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In the ECRH heating experiment on TFR at Fontenay-aux-Roses, carried 

out by the group FOM-CEA, 600 kW of microwave power has to be radiated into 

the plasma. The polarization should be parallel to the main magnetic field 

used for confining t)1e plasma so that the ordinary mode is excited. 

The microwave power is generated by three 60 GHz (5 mm) gyrotrons of 

200 kW each (Varian type VGE 8060 B) [1 ]. It is transported in circular 

waveguide of radius 13.89 mm. To keep the ohmic losses low, the TE 01 -mode 

is used for the transport. Radiation from a truncated waveg•1ide with this 

mode will not give the polarization needed. Just before launching, the 

TE
01

-mode is therefore converted to the TE
11

-mode which has a field pattern 

(Fig. 8) very well suited for exciting the ordinary mode. In a later stage 

of the experiment the HE
11

-mode will be used. This mode has the ideal field 

but is not an eigenmode of straight metallic circular waveguide. 

In principle, any mode converter can be made by introducing a di­

electric rod along or parallel to the axis of the guide while the diameter 

or other parameter of the rod varies with the position along the axis [2]. 

For conversion between modes that differ by only one in angular index, as 

in this case, bending of the guide is also very efficient and better suited 

for high power applications when the inevitable losses in dielectric materi­

al might increase its temperature too much. 
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To design mode converters of this type the Maxwell equations (ME) are 

transformed into generalized telegraphist equations (GTE), a set of linear 

differential equations which is equal to the set of equations describing 

the currents and voltages in mutually coupled transmission lines [3], [4], 

or in mutually coupled tuned LC-circuits [5]. Each mode can then be identi­

fied with the current in one of the circuits. Power can be transferred from 

one circuit to another with different resonant frequency by reversing the 

sign of the coupling at certain points in time. In the microwave analogon 

this corresponds to a change of curvature along the axis of the guide which 

leads to a wiggling axis. 

In order to keep reflections low, the curvature should not change abrupt­

ly. This also simplifies the calculations. For practical reasons both ends 

of the converter should have the same direction and all "wiggles" should 

have the same form. 

Conversion of Maxwell's equations into generalized telegraphist equations 

The ME for fields with an assumed time dependence. contained in a sep­

arable factor e-iwt in the homogeneous isotropic non-conducting medium in­

side the waveguide are: 

.. .. 
V • E = 0 ..... ME 

.. .. 
V • H = 0 ..... ME 2 

.. .. .. 
V x E = iwµH ..... ME 3 

.. .. .. 
17 x H = -iwEE . .... ME 4 

Let the axis of the waveguide be in the w-direction of a general orthogonal 

curvilinear coordinate system, (u,v,w). Any field can be considered as the 

sum of a pure transverse magnetic (TM) field (H = 0) and a pure transverse 
w 

electric (TE) field (E 
.. .. w 
E and H as the rotation of 

.. 
E 

.. 
H 

.. .. 
'\/ x A' 

.. .. 
V x A 

0). ME 1 and ME 2 are satisfied when we consider 

the vectors A', respectively A [6]: 

( 1 ) 

(2) 
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-+ -+ 
For the TE, TM parts of the field A', A can have only a component in the 

w-direction TI', TI which are called stream functions 

-+ ' A' = -rr' w 
TE 

-+ 
ATM = TI w 

This gives for the TE part of the field: 

-+ 
ETE 

-+ 
'\/ x Tr' w -+ ' Vt x ir'w 

Substitution of this field in ME 3 gives: 

-+ -+ -+ 
9 x (9 x TI'w) = iwµHTE 

-+ -+ -+ 
9(9 "TI') - 9 2 TI' W = iwµH 

w TE 

-+ 
9 (9 TI' l - (9 2 

- 9 2 )TI'w 
t w w 

-+ 
iwµHTE 

V ( 9 TI' ) - 9 2 TI' W 
t w t 

-+ 
iwµHTE 

-+ 1 [-+ H = -. - 9 ( 9 TI' ) - 9 2 TI' W] 
TE iwµ t w t 

Substitution of this field in ME 4 reveals that 9 TI' 
u 

satisfy the wave equation (WE) which is automatically 

itself satisfies the WE: 

(92 + k2)TI• 
0 0 ' 

where k is the free space phase constant. 
0 

and '\/ TI' 
w 

satisfied 

(3) 

( 4) 

( 5) 

( 6) 

have to 

when TI' 

( 7) 

In this way ME 1 through ME 4 are replaced by Eqs. (5), (6) and (7) for the 

TE part of the field. Although Eq. (6) is derived from ME 3 it also satis­

fies ME 2 as can be verified by taking the divergence of Eq. (6). When TI' 
-+ -+ 

does not satisfy the WE, the fields E and H derived from TI' with Eqs. ( 5) 

and (6) will still be TE and will still satisfy ME 1, ME 2 and ME 3 but not 

ME 4. 

For the TM part of the field we find in a similar way 
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HTM = Vt x 7rW ( 8) 

ETM = - i:E [Vt('VwTI) - V~'ffW] ' ( 9 ) 

( 'J 2 + k 2 ) TI = 0 . 
0 

( 1 0) 

In this case, when TI is replaced by an arbitrary function F(u,v,w) the 

fields derived from F with Eqs. (8) and (9) will still be TM and satisfy 

the ME except possibly ME 3. 

The 

and 

The total field will be the sum of the TE and TM fields 

+ 
E v x TI' w - -. 

