods Nund. 

• BETFLG controls the radial inhomogeneity of the undulator magnetic field Au ( :c) = 

Auo( 1 + k;x2 + k;y2
) : 

BETFLG=O yields a homogeneous undulator (kx = ky = 0) with a 'cold' electron 
beam (emittance is neglected), 
BETFLG=1 describes an inhomogeneous undulator with a 'warm' beam. 

3.2.3 Cavity parameters 

• LCAV is the length Le of the cavity (see Fig. 3.2). 

• UNDPOS is the position of the undulator entrance with respect to the upstream 
mirror. 
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• LRAY is the Rayleigh length I,. 

• WAIST is the position of the optical waist Zw with respect to the upstream mirror. 

• CURVU is the curvature Ru of the upstream mirror. 

• CURVD is the curvature Rd of the downstream mirror. 

• CRVFLG determines how the Rayleigh length and waist position are computed : 
CRVFLG=O implies that I, and Zw are taken directly from the values of LRAY and 
WAIST, 
CRVFLG=1 implies that I, and Zw are calculated from the radii of curvature of the 
cavity mirrors, according to Eq. (1.26). 

• RU is the power reflection coefficient (r~) of the upstream mirror. 

• RD is the power reflection coefficient (r~) of the downstream mirror. 

• IDMFLG controls the transmission loss as follows : 
IDMFLG=O implies a cavity with realistic mirrors, whose radii and apertures are 
listed below, 
IDMFLG=1 implies a closed resonator, in which aperture and edge loss is absent 
(rma --+ Q and Tmr --+ 00 ). 

• APU is the aperture rma of the upstream mirror. 

• RADU is the radius r mr of this mirror. 

• APD is the aperture rma of the downstream mirror. 

• RADD is the radius rmr of this mirror. 

• DL is the cavity length adjustment (in units of an optical wavelength) for control 
of the synchronisation between the electron and radiation pulse. The difference 
in path length for the pulses is 2DL after one roundtrip through the cavity. The 
pulse are synchronized for DL=O in the absence of a gain-medium. A negative 
value of DL implies a shortening of the cavity. 

3.2.4 Electron initial conditions 

• GAMMAO is the relativistic factor /o of the beam electrons. 
Conversion to beam energies : /o = 1.95 X beamenergy in [MeV]. 

• CURR is the peak beam current I. 

• SIGXO is the 1-sigma radius O'xo = O'yo of the Gaussian radial density profile of 
the electron beam. 

• LB is the width Lb of the electron pulse, 0 :::; z - Vpont :::; Lb. 
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• MNPRDF determines the longitudinal profile X(z - Vpont) of the pulse. Three 
profiles can be selected : 
MNPROF=1 Hat-shaped distribution 

X(z - Vpont) = 1, 

MNPRDF=2 Gaussian distribution 

MNPRDF=3 Parabolic distribution 

X(z - Vpont) = 1 - [(z - Vpont) - Lb/2] 2 /(Lb/2) 2
• 

Note that the total charge Q of the electron pulse is given by 

(3.1) 

where fx = 1, 0.42 and 0.67 for MNPRDF=1, 2 and 3, respectively. 

• DETU is the peak energy detuning (81)0 ho· 

• MANDET selects between manual or automatical calculation of the detuning : 
MANDET=O implies that the small-signal/small-gain estimate the highest single 
pass gain is used for the energy detuning 

where the second term arises from the shift of gain-detuning curve that is induced 
by the lowest (n = 0) GL function. This estimate is used for all roundtrips 
considered. Hence it is assumed that the lowest GL function dominates the 
radial mode structure of the radiation throughout the computation. MANDET=1 

implies that the value of DETU is used for (81) 0 /lo· 

• MPPRDF determines the energy distribution Xh over the electron pulse. The same 
options as for MNPROF apply. 

• SIGMAE is the 1-sigma energy spread ae (relative to lo) of the Gaussian energy 
distribution. 

• NEMIT is the normalized emittance of the beam electrons, m units of 4ir mm 
mrad. 

• NP is the number of electrons that is used to simulate the Gaussian energy dis­
tribution in each segment of the pulse. Note that NP ?: 1. 
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• NPSI is the number of electrons that is used to simulate the ponderomotive phase 
distribution in each segment. Note that NPSI 2 1. 

