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Abstract 
 

Destructive severe weather events are an unfortunate reality of the United States’ unique 

geography. Each spring, the central and southeastern states are subjected to nature’s most violent 

localized storms, tornadoes. The 2011 tornado season received nationwide attention for two 

events: the April 27 outbreak was responsible for 348 fatalities from 292 confirmed tornadoes 

across 16 states, while the May 22 Joplin, Missouri, tornado was responsible for an additional 

162 fatalities (Storm Prediction Center, 2011; Paul & Stimers, 2012). One of the most 

devastating single tornadoes of that outbreak was the Tuscaloosa, Alabama, tornado that claimed 

64 lives along its 130-km track and ranked as an Enhanced Fujita scale category 4 (EF4). 

 

Urban sprawl in the United States exposes people to more events similar to what occurred 

in Tuscaloosa as developments increase in area and population size. The National Weather 

Service (NWS) continues to modernize its warning systems because inadequate warning for at 

risk populations is a major contributing factor to fatalities and death. However, there is little 

information available about the public’s response to these warnings in seeking adequate shelter. 

For this analysis, a survey was constructed to simulate a tornado event, similar to that of 

the April 27, 2011, tornado. Participants were provided with three levels of warning information 

(high, medium, and low), while only half were able to view a map of the tornado’s progress 

towards their location. Participants were asked to evaluate the situation by answering a series of 

questions at multiple intervals of the storm. The collected survey data will be used to analyze 

risk perception and shelter seeking behavior in relation to available warning information.  
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I. Introduction 

 

 Destructive severe weather events are an unfortunate reality of the United States’ unique 

geography. Each spring, central and southeastern states are subjected to nature’s most violent 

localized storms, tornadoes. Between 800-1,400 tornadoes occur annualy in the United States, 

making it the most highly active tornado region in the world (Ashley, 2007). Within the context 

of tornado activity, spring 2011 was abnormaly intense. The number of tornadoes that tracked 

into metropolitan areas was also an unusual characteristic of the spring 2011 tornado season 

(Senkbeil et al., 2012).  The 2011 tornado season received nationwide attention for two events: 

the April 27 outbreak was responsible for 348 fatalities from 292 confirmed tornadoes across 16 

states, while the May 22 Joplin, Missouri, tornado was responsible for an additional 162 fatalities 

(Storm Prediction Center, 2011; Paul & Stimers, 2012). One of the most devastating single 

tornadoes of that outbreak was the Tuscaloosa, Alabama, tornado that claimed 64 lives along its 

130-km track and ranked as an Enhanced Fujita scale category 4 (EF4). The April 27 Tuscaloosa 

tornado traveled across residential and business zones of Tuscaloosa’s urban area, narrowly 

missing the University of Alabama and Druid City Hospital Regional Medical Center. The 

impact of a tornado on such an urban area with college-age residents made it a unique tornadic 

event.  

Urban sprawl in the United States exposes people to more events similar to what occurred 

in Tuscaloosa as developments increase in area and population size. The National Weather 

Service (NWS) continues to modernize its warning systems because inadequate warnings for at-

risk populations are a major contributing factor to fatalities and deaths (Balluz et al., 2000). 

Understanding of the tornado environment and technological advancements in warning systems 
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has progressed faster than psychological research of risk perception and the cognitive decision-

making process during tornado warnings. The implications, regarding human behavior, of 

forecasting, prediction, and warning system progress are not fully understood. The tornado 

warning system in the United States has progressed because of data collection, processing, and 

computing advancements, while the theoretical background has remained somewhat the same. 

The NWS implemented storm-based warnings (SBWs) in 2007, replacing warnings issued for 

entire counties, in attempt to provide warnings with finer geographic specificity (Coleman et al., 

2011; Ash et al., 2013).  Understanding the relationships between human risk-perception, 

decision-making, and tornado warning systems is crucial for optimizing future warning systems. 

Unfortunately, there is little information available about the public’s response to these warnings 

in seeking adequate shelter. More specifically, there is less information available regarding a 

student population’s response to these warnings in taking protective measures.  

The personal decision to seek shelter occurs in a narrow window - between a tornado 

warning’s issuance and tornado’s possible arrival - often in only a few minutes time. Of the 

limited studies focused at shelter-seeking behavior, the topic has largely been approached from 

the context of fatality distribution and shelter location of Oklahoma City, Oklahoma, residents as 

a result of the 3 May 1999 tornado (Hammer & Schmidlin, 2002); mobile home residents’ 

shelter-seeking options and behavior (Schmidlin et al., 2009); and shelter-seeking actions for the 

1 March 1997 Arkansas tornadoes (Balluz et al., 2000). Previous research has positively 

identified education level, basement access, hearing a warning siren, and having a household 

response plan as factors associated with shelter-seeking behavior (Senkbeil et al., 2012). A 

majority of the previous research has examined the implications of situational factors that dictate 
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the options for someone to shelter rather than cognitive factors which shape how that person 

processes information and makes decisions.  

Following the recent outbreak of April 2011, more research has emerged regarding the 

effectiveness of warning systems. Ash et al. (2013) designed a hypothetical tornado situation to 

test how visual graphic displays are perceived. Their research importantly addressed the 

cognitive process that occurs when an individual is exposed to a tornado warning, but focused 

purely on how visual information impacts protective action decision-making (Ash et al., 2013). 

Sherman-Morris (2010) examined the effectiveness of Mississippi State University’s warning 

system and how students responded following an actual tornado event, however no study has 

explicitly addressed how the population of a campus body processes the decision to seek shelter. 

Furthermore, no study has tested tornado warning effectiveness measuring student responses 

during a hypothetical tornado scenario. 

 Using the 27 April 2011 event in Tuscaloosa, Alabama as a documented event, a 

hypothetical tornado scenario was created for a separate town and university in the southeastern 

United States. The purpose of this research is to examine whether written and visual tornado 

warning information will influence behavior during a hypothetical tornado scenario. Whereas 

previous research has examined variables of tornado death and fatality distribution, this research 

hopes to identify what type, or combination, of warning information, both verbal and visual, 

influences an indivual’s shelter-seeking actions, perception of danger, and understanding of a 

tornadoes distance from their location. The goal of this study is to contribute to the overall body 

of tornado victim behavior and perception literature by attempting to understand how different 

types and amounts of obtainable information may enable an individual to fully process the 

severity of what is taking place and act accordingly.  
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II. Literature Review 

 

2.1. Hazard of Severe Weather 

 Natural hazard research has significant importance: natural disasters killed a reported 

30,772 people worldwide in 2011 and caused $366.1 billion in economic damages – the highest 

ever reported (Guha-Sapir et al., 2011). There is no doubt that future natural hazard events will 

cause additional property damage, especially as population densities continue to rise (Boruff, 

2003). The geographical uniqueness of the United States, specifically the Midwest and 

Southeastern states, create a situation in which severe weather is the dominant type of natural 

hazard. The reoccurring collisions between opposing air masses produce some of the most 

violent weather phenomenon on the planet.  

The development and structure of convective storms has intrigued meteorologists and 

research scientists for decades (Przyblinski, 1995). Convective storms produce a wide variety of 

weather phenomenon that are worthy of ‘severe’ classification. Severe weather is considered any 

meteorological phenomenon capable of causing damage, social disruption, or loss of human life 

(World Meterological Organization, 2004). Events capable of producing significant damage 

include hurricanes, blizzards, hail, lightning, thunderstorms, excessive precipitation, and 

tornadoes. Seasonal, regional, and topographical differences control the distribution, timing, and 

type of severe weather phenomenon. This creates an environment where the United States’ most 

significant natural hazard threat consistently results from severe weather (Boruff et al., 2003). 

2.1.1. Tornadoes. In many locations across the United States, tornadoes are a rite of 

spring and the dominant type of severe weather phenomenon (Noji, 1997; Balluz et al. 2000; 

Merrel et al., 2005). Not only are tornadoes the most frequent, but they are also nature’s most 
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violent localized windstorm, representing a significant hazard to both life and property. The 

United States experiences approximately 800-1400 tornadoes annually; fortunately only a small 

percentage of these events result in casualties (Ashley, 2007).  While a statistically minimal 

amount of tornadoes produce casualties, those that do can be devastating. This occurs because 

the type of destruction common to tornadoes produces a highly concentrated, intense path of 

destruction (Balluz et al., 2000). Tornadoes have the potential to produce mass-casualties even 

though a community’s infrastructure remains intact (Harris, 1992; Glass et al., 1980). 

Throughout literature, the term tornado hazard has a distinctive meaning in comparison to 

tornado climatology. Tornado hazards include aspects of tornado climatology, but Boruff (2003) 

defines the tornado hazard as “any tornado that results in a human fatality, or a human injury, or 

any amount of reported economic damage” (p. 104).  

Tornado research has largely been funded by the federal government through universities, 

research institutions, federal agencies, and private meteorological companies (Golden & Adams, 

2000). Federal funding for tornado research has largely focused on improving the predictive and 

warning capabilities of operational meteorologists to aid in the protection of life and property. 

The number of reported tornadoes has significantly increased in recent decades, but many 

scholars cite advancements in observation, identification, reporting, and documentation as the 

explanation (Bluestein, 1999, Golden & Adams, 2000; Boruff et al., 2003). It is understood 

among scholars that while the overall number of tornadoes has increased over the past 100 years, 

the number of EF2–rated tornadoes has not significantly increased (Grazulis, 2000; Boruff, 

2003).  There is no debate that tornadoes are capable of immense damage, directing portions of 

this funded research towards the occurrence of tornado hazards specifically (Boruff, 2003).  
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2.1.2. Damage. The localized destructive force of tornadoes has the potential to render a 

landscape unrecognizable. The destruction to homes, businesses, schools, and vegetation is 

distinctly identifiable, and often remains a visual reminder of a significant event for years to 

come. With winds exceeding 200 miles per hour, flying debris, and suction vortices, property 

damage during a tornado has become accepted as an unavoidable reality (Simmons & Sutter, 

2011, p. 213). Affected communities and researchers both have directed more attention towards 

threats to, and loss of, life. For this reason, far less research has been directed towards examining 

property damage from tornadoes. Even in research involving reported damage, uncertainty 

surrounds the accuracy of reported damage. Simmons & Sutter (2011) attributed this to National 

Weather Service (NWS) offices placing little value on accurately report property damage 

estimates (p. 214). Although official damage reports may not fully represent the damage path, 

Brooks and Doswell (2001) concluded that the cost of individual tornadoes has not increased 

through time. While early research discussed monetary property damage estimates with a fairly 

wide range of uncertainty, contemporary analyses have shown value in using remote sensing to 

classify damaged and undamaged areas and to estimate monetary losses (Myint et al., 2008). 

Simmons and Sutter (2011) note that damage estimates provide an alternative source for scaling 

causalities when damage costs are not the objective of a study (p. 214). 

2.1.3. Fatalities. The single worst year for tornado-related deaths remains 1925 when 800 

people died (Boruff, 2003; Simmons & Sutter, 2011). Tornadoes killed an average of 260 

persons per year (1.8 deaths per million) between 1912 and 1936, but that number declined to 54 

deaths per year (0.12 deaths per million) between 1975 and 2000, a 93% decline from 1925 to 

2000 (Brooks & Droswell, 2001).  Though there is a declining trend in tornado fatalities, 

researchers consider tornado fatalities unique to other weather-related natural hazard deaths 
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(floods, lightning, and straight line wind events) because a majority of tornado fatalities occur 

within housing structures (Ashley & Ashley, 2008; Curran et al., 2000; Ashley & Black, 2008; 

Ashley & Mote 2005; Ashley, 2007). The percentage of tornado casualties occurring in housing 

structures remains consistent among peer-reviewed analyses: Ashley (2007) found 71.3% from 

1985-2005; Simmons & Sutter (2011) reported 73.5% from 1985-2007.  

The American Meteorological Society found annual totals of tornado deaths in the 1980s 

and 1990s to be half of what had been reported earlier, from 1950 to 1970s (Ashley, 2007). The 

decline over recent decades is largely a result of improvements in detection, warning, public 

awareness, information delivery and structural building integrity (Sims & Bauman, 1972; Duclos 

& Ing, 1989). 

2.1.4. Vulnerable locations. Although tornado fatalities have declined over the past 50 

years, scholars and officials understand that tornado casualties cannot be prevented entirely 

(Ashley, 2007). Tornadoes possess the power to level a town, and the fact that so many fatalities 

occur in housing structures has focused research towards identifying what areas are impacted the 

most. It is well known that mobile homes provide little protection to even the smallest of 

tornadoes; 43% of tornado fatalities occurred in mobile homes, while 31% in permanent home. 

More surprising is that less than 7% of the population lived in mobile homes (Simmons & Sutter, 

2011, p. 61). Mobile homes are recognized as a large contributor in tornado fatalities. Brooks 

and Doswell (2002) found the average death rate of mobile home residents to be 20 times higher 

than in permanent homes.  

The most thorough studies of US tornado risk have been conducted by Grazulis (1993, 

2001) using a 45-year record to identify a primary risk region in the Great Plains. Boruff (2003) 

studied damage producing tornadoes over a 50-year span (1950-1999) in the United States to 



 
    

8 
  

determine trends in hazard occurrences, geographic center of tornado hazard exposure, and 

hazard density patterns. His research identified that the centroid of tornado occurrence has 

shifted to the southeast each decade, since 1950 (Boruff, 2003). The southeast also experiences 

the most significant tornadoes (Legates & Biddle, 2008). The explanation for the ‘shifting’ 

centroid to the southeast can be attributed to spotting and reporting improvements as well. 

 

2.2. Warning Systems 

Currently, the best protection developed against tornadoes is the modern warning system. 

Warning systems are complex in nature combining sensing technologies, conceptual models, 

emergency management decision making, warning dissemination technologies, and public 

education (Brotzge & Donner, 2013). Sorensen (2000) describes warning systems as a system 

with a dedicated role of detecting potential disasters, relaying collected information to at-risk 

populations, and empowering persons with decisions about how to take action. The United States 

may not possess a comprehensive warning system for all hazards, but there is agreement that a 

single, comprehensive warning system is not appropriate because a single warning concept will 

not equally fulfill multiple hazard requirements (Mileti & Sorensen, 1990; Sorensen, 2000). 