1
- [Vt ( v TI) - 'Vt2 

( TIW) J 
t lWE W 

( 1 1 ) 

+ 
H 

+ ' v x TrW + -.-
t lWµ 

[Vt(V TI') - V2 (TI'wl] w t 
( 1 2) 

+ 
conditions (B:) on the ideal conducting wall, E(B) = (E ,0,0) 

u 
boundary 
+ 
H( B) = (O,H ,H ), require that the scalars TI' ,TI as well as their deriva­

v w 
tives V 

u 
and V vanish on the boundary. w 

']~-~-:<~ p 

/b~(~.1A~ 
~- -------\71--· 

centre of 
curvature 

e, 

e, 

e, 

as/dp 

as/ aq, 

as/dz 

p 

+ P cos.p 
b 

Fig. 1. Coordinate system of bent guide. 

Figure 1 shows the coordinate system used for the bent waveguide. p is the 

distance from the axis, 0 i pi a, .P is the azimuthal angle 0 i .pi 2TI, and 

z is the corresponding distance along the axis. When used as an index p, q,, 

and z are generally replaced by the numbers 1, 2 and 3. 

Let w'' w be solutions for TI'' TI in straight cylindrical waveguide as 

obtained by assuming a separable factor as the only z-dependence. These 

solutions by definition have ~p w' (a,.p,z) = 0, w(a,.p,z) = 0 at all z, so 

that V,w' (a,.p,z) = V,w(a,.p,z) = 0. From Eqs. (11) and (12) it can then be 
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seen that ljJ, ljJ' satisfy (B:) for the bent guide. The ljJ, ljJ' do not necessari­

ly satisfy the WE for the bent guide, but they constitute a complete set in 

the transverse plane because they are obtained by solving the two dimensional 

WE ( '1 2 + k 2
) ,,, '"' = 0 t t '+'' 'i' ' 

after separation of a phase factor eik,z ik'3 Z d e an 

subjected to (B:). 

This means that any function in the transverse plane of the bent guide 

can be expanded in the set of solutions for the straight guide. So the 

n,n', satisfying the WE for the bent guide, can be written as: 

n(p,~,z) 

TI' ( p, ~, Z) 

E a ljJ 
n n n 

E a' ljJ' 
n n n · 

( 1 3) 

( 1 4) 

As the set ljJ, ljJ' is complete in the transverse plane it is only required 

for a, a' to depend on z. 
+ 

sidered as a vector a( z), 

The set of coefficients a (z), a' (z) can be con-
+ n n 
a'(z) representing the mode composition along z 

in terms of TE, TM eigenmodes of the straight guide. With these expansions 

Eqs. (11) and (12) with the summation convention become: 

E = v x (a'ljJ').- -.1- [v (Va ljJ) - V2 (a ljJ) w] 
t n n lwE t 3 n n t n n ' 

( 1 5) 

+ + 1 [+ '] H = '\/ x (a ljJ ) + -. - '\/ ('\/ a' ljJ') - \/ 2 (a' ljJ') w . 
t n n iwµ t 3 n n t n n 

( 1 6) 

+ + 
E and H from Eqs. (15) and (16) already satisfy ME 1, ME 2 and (B:). 

7 ...,.. -+ ...,.. 
To obtain the relation between 'V,(a,a') and (a,a') necessary to satisfy all 

ME, it is sufficient to substitute the fields from Eqs. (15) and (16) into 

ME 3 and ME 4. Schelkunoff [3], [4] avoided the occurrence of second 
+ + 

derivatives '\/~(a,a') in these last steps by introducing separate expansions 

for a ljJ , '\/ 3 a ljJ , e,'Vt2 (a ljJ ) and the corresponding primed expansions. nn nn nn 
Equations (15) and (16) are then written as: 

+ (V V' ljJ' x z) + 1 
E = + '\/t(V 1jJ) + ~ V3 ljJ z 

t n n n n e 3 n n 
( 1 7) 

+ 
cvtr ljJ x zl + V (I' ljJ' ) + -' - I' W' Z , H = n n t n n e 3 3Il n 

( 1 8) 

where the factors 1/iw£ and 1/iwµ are absorbed into the coefficients V , v• 
n n' 

V3n' 1n• I~, I3n· The factor 1/e 3 is also added for convenience. 
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Substitution of Eqs. (17) and (18) in ME 3 and ME 4 will give the relations 

between the 'l 3 V , 'I, V' and the I , I' and the relation between the 'I ,I , n n n n n 
'l,I' and the V , V' • 

n n n 
These relations are the generalized telegraphist equations, GTE, a 

name due to Lord Kelvin who was the first to write down a similar equation 

for the relations between currents and voltages in a set of mutually coupled 

telegraph wires. The GTE for the bent waveguide are derived in the Appendix. 

The result is: 

av m 
az 

av• 
m 

az 

ar m 
az 

arm, 

az 

in which 

z mn 

z 
mn' 

z 
m'n 

z 
m' n' 

y 
mn 

y 
mn' 

y 
m'n 

0 

0 

y 
mn 

y 
m'n 

0 

0 

y 
mn' 

y 
m' n' 

z mn 

z 
m'n 

0 

0 

iwµ J e,Vt~ • Vt~ dS + z3 m n mn 

+ iwµ f e,v ~ • t m (v ~· x zJ dS t n 

- iwµ I e,(Vt~~ x z) • 'lt~n dS 

- iwµ J e V ~· • V ~· dS ' t m t n 

- iws f e,v ~ • v ~ dS t m t n 

- iws f e,vt~m • ( V ~· x z) dS t n 

- iwe I e,(Vt~~ x z) 
.. 