• EPSPSI is the level of random phase noise (with respect to 2ir) for simulation of 
a non-uniform phase distribution. 

• MELUNI determines the spread in the energy-phase distributions over pulse (inde­
pendent of the beam density): 
MELUNI=O implies that segment-to-segment variations are allowed, 
MELUNI=1 implies that the distributions are exactly the same for each segment. 

3.2.5 Radiation initial conditions 

• POWERO is the peak power level of the lowest (n = 0) GL function. 

• MUPROF determines the longitudinal radiation power profile. The same profiles 
options apply as for the electron density. 

• MUPHAS determines the radiation phase : 
MUPHAS=O implies that the phase is zero for all segments in the radiation pulse, 
MUPHAS = 1 implies that the radiation phase in each segment is randomly distri­
bution between 0 - 2ir. 

• NGLMDD is the maximum number M of GL functions that is used in the simulation. 
NGLMDD=O implies that only the lowestn = 0 GL function is included. 

• NMDPLT is the maximum number of GL functions that is used in the output files. 
This number may not exceed NGLMDD. 

• RELPDW is the power level of the higher order (n > 0) GL functions (with respect 
to then = 0 GL function). The phases of the higher order functions are the same 
as that of the n = 0 mode. 

3.2.6 Miscellaneous parameters 

• NPAS is the total number of roundtrips to be computed. 

• NSHDWN is the roundtrip number, after which the electron beam is switched-off. 
This number may not exceed NPAS. 

• PLTSTA is the roundtrip number at which the storage of the optical and electron 
data starts (PLTSTA 2 1). 

• PLTINT is the interval (in roundtrips) of this storage (PLTINT 2': 1). 
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• INTFLG determines if the optical and electron data are stored at vanous z­
positions along the undulator (subject to the limitations set by PLTSTA and 
PLTINT): 
INTFLG=O implies no intra-undulator data storage, 
INTFLG=1 implies that the data is stored after each interval ZPLOT 

• ZPLOT is the z-interval (in units of an undulator period) for intra-undulator data 
storage. 

• ORBFLG controls the storage of the longitudinal electron orbits to disk: ORBFLG=1 
implies that the data saved, ORBFLG=O implies that no data is stored. 

• OSFLG controls the storage of the optical spectrum. The same options as for 
DRBFLG apply. 

• ESFLG controls the storage of the electron energy spectrum. The same options as 
for ORBFLG apply. 

• FEXTR determines the energy interval for the electron spectra. 
from [-8/max, +8/max], where 

c Ir 
U/max = FEXTR--, 

2Neff 

This interval runs 

(3.2) 

where Neff= Nund/muc if the slippage factor µc = Nund>./Lb;::: 1, and Neff= 
N und otherwise. 

• NRES determines the energy resolution for this spectrum (NRES < 256). 

• ISEED is a number to start the random generator. 

3.3 Output files 

In this Section the contents and the structure of the output files are discussed that 
are generated by ELIXER (see Fig. 3.1). The file para. out contains relevant physical 
and numerical parameters that are computed from the input file, such as for instance 
the optical wavelength and the number of gridpoints required for the electron and 
optical pulses. The file error. log logs inconsistencies in the inputfile, such as array 
dimensions that exceed their maximum value. The contents and the formats of all 
output files (except para.out and error.log) will be discussed below. 

3.3.1 Matrix elements : matrix.data 

The file matrix. data contains the matrix elements of the transmission and reflection 
matrices R. The matrix elements are stored according to the following procedure 
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I File matrix.data 

Header N, M, TAD, TRD, RD, TAU, TRU, RU 

Data do N=O, NGLMOD 
do M=O,NGLMDD 

write N, M, TAD(N,M), TRD(N,M), RD(N,M), 
TAU(N,M), TRU(N,M), RU(N,M) 

continue 
continue 

where the following notation is used : 

TAD(NM) 

TRD(NM) 

RD(NM) 

Here ~~a and ~~r are the normalized aperture and radius of the downstream mirror, 
respectively, and ~;:,. and ~;:,. are the same quantities for the upstream mirror. 

