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PREFACE 

JET discharges display pronounced l\IHD activity which requires a numerical tool for 

accurately calculating the dissipative MHD spectrum for measured equilibria. The spectral 

code CASTOR (Complex Alfvn Spectrum for TORoidal plasmas). 1d1ich 1rns recently 

extended to incorporate a plasma-vacuum- wall system, pro1·ides such a tool. ~Iany high 

performance discharges, in particular the preliminary tritium <'Xperinwnt ( PTE ). arc clone 

in single- null configurations. 

Therefore, the methods ancl tools need to be extended form up-clown symmctr~· to 

more general geometry. In the context of MHD spectroscopy this requires: 

i) the generalisation of the equilibrium solver HELENA. 

ii) the construction of the appropriate flux coordinates and the calculation of the cor­

responding metric coefficients, 

iii) the extension of the normal mode analysis to this more general geometry. 

The described generalisation of the resistive MHD normal mode analysis has been 

introduced in the codes HELENA and CASTOR, tested and applied. The applications 

focus on the high performance discharges, e.g. on the crash near the beta limit, on Edge 

Localized Modes (EL Ms )and on the up- clown asymmetric pumped divertor configurations. 

This report describes the work that has been performed under contract .JT2/10327 
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1. INTRODUCTION 

The relevance/importance of both local and global Y..!HD stability limits in .JET is 

increasingly recognised. The global MHD stability limit, i.e. the Troyon limit. is reached 

and even exceeded in discharges with a low toroidal field which aimed for high-J [1.2]. Also 

the high performance discharges of the preliminary tritium campaign. can reach relatiwly 

high values of f3 / fhroyon of about 80% [3]. The maximum } in these high performance 

discharges is limited by the overheating of the target plates. 

With the expected improvements of the target plates in JET in the new JET diwrtor 

phase, the contamination of the plasma by an influx of impurities will be delayed, and 

higher values of beta are likely to be obtained. In the high performance discharges of the 

preliminary tritium campaign, f3 reaches values at maximum 80% of the Troyon limit. It 

is therefore likely that future high performance discharges with the new JET divertor will 

also reach values of f3 close to the Troyon limit. In this new clivertor geometry, the shape 

of the plasma boundary has changed considerably. The new shape has a pronounced single 

X-point. Also, the ellipticity is increased and the triangularity of the plasma boundary 

has become much smaller. These changes in the plasma shape will have a large effect on 

the MHD stability limits. 

In the first part of this report a study of the ideal MHD stability properties to balloon· 

ing modes and the n = 1 external kink mode of two of the new JET divertor geometries, 

the so· called 'slim' and 'fat' configurations, is presented. The stability calculations of the 

external kink mode of the single X-point plasmas required the extension of the equilibrium 

and stability codes HELENA and CASTOR to general non up-clown symmetric plasma 

shapes. The new versions of HELEN A and CASTOR are discussed in the appendices. 

MHD stability is, however, not only important in plasmas close to the global ideal 

MHD stability limits which only indicate a maximum achievable (3. In experiment, local 

stability criteria will become important well below the global stability limit. One example 

of a local stability criterion being exceeded is the occurrence of edge localized modes 

(ELMs ). ELMs are driven by the local steepening of the profiles, i.e. the pressure and 

the current density profiles during the H-mode phase. They can be triggered by lowering 

the edge temperature by gas puffing and they can be stabilised by heating the plasma 

edge. ELMs can also be triggered by a strong impurity influx into the plasma. From this 

dependence of the occurrence of ELMs on the parameters influencing the edge resistivity 

it is concluded that the ELM is a resistive MHD perturbation. 

One MHD instability that is likely to be important for the ELM precursor is the 
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free boundary resistiw kink mode. In a stncly of the stability of the 11 = 1 free bournlary 

tearing mode of a JET elmy H-mocle equilibrium it was shm,·n [2,4] that a small clrnnge 

in the current profile at the edge, increasing the edge current density gradient. can dri\'C 

this mode unstable. Also. a critical value of the resistivity exists bclcl\Y which the mode is 

stabilised clue to the favourable m·erage currnture. 