• 'lt~n dS 

Y = - iwe J e V ~· • V "" dS + Y' m' n' 3 t m t ..,n 3m' n' 

in which 

z 
mn' 

z 
m' n' 

0 

0 

v 
n 

vn' 

In 

In, 

.. .. 
z

3 
is the mn-th element of the matrix (y,)- 1 , defined by mn 

( 19a) 

( 19b) 

( 19c) 

( 19d) 

( 19e) 

( 19f) 

( 1 9g) 

( 19h) 

( 19i) 
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I 1/Jr 1/Js dS ' 
e, 

~ 
~ 

1•
3 

, , is the mn-th element of the matrix (Z~)- 1 
, defined by m n 

z• - . 1/J' 1/J' 
3rs - + lwµ J .....!:..... s e, 

dS . 

For straight cylindrical waveguide with circular cross-section the 

corresponding solutions 1)!, 1)!' are products of Bessel- and goniometric 

functions. 

'l'mn 

'I'' 
mn 

N J (kt p) sinm~, mn m mn 

N J (k't p) cosm~, mn m mn 

with normalization constants: 

N mn 

N' mn 

in which 

E = 
m 

= 

ktmnp Jm-1 (kt p) /£71i mn m 

l£71i 
I k 2 -m 2 J (k' p) 

m 

tmn m tmn 

I m=O 

2 . m~o 

( 1 9j ) 

( 1 9k) 

( 20) 

( 21 ) 

( 22) 

( 23) 

(24) 

The functions with cos(m~) respectively sin(-m~) have been omitted for sim­

plicity but are required for completeness of the set. The elements with un­

equal subscript are the coupling coefficients. The elements with equal sub­

script are the phase constants k 3 in the direction of propagation. 

Note that the coupling between a TM-mode and a TE-mode is proportional 

to the curvature 1/b, because 
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J e 3 Vt ijlm • ( z x Vt) ijl~ dS J 
.. ' .. 

b p cos¢ Vtijlm • (z x Vt)ijl~ dS . (25) 

The mutual coupling between TM-modes and the mutual coupling between 

TE-modes contains a term porportional to the curvature 1 /b and a second 

term, whcch ::.s only in a f::.rst-order approximatcon proportional to the 

curvature. A different method to obtain the first-order term of the 

coupling coefficients is g::.ven by [11]. 

Analogy with mutual coupled LC-circuits [5] 

the 

Let I be the current through the inductor and 
m 

capacitor of tuned circuit No. m of a system of 

circuits as in Fig. 2. 

___ L12 .••• . --- C12. __ 

I -· ---1 /--·----... ---- . 
,.' ,/ ' ' 

,, ":-;;i I : ,, :~ ';;') -~ 
', ', /' ,' 

' ' ,. " 
' C13 L23 ·',; ' . ' ',, ,/' c / 

. 23 L13 

-~--~~' , I 3 J ', 
/ 

/ 
Cs 

V be the voltage over m 
mutually coupled tuned 

C2 

Fig. 2. Tuned circuits with mutual inductance and mutual capacitance. 

The rate of change of I , V is given by: m m (summation convention assumed) 

3I v L m m mn 
at= L +LL vn' 

m m n 

av I c 
_!!!=~+~I 
3t C C C n m m n 

' 

in which L is the voltage induced in inductor m by a current rate of mn 

(26) 

(27) 
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change of 1 A/V in inductor n (mutual inductance) and C is the current mn 
induced in capacitor m by a voltage rate of change of 1 V/s in capacitor n 

(mutual capacitance). 

This set of equations differs from the GTE's only therein that it has 

"t" as independent variable while the GTE' s have "z". The analogy is com­

plete. Each tuned circuit corresponds to a mode of propagation, the current 

in it to magnetic field, the voltage to the electric field, the resonance 

frequency to the wave number k,. the mutual reactances to the coupling 

coefficients and passing of time to distance along the guide. 

Once the coupling coefficients have been determined from the analysis, 

the design of mode converters can be carried out completely in terms of 

coupled LC-circuits. 

Two slightly coupled degenerate modes 

The TE
01

-mode and the TM
11

-mode have the same k 3 and therefore the 

same phase velocity: 

V = _'!'__ (ad/s = !I!) 
f k, rad/m s (28) 

A slight bend will weakly couple these two modes. The tuned circuit 

analagon consists of two coupled tuned circuits with the same resonance 

frequency 

Fig. 3a. 

w • Normalization to w 
0 

= 1 and L/C = 1 leads to the circuit of 
0 

C1 L1 L2 . C2 Q /_---Y--------0 
= 1F =1H =1H ~ =1F 

Fig. 3a. 

Two equally tuned circuits. 

:CT_,.§1 
Fig. 3b. 

Equivalent circuit in the 
complex frequency domain. 
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Let the initial currents and voltages be zero except for VC
1 

(t=O) = 1 

representing a pure TE01 -mode at the beginning of the bend, z = 0. Laplace 

transformation of the circuit with initial conditions [7] leads to the cir­

cuit of Fig. 3b. Kirchhoff's rules then gives 

[ 

Cs + ;) 

Ys 

Ys 

(s + _!_) 
s 
] [ :: l ~ [ : l 

from which the Laplace transform of 1 1 , 

1 1 

I 1 (s) 
- (s + -) 
s s 1 

2 [~ 1 + '( 

1 2 
( s + -) - Y2s 2 

s 

which in the time domain represents: 

i l ( t) 
2 ;,----:-:;; 

sin 
t 

/]-::-y 
+ 

+ 
1 

s2 + ,....-: '( s2 + 

11 + '( 

. t 
sin 

l1+Y 

1 + '( 

(29) 

l (30) 

( 31 ) 

i 1 (t) is the sum of two oscillators of nearly equal frequency, which gives 

the well-known beating. 