The matrix elements are computed using the recurrence relations of the Laguerre poly­
nomials as follows. Starting with the first row, or column as R is symmetric (neglecting 
the superscripts u and d for simplicity) 

R (t t ) + -{ma -{mr 
00 <,ma,<,mr - e - e , 

RkO(~ma,~mr) - +e-{m•[Lk(~ma) - Lk-I(~ma)] 
-e-{mr[Lk(~mr)- Lk-I(~mr)], (k ::'.': 1) 

(3.3) 

(3.4) 

each reflection coefficient Rnm with higher n and m indices can be obtained from the 
relation 

n m 

- LRn-i,m - LRn,m-j· (3.5) 
i=l j=l 

A disadvantage of this method is its sensitivity to 'number-loss' due of the multiple 
addition and substraction of large numbers. This limits the number of GL functions 
that can be used in ELIXER to NGLMOD = 15 - 20, depending on the accuracy of the 
computer. 
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3.3.2 Optical mode structure in the undulator 
opticl.data and opticlav.data 
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The file optic1. data contains the distribution of the radiation power over the trans­
verse modes. This distribution is computed from Eq. (3.6), i.e. 

M M 
Ptot(Z, Z - ct)= L Pn(z, Z - ct)= EFX L JunJ 2

, (3.6) 
j=O i=O 

where 

7rs5 ( 1 mcp2µ,) 2 

EFX = -cEo ck-----
2 fa e 2Au 

(3. 7) 

is a conversion factor to obtain the radiation power in units of Watts. The additional 
factor p2µ,/(2Au) (as compared to Eq. (3.6)) arises from the universal scaling Eq. (2.1). 
The power distribution is saved at the end of the undulator if INTFLG=1, or, if INTFLG=O, 
at equidistant positions along the undulator, where the product ZPLOT .\u is the sepa­
ration between the two output positions. The data stored after each interval of PL TINT 
roundtrips through the cavity, starting from roundtrip PLTSTA. The following data is 
appended to optic1 .data for z-positions IZ and roundtrip numbers IPAS that satisfy 
these criteria. 

I File optic1. data 

Header PASS, Z_[M], Z-VT_[M], ABSERR_[W], RELERR, 
P(TOT)_[W], P(O)_(W], , P(NMOPLT)_[W], 

PHASE(O), , PHASE(NMDPLT) 

Data do IZA = -NSLIPE,NZAE 
IZB = ZAZB(IZA,IZ) 
write IPAS, IZ*ZTOM, IZB*ZATOM, ABSERR, RELERR, 

POW(-1), (POW(N), N=O,NMDPLT), 
(PHA(N), N=O,NMDPLT) 

continue, 

where NMDPLT is the maximum mode number for plotting, the arrays POW(N) and 
PHA(N) yield the power Pn and phase arg(un) of the nth GL function, respectively, and 
the array element POW(-1) contains the total power P101 • The phase of each radiation 
coefficient is included such that the radiation amplitude within each IZA-segment can 
be reconstructed (see Appendix B). The radial pulse is evaluated in the electron 
coordinates (via IZB = ZAZB(IZA,IZ)) to facilitate a comparison of its position with 
respect to the electron pulse, where ZAZB is a function that computes the IZA-to-IZB 
coordinate transformation according to Eq. (2.15). The quantities 

ZTOM - (kupt 1 6z = .\u/NZSTEP, and 

ZATOM = (kp)- 16 = FSEGM.\ 

(3.8) 

(3.9) 
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are conversion factors to obtain the position along the undulator ( z = IZ * ZTDM) and 
the positions in the optical and electron pulses (z - ct= IZA * ZATOM and z - Vpont c:,: 

IZB * ZATOM) in units of meters. Note that the small difference between A and Apon is 
neglected upon using ZATOM for the position in both pulses. Furthermore, the numerical 
error that is made in the integration of the radiation field and the electron trajectories 
is estimated from energy balance Eq. (2.11). The absolute and relative errors that are 
made in each integration step are given by 

where 

ABSERR = (6.u + 6.p) EFX (in units of Watts), 

RELERR = (6.u + 6.p)/(6.u - 6.p), 

and 
j=O 

) N d 
6.p = 6.zX- L:-Pi 

N i=I dz 

(3.10) 

(3.11) 

are the increase in radiation and electron energy as computed by ELIXER. Note that 
ABSERR and RELERR are zero when Eq. (2.11) is satisfied exactly. 