More important than an all-encompassing warning system is a well-designed system that 

provides a predictable and understandable message, unique to each respective hazard for its 

users. Warning system literature has identified several criteria for effective emergency messages 

to include: the nature, location, guidance time, and source of a particular hazard (Sorensen, 

2000). Particular style aspects for effective message content and trustworthy warning reputation 

have been identified in the literature as specificity, consistency, accuracy, certainty, and clarity 

(Sorensen & Mileti 1989; Vogt & Sorensen, 1992; Sorensen, 2000).  
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2.2.1. Progress of tornado warnings. Since the United States does not have a 

comprehensive warning system (Sorensen, 2000), it is appropriate to discuss the improvements 

made specifically to tornado warning systems in the United States. Tornado forecasts were once 

believed to cause more harm than good (Coleman et al., 2011). The United States Weather 

Bureau (USWB) once banned tornado forecasting, but lifted this ban in 1938. Before the civilian 

USWB lifted the ban, the United States Army Signal Corps had handled all warnings since 1887. 

Much research has chronicled the modernization of the tornado warning system since its 

beginning in 1948 at Oklahoma’s Tinker Air Force Base (Maddox & Crisp, 1999; Doswell et al., 

1993, Coleman et al., 2011). On 25 March 1948 the first tornado warning was issued by U.S. Air 

Force officers E. Fawbush and R. Miller at Tinker Air Force Base in Oklahoma City, Oklahoma 

(Miller & Crisp, 1999b; Maddox & Crisp, 1999). The Tinker Air Force Base tornado warning’s 

success lead to the establishment of the Air Weather Service Severe Weather Warning Center 

(SWWC), the nation’s first severe weather warning program (Brotzge & Donner, 2013). Within 

the first year of operation in 1951, 102 (65%) of the SWWC’s 156 tornado warnings were 

verified (Miller & Crisp, 1999a). The timely development of weather radar and storm spotter 

networks are considered two of the most important aspects of the tornado warning program’s 

following growth (Coleman et al., 2011). Currently, local NWS Weather Forecast Offices issue 

tornado warnings, while continually improving the total percentage of verified warnings 

(Brutzge & Donner, 2013).  

For roughly half a century, tornado warning progress only increased the ways in which 

people could receive information. It was not until 2007 when the NWS made an innovative 

change to the type of warning information released to the public. Previously, the NWS issued 

severe thunderstorm and tornado warnings by a county basis. This meant that entire county was 
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issued a warning even if a tornado was suspected to impact only a small portion of the county 

(Waters et al., 2005; Ash et al., 2013). The NWS now uses storm-based warnings (SBW), where 

warnings are defined by latitude-longitude coordinates of an easily identifiable shaped feature 

(Coleman et al., 2011). Storm based warnings allow individuals to see a more geographically 

specific warning presented as a polygon, or cone, shaped feature surrounding only the areas 

believed to experience a tornado (Ash et al., 2013). Not only does the storm-based format 

increase geographic specificity, but Sutter and Erickson (2010) argue these warnings reduce time 

spent unnecessarily sheltering. Although SBWs allow individuals within a warned area to be 

targeted with warning messages (Jacks & Ferree, 2007), it has not been proven that being located 

within a SBW significantly increase shelter seeking and protective action behavior (Nagele & 

Trainor, 2012). While the effectiveness of SBWs influence on self-preservation efforts through 

targeted warning messages is still unproven, the dissemination of SBWs via various mediums 

continues increase (Sherman-Morris, 2010; Ash et al., 2013).  

The improvements that tornado warning systems have experienced since the 1970s are 

impressive, but this progress has stemmed from monitoring, data collection, instrumentation, and 

data processing improvements; other than the NWS’s transition to SBW, no radical theoretical 

breakthroughs have occurred over the past 30 years (Sorensen, 2000). Meteorologists have 

started researching ways to enhance the storm-based format by including probabilistic 

information produced by forecast model outputs (Hoekstra et al., 2011; Stensrud et al., 2013; 

Ash et al., 2013). The effectiveness storm based warnings, both with and without probabilistic 

information, is unknown. It is optimistic to hope forecasters will one day possess the ability to 

predict a tornado’s exact path and intensity days in advance, allowing for complete evacuation 

and deployment of emergency management resources (Brotzge & Donner, 2013). Since 
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technology has not empowered meteorologists to that level, it is important to further investigate 

how the general public interprets the current state of visual and verbal information in storm 

based warnings and uses such information in their decision-making process.   

2.2.2. Warning dissemination. Today, tornado warnings are issued by the National 

Weather Service when a tornado has been spotted, or when radar indicates a probable tornado. 

Even in the modern era’s progress of warning systems, the American Meteorological Society and 

other researchers feel the most crucial step in the warning process remains the same – 

communicating the danger to the public (AMS, 1975; Golden & Adams, 2000; Coleman et al., 

2011, Brotzge & Donner, 2013). The earliest tornado warnings reached the public via television 

and radio. Hazards literature clearly indicates that television has served as an important source of 

information in hazard and disaster warning (Sherman-Morris, 2005, 2010; Hammer & 

Schmidlin, 2002; Legates & Biddle, 1999; Paul et al., 2003; Schmidlin et al., 2009). Research 

has investigated the importance of television and other mass media during adverse conditions. 

Loges (1994) examined media dependency, finding the greater a perceived risk, the more 

important the media becomes as an information source. Television and radio have a storied 

history as information sources, but the storm siren possibly remains the most iconic medium for 

distributing warning information. As recently as 2003, research found hearing a siren to be the 

most effective method of motivating people to take action (Comstock & Mallonee, 2005). 

Hazard literature suggests tornado sirens serve as both primary and confirmatory warning 

devices (Paul et al., 2003; Balluz et al., 2000; Legates & Biddle, 1999; Sherman-Morris, 2005).  

The telephone was revolutionary, but according to warning literature it has not become a 

primary source for warning information. The percentage of individuals hearing warnings over 

the phone has been demonstrated in recent studies to remain much lower (9%) than traditional 
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methods such as television, radio, and sirens (Schmidlin et al., 2009; Comstock and Mallonee, 

2005). Research shows the internet has replaced television as the most popular pastime (Hein 

and McClellan, 2005), while providing considerably more information options than the landline. 

The internet’s limitation has previously been the lack of mobile flexibility, but at the beginning 

of the 21st century the smartphone allowed individuals to be instantaneously and continuously 

connected to the web in any location (Land & Manner, 2011). The rapid embracement of smart 

phones, both domestic and worldwide, has provided a personal and mobile platform for issuing 

information and warnings (Whitney, 2006). The capability of smartphones to utilize mobile data 

has interested researchers, although the influence of information dissemination through text 

messages and emails has not yet been supported with clear data (Sherman-Morris, 2010).  

Smartphones, and other advancing technologies, continue the evolution tornado warnings’ most 

significant aspect: media’s role of instantaneously providing information to the public (Golden & 

Adams, 2000). 

Alternative information sources have developed alongside internet and social media 

growth. Twitter has been introduced to hazard warnings (Sakaki et al., 2010), but extensive 

research is not yet available on social media’s role as an information source in tornado warning 

systems. University warning systems attempt to utilize the mass availability of cell phones and 

internet access. Although text messages, email, and instant messages have not been confirmed as 

effective ways to distribute information, universities have justified such methods in addition to 

sirens on the assumption students and faculty would be on campus and unable to access 

television (Sherman-Morris, 2010). Although alternative information sources have been adopted 

by universities and remain a popular topic of research, Sherman-Morris (2006) noted that local 
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populations develop strong psychological commitments to specific weather stations or 

forecasters, which may trump newly emerging information sources.  

2.2.3. Lead-time. There is little doubt that the overall improvements made in warning 

information dissemination, forecasting, and ultimately prediction have reduced the number of 

deaths and injuries over the previous century (White & Haas, 1975; Sorensen 2000, Simmons & 

Sutter, 2005, 2008; Ashley, 2007). Evidence from NOAA disaster records show a declining trend 

in tornado related deaths and injuries (NOAA, 1997). Golden and Abrams (2000) attributed the 

decline to a combination of enhanced detection, longer warning lead-time, coordination with the 

media, public education efforts.  

While forecasters and scholars agree warning systems have progressed, they do not fully 

understand the implications, for better or worse, of those advances. For instance, there was a 

22% probability of tornado detection with a three-minute lead-time in 1978. Probability of 

detection only increased to 25% with an approximate five-minute lead-time by 1986 (Erickson & 

Brooks, 2006). Just over a decade later, in 1998 this had advanced to a 65% probability of 

detection with a thirteen-minute lead-time (Golden & Adams, 2000; Hoekstra et al., 2011). 

While intuition suggests longer lead-time save lives, meteorologists and social scientists do not 

clearly understand how the public will respond to increased tornado lead-time (Hoekstra et al., 

2010). The public has a reputation of thinking they know more about severe weather than they 

do (Wong & Yan, 2002), which further supports the need for researchers to understand exactly 

what the public knows (Hoekstra et al., 2010). If this were known, in combination with ideal 

lead-lead times, the National Weather Service could issue warnings at the most appropriate time 

(Hoekstra et al., 2010). 
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There is no agreement on what the ideal lead-time actually is. While some research has 

found 30-minute lead-time to be ideal, a recent empirical study showed lead-times up to 

approximately seventeen- minutes reduce tornado fatalities and injuries (Simmons & Sutter, 

2008). In an additional study, Simmons & Sutter (2009) showed six to ten-minute lead-time to 

reduce fatalities by 46%. While warning lead-time research lacks agreement and availability, it 

may indicate longer lead-times are not favorable (Ewald & Guyer, 2002; Doswell, 1999; 

Hoekstra et al., 2010).  

The lead-time for the April 27th, 2011 Tuscaloosa tornado was prolonged and accurate 

regarding the tornado’s speed and direction. Well before the tornado touchdown southwest of 

Tuscaloosa, at approximately 3:43 p.m. CDT (local time), residents of Tuscaloosa and University 

of Alabama (UA) students had been warned of the threat. Days in advance, meteorologists, local 

officials, and university administration knew of the severe weather potential. The NWS predicted 

severe weather to begin around noon for most of central Alabama; UA was included in a tornado 

watch lasting until 10:00 P.M. CDT local time. The National Weather Service of Jackson, MS, 

issued the first tornado warning on the supercell, which eventually produced the Tuscaloosa 

tornado at 3:09 p.m. CDT. Following the official NWS warning, at 3:43 p.m. CDT, the 

University of Alabama issued a separate tornado-related communication to shelter in place until 

4:45 p.m. CDT. The university’s warning canceled classes and instructed those on campus to 

take shelter. At 4:35 p.m. CDT the tornado warning for UA was extended until 5:30 p.m. CDT, 

and at 4:50 P.M. CDT the UA warning was extended until 5:45 p.m. CDT. The tornado warning 

for the University of Alabama officially expired at 5:58 p.m. CDT, April 27, 2011. If optimal 

lead-time actually is around the fifteen-minute mark, an extended lead-time (over 65 minutes) 

preceding the Tuscaloosa tornado may have had unintended effects. This event is an example of 



 
    

15 
  

the ongoing optimal lead-time issue and debate; the Tuscaloosa tornado lead-time was twice the 

length of the highest reported ideal length of time.  

2.2.4. False alarms. Variable lead-time is not the only potential imperfection of tornado 

warnings; recent research addresses false-alarm ratios (FAR). Conventional wisdom attributes 

over-warning, or false alarms, to a reduction in the public’s willingness to respond in the future 

(Barnes et al., 2007). Research supporting this theory, or notion, is limited and often conflicting 

(Simmons & Sutter, 2009). Breznitz (1984) defines the false alarm effect –also referred to as the 

cry wolf effect– as “credibility loss due to a false alarm,” in which “the credibility loss following 

a false alarm episode has serious ramifications to behavior in a variety of response channels” (p. 

11). Turner (1983) found that a threat is considered more credible as it is discussed more 

frequently, although this research was directed towards earthquake predictions in Los Angeles 

County (Barnes et al., 2007). Evidence for both the false alarm effect and mobilizing effect were 

found by Atwood and Major (1998), but this research also addressed earthquake prediction in the 

New Madrid zone of the United States. Examination of false evacuation warnings for South 

Carolina residents preceding the near misses of Hurricane Bertha and Fran found the 

experiences’ influence was believed to play no role in the residents’ perception of risk (Dow & 

Cutter, 1998). While Turner (1984), Atwood and Major (1998) examined false alarms of 

earthquake predictions, and Dow and Cutter (1998) examined the influence of near misses and 

tornado evacuation, little research has examined how repeat false alarms relate to tornado 

warning response in the perspective of actual events (Barnes et al., 2007). 

Isolated false alarms have been shown to have little effect on appropriate response (Carsell, 

2001), and, as recently as 2007, discussion of evidence for the cry-wolf effect has not been 

convincing (Barnes et al., 2007). When tornado warnings are issued, a balance exists between 
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the probability of detection (POD) and false alarms. Even with the complexities of issuing 

tornado warnings, forecasters strive to warn for every tornado with as much lead time as 

possible, while attempting to limit false alarm warnings (Brotzge & Donner, 2013). Ideally, 

forecasters would have an FAR of 0.00, but because of uncertainties in forecasting technology 

and science, officials cannot be 100% accurate; false alarms can only be avoided by never 

issuing warnings (Barnes et al., 2007). As of 2011, the national tornado POD was 0.75, with an 

average lead-time of 14.6 minutes, and FAR of 0.74 (NOAA, 2011). Radar advancements and 

the NWS modernization program has drastically improved current POD, lead-time, and FAR 

from the POD of 0.48 and average lead time of 7.6 minutes in 1994 (Brotzge & Donner, 2013).  

 Simmons & Sutter (2009) tested for an impact of false alarms on tornado casualties, not 

warning response; their findings show higher false alarm rates increases expected fatalities by 

12% to 29% and expected injuries by 13% to 32%. Despite their findings, Simmons and Sutter 

(2009) stress that evidence of false alarms affecting casualties does not imply the existence of a 

false-alarm problem, but a misinterpretation of FAR and POD dynamics resulting in a FAR 

higher than ideal. Other research, conducted by Barnes et al., (2007), suggests that perception of 

over-warning could be alleviated if the National Weather Service warnings were re-categorized 

to include near misses. While the cry-wolf effect idles in a state of speculation, it serves as a large 

source of concern within the warning community (Barnes et al., 2007). 