The energy travels back and forth between the two circuits. One com­

plete transfer takes place in the time needed to build up a phase differ­

ence of n rad between the two oscillators. 

ttr 

;,----:-:;; 

t 
tr 

,;'1+Y 
n • ( 32) 

Back to the coupling between the TE01 - and the TM11 -mode when coupling to 

other modes, reflections and losses are all neglected. 

The GTE, (Eq. (19a)) will be for this case: 
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'iJZ 

'iJV 2 

'iJZ 

jk 3 V 1 + jcV 2 

jcV 1 + jk,V 2 , 
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(33) 

where the modes are numbered 1 and 2. k, and c can be obtained from Eqs. 

(19a), (19b) and the fixed ratio between V and I, the wave impedance, for 

each mode. All coefficients are pure imaginary. Separation of the real and .. .. .. 
imaginary parts, R and jl of V change (33) into: 

'iJR i 

'iJZ 

:lR2 

az 

ar, 
az 

a12 

az 

- k 3 I 1 - cI 2 , 

- cl 1 - k 3 I 2 , 

+ k 3 R 1 + CR 2 , 

+ cR 1 + k 3 R2 • 

( 34) 

(35) 

Equation (34) is differentiated again. Equation (35) is substituted into it 

and the result Laplace transformed with respect to z. This gives: 

[ : l : [ 
s 2 +k;+c 2 

2k,c 

The poles are located at 

I 
k,/1 + 2c 

- k, 

2k,c ] : [ :: l ( 36) 

s 2 +k;+c 2 

(37) 

As their difference is approximately 2c, complete power transfer will take 

place, according to (32), at: 
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(38) 

For curved circular waveguide of radius a = 13. 9 mm and free space 

phase constant k 0 = 200x21f, the value of c = 3.222 m- 1 at a radius of curva­

ture of 1 m. With this value ztr = 0.975 m, which is at a bending angle of 

28°, independent of (small) curvature, as long as coupling is proportional 

to curvature. 

Coupling between two modes with different phase velocity 

To analyse this case we detune the circuits of Fig. 3 as follows: 

L, (1+o)H L2 (1-o)H (39) 

This will give a current in the frequency domain: 

I 1 (s) 
s 2 (1-6)+1 

in which w /02 + y2 ' ( 40) 
(s 2 (1+w) + 1) (s 2 (1-w) + 1) 

or in the time domain: 

2w 
[
w + o) . t 
-~~sin 

!1+W !1+W 
w - 0 . t 

+ sin 
/1 - w 11::-w 

l . ( 41 ) i l ( t) 

As in the previous case i 1 (t) is the sum of two terms of different frequen­

cy. The difference between the amplitudes, however, is more pronounced. 

When a and b represent the amplitudes of the two terms, the maximum of i 1 (t) 

varies between a+b and I a-b j. The beats will therefore not be complete as in 

the degenerate case. 

Assuming o « 1 and Y « 1 and neglecting all terms of higher order in 

o and Y, we obtain: 

I a - b 

a+b 
0 

10 2 + y2 
(42) 
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Vectorial representation 

The current l and the voltage V in the coupled circuits can be rep­

resented by rotating vectors. Let from both angles be subtracted a fixed 

value such that vector 1 1 no longer rotates. Let us start with 1 1 high and 

V2 = 0 for the two equal tuned circuits. 

The induced voltage V2 will be¥ radians out of phase (Fig. 4b). Coup­

ling will be continuous but in order to be able to design a vector diagram 

we make the coupling discrete, which means that the effect of the coupling 

within one period is integrated over that period. The next period, the in­

duced voltage wi 11 again be ¥ out of phase with l 1 and thus adds to the 

voltage still present of the previous induction (no damping), (Fig. 4c). 

After several periods the amplitude of V2 has increased considerably and 

the back-induced 1 1 , will again lead V2 in phase by¥ and thus be rr out of 

phase with the original. Thus even when V2 is high and 1 1 is low, V2 will 

go on increasing and I 1 decreasing until l 1 reaches zero where it changes 

sign. From there on the process is reversed (Fig. 4d). 

it i 1 A 

I 1 

!=0 

i 1 
B 

~-
V2 --'==,_ ____ _J 

c 

V2 -

~---- I -- - ---:21 it D 
I t = ttr 

! 11 i1(ttr) 

j I 
. 

I 

v2 F J 
___ ,. ___ J 

--

~~-
V2 t_;, V2 J 

E 
------

G 

Fig. 4. Vectorial representation of i 1 (t) and 
V2 (t) in two equally tuned coupled 
circuits from t = 0 (A) tot> t (G). 

r 

For the non-degenerate case, with the detuned circuits, we have in the 

vectorial representation with discrete coupling (Fig. 5) that, when a new 

V2 is induced, the signal still present has rotated so that the signals do 

not add precisely in phase. When after several periods the voltage V 2 has 
rr 

shifted more than 2• the induced voltage will no longer increase but decrease 
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the amplitude of V2 , so that the power flow from one circuit to the other 

is reversed too early for complete transfer. In this picture the coupling 

is assumed to be so small that Ii remains practically unaltered during this 

part of the process. To obtain complete transfer of power, the sign of the 

coupling has to be reversed each time the phase difference between Ii and 

V2 passes the value nIT. The effect of coupling reversal is shown in Fig. 6. 