The file optic1av .data contains the distribution of the radiation energy E over the 
transverse modes. The radiation energy is the energy density, averaged over the trans­
verse and spatial dimensions of the pulse 

00 

E = 21T j rdr j d(z-ct) ~(to IEl2 + µ01 IBl2
) = j d(z-ct) P1otf c. (3.12) 

0 

Upon substitution of Eq. (3.6), E can be written as a sum over the radiation energy En 
of each GL function 

M 

E = L En, En =PE L lunl2
, (3.13) 

n=O IZA 

where PE= (EFX/c) (.XFSEGM) is a conversion factor to obtain the energy in units of 
Joules. 
The energy distribution is stored in optic1av. data for each roundtrip !PAS, under the 
same condition on the undulator position as the data in optic1 .data. For positions 
IZ that satisfy the criterium, the following data is appended to optic1av. data. 

\ File optic1av. data 

Header PASS, Z_[M], TABSER_[J], 
E(TOT)_[J], E(O) _[J], . . , E(NMDPLT) _[J] 

Data write !PAS, IZ*ZTDM, TABSER, 
E(-1), (E(N), N=O,NMDPLT) 

where the array E(N) yields the energy En of each nth GL function, E(-1) contains the 
total pulse energy E1o1, and the quantity TABSER is the absolute energy error ABSERR, 
averaged over all segments in the radiation pulse. 
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3.3.3 Optical mode structure at the downstream mirror 
optic2.data and optic2av.data 

The file optic2 .data contains the power distribution over the transverse modes of the 
radiation that is reflected on the downstream mirror. This file contains also the power 
that is coupled out through the aperture and the power that is lost along the mirror 
edge. The distribution of the reflected radiation power prd over the transverse modes 
is given by 

M 

P;0~ - L p~d, p~d = EFX lu~d[ 2 , (3.14) 
n=O 

where the radiation coefficients { u~d} are related to the coefficients { u~} of the incom­
ing radiation according to (see Section 1.3.3) 

M ( 1 ia)m-n u'd(z _ct) = -r e+2ikz-2i(n '\""' - R (td td ) i (z _ct) 
n d L.., l + · nm ~ma' ~mr Um 1 

m;::;Q ia 
(3.15) 

Here z, a and (n have to be evaluated at the position of the downstream mirror, R is the 
reflection coefficient Eq. (1.42), and e~. and e~, are the normalized aperture and radius 
of the mirror. As was discussed in Section 1.3.3, in principle a large number of GL 
functions are required to describe the reflected radiation, due to the slow convergence 
(to zero) of the off-diagonal elements of the reflection matrix. However, ELIXER 
uses a limited number ( M) of transverse modes. Therefore the reflected power p~d 
(neglecting mirror absorption loss for simplicity) is slightly lower than the power pid 

that is incident on the downstream mirror 

M 1 . 
P id( ) '\""' ( - ia )n-mR (td td ) i •· z - ct = EFX L.., l . nm ~m•>~mr unum. 

n=O,m=O + ia 

(3.16) 

The energy deficient is 'repaired' by multiplying each radiation coefficients u~d of the 
reflected signal by ( pid / prd) 1/ 2 • This approximation assumes that the radial profile 
of the reflected radiation amplitude is (and remains to be) dominated by the lowest 
(n < M) GL functions. As was discussed in Section 1.3.3, this assumption is easily 
satisfied because of the large difference in diagonal and off-diagonal elements of the 
reflection matrix, and by the fact that GL functions with high mode numbers have 
larger edge losses than low n GL functions. 
The radiation power that is lost through the aperture ( P:;..) and along the mirror edge 
(P:;,,) are not computed from a transmission matrix approach (this would require a too 
large number of GL functions), but from the radiation amplitude that is incident on 
the mirror 

P~0 (z - ct) """'( 1 - ia )n mn ( d ) • - EFX L.., 1 . - nm o,ema Unum, 
n,m +ia 

(3.17) 

P~r(z - ct) """'( 1 - ia )n mn (td ) = EFX ~ l . - nm '1.mri 00 UnU:n. 
nm + ia 

(3.18) 
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The reflected and transmitted signals are stored after each interval of PL TINT round trips 
through the cavity, starting from roundtrip PLTSTA. The following data is appended to 
optic2. data for round trip number IPAS that satisfy this condition. 