In the second part of this report we will extend this study in two directions. Firstly. 

higher values of the toroidal mode number ( n = 1..4) are studied. Secondly the inflncncc 

of the edge pressure gradient which will be more important for the higher mode numbers 

is discussed. For the stability calcnlations the CASTOR code [5] is used to solve the linear 

resistive compressible MHD equations for general axisymmetric equilibria. The equilibria 

and the mapping to the flux coordinate system used in CASTOR are calculated with the 

HELENA code [6]. 
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2. IDEAL MHD STABILITY LIMITS OF THE NEW JET DIVERTOR GEOMETRY 

In JET, ,B values close to and even exceeding the classical Troyan limit (,3,,."'. 

2.8I[NI A]/ a[m]Bo [T] ), have been obtained in discharges with a low toroidal magnetic field 

(Bo ~ 1 - l.5T). At low toroidal field, the power needed to reach the 3 limit is relatiwly 

small so that overheating of the target plates and the subsequent impurity influx is not a 

limiting factor. In these high-/) discharges the maximum 3 is limited by !IIHD events. 

Recently, in the preliminary tritium campaign [3] ;3 mines hm·e been obtained of 

maximum 80% of the Troyon limit at normal values of the toroidal field (Bo ~ 3T). In 

these high performance discharges, the high-p values have been reached because of the 

large confinement time of the hot-ion H-mode discharges and the improvement of the 

target plates. However, the limiting factor still is the overheating of the target plates. 

This happens either through a slow heating of the tiles or on a fast time scale triggered by 

MHD activity. 

With the expected improvement of the target plate conditions when JET is operated 

with the new pumped divertor, it is likely that future high performance discharges will 

reach values of f3 close to or larger than the Troyon limit. In that case the maximnm beta 

will be limited by MHD instabilities instead of the overheating of the target plates. 

In this section we investigate the global MHD stability limits of the new JET divertor 

geometry. In this new geometry the shape of the plasma boundary changes considerably. 

Firstly, the minor radius decreases from typically 1.1 m to 0.86 - 0.95 m. Secondly, the 

plasma becomes more elongated with a single X- point at the bottom. Also the trian­

gularity is considerably reduced. The effect of a smaller minor radius is to increase the 

maximum beta (at a constant total current and magnetic field). Reducing the triangularity 

will, especially for the relatively peaked pressure profiles, have a large destabilizing effect 

[7]. The effect of the X-point is to increase the shear locally near the plasma edge which 

is stabilizing both for ballooning modes and the external kink. The combined effect of 

the changes in the plasma geometry on the stability limit is not predictable and requires 

detailed calculations using the full divertor geometry. In the following, the results are given 

of the stability calculations of the ideal MHD n -> oo ballooning modes and the n = 1 

external kink mode. 
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2.1 Method 

The usual procedure to calculate the ilIHD stability boundaries is. giwn a shape of 

the plasma boundary, to define a class of pressure and q- profiles with a limited numlwr of 

parameters and to find the maximum 8 stable to high-n ballooning modes and the n = 1 

external kink mode within this class. This leads, in general, to broad pressure profiles 

with large gradients near the edge combined with q-profilcs which are relatin•ly flat in 

the plasma centre and have large shear near the boundary. This type of profiles has littk 

resemblance with the peaked profiles in the JET high performance discharges. 

Here, we will not try to do a full MHD stability study of all plasma parameters 

and profiles possible. Instead we take one particular JET discharge which is relati,·ely 

close to the Troyon limit and use this as a reference case. In this way we are assured 

that the pressure and q-profiles used in the stability analysis are relevant for the .JET high 

performance discharges. The equilibrium is reconstructed from the magnetic measurements 

and the pressure profile using the IDENTD equilibrium identification code [SJ. 