 

2.3. The Human Component 

2.3.1. Warning response. How the public responds to tornado warnings has received 

minimal research attention (Golden & Adams, 2000). Thus, many unknowns remain regarding 

public response to disaster warnings (Mileti, 1988; Sorensen, 2000; Hammer & Schmidlin, 
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2002). Although “we have little understanding of the relationships among behavioral responses 

to tornado warnings, locations, warning lead time, warning receipt, and rates of injury and 

death,” there is much to gain from studying these interactions further (Golden & Adams, 2000). 

Such knowledge has significant utility in planning, preparedness, and delivery of tornado 

warnings (Hammer & Schmidlin, 2002). Hoekstra et al., (2011) also acknowledges that 

understanding the public’s severe weather event perception is critical to optimizing tornado 

safety. Scholars agree that multiple factors could significantly influence the casting of an 

individual’s response to tornado warnings, including: education level, sex, ethnicity, age, prior 

tornado experience, number of children, and number of household members (Riad, 1999; Balluz, 

2000; Sorensen, 2000; Hoekstra et al., 2011). Before an individual can make the decision to take 

protective action, they must receive, understand, believe, confirm, and personalize the tornado 

warning (Brotzge & Donner, 2013). Social science’s perspective of understanding response to 

tornado warnings has made far less progress than the science and technology behind tornado 

forecasting (Hoekstra et al., 2011). Of the social science warning response research conducted, 

little has focused on sheltering decisions; the majority focused on evacuation behavior 

(Sorenson, 1991; Golden & Adams, 2000). 

 2.3.2. Risk perception, misunderstanding, and knowledge. The fundamental response 

to weather warnings is partially controlled by how dangerous an event is perceived by the 

individual. Hoekstra et al., (2010) claims that when an event is perceived as little risk to 

someone’s personal safety they may take less immediate action compared to someone who 

perceived the threat as enormous. If the general public is overconfident in their understanding of 

severe weather (Wong & Yan, 2002), could a lack of knowledge influence decisions? Several 

studies investigate whether the difference between a watch and warning is understood, but many 
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fail to disclose how responses were measured (Sherman-Morris, 2010). Legates and Biddle 

(1999) reported 90% of respondents to understand the difference. Balluz et al. (2000) reported a 

higher percentage (96%) of respondents knowing the difference. Mitchem (2003) found a much 

higher percentage (21-30%) of respondents unable to correctly define both a watch and warning; 

confusing the two was common. When Powell and O’Hair (2008) open-endedly asked 

respondents to explain the difference between a watch and warning, only 58% correctly did so. 

This suggests there is a significant difference between providing answer choices and requiring a 

definition to be provided (Sherman-Morris, 2010). 

2.3.3. Risk behavior framework. How a person understands and processes warning 

information is deeply connected to human psychology and personal experiences (Brotzge & 

Donner, 2013). Two information-processing systems have been described when discussing 

decision making in the presence of uncertainty: System 1 and System 2 (Evans, 2008; 

Kahneman, 2003; Mukjerjee, 2010; Pleskac & Wershbale, 2014). System 1 makes decisions that 

are automatic, quick, and do not demand computational aptitude, while System 2 makes 

decisions that are guided, slower, and required computational aptitude (Pleskac & Wershbale, 

2014). Furthermore, studies suggest a link between experiences, knowledge, and decision 

making under risk exist (Hertwig & Pleskac, 2010; Drost, 2013). Individuals will call upon all 

available recourses when dealing with risk and potential danger. It is common for an individual’s 

knowledge of a risk, and preconceived fear associated with a risk, to weigh heavily in their 

decision-making process (Drost, 2013). Decisions made under natural hazard risk are similar to 

decisions made on a daily basis. Uncertainty is caused by a lack of knowledge, but natural hazard 

risk is also combined with unpredictability created by the natural forces causing such events 

(Drost, 2013).  
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The behavior of tornado victims has been characterized into two sets of profiles. Legates 

and Biddle (1999) provide a thorough evaluation of cognitive factors and situational factors, 

crediting these variables as leading contributors to tornado fatalities. Situational factors are 

demographic or physical aspects, which alter an individual’s range of available choices to deal 

with risk (Tobin & Montz, 1997; Legates & Biddle, 1999; Biddle, 2007). Situational risk factors 

include lower socioeconomic status, manufactured housing, proximity to tornadoes origin, and 

also physical limitations such as a disability and older age which influence an individual’s ability 

to react quickly (Gruntfest 1987; Senkbeil et al., 2012). Several studies, including Schmidlin and 

King’s (1995) analysis of 1994 Alabama and Georgia tornadoes, have concluded similar factors 

to be responsible; fatality groups generally included higher rates older residents, living in mobile 

homes, with less time to react to an approaching tornado than those surviving the event. Carter et 

al. (1989) also found unanchored structures and non-basement sheltering to contribute to 

fatalities during his study of the 31 May 1985 outbreak in Ontario, Canada. Cognitive factors are 

variables that influence risk perception. Cognitive factors include behavioral characteristics, 

personality and attitudinal traits, parental responsibilities, religious beliefs, and situational 

knowledge gained from past experiences. The cry wolf effect, false alarm conditioning, and 

beliefs that a tornado “won’t hit here” or “God will protect us” are examples example of a 

cognitive factors, as are experience-produced cautiousness and overprotectiveness of children 

(Burnham 1992; Legates & Biddle, 1999; Biddle 2007). 

Many decisions involve a balance between risk and expected reward. In these decisions 

an individual weighs the potential reward against the perceived unlikely risk of a negative 

outcome. An individual’s internal deliberation typically occurs in the early stages of risk-taking 

activities, and vanishes once a pattern of habitual gratification is formed. For many, the decision-
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making process is only revisited when high-risk decisions result in a negative outcome 

(Zuckerman & Kuhlman, 2000). Individuals with certain personality traits, such as sensation 

seeking and impulsivity, may have a greater likelihood of possessing a risk-taking temperament 

(Zuckerman 1994, Zuckerman & Kuhlman 2000, Lauriola & Levin, 2000). Barnett and 

Breakwell (2001) claim that the “psychometric paradigm” has mistakenly attempted to explain 

the factors that contribute to an individual’s perception of risk by developing “personality 

profiles.” This approach successfully identified characteristics as risk perception predictors, but 

provided little explanation of why individuals differ from each other in their perception. 

Additional research has been directed at the variability of individual risk perception by attempted 

to identify the underlying causes through social, cultural, and institutional factors (Turner & 

Wynne, 1992; Sjӧberg, 1995; Barnett & Breakwell, 2001).     

While research has had some success at identifying personality characteristics as risk 

perception predictors, it is important to realize the process of receiving, processing, and 

understanding risk communication messages to make decisions about shelter seeking action is 

extremely complex (Ash et al., 2013). Behavioral risk models have identified individual 

characteristics including personality, prior experience, gender, and self-efficacy as influential 

factors in the decision-making process (Fishbein, 2008; Lindell & Perry, 2012; Maloney et al., 

2011; Ash et al., 2013). Additional research addressing risk behaviors, personality, and culture, 

as associated to warning systems, has attempted to explain the density of tornado fatalities at the 

regional scale. Sims and Baumann (1972) proposed that culturally controlled variables unique to 

regions were responsible. They suggest that Southerners’ religious convictions promote a 

fatalistic attitude regarding risk and a neglect of the benefits offered by technology and warning 

systems (Sims & Baumann, 1972). Although theory of Southerners’ fatalistic approach towards 
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severe weather exists in literature, it lacks widened support. Biddle (1994) concluded 

Southerners, and all tornado alley residents, possessed similar warning system access and an 

equivalent understanding of tornado risk.  

A process of analytical reasoning and emotional guidance help form an individual’s 

beliefs and perceptions about a severe weather event and its potentially hazardous consequences. 

This process occurs from the time a warning is received and a final response is produced 

(Fishbein, 2008; Lindell & Perry, 2012; Maloney et al., 2011; Ash et al., 2013). During this 

process a fundamental step occurs in which an individual must take the threat seriously; 

essentially, a warning will only be acted upon if an individual perceives the threat as real. 

Warnings perceived to lack a valid threat would be ignored, while questionable validity can drive 

confirmation behavior, or normalcy bias, in which an individual attempts to seek additional 

sources of information, such as visual confirmation (Drabek & Stevenson, 1971; Perry et al., 

1981). If this behavior occurs during a tornadic event, the result is a greatly increased risk of 

casualty for anyone seeking visual confirmation, because neglecting shelter is required (Biddle, 

2007). For many people, their initial reaction upon receiving a warning is disbelief; confirmation 

behavior seeks to overcome automated feelings of disbelief, and has been identified as part of 

both the warning process and human nature (Drabek, 1986; Mileti & Fitzpatrick, 1991; Mileti 

1999; Biddle, 2007).    

Tornado warnings are a form of risk communication that use impending danger and fear 

of injury as motivators for shelter seeking action (Lundgren & McMakin, 2009; Ash et al., 

2013). The significance of a warning is assessed on a variety of factors including past 

interactions with the hazard type and warning system involved, which is evaluated across 

personality elements such as ideologies, values, goals, and responsibilities (Biddle, 2007, p. 16). 
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The message is then reinforced by discerning environmental cues and consulting with both peers 

and alternative information sources. Biddle (2007) noted that the confirmation process is such a 

fundamental process that it has been integrated into the planning process by warning authorities 

through increased lead-time, quality control of message consistency and source credibility. 

2.3.4. Visual representations. More recently, a conceptual framework was discussed by 

Severtson (2013), which accounts for previously mentioned risk factors in the context of 

environmental maps’ influence on risk perception and behavior. Severtson’s Integrated 

Representational and Behavior Framework (IRBF) suggests that individuals form risk behavior 

via cognitive and emotional interpretations following a visual representation of risk. An 

individual comprehends and evaluates such visual representations through map or graphic 

features, personal characteristics, and the conscious and subconscious processes used to assess 

the information (Severtson, 2013). Individuals also process specific aspects of the hazard itself, 

how they may handle the consequences of the potential hazard, and the opinions and actions of 

others in their community (Fishbein, 2008; Lindell and Perry, 2012; Maloney et al., 2011; Ash et 

al., 2013).     

2.3.5. Hypothetical scenarios and intended actions. Relating risk perception to actual 

behavior is difficult to facilitate both in real time and in post event analyses because of the 

dangerous and unstable nature of tornadoes (Ash et al., 2013). Human behavior research has 

produced evidence that suggests intended behavior responses can be used to reasonably predict 

actual behavior (Fishbein, 2008; Sheeran, 2002; Whitehead, 2005; Wogalter et al., 2002; Ash et 

al., 2013). The predictive abilities of intended actions are not proportional to intended behavior. 

Webb and Sheeran (2006) found that large changes in intended actions generally only lead to 

small changes in actual behavior. While intended actions are believed to have some predictive 
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value, it is unknown how accurate shelter-seeking intended actions in hypothetical tornado 

scenarios may translate to actual tornado warning situations (Ash et al., 2013; Meyer et al., 

2013). 

 Environmental hazards, including tornadoes, can be visually represented through maps, 

graphs, and charts, although several factors contribute to an individual’s ability to understand 

visual information (Ash et al., 2013). Four concepts, described by Pinker (1990), are thought to 

influence a person’s ability to understand information presented in a graphical format: units of 

perception, Gestalt principles, representation of magnitude, and coordinate systems. Units of 

perception influence comparison between values assigned to units, Gestalt principles suggest 

similarity, proximity, and continuity of graphic features affect their interpretation, magnitude 

assists organization of features into a hierarchy, and coordinate systems aid visual organization 

in reference frames (Pinker, 1990). It is important to understand a wide variety of combinations 

among these factors can lead to large differences in how a person interprets maps or other visual 

representations of risk. Pinker’s factors are likely to be useful in the context of hypothetical 

tornado scenario visual warning representations (Ash et al., 2013).  

 Subconscious processing of visual features occurs prior to cognitive processing of the 

primary meaning through the influence of preattentive properties (Cleveland & McGill, 1984). 

Preattentive properties can include, but are not limited to, scale, feature size, color scheme, color 

saturation, contrast and feature shape. A map viewer’s ability to quickly focus their attention on 

important map features is known as visual salience. Mapmakers are able to increase visual 

salience, and essentially create a more efficient map, through the use of preattentive properties 

(Severtson and Vatovec, 2012; Sherman-Morris, 2005; Wogalter et al., 2002). While preattentive 

properties, such as color schemes, shading, shapes, and contrast, increase visual salience, they 
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also have the potential to misrepresent a map’s intended message. Adversely, a lack of 

preattentive properties can cause visual salience issues (Ash et al., 2013). The April 2011 

tornado outbreak has been a popular topic of recent research. Since the 2011 outbreak, multiple 

studies have examined misunderstandings related to visual representations of storm-based 

warnings. Klockow (2011) reported that Alabama residents were unable to determine if they 

were in danger because static television maps did not provide direction or recognizable features 

of thunderstorms in relation to their location. Sherman-Morris and Brown (2012) noted that 

Mississippi residences believed the perimeter of a tornado warning was less likely to experience 

a tornado than the warning’s geographic center. 

 

2.4. Purpose of Current Study 

 The current theory in literature suggests that providing more information and earlier 

warning should be implemented in the public severe weather warning process. Since the 

implications of longer lead-time, multiple information sources, and visual representations of 

warning information have not been fully explored, this study seeks to better understand how 

indivuduals respond to various types and levels of warnining information during a severe 

weather event. The purpose of this research is to examine whether written and visual tornado 

warning information will influence behavior during a hypothetical tornado scenario. This 

research examines how three different amounts of written tornado warning information influence 

shelter-seeking intended behavior, perception of danger, and understanding of proximinty to the 

using a series intervals during a hypothetical tornado scenario. This research also tests whether 

the presence of a visual information source, such as a map, influences intended shelter-seeking 

behavior in the same hypothetical tornado scenario. The experiment consists of a 2x3 factorial 
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design with two visual information options (map/no map) and three levels (high, medium, and 

low) of written information. The study poses the following research questions: 1) Do shelter-

seeking responses differ across each tornado scenario’s combination of written and visual 

warning information? 2) Do individuals perceive the tornado scenario as more dangerous as they 

are provided with higher levels of information? 3) Does participant perception of the tornado’s 

distance from their location change across written information levels, and do responses become 

more accurate when visual information is available?  Adressing these questions, I propose the 

following hypotheses: 

• H1: Shelter responses will vary according to the amount of information received.   

o H1a: Individuals with more written and visual information will be more likely to seek 

shelter than individuals with low written and no visual information.   

o H1b: Individuals with more written and visual information will be less likely to leave 

shelter, after it has been sought, than individuals with low written and no visual 

information.   