/ File optic2. data 

Header PASS, Z_[M], Z-VL[M], PDMA_[W] , PDMR_[W], 
PRD(TOT)_[W], PRD(O)_[W], . . , PRD(NMDPLT)_[W], 

PHASERD(O), , PHASERD(NMDPLT) 

Data do IZA = -NSLIPE,NZAE 
IZB = ZAZB(IZA,IZ) 
write IPAS, IZ*ZTOM, IZB*ZATOM, TAPOW(IZA), TRPOW(IZA), 

RPOW(-1), (RPOW(N), N=O,NMDPLT), 
(RPHA(N), N=O,NMDPLT) 

continue, 

where the array TAPOW(N) contain the power P:;,
0 

that is lost through the aperture, 
and the array TRPOW (N) the power P:;,, that is lost along the mirror edge. The arrays 
RPOW (N) and RPHA (N) denote the power p~d and phase </>~d = arg( u~) of the reflected 
radiation, respectively. The array element RPOW(-1) yields the total reflected power 
Prd 

tot· 

The file optic2av .data contains the energy distribution over the transverse modes 
of the radiation that is reflected on the downstream mirror. The file also contains 
the energy that is lost through the aperture and along the mirror edge. The energies 
are computed from the reflected and transmitted radiation powers, averaged over the 
longitudinal dimension of the light pulse 

M 

£~d =PEL lu~d12' £rd - 2::£'d (3.19) 
n ' 

n=O IZA 

£~. = (PE/EFX) LP!., (3.20) 
IZA 

£~, = (PE/EFX) LP!,. (3.21) 
IZA 

The following data is appended to optic2av. data for each roundtrip I PASS. 

J File optic2av.data 

Header PASS, Z_[M], EDMA_[J], EDMR_[J], 
ERD(TOT)_[J], ERD(O)_[J], , ERD(NMDPLT)_[J] 

Data write IPAS, IZ*ZTOM, TAE, TRE, 
RE(-1), (RE(N), N=O,NMDPLT) 
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where RE(N) is the reflected energy of the nth GL function £~d, RE(-1) being the total 
reflected energy £;0~, and TAE and TRE are equal to £~a and£~,, respectively. 

3.3.4 Optical mode structure at the upstream mirror 
optic3.data and optic3av .data 

The file optic3 .data contains the power distribution over the transverse modes of 
the radiation that is reflected on the upstream mirror, as well as the power that is 
lost through the aperture and along the edge of this mirror. The distribution of the 
reflected radiation power pm over the transverse modes is given by 

M 

Pm "pm pm = EFX lu'"l2 
tot = L.J n ' n n ' (3.22) 

n=O 

where the radiation coefficients {u~"} are related to the coefficients {u:,.} of the incom­
ing radiation according to (see Section 1.3.3) 

M 1 · m-n 
'"( t) -2ikz+2i(n " ( + 1°') -n (t" t" ) i ( t) Un z-c =-rue L-1 l-ia 1\...nm~ma,~mr UmZ-C, 

m=O 

(3.23) 

Here z, a and (n have to be evaluated at the position of the upstream mirror, n is 
the reflection matrix Eq. (1.42), and e;:.. and e;:., are the normalized aperture and 
mirror radius. The radiation coefficients u~" of the reflected signal are multiplied by 
(Pi"/Pm)112 (just as was done in Section 3.3.3) in order to account for the small 
decrease of the radiation power as compared to the incoming power 

(3.24) 

The radiation power that is lost through the aperture (P~a) and along the mirror 
edge (P~,) of the upstream mirror are computed from the radiation amplitude that is 
incident on the mirror 

P;:.,
0
(z - ct) "( 1 + ia )n m,,., ( cu ) • - EFX ~ 1 ' - '"-nm o,~ma Unum, 

n,m -ia 
(3.25) 

P::,,(z - ct) "( 1 + ia )n m'1'.> (t" ) • EFX L; l . - 1\...nm ~mr,oo UnUm. 
n,m - ia 

(3.26) 

The reflected and transmitted signals are stored after each interval of PL TINT roundtrips 
through the cavity, starting from roundtrip PLTSTA. The following data is appended to 
optic3 .data for roundtrip numbers !PAS that satisfy this condition. 
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[ File opt ic3. data 