Starting from this equilibrium, the pressure gradient is increased in small steps until 

the pressure profile is marginally stable to ballooning modes over the whole plasma. During 

the iteration the q-profile is kept as constant as possible under the constraint of a constant 

total current. This procedure yields the maximum (3 stable to ballooning modes under 

the constraint of the experimental q-profile, the total current and the toroidal magnetic 

field. For the ballooning stability calculations the HBT stability code [9, 10] is used. To 

determine the stability boundary of then = 1 external kink mode, the total pressure of the 

reference discharge is increased in steps but now both the q-profile and the shape of the 

pressure profile a.re kept fixed. To avoid the m/n = 1/1 internal kink becoming unstable, 

the q-profile is slightly broadened such that q on axis is 1.05. The CASTOR code [5] is 

used for the n = 1 stability calculations. The equilibrium quantities needed as input for 

the CASTOR code are calculated with the HELENA code [6]. 

Once the stability boundaries of the reference case with the old X-point geometry 

are established, the shape of the plasma is changed to the new divertor plasma shape. 

Starting from the same set of pressure and q- profiles, again the stability boundaries of the 

ballooning modes and the n = 1 external kink mode are calculated. 

To enable the stability calculations of the up-down asymmetric plasma shape of the 

divertor geometry both the CASTOR and HELENA codes have been extended. The new 

versions of the two codes are described in appendix A and B. 
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2.2 Ideal MHD stability limits 

As the reference discharge, we use the JET discharge with the highest performance. 

discharge #26087 in which an equivalent Q DT of 1.14 was obtained [3]. The time slice is 

taken at t=53.3s just before the phase of good performance ends with a ·carbon bloom'. 

At this time, (3 is at 80% of the Troyan limit. The plasma is operated as a single X-point 

plasma, although the up-clown asymmetry of the plasma boundary is small (see Fig. 2.1 ). 

Some relevant plasma parameters are listed in table 2.1. The pressure and the q-profilc 

are shown in Fig. 2.2. 

Fig. 2.1 The plasma shape of the JET discharge 26087. 

The result of the optimization of the pressure profile with respect to ideal n -+ oo 

ballooning modes is shown in Fig. 2.3. The figure shows a comparison of the measured 

profile gradient and the marginally stable profile. Also included is the pressure profile 

as obtained from the equilibrium reconstruction which was used <s the starting point. It 

is clear that the pressure gradients in this discharge are, even locally, almost a factor of 

two away from the maximum pressure gradient. Only in the centre of the plasma, is the 

plasma close to the stability boundary. However, this occurs in the region where q < 1 

where unstable ballooning modes would have very large toroidal mode numbers, n > 100. 
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Fig. 2.2 The pressure profile and the q- profile of discharge 26087, at t=53.3s. 

These high n values are probably not relevant. The pressure profile is not optimized beyond 

,P > 0.90 because this would lead to unphysically large current density gradients near the 

plasma edge. The value of (3 for the marginally stable equilibrium is 4.3% which has to 

be compared with the 2.4% of the actual discharge. The corresponding Troyan fact.or 

g = (3/f3N = 4.1 with f3N = l/aB. 

The maximum (3 stable to the n = 1 external kink mode is much larger than the 

ballooning limit for this discharge, (3 = 7.2%. This is due to the shape of the current 

density profile which has only a small gradient near the plasma boundary. The resulting 

n = 1 kink instability has a global character with a large amplitude across the plasma, see 

Fig. 2.4. This is typical for the n = 1 kink at high (3 and is very different from the so-called 

peeling modes which are more driven by the local current density gradient at the edge. 

Thus, although the high performance discharge #26087 reaches 80% of the Troyon limit, 

the stability calculations for this specific discharge show that the actual limit is closer to 

4.3% and is determined by ballooning mode stability. 

With the new pumped divert.or in the JET vacuum vessel, a number of possible 

plasma shapes have been defined. In this section we will discuss the stability properties of 

two different shapes : the so called 'slim' and the 'fat' case. The two plasma shapes are 

plotted in Fig. 2.5. The slim plasma shape is characterized by a larger connection length 

and will be used primarily for divert.or studies. The fat plasma shape has a larger volume 

and will be used in the performance optimization studies. 
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Fig. 2.3 The profile of the marginally stable pressure gradient as a function of c> = 

,j1/). Included are the experimental profiles of the pressure gradient from LIDA.R and as 

reconstructed by IDENTD. 