• H2: Perception of danger will vary according to the amount of information received.  

o H2a: Individuals with more written information will perceive a greater amount of 

danger than individuals with less written information across the 6 intervals.   

o H2b: Individuals with visual information will perceive a greater amount of danger 

than individuals with no visual information across the 6 intervals.   

• H3: Participant’s estimated tornado distance responses will vary according to the amount of 

information received.  

o H3a: Individuals with more written information will provide a more accurate estimate 

of tornado distance across intervals.   

o H3b: Individuals with visual information will provide a more accurate estimate of 

tornado distance across intervals.  
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III. Methods 

 

3.1. Participants 

 Participants in the main study included a total of 186 students: 183 undergraduates and 3 

graduates, 99 males and 87 females, enrolled at a regional university in the Southeast United 

States. Participants were recruited from (a) classes in lower division geography courses, (b) 

classes in upper division geography courses, (c) classes in lower division psychology courses, (d) 

classes in upper division psychology courses, and (e) classes in lower division physics and earth 

science courses. Participants were offered a modest amount of extra credit for their participants; 

however, extra credit for participation was up to each instructor’s discretion. In all cases, it was 

stressed that participation was voluntary and that all information would remain confidential and 

anonymous. There were no negative consequences for refusing to participate.  

 

3.2. Materials 

3.2.1. Tornado scenario. The purpose of this study was to examine decision-making and 

shelter-seeking behavior in severe weather events. In particular, this research examined the role 

of information in the decision making process. Considering the Southeast’s frequent tornado 

activity and recent experience with large, devastating tornadoes, I decided to focus on tornadoes 

over all other types of severe weather phenomenon.  

To examine decision-making during a tornadic event, a hypothetical scenario was created 

for this study. The scenario examines how the participant goes through a typical school day as 

severe weather develops in the area and proceeds towards the local city and university. While the 

scenario covers nine hours of the day, as weather progressively worsens, participants were only 
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exposed to eight snapshots (i.e., intervals) throughout the day in attempt to eliminate participant 

fatigue. 

Although all participants experienced the same scenario with the same outcome (e.g., 

local city/university are in the direct path of the tornado), participants received varying types and 

amounts of information regarding the weather situation. Information provided to participants was 

meant to replicate information that would be disseminated by trusted weather sources (e.g., the 

National Weather Service, local television meteorologists) during a severe weather event.   

Additionally, the number of information sources was limited while still trying to provide a 

balanced variety of sources.  

In this study, participants received a low, medium, or high level of “verbal” or written 

information regarding the weather.  Participants also had the opportunity to receive a visual 

representation of the storm by either having access or no access to a map.  This map visually 

represented the distance and trajectory of the severe weather event through a series of cone 

shaped polygons. These polygons represented the estimated location and path of the hypothetical 

tornado throughout the scenario. 

Written/Verbal Information. The first level of information, referred to as low 

information, was intended to replicate the most basic warning information available. If an 

individual had no access to warning information, it is likely that they could still hear a tornado 

warning siren. The next level of information, referred to as medium information, was intended to 

replicate a sufficient amount of information. This medium level of information included warning 

messages from television, radio and university warning system sources. The final level of 

information, referred to as high information, was intended to provide an additional level of detail 
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to the event. This high level of information included all previous warning information while 

adding graphic descriptions about components of the storm (Appendix B3).  

Visual Information. In addition to varying levels of warning information, a component 

of spatial, visual information was built into the scenario in the form of maps. Maps were 

included because they are a critical component in weather forecasting and relating potential 

threats to the public and their specific locations. To eliminate additional information, not 

intended to be measured, the scenario maps were designed to remain as neutral as possible. 

Similar to available live radar and forecasting maps, scenario maps showed the local city, 

university, surrounding communities, and major roads and highways. These maps differed from 

what is shown during live forecasts because a gray, cone-shaped feature represented the 

hypothetical tornado. The icon used to represent the tornado showed participants its approximate 

current location, predicted path, and potential path (Appendix B4). Half of the participant pool 

was shown maps accompanied with tornado warning information, while the other half only 

received warning information. The options created using maps and varied levels of information 

led to six different scenarios, resulting in a 2x3 factorial study design. These six scenarios were 

coded with the letters A, B, C, D, E, and F (Appendix B1).  

The hypothetical tornado event’s design was influenced by the Tuscaloosa tornado of 

April 27, 2011.  This tornado was referenced for multiple reasons: its large magnitude, 

successful forecast and prediction, interaction with a campus population, regional relativity, 

thorough documentation of the entire event, and known final outcome. University of Alabama 

students were warned well in advance of the EF-4 April 2011 Tuscaloosa tornado by the 

National Weather Service and University of Alabama officials. It is uncommon for severe 

tornadoes to interact with dense urban areas, which is why the event timeline and warning 
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messages of this particular tornado were documented so well. Two historical components of the 

April 2011 Tuscaloosa tornado were used to create this study’s hypothetical tornado scenario: 

actual, observable tornadic events which were recorded and actual warning messages issued by 

the University of Alabama, government agencies, and local weather affiliates.  

The timeline of events during the April 2011 Tuscaloosa tornado was used to identify 

public-identifiable landmarks, or checkpoints, along the tornado’s path towards and through 

town. By identifying stages of the tornado’s path, the number of intervals presented in the 

hypothetical scenario was efficiently created to optimize conciseness. Once tornado track 

landmarks and information were determined, the hypothetical scenario was tailored to meet these 

metrics within the study university’s surrounding area. It was decided that five intervals of the 

tornado’s formation and path would be presented to participants so that the entire event could 

thoroughly examined without exhausting the participants. Over these five intervals participants 

were presented the formation of the tornado and its entire path to their location. The tornado 

origin was approximately 25 miles from campus, and the tornado’s final destination was campus 

itself.  These five intervals also attempted to provide relevant and equally spaced windows 

during the tornado’s path. Three additional intervals were included to account for preliminary 

information available to individuals throughout the day. The three pre-storm intervals replicated 

information that was available during the morning, mid-day, and early afternoon periods of April 

27, 2011.  

Using satellite imagery of the 2011 Tuscaloosa tornado in a geographic information 

system (GIS), the tornado path’s selected intervals were established with waypoint identifiers. 

The tornado track was next overlaid with the study university’s local area, where similar 

landmarks were identified and therefor, local intervals created. A separate map was created for 
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each interval, providing an updated tornado location. Each of these maps was also paired with 

current information about the tornado as it pertained to the respective interval.  

 Participants were presented with a single version of the six available tornado scenarios in 

a paper packet format. All scenario packets were coded with a letter to identify which version of 

the weather scenario the packet contained.  These packets were spiral bound and contained 

fifteen landscape-formatted slides. The slides within these packets were color-coded: white slides 

provide instructions and gray slides provide interval information. The first slide contained a brief 

overview and instructions, which is followed by the first three intervals providing the morning, 

noon, and early afternoon summaries of preliminary information. After intervals one though 

three the packets alternate between (white) instructional slides and (grey) interval slides. For 

scenario packets that did not contain maps, the interval slides only displayed warning 

information pertaining to that specific scenario. For scenarios containing maps, warning 

information was placed on the side of each interval’s map. Thus they were organized in the 

following manner:   

1. Overview and Instructions 

2. Interval 1 

3. Interval 2 

4. Interval 3 

5. Instructions following Intervals 1-3 

6. Interval 4 

7. Instructions following Interval 4 

8. Interval 5 

9. Instructions following Interval 5 

10. Interval 6 

11. Instructions following Interval 6 

12. Interval 7 

13. Instructions following Interval 7 

14. Interval 8 

15. Final Instructions following Interval 8 

Each time participants reached an instructional (white) slide, they were directed to a web 

based survey to answer a series of questions related to the interval they just viewed. By 

providing participants with the scenario in a physical paper packet format, a computer was 
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designated for collecting questionnaire responses. The entire study questionnaire consisted of 

three sections: the tornado scenario questionnaire, demographic questionnaire, and International 

Personality Item Pool (IPIP) Questionnaire. 

3.2.2. Tornado scenario questionnaire. The tornado scenario questionnaire consists of a 

total of 71 questions, which were grouped, together in sets of eleven to twelve questions.  

Participants were asked to answer these question sets (i.e., interval questions) after having been 

exposed specific intervals in the scenario.  Participants were asked to answer the interval 

questions to determine if and when participants’ perception of the weather changed and how 

their decisions changed as the scenario progressed and new information was introduced.  

Although there were a total of eight intervals in the overall weather scenario, participants 

were only asked to answer the interval questions during six intervals.  The first two intervals 

were meant to “set up” the day’s events for participants without discussing specific weather 

events or phenomenon.  As such, participants were not asked to rate the weather situation via 

interval questions in the first two intervals. After viewing the information in the third interval, 

participants were asked to answer the first set of interval questions.  During the third interval, the 

severe weather approaching the city is technically described as a “storm” with the potential to 

cause damage; however, the storm has not yet developed into a tornado.  I purposefully 

described the severe weather as a “storm” at this stage in order to provide a more realistic 

depiction of a tornadic event.  Since this third interval did not outright discuss a tornado, the first 

set of interval questions was modified to address a severe “storm” rather than a tornado.  This set 

of interval questions was the only set that was different.  All other interval questions used the 

same set of questions posed at different intervals (Appendix C2).   
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 Interval three question set. This set of questions consisted of eleven total questions in 

mixed format.  All of these interval questions were developed for the purposes of this study.  The 

questions in the third interval were used to measure participants’ interpretation of the severe 

weather including perceived personal safety, perceived severity of the weather, and accuracy of 

the weather information.  Participants used a five-point Likert scale ranging from one (very 

inaccurate) to five (very accurate) to rate the first six questions.  Participants were then asked to 

answer two multiple choice questions, one asking participants to choose their immediate shelter 

plans and the other asking participants to express their general feeling of danger in the current 

situation (Appendix C1).   

 Intervals four through eight question sets. Participants answered a total of twelve 

questions in each question set for intervals four through eight.  Questions one through eleven, for 

intervals four through eight question sets, were the same as those used in the interval three 

question set.  The only difference between the interval questions were that in the interval three 

question set, “tornado” was replaced with “storm” when necessary (question eleven) and an 

additional question (question twelve) was added to the interval four through eight question set.  

This final question, which was excluded from the third interval question group alone, asks 

participants to estimate the tornado’s current distance from their current location. Participants 

were required to answer with a numeric value representing distance in minutes (Appendix C2).   

3.2.2. Demographic questionnaire. The twenty-item questionnaire assessed the 

participant’s age, student classification, gender, ethnicity, hometown location, severe weather 

experience, preferred tornado warning information source, and current residence proximity to 

campus (Appendix D). These questions consisted of multiple choice, five-point Likert scale, and 

fill in the blank (text and numeric answer) formats. This questionnaire was designed for this 
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study to establish descriptive, background information about participants and their exposure to 

severe weather events.  

3.2.3. International Personality Item Pool (IPIP) questionnaire. The 31-item question 

was constructed to assess the participant’s personality tendency of risk-taking, harm-avoidance, 

need for cognition, and quickness (Appendix E). All items in this questionnaire were asked on a 

5-point Likert scale ranging from one (very inaccurate) to five (very accurate). These four scales 

were assembled from Ipip.ori.org, an organization that collaborates and makes available 

advanced measures of personality and individual differences to the public domain.  

The questionnaire consisted of four International Personality Item Pool Scales: risk-

taking, harm avoidance, need for cognition, and quickness. Each of these scales contained ten 

items, but because many items overlapped the combined questionnaire only totaled 31 items. 

According to Jackson (1994), the risk-taking scale is internally reliable with an average 

Cronbach alpha = 0.78. Cloninger et al. (1994) found the harm-avoidance scale, included in the 

Temperament and Character Inventory (TCI), to be internally reliable with an average Cronbach 

alpha = 0.78. According to Cacioppo and Petty (1982), the need for cognition scale is internally 

reliable with an average Cronbach alpha = 0.84. Additionally, Hogan and Hogan (1995) found 

the quickness scale to be internally reliable with an average Cronbach alpha = 0.82. 

 

3.3. Procedures 

3.3.1. Recruitment. Entire classes were targeted as recruitment pools for student 

participants. Instructors were approached and asked to volunteer class time to allow students to 

participate in the study. Extra credit was offered as compensation, when instructors chose to do 

so. Once an instructor agreed to allow students to participate, I visited each class to briefly 
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describe the study. Students were told the name of the study, the expected length of time required 

to complete the study, and that the research team was interested in how individuals made 

decisions during severe weather events. Students were also informed that participation was 

completely voluntary and that all responses were confidential and remained separated from their 

names, which were therefor anonymous.  

3.3.2. Computer lab set-up. Data collection took place in a computer lab with 30 

computers connected to the internet. Each computer screen was set to display, in full screen, the 

first PowerPoint slide of the study, which included the directions and procedures (Appendix A2).  

The web-based survey was also launched, set to the first page of the survey, and displayed in the 

background (hidden by the PowerPoint slide).   Additionally, scenario packets were placed in a 

roatating sequence among computers according to the coded letter on each packet. Each scenario 

packet was paired with a consent form, which included a four-digit participant number, and a 

corresponding coded scenario letter visible at the top of the form.  Participants received only one 

packet and thus viewed only one scenario.   

Students were required to use a participant number in order to participate in the study. 

Participant numbers were used in order to maintain participant confidentiality by eliminating the 

need for participants to include any identifying personal information in the online questionnaire.   