Header PASS, Z_ [M] , Z-VT_ [M] , PUMA_ [W] , PUMR_ [W] , 
PRU(TOT)_[W], PRU(O)_[W], , PRU(NMDPLT)_[W], 

PHASERU ( 0) , , PHASERU (NMDPL T) 

Data do IZA = -NSLIPE,NZAE 
IZB = ZAZB(IZA,IZ) 
write IPAS, IZ*ZTOM, IZB*ZATOM, TAPOW(IZA), TRPOW(IZA), 

RPOW(-1), (RPOW(N), N=O,NMDPLT), 
(RPHA(N), N=O,NMDPLT) 

continue, 

where TAPOW(N) contains the power P::,
0 

that is lost through the aperture, and TRPOW(N) 
is equal to the power P::,, that is lost along the mirror edge. The arrays RPDW (N) and 
RPHA (N) denote the power p~u and phase arg( u~) of the reflected radiation, respec­
tively. The array element RPOW(-1) yields the total reflected power P,:~. 

The file optic3av. data contains the energy distribution over the transverse modes of 
the radiation that is reflected on the upstream mirror. The file also contains the energy 
that is lost through the aperture and along the mirror edge. The energies is computed 
from the reflected and transmitted radiation powers, averaged over the longitudinal 
dimension of the light pulse 

M 
£.U = .L: eu 

n ' £~u =PEL lu~ul2' (3.27) 
n=O IZA 

£::ia = PEL (P::, 0 /EFX), (3.28) 
IZA 

£::ir PEL (P,::,/EFX). (3.29) 
IZA 

The following data is appended to optic3av. data for each round trip number IPASS. 

I File optic3av.data 

Header PASS, Z_[M], EUMA_[J], EUMR_[J], 
ERU(TOT)_[J], ERU(O)_[J], , ERU(NMDPLT)_[J] 

Data write IPAS, IZ*ZTOM, TAE, TRE, 
RE(-1), (RE(N), N=O,NMDPLT) 

where RE(N) is the reflected energy of the nth GL function£~«, RE(-1) being the total 
reflected energy £[0~, and TAE and TRE are equal to £;¢.

0 
and £;¢.,, respectively. 
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3.3.5 Optical power spectrum 
ospecl.data (inside the undulator), 
ospec2.data (at the downstream mirror), 
ospec3.data (at the upstream mirror) 
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The file ospec1 .data contains the distribution of spectral power over the transverse 
modes. The spectral power distribution is (see Section 1.3.2) 

M 

LP~(K,z) (3. 30) 
n:::O 

(3.31) 

where the conversion factor EFX is given by Eq. (3.7). 
The power spectrum is computed if OSFLG=1. The spectral power is stored at the end 
of the undulator if INTFLG=1, or, if INTFLG=O, at equidistant positions along the undu­
lator, where the product ZPLOT Au is the separation between the two output positions. 
The data stored after each interval of PLTINT roundtrips through the cavity, starting 
from roundtrip PLTSTA. The following data is appended to ospec1. data for z-positions 
IZ and roundtrip numbers IPAS that satisfy these criteria. 

I File ospec1 .data 

Header PASS, Z_[M], 
PS(O)_[WM2], 

LAMBDA_[1/M], PS(TOT)_[WM2], 
, PS(NMDPLT)_[WM2] 

Data NDIM = NSLIPE+NZAE+1 
do J = 1, NDIM 

write IPAS, IZ*ZTOM, LAMBDJ, 
PSTOT, (PS(N), N=O,NMDPLT) 

continue, 

where LAMBDJ = >./[1- (j - NDIM/2 -1)/(NDIMFSEGM)] is the wavelength, PSTOT is the 
total spectral power P,~., and PS (N) is equal to spectral power P~. 

The file ospec2. data contains the spectral powers P,;.~ and P,;.~ of the radiation that 
is coupled out through the aperture and along the edge of the downstream mirror, 
respectively. The file ospec3, data yield the same spectral powers, but now for the 
upstream mirror. These spectral powers are computed from Eq. (1.32) upon using the 
appropriate integration boundaries, i.e. 