The equilibrium of the new divertor geometries is constructed by using the profile 

shapes the same as in the reference case but now with a total current of 3 MA and a 

vacuum magnetic field of 3 T. The results of the ballooning mode optimization for the 

slim and the fat plasma shapes give a similar profile as is shown in Fig. 2.3 for discharge 

26087, the reference case. The maximum f3 stable to ballooning modes is f3max = 4.9% 

and 4.3% respectively. The difference between the slim and the fat shape appears much 

less when the maximum f3 is expressed in the Troyon factor g. In the slim case with the 

smaller minor radius g equals 4.2 and in the fat case 4.1. 

shape magnetic current inverse f3niax f3niax 

field [T] [MA] aspect ratio ballooning external kink 

26087 2.87 3.17 0.357 4.3 7.2 

slim 3.0 3.0 0.302 4.9 3.8 

fat 3.0 3.0 0.332 4.3 4.8 

Tabel 2.1 The stability limits for ballooning modes and then = 1 external kink mode 

for three JET plasma shapes. 
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Fig. 2.4 The mode structure of then= 1 external kink mode at high ;3. 

Fig. 2.5 The new JET divertor plasma shapes, the 'slim' and the 'fat' configuration. 
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The changes in the plasma shape have a much larger influence on the stability of the 

n = 1 external kink mode. The maximum values of .3 stable to the external kink mode are 

3.8% and 4.8% for the slim and the fat case respecti,·ely. In both cases the mocle structme 

of the kink mocle has the same global structure as that shown in Fig. 2.4. This type of 

external kink cannot easily be stabilized by a small local change in the current density 

profile at the edge ancl the stability limit found will therefore not be Yery sensitiYe to local 

changes at the edge. 

So, in the case of the slim plasma shape with a large ellipticity and almost no triangu­

larity, the stability limit of the external kink mode is significantly lower than the ballooning 

limit. This will lead to a different manifestation of the (3 limit in the experiment. In the 

present high (3 experiments at JET large sawteeth and ELMs cause the degradation of 

confinement [11]. Also, the pressure profile is sometimes, locally, close to the ballooning 

boundary. Ballooning modes can however not be directly observed and their effect is to 

keep the pressure gradient below the marginal value. In the case of the slim plasma shape 

the first mode to become unstable with increasing (3 is a global external kink mocle, which 

will leacl to a disruption. 
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3. MHD STABILITY OF FREE BOUNDARY RESISTIVE LOW-N MODES 

3.1 Introduction 

The MHD instability underlying the edge localized modes as occur during the H­

mode phase of a plasma, has not yet been satisfactorily identified. This is made more 

difficult by the local nature of the mode, the instability is driven by the local steepening of 

the density and temperature profile at the plasma boundary during the H-mock. For the 

MHD stability calculations, measurements of the local details of the equilibrium profiles 

of the pressure and the current density are essential, but especially for the current density 

profile difficult to obtain. Also, due to the high frequency of the ELM precursor. typically 

> 50 kHz, not many diagnostics are able to observe the instability. 

In [12} the 'giant' ELMs (type I), as observed in DIII-D close to the ;3 limit, were 

attributed to ideal MHD ballooning modes. More recently however it was suggested that 

although the local pressure gradient is marginally stable to ideal ballooning modes. this 

only limits the maximum pressure gradient. It is probably not the actual cause for the 

giant ELMs. The smaller so-called type III ELMs generally occur well below the ideal 

ballooning limit. Also in JET, the pressure gradient at the plasma boundary is in most 

cases well below the ideal ballooning limit. 

An important clue for the identification of the ELM is its dependence on the parame­

ters influencing the resistivity at the plasma boundary. ELMs can be triggered by lowering 

the edge temperature by gas puffing and they can be stabilised by heating the plasma edge. 