Additionally, I could determine which scenario version a participant completed by associating 

the participant number with the corresponding coded scenario letter (i.e., A, B, C, D, E, or F). 

Although I kept a list of names and their corresponding participant numbers, this roster file was 

saved and stored separately from participant response data.  At no time were participants’ 

responses paired with participant names. The participant number and scenario-coded letter were 

used to create a participant roster, and ensure all scenarios shared an equal n. 
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The consent form gave a brief description of the study and reminded participants that 

their responses would remain confidential (Appendix A1). The consent form also provided 

contact information for the principal investigator and the University of North Alabama’s Office 

of Sponsored Projects.  

3.3.3. Data collection. As participants arrived to the computer lab for each data 

collection session, I informed the participants where to sit and asked them not to open his/her 

scenario packet.  After participants had all been seated, I greeted the participants and instructed 

them to locate the consent form in front of their computer. Participants were then instructed to 

read through the consent form thoroughly and sign it if they understood its contents and agreed 

to participate in the study. Next, I provided the participants with an initial overview, which 

briefly explained the purpose of the study, the study’s procedures, and the participants’ role in 

the study. Students were informed that the study would include a hypothetical severe weather 

scenario and they could withdraw at any point during the study without penalty. Specifically, the 

overview explained that the purpose of the study was to examine how participants used warning 

information to make decisions during a severe weather event. The overview explained that the 

study was composed of three sections: the severe weather scenario with accompanying 

questionnaire, the demographics questionnaire, and the personality item pool (IPIP) 

questionnaire.   

 Students were told that the severe weather scenario was entirely contained in the packets 

in front of them and that all answer responses would be recorded online via a survey collection 

website, SurveyMonkey.com. Participants were also informed that this scenario was intended to 

simulate an entire day, although they would only see eight snapshots. These snapshots were 

referred to as intervals in the study. The scenario packets contain two differently colored pages: 
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white pages contain survey instructions and grey pages contained scenario interval information.  

For each interval, there is an accompanying set of questions. Additional instructions were located 

above and below each group of interval questions on the web-based survey collection site. 

Participants were also informed that each (grey) interval would be followed by an (white) 

instructional page in the scenario packet. The instructional pages would direct them to the web-

based survey and the instructions after each interval question group would direct them back to 

the scenario packet’s next interval. 

 The demographic and personality questionnaires were briefly explained to the 

participants. In particular, participants were aware that these questionnaires were meant to record 

demographic information, identify participants’ previous experience with severe weather, and 

categorize personality tendencies. These questionnaires followed the severe weather scenario 

questionnaire and were completely compiled on the web-based survey (Appendices D and E, 

respectively). This concluded the overview explanation and participants were directed to the 

survey webpage link through SurveyMonkey.com. The survey requires a participant number to 

be entered before the participant can continue. Participants were instructed to use the four-digit 

participant number on their consent form to enter the survey.  

 Signed consent forms were collected after participants completed their consent forms and 

entered their four-digit participant number into the survey website. After each survey session, I 

would organize consent forms by the four-digit participant number. This was used as a reference 

number to keep track of participants in the study. Since the study was located online it was 

important to control who participated in the study and verify all collected responses came from 

the intended research sample. This four-digit reference number was not used to connect 
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participant names with answers, but rather to ensure only valid participant responses were 

analyzed. 

 After participants heard the instructions, read the consent form, and entered their 

participant number into the online survey, participants read through the first third intervals of the 

severe weather scenario.  These first three intervals explained the potential for severe weather 

and set up the scenario (Appendix B3); thus, participants were not asked to answer the set of 

interval questions until the third interval. After the third interval, participants were instructed to 

answer the first set of interval questions (Appendix C1).  After completing the first set of interval 

questions, participants were instructed to view the next slide, which described the next interval in 

the scenario. Essentially, participants read through a scenario interval and then answered a series 

of questions regarding the immediate situation; this was followed by another scenario interval 

describing the developing storm and a set of interval questions.  This pattern was repeated until 

participants finished all eight intervals.  Participants were asked not to skip ahead in the packet 

as I was interested in their decisions at that particular moment in the scenario.  At each interval, 

participants answered the same twelve questions (Appendix C2).  

After participants completed reading the interval scenarios and answering the interval 

questions, they were directed to the demographic and personality questionnaires, which were 

also posted on the online survey site.  Once participants completed these additional questions, 

they saw a screen informing them that they had completed the study and were free to leave.  As 

participants left the computer lab, I thanked them for their participation and provided them with a 

debriefing form (Appendix F). 

Participants were free to complete the study at their own pace. At least one experimenter 

was present during each survey session to ensure all participants were able to begin the study and 
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to help answer questions. Participants were encouraged to work though scenario intervals in their 

intended chronological sequence, but were allowed to navigate through all survey screens by 

clicking on a next or back button at the bottom of the screen. Participants answered all questions 

directly on the computer by clicking answers on multiple-choice or Likert-scale formats and also 

entered numerical values in text boxes. Participants were allowed to change answer responses 

but questions were coded to accept only one answer. The entire survey was intentionally coded 

so each question required an answer before participants could proceed to subsequent pages. 
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IV. Analysis 

 

4.1. Shelter Seeking  

I was interested in examining shelter behavior in the six scenario situations, as such 

participants were asked about their sheltering behavior during each of the six intervals.  To 

determine whether participant choices varied across scenarios, instead of between intervals, I 

decided to consolidate interval answers for each participant into one shelter behavior response.  I 

coded shelter-seeking behavior based on whether participants (a) never took shelter, (b) took 

shelter and stayed in shelter, or (c) took shelter and at some point left shelter (Table 1).   

 
Table 1. Shelter-seeking responses were consolidated into three options by researcher by coding as (a) never took 
shelter, (b) took shelter and stayed in shelter, or (c) took shelter and at some point left shelter. Shelter-seeking 
responses were collected at all six question groups.  

Scenario (A) No Shelter (B) Took Shelter (C) Left Shelter Total 

High Info/Map 0 29 2 31 

High Info/No Map 1 28 2 31 

Med. Info/Map 0 31 0 31 

Med. Info/No Map 0 28 3 31 

Low Info/Map 3 24 4 31 

Low Info/No Map 1 20 10 31 

Total 5 160 21 186 
 

4.1.1. Kruskal Wallis. A Kruskal-Wallis test was used to determine if shelter-seeking 

score varied across the six scenarios: low information/map available, low information/no map 

available, medium information/map available, medium information/no map available, high 

information/map available, and high information/no map available.  Results from the Kruskal-

Wallis test indicate a statistically significant difference between scenarios on shelter-seeking 

behavior, X2(5) = 14.769, p = 0.011.   
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4.1.2. Post hoc analysis. Pairwise comparisons were performed using Dunn’s procedure 

with a Bonferroni correction for multiple comparisons, which acccounted for familywise error.  

Post hoc analysis revealed statistically significant different shelter-seeking behavior between the 

low information/no map (M = 2.29) and medium information/map groups (M = 2.00), p = 0.025.  

A significant difference was also found between low information/no map (M = 2.29) and high 

information/no map (M = 2.03) groups, p = 0.028.  Finally, a significant difference was found 

between the low information/no map (M = 2.29) and the low information/map (M = 2.03) 

groups, p = 0.033 (Table 3). 

 
Table 2. Dunn’s procedure with a Bonferroni correction was performed. Table displays resulting p-values. 
Comparisons of shelter-seeking responses among scenario groups are displayed. There were three significantly 
different (**) scenarios and one marginally different (*) from the low information/no map condition.    

** = signficant (p < 0.05); * = marginal sigificance (p < 0.1)   

 
Low Info 
No Map 

Low Info 
Map 

Med. Info 
No Map 

Med. Info 
Map 

High Info 
No Map 

Low Info/Map    0.033** 
    Med Info/No Map 0.274 1.000 

   Med Info/Map    0.025** 1.000 1.000 
  High Info/No Map    0.028** 1.000 1.000 1.000 

 High Info/Map  0.089* 1.000 1.000 1.000 1.000 
 

4.2. Perceived Danger 

Participants’s perception of danger was collected at all six question intervals. Participants 

were repeatedly (six times) asked whether they currently felt: (a) in no danger at all, (b) slighlty 

in danger, (c) a moderate amount of danger, or (d) in extreme danger. I was interested in 

determining whether information level or map availability was related to participants’ perceived 

danger at the interval level (Table 4).  



 
    

41 
  

 
Table 3. Danger perception responses were collected from participants six times throughout the scenario. Responses 
were coded as (1) in no danger at all, (2) slighlty in danger, (3) a moderate amount of danger, or (4) in extreme 
danger. 
 

 Danger Perception Question Groups  

Scenario 1 2 3 4 5 6 Means 

High Info/Map 2.32 2.45 3.00 3.29 3.52 3.68 3.04 

High Info/No Map 2.13 2.55 3.03 3.32 3.61 3.58 3.04 

Med. Info/Map 2.07 2.61 2.87 3.36 3.55 3.77 3.04 

Med. Info/No Map 1.97 2.58 2.97 3.39 3.71 3.81 3.07 

Low Info/Map 2.19 2.61 2.52 2.77 3.13 3.48 2.79 

Low Info/No Map 2.00 2.57 2.74 2.71 2.71 2.74 2.59 
 

4.2.1. Three-way mixed design ANOVA. As such, a three-way (information X map X 

interval) mixed-design ANOVA was conducted to compare group ratings of perceived danger.  

Between-subjects. 

A main effect of information on perceived danger was found to be significant, F = (2, 

180) = 7.99, p < 0.001.  A Bonferroni test on the pairwise comparisons showed that participants 

with low information (M = 2.69) rated perceived danger lower than individuals with moderate 

information (M = 3.05) and participants with high information (M = 3.04), both at the p < 0.01.  

There was no significant difference in perceived danger rating between participants with a 

moderate amount of information and participants with a high amount of information (Figure 1).  

Within-subjects. 

 Mauchly’s Test of Sphericity indicated that the assumption of sphericity had been 

violated (p < 0.001) as such, the Greenhouse-Geisser corrected degrees of freedom was used to 

interpret the results.   
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An examination of the within-subject results revealed statistically significant interactions 

between information and interval on perceived danger (F (7.51, 675.93) = 10.55, p < 0.001) and 

between map and interval on perceived danger (F (3.76, 675.93) = 3.83, p < 0.01).  More 

importantly, an interaction between information, map availability, and interval on perceived 

danger was also found to be statistically significant, F (7.51, 675.93) = 2.66, p < 0.01. 

 
 

 

Figure 1. Danger perception responses were collected from participants six times throughout the scenario. 
Responses were coded as (1) in no danger at all, (2) slighlty in danger, (3) a moderate amount of danger, or (4) in 
extreme danger. 

    

4.2.2. Two-way ANOVAs. In order to address the significant three-way interaction, two-

way ANOVAs were conducted to examine the influence of information and map availability on 

perceived danger at each interval.   

Interval three and interval four. The results from the two-way ANOVAs for interval one 

and interval two showed no significant main effects (i.e., information, map) or significant 

interactions on perceived danger.   
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Interval five. There was no significant main effect of map or interaction of information 

and map on perceived danger in interval three.  However, results did show a significant main 

effect of information on perceived danger, F (2, 180) = 4.31, p < 0.05, partial n2 = 0.05. A 

Bonferroni test on the pairwise comparisons showed that participants in the low information (M 

= 2.63) group rated the situation less dangerous than participants in the high information (M = 

3.02) group, SE = .137 p < 0.016.   There were no significant difference between the low 

information and medium information groups or between the medium information and high 

information groups.   

Interval six. As in interval three, the main effect of map on perceived danger and the map 

and information interaction on perceived danger were not significant. Similar to interval three, 

the main effect of information on perceived danger was statistically significant, F (2, 180) = 

13.18, p < 0.001, partial n2 = .13. The Bonferroni test on the pairwise comparisons showed that 

participants in the low information (M = 2.74) group rated the situation less dangerous than 

participants in the moderate information (M = 3.37) group (SE = 1.35, p = 0.001) and from 

participants in the high information (M = 3.31) group (SE = 1.35, p = 0.001).  There were no 

significant differences between the low information and medium information groups or between 

the medium information and high information groups. 

Interval seven. Although there was not a significant main effect of map on perceived 

danger (F (1, 180) = 0.27, p = 0.603, partial n2 = 0.002), there was a significant main effect of 

information when participants rated perceived danger, F (2, 180) = 19.30, p < 0.001, partial n2 = 

0.177.  However, this effect was explained by a significant interaction of information and map on 

perceived danger, F (2, 180) = 3.17, p < 0.05, partial n2 = 0.034.  The simple effects for the 

interaction were analyzed and a Bonferroni test on the pairwise comparisons showed that 
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participants who received low information and no map (M = 2.71) rated the situation as less 

dangerous than participants who received a moderate amount of information and no map (M = 

3.71), SE = 0.174, p = 0.001.   

Additionally, a simple main effect of information on perceived danger was found for the 

map condition, F (2, 90) = 3.24, p < 0.05, partial n2 = 0.067.  A Bonferroni test on the pairwise 

comparisons showed that participants who received low information and a map (M = 3.13) rated 

the situation marginally less dangerous than participants who received a moderate amount of 

information and a map (M = 3.55), SE = 0.183, p = 0.074. 

Interval eight. There was a main effect of information on perceived danger (F (2,180) = 

15.12, p < 0.001, partial n2 = 0.144) and a main effect of map on perceived danger, (F (1, 180) = 

6.35, p < 0.01, partial n2= 0.034) in the sixth interval.  Both effects, however, were explained by 

a significant interaction between map and information on perceived danger, F (2, 180) = 4.99, p 

< 0.01, partial n2 = 0.053.  A Bonferroni test on the pairwise comparisons showed that 

participants who received low information and no map (M = 2.77) rated the situation as less 

dangerous than individuals in either the moderate amount of information/no map condition (M = 

3.81), SE = 0.189, p = 0.001) or the high information/no map condition (M = 3.58, SE = .189, p 

= 0.001). There was no significant difference between participant ratings of the danger between 

the moderate information/no map and the high information/no map. Although not significant, 

there is a trend in that the means for medium information appeared to be higher than both low 

information and high information in most of the intervals. 