-
' ' ' ' ', 

' ' 

_, 
', 
', 

',_ 
-, 
',, "' 

r1 
/~ 
/ 

.--_ _.,._ __ v
2 

(1=211'/wl 

'--- V2 (1=411'/wl 
' , 

! , V2 (1=611'/wl 

/I 
/ V2 (!=811'/wl 

/ 
/ 

/ V2 (!=1011'/wl 

,,.-"'" 

, 
///' 

_,, 

---

~ ~--7 -- ~-"'-=--
--- -------- -----

_____ .... ,."' 

Fig. 5. Vectorial representation of V2 (t) in detuned circuits. 
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coupling 
reversal 

---/-----~;() ______ _ 

_/ 9 

11 

-----;~-

7 

\ 
' ' \ 

6 
',, --- 5 _, 

coupling 
reversal 

'-............_ --
'--, 17 16 - :, 

-~oupl~n-~- --- ---- --- -

reversal 

_,, 

\ 
\ 
' ' ' ' ' ' ' ' ' .__ 

13 ' 
' 

' ' ' ' ' ' ' 14 ,___, 
,/ 

/// 

15~ 
/ 

/ 

/,," 

// 

Fig. 6. V2 (t) in detuned circuits with sign reversal of coupling at ~ = nn. 

Around the points ~ = nn the coupling has only little influence on the 

amplitude, so the points, where the coupling is reversed, are not critical. 

In the qualitative curve of Figs. 5 and 6, the coupling from V2 to I 1 is 

not taken into account for simplicity. It is not essential for explaining 

the principle. The sign of the coupling can be reversed by changing from 

inductive to capacitive coupling. The sign of the coupling between modes in 

curved waveguide is reversed by reversing the curvature. 

This accounts for the wiggle type of the TE
01

-TE 11 converter. 
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Design procedure TE 01 - TE 11 -mode converter 

Theory allows radii of curvature equal to the radius of the waveguide. 

The accuracy is determined by the number of modes that is taken into ac­

count. The parameter which determines the importance for a certain mode to 

be taken into account, is the ratio of its coupling coefficient with other 

modes that reach high amplitude and the difference ink,, 6k,. 

For ECRH the mode converter should reflect little power for several 

reasons, e.g., gyrotron protection, risk of voltage breakdown due to stand­

ing waves and because microwave power is expensive. Low reflections can 

certainly be obtained by using only small values of the curvature and its 

derivative. In this design we have chosen for a curvature according to 

cur cur sin 6k,z (43) 

where cur is the amplitude of the curvature. The curvature is the inverse 

of the length of the radius of curvature, b (Fig. 1). 

As cur is the second derivative 

()2y 
()z2 

1 
b 

+ cGr sin Lik 3 z , 

the axis of the converter should have the form: 

y 
cUr 

sin Lik 3 z , 
(6k,)2 

shown in Fig. 7. 

Fig. 7. Axis of guide in wiggle type of converter. 

(44) 

(45) 
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A design with low reflections also has computational advantages . Half 

the set of equations needs only to be used because for each mode t he wave 

impedance, the ratio of E- field to H-field , is constant . A converter con­

sisting of w-wiggles will have a total length: 

L conv . 
21TW 
tik 3 

(46) 

Mode conversion will then be as in the degenerate case, except that the 

gradual curvature causes coupling and deviation from opti mal phase to be 

smeared out proportional to [sin(z) J 2 • The effective curvature is thereby 

reduced by a factor: 

fsin 2 4> d4> 
f d4> 

1 
2 (47 ) 

Thus , according to (38) , power is transferred completely after: 

2 tr 
1T 

2 
x 2 x (cxcur) 

1T 

c x cur where (cxcur) is the amplitude of the 
coupling coefficient . 

(48) 

This length must be equal to the length given by (46 ) . It fol lows that : 

cur 
tik 3 

2cw 
23.62 

2·3.207 w 
3.68 ( 49 ) 

w 

The error made in the first- order approximation of t he coupling coefficients 

are of the order of (a/b) 2
, where a is the waveguide radius and b t he radius 

of curvature. The constraint (a/b) 2 < 0 . 01 sets the number of wiggles at 

f our or more . 

Opt imizing by computer simulation 

The rough design of the converter is a circular waveguide of radius 

13.9 mm with a number " w" of wiggles with curvature given by (49) . To opti­

mize the design with respect to maximum conversion efficiency, a computer 

program has been written by C. A.J . Hugenholtz which simulates the converter 

and adjusts the values of the length and the maximum curvature such as to 

obtain maximum efficiency in a series of identical wiggles not separated by 

straight sections as phase shifters. 
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Simulo.tion of the converter is done by solving the linear differential 

equation 

+ av 
az 

+ 
+ c + v 

+ 
+ 

(50) 

in which the off-diagonal elements of the matrix C are the coupling coeffi-

cients (imaginary) and the damping (real). 
+ 

The complex vector V represents the amplitudes of the modes normalized 

with respect to power. Six modes are taken into account, the TE 11 -, TE01 -, 

TM
11

-, TE
21

-, TM21 - and n:12-mode. The neglected mode with the highest 

ratio between coupling coefficient and ~k, is the TE
13

- mode. The calculated 

coupling coefficients are w.ithin 10-' identical to the values given by 

Morgan [2], see Table 1 and Fig. 8. 

TABLE 1 

Phase constants and coupling coefficients for a 

and k 0 = 200x2rr rad/m 

Mode 1 2 3 4 

No. TE 11 TE 21 TE01 ™11 

TE11 1249 .6360 5. 185 -3.207 0 

TEz 1 5. 185 1237.2765 0 2.201 

TEo 1 -3.207 0 1226.0274 -3.223 

™11 0 2.201 -3.223 1226.0274 

™21 0 0 0 5.081 

TE1z 0 1. 7 43 -5.245 0 

0.01389 m, b 1 m 

5 6 

™21 TE12 

0 0 

0 1 . 7 43 

0 -5.245 

5.081 0 

1201.0919 0 

0 1196.6673 



-19-

TE,, TE21 

I 
1.743 

I 3.223----'----

TE01 

TM21 TE12 

Fig. 8. Field pattern of modes of Table 1; 
E-field, ------ H-field. 