ELMs are also triggered by a strong impurity influx into the plasma. From this depen­

dence of the occurrence of ELMs on the parameters influencing the edge resistivity it is 

concluded that the ELM is a resistive MHD mode. 

In JET discharges, Resistive ballooning modes have been shown to be close to their 

stability limit for relatively low values of the toroidal mode number (n ~ 10) [13}. How­

ever, the ELM causes a large perturbation of the plasma boundary and an expulsion of 

particles and energy from the plasma edge. This behaviour is not expected from the radi­

ally localized ballooning modes. In [2,4} it is proposed that low-n free boundary resistive 

modes are the relevant instabilities underlying the ELM. The n = 1 free boundary resistive 

modes, i.e. the resistive equivalent of the ideal external kink mode, are mostly driven by 

edge current density and its gradient. The edge current density can be large in H-mode 

discharges clue the bootstrap current driven by the large edge pressure gradient. These 

modes have a larger radial extension over more than one rational surface and cause a. large 
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perturbation of the plasma boundary. In a study of the stability of the 11 = 1 free bound­

ary tearing mode of a .JET elmy H- mode equilibrium it was shown that a small change 

in the current profile at the edge, increasing the edge current density gradient. can clriw 

this mode unstable. Also, a critical value of the resistiYity exists below which the mode is 

stabilised clue to the favourable average curvature. 

In [14] the stability of the n = 1 ideal external kink mode is inYestigated in a circular 

geometry. There, it is proposed that the ELM is an ideal kink mode driYen unstable by 

the enhanced current density. In .JET discharges, however, it is found that the 11 = 1 ideal 

external kink mode is very stable due to the high shear at the plasma edge. The resistiw' 

kink modes are much easier driven unstable. 

In this chapter we will extend our previous study [4] in two directions. Firstly. 

higher values of the toroidal mode number ( n = 1. .4) are studied. This is motiYated by the 

observations in ASDEX of poloidal mode numbers of the order of 10 - 15 in a discharge 

with q at the boundary of 3.3. This would mean that the toroidal mode numbers must be 

of about n = 3 - 5. Secondly, the influence of the edge pressure gradient. which will be 

more important for the higher mode numbers is investigated. 

3.2 Resistive low-n mode stability of JETH-mode equilibria 

The influence of the local pressure profile on the stability of resistive modes localized 

at the plasma edge can be twofold. The pressure gradient is a driving force for instabilities 

like low-n resistive ballooning modes. However, a large edge pressure gradient. also implies 

a large pressure at the particular mode rational surface. The pressure itself in combination 

with the favourable average curvature has a stabilizing effect on the free boundary tearing 

(resistive kink) modes. This effect is particularly pronounced at low values of the resistivity. 

In the previous study of the n = 1 free boundary resistive kink mode, it was found 

that at a relatively high value of the resistivity of 1J = 10-5 , increasing the pressure 

gradient while keeping the driving current density gradient constant had a stabilizing 

effect. Increasing the pressure gradient by a factor two, yielded a growth rate of about a 

factor of two lower. A further increase of the pressure gradient had no effect on the growth 

rate. No destabilizing effect was found for the n = 1 mode. 

In this section we will investigate the influence of the edge pressure gradient for 

the n = 1 to 4 resistive free boundary modes. As a starting point we take the JET 

equilibrium of the H-mode discharge 27793 at t = 54.08. In this discharge, ELMs were 

triggered by a large influx of Beryllium impurities. The equilibrium is calculated with the 
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IDENTD equilibrium reconstruction code [!3lum90]. The resulting profiles of the pressure 

and the q-profile are plotted in Fig. 3.1. The equilibrium obtained does not luwe locally 

large gradients of the pressure and the current density at the edge. This is clue to the 

global nature of the expansion functions used in the reconstruction. Consequently. this 

equilibrium is stable to all low-n ideal and resistive modes. including the m / n = 2/1 tearing 

mode. 
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Fig. 3.1 The equilibrium profiles of discharge 27793 as reconstructed by IDENTD 