4.3. Storm Distance 

Participants were asked to estimate the distance of the storm/tornado from their current 

location in minutes during the last five intervals (question groups two through six) (Table 5 and 
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Figure 2).  This data was used to examine the accuracy of participants’ storm distance estimates.  

In order to do so, the actual distance of the storm was determined by referencing the actual 

Tuscaloosa tornado and its arrival at similar landmarks that were used to create each of the final 

five hypothetical tornado scenario intervals. Student estimates were subtracted from the actual 

distance for each of the five intervals thus creating participant residual scores at each interval 

(Tabel 6 and Figure 3).  

 
Table 4. Storm distance estimates were collected at the final five question groups. These responses were recorded in 
minutes.  

 

Scenario 2 3 4 5 6 Means 

High Info/Map 24.71 15.13 8.74 3.97 1.65 10.84 

High Info/No Map 22.94 15.9 7.29 3.16 1.32 10.12 
Med. Info/Map 26.94 20.52 9.49 4.94 2.01 12.79 
Med. Info/No Map 22.90 15.26 8.42 4.29 2.19 10.61 
Low Info/Map 27.55 19.58 12.65 7.19 1.61 13.63 
Low Info/ No Map 17.74 11.00 9.00 7.065 6.65 10.29 

 

Table 5. Storm distance residuals were created from differences between estimated responses and known tornado 
location.These results are shown in minutes.  

 

Scenario 2 3 4 5 6 Means 

High Info/Map 4.87 9.99 3.94 2.9 -0.55 4.23 
High Info/No Map 6.65 9.12 5.9 3.71 -0.23 5.03 
Med. Info/Map 2.65 4.5 3.19 1.94 -0.98 2.26 
Med. Info/No Map 6.68 9.76 4.26 2.58 -1.10 4.44 
Low Info/Map 2.03 5.44 0.04 -0.32 -0.07 1.42 

Low Info/ No Map 11.84 14.02 3.68 -0.19 -5.55 4.76 
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Figure 2. Estimated distance from tornado responses were collected at the final five question groups only. These 
responses represent the distance that participants believed the tornado was from their location in this hypothetical 
scenario. Responses were collected in minutes.  

 
 

 

 
 

 

Figure 3. To compare response accuracy to the tornado’s actual proximity, residuals were created from the 
estimated damage responses collected at the final five question groups. The closer a residual value is to zero, the 
more accurate the corresponding response was.  
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4.3.1. Three-way mixed design ANOVA. As such, a three-way (information X map X 

interval) mixed-design ANOVA was conducted to compare group ratings of perceived storm 

distance. Scenario groups were reduced to 30 participants (n = 30 per cell instead of 31) for this 

question because of data collection error related to this question allowing students to enter a 

numberical value. 

Between-subjects. 

A main effect of map on storm distance residuals was found to be significant, F (1, 180) 

= 6.519, p < 0.05, partial n2 = .023.  A comparison of group means showed that participants with 

an available map (M = 2.597) rated storm distance more accurately than individuals with no map 

available (M = 4.575), SE = .975, p = 0.044 level.  There was no significant main effect of 

information on storm distance residuals; moreover, there was no significant information and map 

interaction on storm distance residuals.   

Within-subjects. Mauchly’s Test of Sphericity indicated that the assumption of sphericity 

had been violated, X2(9) = 640.998, p = 0.001; as such, the Greenhouse-Geisser corrected 

degrees of freedom was used to interpret the results.   

An examination of the within-subject results revealed no significance in the interaction 

between information and interval on storm distance.  However, both the interaction between map 

and interval on storm distance residuals (F (1.72, 298.53) = 6.52, p < 0.01, partial n2 = 0.036) 

and between information, map availability, and interval on storm distance residual were found to 

be statistically significant (F (3.43, 298.53) = 2.96, p < 0.05, partial n2 = 0.033) 

4.3.2. Two-way ANOVAs. In order to address the significant three-way interaction, two-

way ANOVAs were conducted to examine the influence of information and map availability on 

storm distance residuals at each interval.  
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Interval two. The main effect of information and the interaction between information and 

map on storm distance were non-significant.  However, a main effect of map on storm distance 

was statistically significant, F (1, 180) = 5.05, p < 0.05, partial n2 = .027.  An examination of the 

means revealed that participants who viewed a map (M = 3.18) more accurately rated the storm’s 

distance than participants who did not view a map (M = 8.39), SE = 2.315, p = .026.  

Interval three. There was no main effect of information on storm distance in the third 

interval.  There was a significant main effect of map on storm distance, F (1, 174) = 6.94, p < 

0.01, partial n2 = 0.038.  Additionally, a significant interaction between information and map on 

storm distance was found, F (2, 174) = 3.11, p < 0.05, n2 = 0.035.  The results from a Bonferroni 

test on the pairwise comparisons showed that participants in the low information/map condition 

(M = 5.44) rated the storm distance more accurately than individuals in the low information 

condition that did not receive a map (M = 14.02), SE = 2.57, p = 0.001.  The pairwise 

comparisons also showed that participants in the medium information/map condition (M = 4.50) 

rated the storm distance more accurately than participants in the medium information/no map 

condition (M = 9.76), SE = 2.68, p = 0.054. Individuals in the high information group estimated 

the storm’s distance similarly, regardless of whether they had a map or not.   

Interval four. Although there was no significant interaction between information and 

map on storm distance in the fourth interval, there was a significant main effect of information 

(F (2, 180) = 3.16, p < 0.05, partial n2 = 0.034) and a significant main effect of map on storm 

distance (F (1, 180) = 4.89, p < 0.05, partial n2 = 0.026).  An examination of the Bonferroni tests 

of pairwise comparisons reveal that participants in the low information condition (M = 1.857) 

rated the storm’s distance more accurately than participants in the high information condition (M 

= 4.664), SE = 1.137, p = 0.044. Additionally, participants who viewed a map (M = 2.39) rated 
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the storm’s distance more accurately than individuals in the no map condition (M = 4.44), SE = 

.929, p = 0.028.  

Interval five. The main effect of map on storm distance and the interaction between 

information and map on storm distance were not significant in the fifth interval.  There was a 

significant main effect of information on storm distance, F (2, 180) = 14.43, p < 0.001, partial n2 

= 0.138.  A Bonferroni test of the pairwise comparisons revealed that participants in the low 

information condition (M = -.249) rated the storm more accurately than individuals in both the 

medium information condition (M = 2.257, SE = .682, p = 0.001) and the high information 

condition (M = 3.305, SE = .682, p = 0.001).  There was no significant difference between 

ratings of storm distance for individuals in the medium information and the high information 

condition.  

Interval six. The main effect of information on storm distance (F (2, 180) = 8.99, p < 

0.001, partial n2 = 0.091) and the main effect of map on storm distance (F (1, 180) = 13.36, p < 

0.001, partial n2 = 0.069) were both significant.  Moreover, there was a significant interaction 

between information and map on storm distance, F (2, 180) = 14.94, p < 0.001, n2 = 0.142.  

Pairwise comparisons, with a Bonferroni correction, showed that participants in the low 

information condition that viewed a map (M = -.071) rated the storm’s distance more accurately 

than individuals in the low information/no map condition (M = -5.56), SE = 2.57, p = 0.001.   

Interestingly, participants in the who viewed a moderate or high amount of information rated the 

storm’s distance similarly, regardless of whether they viewed a map or not.   
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V. Discussion 

 

4.1. Shelter Seeking  

The first research question from this study was whether shelter-seeking responses differ 

across each tornado scenario’s combination of written and visual warning information. I 

hypothesized that shelter responses would vary according to the amount of information received. 

Specifically, individuals with more written and visual information would be more likely to seek 

shelter than individuals with less written and no visual information. Furthermore, individuals 

with more written and visual information would be less likely to leave shelter, after is has been 

taken, than individuals with less written and no visual information.  

Regarding my hypothesis that shelter responses would vary according to the amount of 

information received, the results indicate a significant difference between scenarios. Using a 

Kruskal-Wallis test to determine if a variation of responses across the six scenarios, I found a 

statistically significant difference (p = 0.011).  

To address both subsections of my hypothesis, pairwise comparisons were performed. To 

correct for familywise error, Dunn’s procedure with a Bonferroni correction for multiple 

comparisons was performed (Table 3). Post hoc analysis revealed statistically significant 

different shelter-seeking behavior between the low information/no map (M = 2.29) and medium 

information/map groups (M = 2.00), p = 0.025.  A significant difference was also found between 

low information/no map (M = 2.29) and high information/no map (M = 2.03) groups, p = 0.028.  

Finally, a significant difference was found between the low information/no map (M = 2.29) and 

the low information/map (M = 2.03) groups, p = 0.033. 
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Looking deeper into these significantly different comparisons I examined the distribution 

of answers within each of these groups to better understand how each condition’s responses 

varied (Table 1). In the low information/no map condition only twenty individuals took shelter 

and stayed there, while ten responded that they left shelter after taking it at some point. In the 

medium information/map condition twenty-eight individuals took shelter and stayed there, while 

only three responded they left shelter after taking it at some point. In the high information/no 

map condition twenty-eight individuals took shelter and stayed there, two responded that they 

left shelter after taking it, and one never took shelter. In the low information/map condition 

twenty-four took shelter and stayed there, four reported leaving shelter after taking it, and three 

never took shelter. The low information conditions (map and no map) had the least amount of 

people taking shelter, and although these two conditions were significantly different from one 

another, the low information/map condition was not significanlty different than the medium 

information/map condition, where all thirty-one individuals took shelter.  

These findings suggest fewer people sheltered, and remained in shelter, in the low 

information condition than the medium and high information. This supports my hypothesis that 

more people would shelter, and remain sheltered, when given more information. These results do 

not show a significant difference between high and medium information conditions, but a 

difference in the lowest combination of information (low information/map) and three other 

conditions (one scenario in each information level). These findings also suggest that significantly 

more people left shelter in the low information/no map condition than in other information 

levels. While there was not a significant difference between the low information/map condition 

and all other scenarios with Dunn’s procedure with a Bonferroin correction, we did find a 

difference with one scenario at each information level.  
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Human behavior research has produced evidence to suggest intended behavior responses 

can be used to reasonably predict actual behavior (Fishbein, 2008; Sheeran, 2002; Whitehead, 

2005; Wogalter et al., 2002; Ash et al., 2013). While Webb and Sheeran (2006) found large 

changes in intended action to only lead to small changes in actual behavior, intended actions are 

still believed to have some predictive value. Unfortuantly, it is unknown how accurate shelter-

seeking intended actions in hypothetical tornado scenarios may translate to actual tornado 

warning situations (Ash et al., 2013; Meyer et al., 2013). While I did not find uniform response 

differences as information increased, I did find the lowest shelter responses to be in the lowest 

information condition. In the low information/map condition 32.25% of participants responded 

that they had left their shelter location. This finding shows that the lowest amount of 

information, low information/no map, resulted in the highest amount of participants leaving 

sheltered locations. While there was no significant difference between medium and high 

information groups, there was a significant difference between the most basic level of 

information and some information. Even within the low information/map condition 77.42% of 

individuals took, and remained in, shelter compared to the 65.52% in the low information/no 

map condition. This suggests that individuals receiving any warning information, other than a 

warning siren, may decide to shelter more often. This is important to note in the context of 

tornado warnings and warning systems because any information is better than minimal 

information. 

4.2. Perceived Danger 

The second research question was whether individuals percieve the tornado scenario as 

more dangerous as they are provided with higher levels of information. I hypothesized that 

participants’ perception of danger would vary accroding to the amount of information received. 
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Specifically, individuals with more written information would perceive a greater amount of 

danger than individuals with less written information acrouss the six intervals. Furthermore, 

individuals with visual information would perceive a greater amount of danger than indivudials 

with no visual information across the six intervals.  

Regarding my hypothesis about written information specifically, the findings suggest that 

individuals receiving low information perceived the event as less dangerous than those receiving 

medium and high levels of information. The overall mean responses of medium (M = 3.05) and 

high (M=3.04) information conditions are not significantly different from each other (p = 1.0). It 

is important to remember that these responses increase in relation to how the participant 

currently felt during the scenario: (1) in no danger at all, (2) slightly in danger, (3) a moderate 

amount of danger or (4) in extreme danger (Table 4).  

A main effect of information on perceived danger was found to be significant at the 

fourth, fifth, and sixth question groups (p < 0.001). At the fourth question group interval, we 

again see there was a significant difference between the low information group (M = 2.74) and 

medium information group (M = 3.37), also the low information group (M = 2.74) and high 

information group (M = 3.31). Not only are the medium and high information groups not 

significantly different from each other at this point, interestingly the medium information 

response is slightly larger than the high information; this was observed more than once.  

At the fifth question group, the file was split by map availability and a one-way ANOVA 

was conducted between information and perceived danger. I then found that response means in 

the no map pairwise comparison for low information (M = 2.71) to be significantly different 

from both medium information (M = 3.71; p = .001) and high information (M = 3.61; p = 0.001). 

Once again, I found that the high information group perceived the danger slightly less than the 
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medium group, although both perceived the event significantly more dangerous than the low 

information group. In the map pairwise comparisons, the low information group (M = 3.13) was 

only marginally significantly different than medium information (M = 3.55; p = 0.074). Again, 

the high information group perceived the event slightly less dangerous (M = 3.52) than the 

medium group at the fifth question group. In both the map and no map pairwise comparisons I 

noticed the trend of the high information group answering slightly lower than the medium 

information group.  

Another one-way ANOVA between information on perceived danger was conducted at 

question group six. No main effect of information on percieved danger was found in the map-

provided group. In the no map group, I found a main effect of information on percieved danger 

and that low information responses (M = 2.77) were significantly differenent from medium 

information (M = 3.81; p = 0.001) and high information (M = 3.58; p = 0.001). There was no 

significant difference between high and medium responses (p = 0.706), although high 

information responses perceived the event as slighltly less dangerous than medium information 

responses.  

While the overall hypothesis can be supported by these findings, both aspects of the 

hypothesis cannot be accepted. The results do not support the hypothesis that individuals with 

more written information would perceive a greater amount of danger than individuals with less 

written information acrouss the six intervals. The results do, however, suggest that indivuals with 

a medium to high amount of information perceive a tornado event as more dangerous than 

individuals with limited and basic information. The results cannot fully support the hypothesis 

that, individuals with visual information would perceive a greater amount of danger than 

indivudials with no visual information across the six intervals. The influence of visual 
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information only appeared in the low information groups. Participants provided with high and 

medium amounts of warning information were not influenced as strongly by the presence of a 

map than those with the most basic forms of information.  