Table 2 gives the damping coefficients used (Collin [6]). 

TABLE 2 

Mode attenuation constant 
copper 

TE11 5.3x10- 3 

TE21 9.8x10- 3 

TE01 0.6x10- 3 

™11 12.6x10- 3 

™21 12.9x10- 3 

n:,2 1.7x10- 3 

At each point in the converter the coupling coefficient from the Table 

is multiplied by the curvature at that point. As the IMSL routine (DVERK) 

used can handle only reals, the equations had to be separated into real and 

imaginary parts by putting: 
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+ + + 
+ + + + + + v = R + jI ; c = et + j B ( 51 ) 

The equations then become: 

+ .. .. 
3R + .. .. ! = Cl. . R - B . ' az (52) 

.. + + ar .. .. .. + 
= B . R + a ·I az ( 53) 

More insight into the simulation can be gained by looking at the circuit dia­

gram (Fig. 9) of an analog computer [7], which could also be used for this 

type of problem. The second-order loops simulate the tuned circuits. The 

multipliers whL:h cause the largest deviation from linearity in these circuits, 

occur only in the coupling. They are used to calculate the coupling as a 

function of t. A separate sinewave oscillator simulates the curvature. 

-R1 -c 1 .Fi 11 -11 TE11 

cur 

-R2 -c2 .Fi 12 TE01 

cur cur 

13 ™11 

R4 14 
TE12 

Fig. 9. Analog computer circ'-lit diagram simulating four modes in the converter. 
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The optimum result for a converter using only one wiggle is shown in 

Fig. 10. The first-order approximations were certainly not allowed, but the 

results have didactic value. The drawn lines are the amplitudes of the four 

modes, that reach high amplitude, their scale is at the left. Their phase 

relative to mode TE
01 

is dotted with its scale at the right. The phase has 

been adjusted to lie within the range - 11 < 0 < 11 by adding or subtracting a 

multiple of 211 if necessary. 

Fig. 10. 
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Amplitude (~~) and phase with respect to mode No. 2 ( .... )of 
four modes in hypothetical converter consisting of only one 
wiggle. Curvature (-.-.-) is without scale. 
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Note that the curvature is reversed when the phase of the desired mode 

passes a multiple of n. The phase of the degenerate mode TM
11 

which is n/2 

in a gentle bend, is disturbed at strong curvature, so that it does not 

return to zero after the inverse bend. 
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Fig. 11. Amplitude (--) and phase with respect to mode Nr. 2 ( · · · ·) of 
four modes in converter consisting of 8 wiggles. 
Curvature (-.-.-.-) is without scale. 
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Figure 11 shows the optimum result for a converter using 8 wiggles. 

Here, the curvature is weak enough for the first-order approximation. The 

optimum values for cur and wiggle length do not deviate much from the start 

values as shown in Table 3. 

TABLE 3 

start value optimum value 

cU:r 0.460 0.460 

wiggles/metre 3.760 3.700 

efficiency 90.70 95.20 

Note in the upper graph that at each curvature reversal the phase of the 

desired mode TE 11 is always a multiple of "· Phase difference grows slower 

at ·the beginning where the induced signal, which remains at 1T/2 is still 

relatively strong (see vector representation Fig. 6). The 1T/2 phase relation 

of the degenerate mode, TM 11 , remains much better at these low curvature 

values. This results in a return to nearly zero during the opposite bend. 

Deviations of phase from 1T/2 are visible at the minima when sensitivity for 

coupling with other modes is at its highest. 

The mode TE
12 

attains considerable amplitude (16% of power) after 2 

and 5 wiggles. This means that it will not be wise to give the converter 

these numbers of wiggles. It can be seen that a multiple of 4 wiggles is a 

good choice. The efficiency vs the number of wiggles is given in Fig. 12. 

They confirm that because of 
100 

1 "" • • • the interaction with the TE 12-• 
• 

90 r • • mode the number of wiggles "' • u 
c 

'" • should be a multiple of 4. 
u 

80 -
~ 

'" 

I 
70 L -

60 I 
• Fig. 1 2 . 

50 
0 2 4 6 8 10 12 14 Calculated optimum efficiency 

of converters consisting of .. number of·meanders one to twelve wiggles • 
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Further improvement of efficiency can be obtained when the constraint for 

the wiggles to be identical is released. This can easily be done by 

replacing k,z in Eq. (44) by the phase angle between the desired and the 

exciting mode. This results in only slightly different wiggles. The 

efficiency obtained in this way is 97.0% with 8 wiggles. The upper graph of 

Fig. 13 shows the mode composition and the lower graph the axis deviation 

of such a converter. 