To study the influence of the local pressure gradient at the plasma edge, we model 

the local edge gradients by artificially increasing the pressure gradient up to the point were 

the plasma becomes unstable. The current driven modes are stable in these equilibria, but 

above a threshold in the edge pressure gradient, a pressure driven n = 1 mode does become 

unstable. Naturally, this mode shows the opposite behaviour compared to the current 

driven modes and becomes more unstable with increasing pressure gradient. Also the 

behaviour with increasing toroidal mode number is different. For the current driven mode 

the n = 1 mode is the most unstable mode. The n = 2 mode is already very difficult to 

excite. The pressure driven mode on the other hand become more unstable with increasing 

toroidal mode number. This is shown in Fig. 3.2 where the growth rate is plotted as a 

function of the mode number for three different values of the edge pressure gradient. The 

15 



largest pressure gradient in this figure is about one third of the gradient which would be 

marginally stable to ideal ballooning modes. The resistiYity in these calculations was taken 

at the relatiYely high Yaluc of 17 = 10-5 . The growth rate is incrC'asing linearly with " 

and the slope is independent of the pressure gradient for the two cases considered. At 

the relatively high values of the resistiYity, the modes are already unstable for pressure 

gradients which are much lower than the ideal ballooning limit. 
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Rep ... ] 
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0.00 
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Fig. 3.2 The growth rates of the n = 1 - 4 modes for three different values of the edge 

pressure gradient. The clashed line corresponds to the case with increased edge current 

gradient. 

In Fig. 3.3a, the velocity perturbation of the n = 4 mode is plotted. The main 

poloidal mode number is m = 12, i.e. the mode is centred around the q = 3 surface. 

Although the calculations are done using a 'free boundary' boundary conditions, then = 4 

mode is essentially an internal mode with the largest amplitude at the q = 3 surface 

and almost no perturbations at the plasma boundary. The n = 4 mode does not show 

any significant ballooning effect, the amplitude on in- and outboard side is of comparable 

magnitude. 

With increasing mode number, the density perturbation of the instability, which is 

equivalent to the plasma compression, decreases. Also the ratio of the parallel to the 

perpendicular component of the velocity perturbation decreases from about 10 at 11 = 1 

to 1 at n = 4. 
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Fig. 3.3 The poloidal velocity perturbation of then = 4 mode corresponding to (a) 

the case with increased pressure gradient (Re(>.) = 4.6 x 10-2 in Fig. 3.2) and (b) of the 

case with increased edge pressure and current gradient. 

Included in Fig. 3.2 are the growth rates of the low-n modes for an equilibrium with 

both an increased pressure and a increased current density gradient at the edge. The 

current density is increased up to the point where the n = 1 current driven mode has 

become unstable. It is clear that the increased current density gradient has the largest 

effect on the n = 1 mode. The n = 2 mode is only a little more unstable, the growth rate 

of then = 4 mode is even lower with the larger current gradient. Although the growth rate 

of the n = 4 mode is only slightly different with the increased current density gradient, the 

mode structure does change. Due to the increased edge current, the shear at the edge is 

much smaller. Also the q = 3 surface is closer to the plasma boundary. Due to the smaller 

shear the width of the mode has become larger. The maximum is still at the q = 3 surface 

but in this case the mode does have a large amplitude at the plasma boundary and the 

free boundary is essential in this case for the instability to occur (see Fig. 3.3b ). 

With decreasing resistivity, the resistive modes are expected to be stabilized at one 

point by the favourable average curvature effect which is more pronounced at low resistivity 

[15,16]. From large aspect ratio theory,.one expects the stabilization to be a weak function 

of the toroidal mode number. The stabilization increases like n 113 . The behaviour of 
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Fig. 3.4 The growth rates of then= 1-.3 modes as a function of the resistiFit,1· of the 

case with increased pressure and current gradient at the edge. 

the growth rate of the low-n modes with decreasing resistivity is shown in Fig. 3.4. The 

growth rate of the higher 11 modes does decrease faster with increasing IL So, the question 

of which mode number is the most unstable mode depends sensitively on the actual value 

of the resistivity. But from the plot it is clear that in the case an ELM is triggered by an 

rapid increase of the resistivity by some impurity influx, the lowest n will be the first to 

become unstable. 