Information types and levels most certainly influenced responses but not in a uniform 

manner. Visual information was most influential at the low level of information only. The most 

interesting result was not only that there was no significant difference high and medium 

information group responses in the later question groups, but that when the hypothetical tornado 

was approaching campus the high level of information participants responses shows that they 

perceived the event as less dangerous than the medium information group. Although this may 

seem concerning, it actually should be comforting for the National Weather Service, 

meterologists, and local emergency management officals. In this study, warning the public with 

as much information as possible did not illicit responses greater than a moderate amount of 

information. While the predictive abilities of intended actions are not proportional to intended 

behavior, actual tornado warnings with moderate amounts of information may be more ideal and 

realisticly possibly than providing high, or abundant, amounts of information. Addressing the 

initial hypothesis, moderate, or more, information influenced higher perceptions of danger than 

basic information, although the specific components of this hypothesis were only conditionally 

accurate 

4.3. Storm Distance 

The third research question in this study was whether participant perceptions of the 

tornado’s location from their location vary across written information levels, and if responses 

become more accurate when visual information is available. I hypothesized that participants’ 

estimated torndado distance responses would vary according to the amount of information 
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received. Specifically, individuals with more written information would provide a more accurate 

estimate of tornado distance across intervals. Furthermore, Individuals with visual information 

would provide a more accurate estimate of tornado distance across intervals.  

Regarding my hypotheses, the results suggest that information level and map availability 

are both influential on accuracy of storm distance estimation at different intervals. After the 

fourth interval (question group two), no main effect of information on storm distance was found 

(p = 0.725) but a main effect of map on storm distance (p = 0.05) was. Using pairwise 

comparisons I found that individuals in the map condition rated the storm distance significantly 

different (M = 3.18) than those in the no map condition (M = 8.39; p = 0.026). At this interval 

there was no interaction between information and map on storm distance (p = 0.346). It is 

important to understand that these mean values are residuals created form the response difference 

from the actual tornado’s distance in minutes to campus; the closer a mean value is to zero, the 

more accurate a group responsed. At this interval, individuals in the map condition answered 

more accurately than those without a map.  

In the fifth interval (question group three), no main effect of information level on storm 

distance (p = 0.299) was observed, but a main effect of map availability on storm distance was 

found (p < 0.01). There was a significant interaction between information level and map 

availability on storm distance response accuracy (p < 0.05). The file was split by information 

level and a one-way ANOVA was conducted on map availability and storm distance. Among 

low information responses, there was a significant effect of map availability on storm distance (p 

< 0.001). Using pairwise comparisons, I found individuals in the map condition (M = 5.44) rated 

the storm distance significantly more accurate than individuals in the no map condition (M = 

14.02; p = 0.001). Among medium information responses, there was a marginally significant 



 
    

57 
  

effect of map on storm distance (p = 0.054). Using pairwise comparisons, I found individuals in 

the map condition rated the storm distance (M = 4.50) rated the storm distance marginally 

significantly more accurate than indivudals in the no map condition (M = 9.76; p = 0.054). 

Among high information responses, I found no significant effect of map on storm distance (p = 

0.77). Individuals in the map condition (M = 9.89) responded just as accurately as those in the no 

map condition (M = 9.12). At this interval we found map availability to signifcantly effect 

accuracy in the low information group, marginally effect accuracy in the medium information 

group, and have no effect in the high information group.  

In the sixth interval (question group four), there was a main effect of information on 

storm distance (p = 0.05).  Using pairwise comparisons, I found that individuals in the low 

information condition (M = 1.86) reported storm distance significantly more accurately than 

individuals in the high information condition (M = 4.46; p = 0.044). There was no significant 

difference in the accuracy of responses from individuals in the medium information (M = 3.73) 

and the low information conditions (M = 1.86; p = 0.305) or the high information condition (M = 

4.66; p = 1.00). Also in this interval, there was a main effect of map on storm distance (p < 0.05). 

Using pairwise comparisons, I found that individuals in the map condition (M = 2.39) reported 

the storm distance marginally more accurately than individuals in the no map condition (M = 

4.44; p = 0.028). There was no interaction between information and map on storm distance at 

this interval (p = 0.474). At this interval I found both information level and map availability to 

influence storm distance response accuracy. Responses were more accurate in the map condition 

than in the no map condition, which is what is expected, but interestingly, low information 

responses were more accurate than high information responses. At this interval the findings were 

opposite of our information level hypothesis, but supported our map availabilty hypothesis.  
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 In the seventh interval (question group five), there was a main effect of information level 

on storm distance accuracy (p < .001). Using pairwise comparisons, I found individuals in the 

low information condition (M = -.249) reported storm distance significantly more accurately than 

individuals in the medium information (M = 2.257; p = .682) and the high information condition 

(M = 3.305; p = .001). There was no significant difference in reported storm distance accuracy 

between the medium and high information conditions (p = 1.00). There was no significant main 

effect of map availabilty on storm distance (p = 0.345) or a significant relationship between 

information level and map availability on storm distance (p = 0.874) at this interval. For the 

second consecutive interval I found individuals in the low information condition responded more 

accurately about the storms distance than individuals in the medium and high information 

conditions. The results at this interval also are contradictory to my information level hypothesis.  

 In the eight and final interval (question group six), there was a main effect of information 

level on storm distance accuracy (p < 0.001) and a main effect of map availability on storm 

distance accuracy (p < 0.001). There was also a significant interaction between information level 

and map availabililty on storm distance (p < 0.001). The dataset was split by information and a 

one-way ANOVA was conducted on map availability and storm distance accuracy. Among low 

information condition responses a significant effect of map on storm distance was found (p < 

0.001). Using pairwise comparisons, I found that indivudials in the map condition (M = -.071) 

reported storm distance significantly more accurately than individuals in the no map condition 

(M = -5.56; p = 0.001). Among medium information condition responses there was no significant 

effect of map availability on storm distance response accuracy. Thus, indiviudals in the map 

condition (M = -1.104) did not report storm distance significanlty more accurately than 

individuals in the no map condition (M = -.975; p = 0.818). Among high information condition 
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responses there was no significant effect of map availability on storm distance response 

accuracy. Thus, indiviudals in the map condition (M = -.555) did not report storm distance 

significanlty more accurately than individuals in the no map condition (M = -.233; p = 0.356). 

For this interval I found information level to be influential, but in the low information condition 

so was map availability. Within the low information responses, those within the map condition 

were significantly more accurate than those in the no map condition. Interestingly, although it is 

not a significant difference I observed that the low information map condition was more accurate 

than either of the high information (map and no map) conditions. My map availability hypothesis 

is supported by the findings in the low information condition, although these findings only raise 

more questions. 

 I was surprised to discover the trend of low information responses being more accurate 

than those of medium and high information responses on more than one instance (question 

groups 4, 5, and 6). I am unable to fully explain or understand this finding, although my best 

attempt was developed when examining the overall estimated distance responses before the 

residuals were created (Table 5 and Figure 6). Examining the low information no map condition 

I developed the theory that these individuals were aware that a tornado was in their general area, 

but were unsure about how close it acutally was to them. In my best attempt to explain these 

results I think this may have been the case because in this scenario the mean response was only 

6.65 minutes at the final interval. Whereas in the low information map condition, individuals’s 

mean response was 1.61 minutes at the same point. I believe it is possible that participants in the 

low information no map condition responded conservatively throughout the entire scenario 

because they were not provided enough information to realize exactly what was happening 

around them. As for the low information map condition, I am still unable to fully understand how 
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they repeatedly responded the most accurately of all scenario conditions. I best understand this 

result as map availability becoming most influential when written information levels are lower. 

Map availability was not consistently influential throughout all other scenario conditions, but at 

the most serious moments in the scenario; participants were able to report storm distance 

accurately with a map, even if they did not have access to much written information.  

 As for my hypotheses, estimated storm responses most certainly varied according to the 

amount of information received, but the accuracy related to these information conditions was not 

as predicted. The two specific components of my hypothesis work against one other. My 

hypothesis that individuals with visual information will provide a more accurate estimate of 

tornado distance was supported in the low information condition. The finding in the low 

information condition does not allow for accepting the other subsection of my hypothesis that 

individuals with more written information will provide a more accurate estimate. Thus, I must 

reject the hypothesis that higher levels of written information will produce more accurate storm 

distance estimates. 
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VI. Conclusion 

 

The goal of this study was to contribute to the overall body of tornado victim behavior 

and perception literature by attempting to understand how different types and amounts of 

obtainable information may enable an individual to fully process the severity of what is taking 

place and act accordingly. Specifically, this paper examined the effects of written and visual 

information on individuals’ selection of protective action, perception of danger, and estimation 

of storm distance from their location. Although studies have examined how visual graphics are 

perceived (Ash et al., 2013) and the effectiveness and also how students respons following a 

tornado event (Sherman-Morris, 2010), little to no research has been done on the effect warning 

information level and type on these types of decisions and responses in a hypothetical tornado 

scenario. It was discussed that the decision-making process during stressful events, such as 

tornadoes, was complex. My findings seem to further support this idea. I found that written 

information was influential on shelter-seeking decisions and danger perception in some 

scenarios. I also found mixed influences of written information and map availability regarding 

storm distance estimates. When a low level of written information was provided, map 

availability became influential. Although the finding was not significant, in several instances I 

noticed high information responses rated perception of danger lower than medium information 

responses. The absence of a significant difference shows that moderate amounts of warning 

information were just as efficient in relaying the event’s seriousness as high, or maximum, 

information.  

The sample population and data collection procedure limit the findings of this study. The 

participant pool was heavy weighted by geography students; future related studies might 
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consider diversifying their participant recruitment. Lasting effects of the 2011 tornado season 

could bias the results of any similar tornado-related study in the southeast United States for 

several more years. Data collection methods in future research may consider isolating 

participants during the study to eliminate potential interactions between students observing 

different scenarios. Nevertheless, this research only begins to understand the relationship of 

warning information on decision-making and tornado perception. Since there was little 

difference between medium and high information responses, future studies should consider 

creating a greater difference between these two levels of information. It would be beneficial to 

discover the level of information at which a decline in responses and perception occur. The 

information gathered from this study and in future, refined studies could be used to assist 

agencies and officials issuing warnings in concise, efficient, action-provoking warnings. The 

National Weather Service, meteorologists, and emergency management officals will be 

empowered with ability to custom tailor tornado warnings as we better understand how humans 

process information, perceive risk, and make decisions. More of this type of research is needed 

because our understanding of risk perception and the cognitive decision-making process is the 

slowest progressing aspect of tornado warning systems.  
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Appendix A1 

Consent Form 

 

You are invited to participate in a research project entitled “Examining Severe Weather 
Behavior.” The person responsible for this study is Dr. David Brommer of the Department of 
Geography, who can be reached at (256) 765-6307. You can also contact Dr. Gabriela Carrasco, 
Dr. Jonathan Fleming, or Martin Leavitt who will be responsible for carrying out the procedures 
of the study at ReserachUNA@gmail.com. 
 The purpose of this project is to examine the impact of warning information during a 
severe weather event. If you decide to participate in this study you will be asked to view a 
scenario of severe weather approaching your location. During the scenario, you will be asked to 
evaluate the situation at multiple intervals. The experimenter does not foresee any risks to you 
that might result from participation in this research; however you may withdraw from the 
experiment at any time without penalty. The total duration of the study will be between 30 and 
45 minutes. Depending upon your instructor’s’ policy, students may be awarded credit for 
participating in this study.   
 Only Dr. David Brommer, Dr. Gabriela Carrasco, Dr. Jonathan Fleming, and Martin 
Leavitt will have access to your data. However, all data associated with this study will remain 
strictly confidential and anonymous. Neither your name nor any identifiable information will be 
linked to your answers at any time.  
 If you have any questions during the study, please feel free to approach the research 
assistant for help. If you have any questions before or after the study has completed, please feel 
free to contact Dr. David Brommer, who will answer any questions you have about the study. 
You can contact Dr. David Brommer at dmbrommer@una.edu or (256) 765-6307. You may also 
contact the Human Subject’s committee by calling (256) 765-4523 and speaking to Ms. Lynda 
Coates, the administrative assistant for UNA’s Office of Sponsored Projects.   
By signing below you acknowledge that you have read, understood, agreed to the information in 
this form.   
 

□ I agree I am 19 years of age or older. 
 

Please select one of the following: 
 
□ Yes, I accept these terms and wish to participate in this study. 
□ No, I do not wish to participate at this time. 

Print Full Name: _________________________________________________ 

Sign Full Name:  _________________________________________________ 

Date: _____________________________ 
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Appendix A2 

Directions and Procedures  

 

You will be presented with a severe weather scenario.  
This scenario is divided into 8 intervals.   

 
You will be asked to answer questions regarding the situation for intervals 1-3 combined. 

Intervals 4,5,6,7, and 8 will have separate groups of questions. 
 

All survey questions will be recorded on SurveyMonkey.com  
  

After you complete the slideshow and interval questions, additional demographic questions will 
be asked on Survey Monkey.  

 
Please read each page carefully before continuing to the next slide. 

 
You have been provided a scenario packet, which contains all scenario information and survey 

instructions. 
You will be prompted when to use the survey website and when to return to the scenario packet. 

 
Instructions are on WHITE SLIDES and Scenario Information on COLORED SLIDES  

Answer all questions to the best of your ability.  Keep in mind that your responses in the study 
will remain anonymous and confidential.  

 
If you have any questions please contact a research assistant for help.   
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Appendix B1 

Factoral Design – Six Hypothetical Scenarios 

 

Map 
Availability 

 

Written Information Level 

 High 
Information 

Moderate 
Information 

Low 
Information 

Map 
High Information  

with Map 
(A) 

Moderate Information  
with Map 

(C) 

Low Information  
with Map 

(E) 

No Map 
High Information 

without Map 
(B) 

Moderate Information  
without Map 

(D) 

Low Information 
without Map 

(F) 
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Appendix B3 

Written Warning Information Components for Intervals One through Three 

 

Pre-Tornado Intervals 
All Information Levels 
 
1) 8:00a.m. 