1.2.-------,-------,----~----~----~ 

1.0~01 TE 11 

g- 0.8 
0 

~ 0.6 

i 

E 
E 

>, 

i 

TE /' 
12/'• 

/'"'/ 

i 
. ~TTE~~ 1 .r-~-..-., ~ I ·~., ™21 /'- ·-., .. ~--; -g .)/; , .. / ............. ·· ................... /-,~··· -\ .. ~ ,.. .. :1..;::: ............ a C> <:> .. ·~"--'-

. ·..C::,..,,.~--~K);~~·C'S_·~~~~~~-,~~~~,--~-
~' .r:·=o··· ..... _ 0.0 

o.o 
3.0 

0.4 

0.2 

0.5 1.0 1.5 2.0 2.5 

2.0 

1.0 

o.o I,( - 1 'u' \/ I \ l \ /1 \ I \ 1.' \ I 

-1.0 

-2.0~---~----~----~-----"----__J 

0.0 0.5 1.0 1.5 2.0 2.5 

z (ml 

Fig. 13. (upper) Mode composition along axis of converter with non-identical 
wiggles. 
(lower) Required bending (500x exagerated). 
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Practical result 

We were able to compare our design with the mode converters designed 

and manufactured by Thomson-CSF. Their prototype TE
01

-TE
11 

mode converter 

has 6 wiggles. The values chosen for curvature (cur) and length are given 

in Table 4 with our calculated optimum values. The efficiency calculated 

for this converter and the calculated optimum efficiency differ by 2.6%. 

The measured efficiency is only 67%. It was concluded that the type of 

construction with a cut in a plane parallel to the z-axis introduced extra 

losses. The final converter with 8 wiggles was constructed with the cuts 

between the wiggles and perpendicular to the z-axis. The curvature chosen is 

0.3% less than our calculated optimum value corresponding to a 1 .5% lower 

efficiency. The measured efficiency was in total agreement with the theory. 

TABLE 4 

No. of wiggles 6 8 

cur prototype/opt (1/m) 0.594 0.608 0.445 0.460 

length n (m) 1.600 1.623 2. 156 2. 162 

calc. eff. " ( % ) 90.00 92.6 93.7 95.2 

measured efficiency (%) 67 + 2 96 + 2 

Conclusion 

The report demonstrates that once the coupling coefficients are known 

it is easy to design any mode converter. The microwave group at Rijnhuizen, 

foreseeing the need for other mode converters, has developed software to 

calculate coupling coefficients for stronger bends and will do so for di­

electric rods introduced in the waveguide [8]. Solving Eq. (50) will be 

more complicated because more modes _,have to be taken in to account and the 
-> 

off-diagonal elements of the matrix C will no longer be proportional to the 

curvature. 
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APPENDIX 

It is convenient to expand e,E, and e,H, instead of E, and H, in the 

set of functions 1jJ respectively lji'. This is possible because e, has no 

poles or zeros in the interval 0 < p < a, 0 < ~ < 2n. 

The components of the transverse field are expanded according to Eqs. 

(17), (18). 

The coefficients V v• ,I ,I', only depend on the third coordinate so n n n n 
that they can be taken through the operators 'V 1 and 'V 2 • The expansions of 

the field components and the Maxwell equations they have to satisfy are: 

E = V 'V 1jJ + V' 'V lji' 1 n 1 n n 2 n Al 

E = V II 1jJ - V' II lji' 2 n 2 n n 1 n 
A2 

E, = v3n ljinle, A3 

H1 = I'll 1 1ji' +I ll 2 1ji n n n n A4 

H =I'll lji' - I II 1jJ 2 n 2 n n 1 n A5 

H, = I3n' 'I'' le 
n ' 

A6 

e, 
11 2 (e,E,) - -'- ll 3 (e 2 E2 ) 

e, 
= iwµH 1 ME 3-1 

11,Ce,E,) -
1 
- 'V 1 (e,E,) = iwµH 2 ME 3-2 

e, e, 

ll 1 Ce 2 E2 ) -
1 

ME 3-3 - ll 2 (e 1 E,) = iwµH 3 e, e, 

ll 2 Ce,H,) - 1 ME 4-1 - 'V 3 (e 2 H2 ) = - iwEE 1 e, e, 

11,Ce 1 il,) - -'- 11 1 (e,H,) = - iwEE 2 ME 4-2 
e, e, 

e, 
ll 1 (e 2 H2 ) - -'- ll 2 (e 1 H,) 

e, 
= - iwEE 3 ME 4-3 

The summation convention is used. ME 3-1 is the first component of 

ME 3 etc. Substitution of the expansions Al, A2, A6 into ME 3-3 gives: 

lji' 
'V 1 Ce 2 V II 2 W - e 2 v• 'V 1 W' ) - -' - II 2 Ce 1 V II 1 W + e 1 V' II 2 W' ) . I n A7 = iwµ -

e 2 n n n n e 1 n n n n 3n' e, 
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Rearranging terms and considering that the coefficients depend only on the 

third coordinate, we obtain: 

- v• [-1 V ( e V ,,,, ) + 
n e2 i z I "'n e i V 2 ( e, V 2 ijJ' ) ] + V [-1 V 1 ( e 2 V 2 ijJ ) -

n n e 2 n e 1 

: 13n' 

ip• 
n 

iwµ -
e, 

But the ip• satisfy the wave equation for the straight guide 
n 

[-
1 

V ( e V ) + -
1 V ( e V ) ] ip• : - ( k' ) 2 ip• e

2 
i 2 i e

1 
2 i 2 t , 

and the terms containing the V cancel. 
n 

This simplifies A8 to: 

+ V' k 2 W' n tn' n iwµ 
ip• 

n 13n•e, 

The ip• are orthonormal according to 
n 

fijJ• ip• dS 
r s 

0 rs 

( k' ) 2 
tr 

'V 2 (e 1 V1 ip )j 
n 

A8 

A9 

AlO 

A 11 

So that the projection of Eq. AlO onto them-th component of the set gives 

• ip~ 
fV' k2 lji' ip• dS : iwµ ) I - lji' dS , A 1 2 

n tn' n m 3n' e 3 m 

ip• ip• 
+ V' : I iwµ f ~ dS . A1 3 

m 3n' e3 

' This is a relation between the coefficients V' and I, resulting from the fact 

that for each mode two coefficients suffice, one for E and one for H, or, in 

a different representation, one for the forward wave and one for the back­

ward wave, while in the expansions we have three coefficients for each mode. 