3.3 Conclusion 

At high values of the local resistivity 17 > 10-5 , low-n modes ( n > 3) can become 

unstable at relatively low values of the pressure gradient, even lower as one third of the 

ideal ballooning limit. However, for the temperatures at the plasma edge in JET H-mode 

discharges of typically 1 keV, the resistivity is much smaller, < 10-7 . At these lower 

values the higher n modes will be more stable due to the stabilizing effect of the average 

curvature. The most unstable mode number will then depend on the details of the C'dge 

pressure and current density profiles. At large edge current gradients then = 1 will be the 

most unstable. At high pressure gradient, some medium n mode will the most unstable 

depending on the actual value of the resistivity. 
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APPENDIX A. HELENA 

The axisynunetric equilibrium code HELENA [6] was deYeloped for the specific pur­

pose of calculating the equilibrium quantities and the metric coefficients of the flux surface 

coordinate system as is used in the spectral resistive MHD code CASTOR [5]. In the 

calculation of the spectrum of a given equilibrium, the actual eigenvalues are the result of 

a cancellation of stabilizing and destabilizing terms which can be large compared to the 

actual eigenvalues. Therefore, the equilibrium data have to be known w•ry accurate!)·· 

In HELENA, a high level of accuracy is obtained by means of bicubie Hermite finite 

elements. This leads to a continuous representation of both the flux and magnetic field 

across the poloidal plane. The shape of the plasma boundary is approximated using an 

isoparametric mapping of the curved finite elements aligned with the boundary onto a 

rectangular grid of finite elements. In the isoparametric mapping the same hicnbic Hermite 

elements are used. This results in a numerical error in the flux which scales with the fourth 

power of the size of the finite elements. The error in the magnetic field scales with the third 

power. The isoparametric mapping can also be used to adjust the grid of finite el<'nwnts 

such that the element boundaries are aligned onto the centred flux surfaces. In this way a 

inverse representation of the equilibrium is obtained i.e., x and y as a function of the flux 

,P and of the angle, instead of the usual representation ,P(x, y). This greatly facilitat<'s the 

calculation of the metric coefficients of the straight field line coordinate system as used in 

the CASTOR code. 

The new version of HELEN A includes the possibility of non up-down symmetric 

shapes of the plasma boundary, so that single x-point plasma shapes can now also be 

represented. In the case of an up-down symmetric plasma, the Grad- Shafranov equation 

had to be solved only in the upper or lower half of the poloidal plane with an additional 

natural boundary condition along the axis of symmetry. Obviously, in the general asym­

metric case, the equilibrium equation has to be solved in the whole poloidal plane (inside 

the plasma boundary) without the additional boundary condition. Also, the position of 

the magnetic axis, which was located on the axis of symmetry in the symmetric case, can 

now be in any one of the finite elements. To find the magnetic axis requires the solution 

of a set of two second order polynomials in each finite element to find the minimum value 

of the flux in each element. 

To test the accuracy of the new up-clown asymmetric version of the HELENA code, 

the results of HELENA are compared with an analytic expression for an up- down asym­

metric equilibrium. To that end we have extended [10] the well- known Soloviev [17] 
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equilibrium to include asymmetric shapes of the plasma boundary. The general expression 

of the up-clown asymmetric Soloviev equilibria is given by 

, 1 _ lE2 ? y2 
i/J( X, y) = ( ,l' - ~ E( 1 - .l' l)) 2 + .j ( ( 1 + E.l' i- - T ){ -b ) 

1 - T C 

2 1 2 b-c 1 2 + -(1 - -E )~-(.l' - -E(l - .l' ))y, 
E 4 be 2 

(.-ll) 

where E is the inverse aspect ratio, ,ff;;; is the ellipticity, ( b - c) /,ff;;; is a measure of the 

up-down asymmetry, and T measures the triangularity. The shape of the plasma boundary 

is given implicitly by ~'(.r, y) = l. 