M 
P'd = EFX L: u u* e-i((n-(m)R, (0 ~d ) (3.32) ma n m nm l ma 

n::::O,m=O 

M 
P'd = EFX me L: u u* e-i((n-(m)R, (0 e ) 

n m nm ' mr (3.33) 
n=O,m::=O 
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and 

M 

P'" ma EFX 2= u u' e+;((,.-("')R (0 C ) n m nnt 1 ma (3.34) 
n=O,m=O 

M 

P'" me EFX 2= u u' e+;((n-(m)R (0 C ) 
n m nm 1 mr 1 

( 3.35) 
n=O,m=O 

where ~~~ and ~~~ are the normalized aperture and radius of the downstream and 
upstream mirrors. 

This data is stored from roundtrip PLTSTA with intervals of PLTINT passes. For pass­
numbers that satisfy this condition, the following data is appended to ospec2. data 
and ospec3. data 

I File ospec2.data 

Header PASS, Z_[M] , LAMBDA_[1/M] , 
PSDMA_[WM2] , PSDMR_[WM2] 

Data write IPAS, IZ*ZTOM, PSA, PSR 

where PSA and PSR denote the spectral powers P:,~ and P:,~, respectively, and 

I File ospec3.data 

Header PASS, Z_[M], LAMBDA_[1/M], 
PSUMA_[WM2] , PSUMR_[WM2] 

Data write IPAS, IZ*ZTOM, PSA, PSR 

where PSA and PSR now yield the spectral powers P:,~ and P:,~, respectively. 

3.3.6 Electron orbits : orbit.data 

The longitudinal electron trajectories of each segment in the electron pulse are saved 
in the file orbit .data if the input parameter ORBFLG is set to unity. The data storage 
is subject to the same conditions on passnumbers IPAS and undulator positions IZ as 
the data stored in optic1.data. The following data is appended to orbit .data for 
passnumber and positions that satisfy these conditions. 



3.3. Output files 

I File orbit. data 

Header PASS, Z_[M], Z-VT_[M], J, PSI(J), P(J) 

Data do IZB = 0, NZB 
do J = 1, NES 

write !PAS, IZ*ZTDM, IZB*ZATOM, 

continue 
continue 

J, PSI(J,IZB), P(J,IZB)*PTDDG 
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where NES = NPSI *NP is the initial number of electrons per segment, and PTDDG = 
Pir/2 a conversion factor to obtain the electron energy in terms of 81 = / - /r· 

3.3. 7 Electron energy spectrum : espec.data 

The file espec. data contains the energy spectrum of the electrons, averaged over the 
pulse 

(3.36) 

Note that integral of J(81) over the energy 81 is equal to unity. 
The spectrum is computed if ESFLG=1. The data storage is subject to the same 
conditions on passnumbers !PAS and undulator positions IZ as the data stored in 
optic1 .data. The following data is appended to orbit. data for passnumber and 
positions that satisfy these conditions. 

I File orbit. data 

Header PASS, Z_[M], PD(O), PD(1), . . , PD(NRES) 

Data write !PAS, IZ*ZTDM, (PD(L), L=O ,NRES) 

where the label L in the array PD, which yields the energy distribution Eq. (3.36), 
denotes the energy 

2D/max 
81 = -D/max + L NRES , 

O/max being given by Eq. (3.2) in Section 3.2.6. 
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Appendix A 

Pre-compilation using the REVISE 
package 

The REVISE package provides a portable facility for the systematic maintenance of 
large computer programs. The package was developed to control and exchange the 
progression of changes in numerical codes that by an international group of scientists 
using different computers [15]. Revise consists of the five (FORTRAN 77) programs 
that are listed in Table A.l. 

• pre is a pre-compiler that converts a REVISE source file fn. source into a FOR­
TRAN file fn. f. The latter has to be compiled into executable file using the 
standard FORTRAN compiler. A REVISE source file is equal to a FORTRAN 
file, except that common blocks are reduced to single-line instructions. The pre­
compiler places the common blocks where necessary, as is shown in Table A.2. 

• new makes a listing out fn. list of a source file fn. source. This listing contains 
information on absolute line numbers, line numbers per subroutine, and on the 
date and time. The optional parameter 1 in new (and also in mod) controls output 
format (see instruction in the source codes new. f and mod. f). 