Equation A13, the relation between the V' and the r
3

,, can be written as 
n n 

+ 
V' 

+ 
+• z, +• 

I, in which Z' 3nm 

. ip• ip• 
iwµ J n m 

e, 
A14 



or as 

... 
I' 

-+ ... 
Y, 

-+ v• 
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-+ -+ 
-+' in which Y 3 

-+' -1 
(Z,) A15 

In a similar way substitution of A3, A4, A5 into ME 4-3 gives the relations 

between the v
3 

and I n n 

-+ -+ -+-+ 
-+ -+ -+ Y, = - iwE J lj!lj! dS A16 I = y' • v 3 in which ' e, 

-+ -+ -+ 
-+ -+ -+ -+ (y,)-1 or v 3 = z 3 • I in which z, = . A17 

After substitution of the expansions Al, A2, A3, A4, A5, into ME 3-1, 

ME 3-2 the terms V3 (e 2 E2 ) and V,(e 1E1) will contain the dependence of the 

coefficients on the third coordinate we are looking for. 

To eliminate all unknowns, except one i.e. av 1a, from the equations m 
we take the following combination of equations 

(ME 3-1) V2 1j! - (ME 3-2)V 11j! , A18 
m m 

-+ 
which is in fact the evaluation of -(zxVtlj!m) 

-+ 

Ht 

Written out in detail this is 

(V,lj! ) -' v, v3 lj! - (V,lj! ) -' V,(e2V V,lj! - e2V' V11j!') m e 3 n n m e 2 n n n n 

- (V 11j! )-1- V, (e 1V V11j! + e 1 v• V2 1ji') + (V 11j! ) -·- V1V
3 

lj! 
m e 1 n n n n m e 3 n n 

( V 
2 

lj! ) iwµ (I' V 1 lj!' + I V 2 lj! ) - ( V 1 lj! ) iwµ (I' V 2 lj!' - I V 1 lj! ) 
m nn nn m nn nn 

As lj!, e 1, e 2, e 3 depend only on p, ~and the coefficients depend only on 

z, A19 can be rearranged as follows: 

A19 
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+ (V,V J(-V 2 lji 'l 2 lji - '7 1 lji '7 1 lji] + ('7 3 V' l(V 2 lji '7 1 lji' - '7 1 lji '7 2 lji'] 
n mn mn n mn mn 

v 
+ ---112 (V 2 lji V2 lji + '7

1
lji V1 lji ) 

e 3 m n m n 

= iwµIn(+V 2 ljimV 2 ljin + V1 ljim'7 1 ljin] + iwµI~(V 2 ljimV 1 lji~ - V 1 ljimV 2 lji~] , A20 

or as follows: 

+ -
+ 

('I' V n) (Vt ljim v lji ) - ( v V' ) (V lji • 
tn 'n tm 

v 
( V lji xz) ) + 3n ( V lji • V lji ) 

t n e 3 t m t n 

= + I iwµ(V lji • v lji ) - I' iwµ(V lji • (V lji' xz)) 
n tm tn n tm tn A21 

Equation A21 is multiplied by e,, integrated over the cross-section and the 

following orthogonality relations between the lji, lji' functions are used 

.. 
!Vt ljim 

+ 
!Vt ljim 

+ 
Vtljin dS 

+ 

6 mn 

(Vtljinxz) dS = O . 

This simplifies A21 to 

av m 

a' 
- v 

3m 
+ 

I iwµ f e,Vtlji n m 
+ + ;l; A 

'I lji dS +I' iwµ f e V lji • (v lji'xz) dS 
tn n 'tm tn 

v, can be expressed in the I with A16 yielding the final result: m n 

avm 

a, - I [ iwµ J e, Vtlji • Vtlji dS + z
3 

] + n m n mn 

+ I' [iwµ J e,Vtlji • (Vtlji' xz) dS] . n m n 

av• ;a, is found in a similar way from Eq. (ME 3-1) V1 lji' + (ME 3-2)V 2 lji' , m m m 

A22 
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which is the evaluation Of Vt~· • Ht' and to obtain ar 13, and a1·1a, ME 4-1, m m m 
;l; + ;l; - + ME 4-2 are used for the evaluation of vt~m • Et and (vt~~xz) • Et respec-

tively. 

Representation in terms of forward and backward travelling waves 

The coefficients of the E- and the H-fields of any mode in the guide 

can always be interpreted as the result of a forward and a backward travel­

ling wave of which the ratio between E and H is a constant, the wave im­

pedance, 

k3nm k 
0 z wmn - z 

k 0 
0 

z• wmn k3nm 
z 

0 

Let F,F' be the amplitudes of the forward and B,B' those of the backward 

travelling waves of the modes, then 

v 
m 

rz- (F + B ) 
wm m m 

v• 
m 

l'i' (F' + B') 

I 
m rz-wm 

(F - B ) 
m m I' 

m 

wm m m 

1 

rz-
wm 

(F' - B') m m 

Substitution of this assumption into Eqs. 19 leads to an alternative set of 

GTE's. Mathematically speaking no advantage is gained. 

The coupling coefficients between forward waves when no backward waves are 

assumed to exist, are found by substitution of the fixed ratio Z , z• for w w 
V /I, V' II' into the GTE' s eliminating the I, I' 

av z z 
mn' ___!'! = I _!!!El_ v + I -z-- vn, • a, n Z n wn n• wn' 

av z z 
m' l m' n l m' n' -- = -- v + --- v a Z N Z n' 

3 n wn n wn' 