An example of an asymmetric Soloviev equilibrium is shown in Fig. A. l. The pa­

rameters of this equilibrium are given by ,ff;;;= 1.5,(b- c)/,/fX = 0.03,E = 0.25. and 

T = 0. 

Fig. A.1 (a) The initial grid of bicubic Hermite finite elements of an asymmetric 

Soloviev equilibrium. (b) The final grid of elements aligned on Bux surfaces. 

The initial grid of curved finite elements is plotted in Fig.A. la. Notice that the 

shapes of the coordinate surfaces change from the shape of the plasma boundary to a 
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circular shape in the plasma centre. Fig.A.lb shows the final grid in which the finite 

elements are aligned on flux surfaces. The relative error in both the flux and the gradient 

of the flux as a function of the number of radial finite elements is plotted in Fig. A.2. As 

expected, the error in the flux scales with the fourth power of the grid size. the gradient 

of the flux scales with the third power. 
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Fig. A.2 The convergence of the average error over 100 points in each finite element as 

a function of the number of finite elements. 
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APPENDIX B. CASTOR 

For the study of thP ideal and resistive stability of .JET discharges the CASTOR [5] 

code is used. In the CASTOR code the linearized resistiw compressible ?\!HD equations 

are solved in a general toroidal geometry. 

The eight variables, the temperature, the density, and the velocity and the wctor 

potential vectors, are discretized using cubic and quadratic finite elements in the radial 

direction and Fourier harmonics in the poloidal angle. The Galerkin method used results 

in a non-Hermitian eigenvalue problem with large sparse matrices. Inverse vector iteration 

is used for the calculation of single eigenvalues, whereas the QR algorithm can be used to 

compute the complete spectrum. Due to the localized nature of the finite elements. thP 

CASTOR code can easily resolve the narrow layers of the resistive modes at the lmY rnlnes 

of the resistivity relevant in present day tokamaks (17 ~ 10-9 - 10- 10 
). 

More recently, the CASTOR code was extended to include a vacuum surrounding 

the plasma so that also the stability of free boundary modes can be investigatPcl [18]. 

To enable the study MHD stability of the new JET divertor plasma shapes (sec chapter 

2), the CASTOR code is extended. The new version of CASTOR now uses the up-down 

asymmetric equilibrium data from the new version of the HELEN A equilibrium cock as 

described in the previous section. 
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Fig. B.1 A test case for the up-down asymmetric version of CASTOR: the growth rates 

of a rotated ellipse at small inverse aspect ratio, E = 0.01. 
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As a test case for the up-down symmetric Yersions of HELE:\ A and CASTOR. the 

growth rate of then= 1 ideal external kink mode in an (almost) straight elliptical plasma 

is calculated. The eigen\'alue should then be independent of the orientation of tlw ellipse. 

The resulting growth rates are shown in Fig. B.l for a number orientations of the ellipse. 

The angle(} in this figure is the angle between the longer axis of the ellipse with the ,·crtical. 

The ellipticity is 1.5 and the inYerse aspect ratio is 0.01. Included are the eigenrnhws of 

the up-down symmetric CASTOR version for the two symmetric orientations. The relatin' 

variation in the eigenvalue is about 2x10- 3 which has to be compared with the Yariation 

due to the finite inverse aspect ratio of 0.01. The effect of the up-clown asymmetry dnc to 

the ellipticity of 1.5 is much larger than the finite aspect ratio of 0.01. This shows t'iat 

both the new versions of the HELEN A equilibrium code and the stability code CASTOR 

give correct and accurate results for general up-clown asymmetric shapes of the plasnrn 

boundary. 

The interface program between the IDENTD equilibrium reconstruction and the 

HELEN A code has also been extended to handle arbitrary plasma shapes. This enables 

the MHD stability analysis of the new up-down asymmetric JET divertor plasmas. 
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