• com makes a list of modifications mfn .modif from an old listing fn. list (for 
instance the previous version of a code) and a new source file nfn. source (the 

I UNIX script file I Input files I Output files I 
pre f n [l] fn.source fn.f 
new fn [l] fn.source fn.list 
com fn nf n [mfn] fn. list mfn.modif 

nfn.source 
mod fn mfn [nfn] [l] fn.list mfn.listm 

mfn.modif nfn.listr 
ext fn fn.list(r) fn.source 

Table A.1: Revise UNIX script files and their input and output files. 
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I REVISE source file fn. source I 
*COMDECK COMBLK 

REAL A,B,C C 
COMMON /COMBLK/ A,B,C 

*DECK MAINPROG 
PROGRAM TEST 

c 
*CALL CDMBLK 
c 

Program body 
c 

END 

c 

c 

FORTRAN file fn.f 

PROGRAM TEST 

REAL A,B,C 
COMMON /COMBLK/ A,B,C 

Program body 

END 

Table A.2: Example of a REVISE source file and its pre-compiled FORTRAN file. 

new version of a code). If the optional filename mfn .modif is omitted, then a file 
with name m+nfn. mod if will be created. 

• mod creates a listing mfn. listm of the modification file mfn. mod if, and creates 
a new listing nfn.listr of the modification file and the old listing fn.list. If 
the optional filename nfn is neglected, then the creation of this new listing is 
suppressed. 

• ext converts a listing fn. list (r) into a source file fn. source (opposite of new). 

Although these script files are written for UNIX based computers, also IBM-VM ver­
sions are available. Batch files for other computers do not exist at this moment, but it 
is not too complicated to write your one scripts using the UNIX scripts as examples. 
These script files involve the executable files pre. o, new. o, com. o, mod. o and ext. o. 
The source code of these files (pre. f, new. f etc.) is also included with the package. 
In the files new. f and mod. f the number of lines per page, ILMAX, needs to be set (de­
pending on the local printer), and the call to DATE and TIME may need to be adjusted 
for the computer that is used. In pre. f the switches for single or block line activation 
need to be set. 

A.1 Installation of REVISE 

On Unix systems, REVISE can be installed in the following way: 

• Make a directory 'revise'; 

• Copy pre. f, new. f, com. f, mod. f, ext. f, and revise. install in this directory; 

• Edit new. f, com. f, and pre. f to adjust the parameters to your computer as 
described above; 
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• Compile all files by executing revise. install (the FORTRAN compiler f77 in 
revise. install may need to be replaced by the name of your compiler). This 
creates the files pre. o, new. o, com. o, mod. o, and ext. o. 

• Copy the script files pre, new, com, mod and ext to the directory 'revise', and put 
this directory in the search path. 
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Appendix B 

Calculation of the radiation amplitude 
using RADPROF 

The program RADPROF allows to compute the radiation amplitude as a function of 
radial position ~ = 2r2 / s2 and time z - ct from the optical mode structure { un} that 
is stored in the files optic1-3.data. The file radprof .source is the REVISE source 
of RADPROF. This file can be (pre-)compiled using the same script file similar as ce, 
upon replacing the strings 'elixer' by 'radprof'. RADPROF reads the same input file 
as ELIXER. 
Upon execution, the program asks for the (interactive) input below : 

• The file with the optical mode structure (i.e. optic1-3. data); 

• The roundtrip number and, if INTFLG=1, the z-position at which the optical 
mode structure has to be read from the file selected above. The optical mode 
structure is stored in the real arrays PDW(N, IZA) = jun(z - ct)j 2 and PHA(N, IZA) = 

arg(un(z - ct)). 

• the position ZEVAL in the resonator at which the radial profile is to be evaluated, 

• the maximum value, XIMAX of the normalized radial coordinate ~, 

• the maximum number NXIMAX of radial grid points, and finally, 

• the longitudinal resolution PLDTZA. 

The following output is written in the file prof. data. 

I File prof. data 

Data do IZA = -NSLIPE, NZAE, PLOTZA 
write (ABS(U(NXI))**2, NXI=O,NXIMAX) 

continue 

where the total radiation amplitude U(NXI) is 

M 
U(NXI) = L Un So e-i(ne-(1-ia)(/2 Ln(OI 

n=O S z=ZEVAL 
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(B. l) 
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if optic1 .data or optic3. data are used, and 

(B.2) 

in case optic2. data is used. Here"" = PDW(N, IZA)1
/

2 exp[iPHA(N, IZA)] is the ampli­
tude of each radiation coefficient, and ~ = XIMAX/NXI. 
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