• For the 3rd continuous day, The National Weather Service (NWS) Storm Prediction 
Center has stated there is a “moderate risk” of severe weather across AL, MS, TN. 

• For the 2nd continuous day, The NWS Storm Prediction Center has stated there is a “high 
risk” of severe weather.  

• The NWS Storm Prediction Center has issued a Severe Thunderstorm Watch for portions 
of AL, TN, and MS.  

o The NWS has stated “…This Is A Particularly Dangerous Situation…” 
 

2) 12:00p.m. 
• The Huntsville NWS has issued a tornado watch for the state of Alabama. 

o The NWS has again stated “…This Is A Particularly Dangerous Situation…”  
• The Huntsville NWS has indicated that the probability for significant weather is greater 

than 95%. 
 

3) 3:30p.m. 
• The University of North Alabama has issued a tornado watch for campus. 

o This watch has been issued via Lion Alert 
o Lion Alert watch will last until 4:45p.m. 

• According to the Lion Alert text, classes have not been suspended 
o Your next class is scheduled for 5:00p. 
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Appendix B3 

Written Warning Information Components for Intervals Four Through Eight 

 
 

Tornado Intervals  
* = Low Information 
**  = Moderate Information (Includes Low Information) 
***  = High Information (Includes Low and Moderate Information) 
 
4) 4:43p.m. 

* A tornado siren has started sounding, you can hear it from where you are in Wesleyan 
Hall. 

** TV/Radio: “A Tornado warning has been issued for Lauderdale county including 
Sheffield, Tuscumbia, Muscle Shoals, and Florence, AL.  A tornado warning has been issued 
for a severe storm we’re tracking south of Cherokee.  This storm has the potential to produce 
high winds, damaging hail, and tornado activity.” 

** UNA Lion Alert: “Tornado Warning has been issued for Lauderdale county, including 
Florence, AL.  University officials are monitoring the situation.  Stay inside and monitor the 
weather.”  

*** TV/Radio: “We are getting reports that there are serious gusts of wind associated with 
this storm.  If you are in or near Cherokee, AL we strongly suggest you stay inside and keep 
watching the news.” 

 

5) 4:47p.m. 

* The tornado siren continues to sound  

** TV/Radio: “A tornado has touched down south of Cherokee, AL.  Again, a tornado has 
been spotted 10 miles south of Cherokee, moving northeast at about 50 miles per hour. If 
you are in or near the path of this tornado we suggest you take cover immediately.” 

** UNA Lion Alert: “A tornado has been spotted southwest of Florence in Cherokee, AL.  
UNA classes have been cancelled for the rest of the day.  Stay inside and prepare to take 
cover.  If you are on campus, do not leave campus.  Prepare to take cover in one of UNA’s 
designated shelter areas.  A Tornado Warning remains in effect for Florence.” 

*** TV/Radio: “Reports are coming in that a tornado has touched down south of Cherokee, 
AL. There are reports of downed power lines and damage to buildings in the Cherokee area.  
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This storm is producing damaging winds, large nickel-sized hail, and heavy rain.  This is a 
strong storm.  
If you are in or around the path of this tornado get in doors immediately.  If you are indoors, 
do not attempt to go outside.  Take shelter in a basement, a hallway, or the bathtub of a 
bathroom.  Stay away from windows and doors.” 

 

6) 5:08p.m. 

* The tornado siren has sounded again 

** TV/Radio: “The tornado that touched down near Cherokee, AL is approaching the 
Tennessee River near Tuscumbia and is approaching the quad cities quickly.  Florence, AL 
is in the direct path of this tornado.  The tornado is expected to be within city limits in a few 
minutes. People in Tuscumbia, Sheffield, Muscle Shoals and especially Florence should 
take shelter now.” 

** UNA Lion Alert: “A tornado has been spotted 15 miles from campus moving towards 
campus.  Take shelter now.  If you are on campus, do not attempt to leave campus.  Take 
cover immediately in one of UNA’s designated shelters.  All UNA classes on both 
campuses have been cancelled for the remainder of the day.” 

*** TV/Radio: “A tornado continues to move from Cherokee towards the quad cities.  
Reports of downed power lines, uprooted trees, and damage to vehicles and buildings are 
coming in from those people in the path of the tornado.  
If you are in or around the path of this tornado get in doors immediately.  If you are indoors, 
do not attempt to go outside.  Take shelter in a basement, a hallway, or the bathtub of a 
bathroom.  Stay away from windows and doors.”   

 
7) 5:10p.m. 

* The tornado siren continues to sound  

** TV/Radio: “Reports indicate that the tornado is on the outskirts of Florence city limits.  
It has crossed the Tennessee River near Lauderdale County Rd 204 and is moving directly 
towards downtown Florence, AL.  If you are in Florence, AL or the surrounding area take 
cover immediately.  We expect the tornado to make impact in Florence within minutes.” 

** UNA Lion Alert: “A tornado is approaching Florence, AL.  Downtown Florence and 
UNA’s main campus is in the tornado’s direct path. If you are on UNA’s main campus seek 
shelter on campus immediately.  Do not leave campus.  Do not attempt to come on campus.” 

*** TV/Radio: “Downtown Florence, AL, Eliza Coffee Memorial Hospital, and UNA are 
in the direct path of the tornado.  Reports of wind gusts up to 60(?) miles per hour have been 
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associated with this tornado.  Serious damage to buildings and vehicles has been reported.  
There are reports of downed power lines and uprooted trees throughout this area.   
If you are in or around the path of this tornado get in doors immediately.  If you are indoors, 
do not attempt to go outside.  Take shelter in a basement, a hallway, or the bathtub of a 
bathroom.  Stay away from windows and doors.” 

 
8) 5:13p.m. 

* The tornado siren continues to sound 

** TV/Radio: “Reports are that the tornado is now in downtown Florence.  It has just 
passed Eliza Coffee Memorial Hospital and continues to move in a northwestern direction.  
It is expected to hit UNA’s main campus.  Anyone in or near downtown Florence or UNA 
campus, should be take shelter now.” 

** UNA Lion Alert: “Take shelter immediately.  UNA’s main campus is directly in the 
path of a tornado.  Stay away from windows and doors and move to the bottom floor of a 
building immediately.  Do not go outside. You will be alerted when it is safe to stop 
sheltering via UNA Lion Alert” 

*** TV/Radio: “Reports of damage around McFarland Park indicate that this tornado has 
the potential to do serious damage.  Trees have been uprooted, vehicles and boats have been 
damaged by large debris, and building structures have partially or fully collapsed. Do not go 
outside.  The tornado, and the storm associated with it, is still moving through Florence.  It 
is not safe to be outside.  If you have not done so, please take shelter immediately. Take 
shelter in a basement, a hallway, or the bathtub of a bathroom.  Stay away from windows 
and doors” 
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Appendix B4 

Tornado Scenario Map  
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Appendix C1 

Question Set following Interval Three 

 

Directions: Please rate the following statements about you, your personality, or your behavior 
using the following scale. 
 
         
 

Strongly Disagree Disagree      Neutral   Agree      Strongly Agree 
 
 
1) I feel it is safe to leave Wesleyan Hall. 
2) I plan to continue my daily activities unchanged. 
3) It is safe to be outside in this weather. 
4) I believe the weather at this moment is serious. 
5) I plan to monitor the weather. 
6) I believe Wesleyan Hall is a safe place to be right now. 
7) It is safe to drive in this weather. 
8) I plan to seek additional information, about the weather situation. 
9) I believe the weather information is accurate.  
 
 
Directions: Please choose the most accurate response for the following questoins. 
 
10) At this moment __________. 

a. I do not plan to seek shelter 
b. I plan to seek shelter 
c. I have already sough shelter and plan on staying sheltered 
d. I have already sought shelter and plan on leaving the sheltered area soon 

 
 

11) I currently feel __________.  
a. In no danger at all 
b. Slightly in danger 
c. A moderate amount of danger 
d. In extreme danger 
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Appendix C2 

Question Set for Intervals Four through Eight 

 

Directions: Please rate the following statements about you, your personality, or your behavior 
using the following scale. 
 
         
 

Strongly Disagree Disagree      Neutral   Agree      Strongly Agree 
 
 
1) I feel it is safe to leave Wesleyan Hall. 
2) I plan to continue my daily activities unchanged. 
3) It is safe to be outside in this weather. 
4) I believe the weather at this moment is serious. 
5) I plan to monitor the weather. 
6) I believe Wesleyan Hall is a safe place to be right now. 
7) It is safe to drive in this weather. 
8) I plan to seek additional information, about the weather situation. 
9) I believe the weather information is accurate.  
 
 
Directions: Please choose the most accurate response for the following questoins. 
 
10) At this moment __________. 

a. I do not plan to seek shelter 
b. I plan to seek shelter 
c. I have already sough shelter and plan on staying sheltered 
d. I have already sought shelter and plan on leaving the sheltered area soon 
 
 

11) I currently feel __________.  
a. In no danger at all 
b. Slightly in danger 
c. A moderate amount of danger 
d. In extreme danger 
 
 

12) How far do you think the tornado is from you at this moment?  
(tornado replaced with storm at interval four) 
 
Minutes: __________ 
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Appendix D 

Demographic Questionnaire 

 

Please answer the following demographic questions to the best of your ability.  
 
 
1) My current age is: __________ years old 

 
 

2) I am:  
o Male    
o Female 

 
 

3) I am a: 
a. Freshman 
b. Sophomore 
c. Junior 
d. Senior 
e. Graduate student 

 
 

4) I identify with the following ethnicity:  
 White (Caucasian) 
 Black (African-American, but not Hispanic) 
 Hispanic  
 Asian 
 Other: __________________ 
 
 
5) Do you currently live in the Shoals area all year round? 

o Yes 
o No 

- If not, where do you currently live year round? 

    City: _______________________ 

    State: ______________________ 
 
 

6) How long have you lived in your current town?  

Years: _____________  Months: ___________ 
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7) Have you lived in another city/town outside of this area? (e.g. Your hometown) 
o Yes    
o No 

- If so, where did you live?  

City: __________________________________ 

State:  ________________________ Country: ________ 
 
 

8) How long did you live there? 

 Years: _________________ Months: _______________ 
 
 
9) Do you live on the University of North Alabama Campus? 

o Yes 
o No 

 
 
10) If you do not live on the University of North Alabama Campus, how far do you live from 

campus? 

Miles: ____________  Minutes (Driving Time): ____________ 
 
 

11) Have you ever been in a tornado warning but not experienced a tornado? 
o Yes 
o No 

 
 
12) Approximately how many tornado warning have you experienced? 

o 0-10 
o 11-20 
o 21-30 
o 31-40 
o 41-50 
o More than 50 

 
 

13) Have you ever personally experienced a tornado? (i.e. Has a tornado damaged your property, 
neighborhood, or nearby areas of town?) 

o Yes 
o No 
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14) Do you have a designated shelter or severe weather plan in the event of a tornado or other 
types of severe weather? 

o Yes 
o No 

 
 
15) What factors, do you believe, will be most important in helping you decide when to seek 

shelter? 
o Seeing a tornado in person or the raw video of the tornado on the ground near 

your location 
o The local television meteorologist providing a landmark of where the tornado is 

that you are familiar with 
o The track of the tornado, as shown on internet, television, or radar, appears to pass 

over or very near your location 
o Hearing or seeing environmental cues (rain, wind, hail, etc.). 
o A friend or relative informing you (phone call, text, email, etc.). 

 
 

16) In the event of experiencing a direct tornado, how far ahead (in minutes) of the tornado’s 
arrival do you think you will seek shelter? 

 
Minutes: __________ 

 
 
17) If a tornado is approaching your location, which source of accurate information would you 

most likely use regarding the weather? 
o Your smartphone 
o A weather website 
o Social Media (Facebook, Twitter, etc.) 
o A local television station 
o A local radio station 
o The Weather Channel 
o NOAA weather radio 
o The tornado siren in your area 
o A text message or phone call 
o Other, please specify 
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Appendix E 

International Personality Item Pool (IPIP) Questionnaire 

 
 
Directions: Please rate the following statements about you, your personality, or your behavior 
using the following scale. 
 
 
         
 

Strongly Disagree Disagree      Neutral   Agree      Strongly Agree 
 
 

1) Enjoy being reckless 

2) Take risks 

3) Seek danger 

4) Known how to get around the rules 

5) Am willing to try anything once 

6) Seek adventure 

7) Would never go hang-gliding or bungee-jumping 

8) Stick to the rules 

9) Avoid dangerous situations 

10) Would never go hang gliding or bungee jumping 

11) Would never make a high risk investment 

12) Do dangerous things 

13) Know no limits 

14) Let myself go 

15) Like to solve complex problems 

16) Need things explained only once 

17) Can handle a lot of information 

18) Love to think up new ways of doing things 

19) Love to read challenging material 

20) Have difficulty understanding abstract ideas 

21) Try to avoid complex people 
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22) Avoid difficult reading material 

23) Avoid philosophical discussions 

24) Can handle complex problems 

25) Am quick to understand things 

26) Catch on to things quickly 

27) Am able to find out things by myself 

28) Can handle a lot of information 

29) Quickly get the idea of things 

30) Try to avoid complex people 

31) Don’t understand things 
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Appendix F 

Debriefing Form 

 

In this study you viewed a hypothetical tornado scenario and were asked to share your actions 
regarding the developing event. We were interested in examining whether the amount of warning 
information provided has any influence on the decision to seek shelter during a serious severe 
weather event. Also, we were interested in examining whether a specific level of information 
produced a quicker response than others.  
 
Now that you have completed the study, and know a bit more about what we were doing, we’re 
wondering if you have any questions or comments regarding the study.  Not only are we 
interested in hearing what you think about the study but we welcome any suggestions that you 
may have to improve the study.  
 
You are welcome to tell the researcher face-to-face or write your comments below. 
 
One more important note, we ask that you not explain the contents of the study to anybody, as 
other people may be signed up to take the study.  We’re interested in seeing how people initially 
respond to these statements without much knowledge of what the study is about.   
 
Thank you for participating. 
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