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Electrodynamics of two-dimensional materials: Role of anisotropy

Bruno Majérus,1 Evdokia Dremetsika,2 Michaël Lobet,1,3 Luc Henrard,1 and Pascal Kockaert2,*

1Department of Physics and Namur Institute of Structured Matters, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
2OPERA-photonics, Université libre de Bruxelles, 50 Avenue F. D. Roosevelt, Code Postal 194/5, B-1050 Bruxelles, Belgium

3John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA

(Received 23 July 2018; published 21 September 2018)

Two-dimensional (2D) materials are intrinsically anisotropic, and an accurate description of their out-of-plane
response to an electromagnetic field is more and more important as new materials with diverse properties are
proposed. Their electromagnetic properties are often modeled using a single sheet with a surface susceptibility or
conductivity or by means of a thin film of finite thickness with an effective bulk permittivity. The discordances
between these two approaches lead to two irreconcilable interpretations of the optical characterizations and
uncertain predictions of electromagnetic responses. Here, we fully account for the particular anisotropy of 2D
materials and reconcile both approaches. We propose a unified description for the electromagnetic properties
that applies to 2D heterostructures for all polarizations and at all angles of incidence. In particular, we determine
the class of materials for which both models can be used indifferently and when particular care should be taken
to select the thickness and the tensorial response of the effective thin film. We illustrate our conclusions on
extensively studied experimental quantities such as transmittance and ellipsometric data of graphene and metal
dichalcogenides. We discuss similarities and discrepancies reported in the literature when single-sheet or thin-
film models are used.

DOI: 10.1103/PhysRevB.98.125419

I. INTRODUCTION

The electromagnetic (EM) properties of two-dimensional
(2D) materials are at the forefront of current research ac-
tivities. Further developments for applications as diverse
as optical modulators, transparent conductive films, photo-
voltaic systems, superabsorbers, and sensors require an ac-
curate description of their electromagnetic response [1–4].
For example, optical contrast and transmission are among
the commonly used quantities to characterize 2D systems,
in particular, to determine their thickness or their number
of layers [5–9]. Furthermore, electromagnetic properties are
the macroscopic fingerprints of elementary excitations such
as the interband transition, excitons, and plasmons. Their
correct analysis is therefore crucial for the understanding of
the underlying physics of 2D materials.

Several models are commonly used for the EM response of
2D materials. First, a purely 2D system with the definition
of a single-sheet (surface) conductivity σ s or susceptibility
χs [10,11] has been proposed. In particular, for graphene,
an analytical expression for σ s based on the tight-binding
approximation and Kubo formula has become popular [12].
It provides a clear distinction between interband and intra-
band electronic transitions. The surface conductivity can be
determined experimentally, e.g., via Brewster angle measure-
ments [13].

Using another approach, 2D materials have been con-
sidered as isotropic materials with a small but finite thick-
ness [7–9,14,15]. This approach notably allows using the
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well-developed transfer matrix technique to predict and inter-
pret optical data (including ellipsometry) with widely avail-
able methodology and numerical codes. The thickness is often
arbitrarily taken to be the interlayer distance of the three-
dimensional (3D) counterpart of the 2D material [11,16],
considered as a fitting parameter [7] or evaluated based on
the variation of the electronic density in the transverse direc-
tion [17].

These two approaches (a purely 2D surface conductivity
and a 3D isotropic thin film) do not always match, as demon-
strated analytically and numerically [18,19], and a model-
dependent interpretation of ellipsometric data has been re-
ported [20]. This is particularly true for oblique incidence and
TM (p-polarized) EM radiation [21]. Indeed, considering only
a purely in plane 2D conductivity means that the out-of-plane
response of the layer is neglected, while for an isotropic thin
film, both the in-plane and out-of-plane responses are linked.
Very recently, a criterion has been proposed to determine in
which conditions the two models give similar results at normal
incidence [22].

Anisotropic thin films have also been studied. The out-
of-plane component has been taken to be a free param-
eter [20,23,24] or deduced from first-principles-approach
calculations performed with periodic boundary condi-
tions [19,25]. The out-of-plane susceptibility in a single-sheet
model was recently considered by two of us to analyze the
nonlinear optical response of graphene [26]. Such an ade-
quate description of the out-of-plane component is of prime
necessity since very diverse 2D materials with potentially
large out-of-plane polarizabilities are synthesized [27] and
predicted [28].
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FIG. 1. Schematic representation of the two configurations. Left:
current sheet model. Right: thin film with an effective material f

extending over a distance da (db) on the a (b) side. The wave vectors
of the forward F and backward B fields in media a and b are denoted
by �ka,b

F,B . The reference frame is Oxyz.

In this work, we study analytically and numerically the
conditions of the EM response function (surface susceptibil-
ity, dielectric tensor) and of the thickness of the effective thin
film for a correct description of the response of 2D materials.
In particular, we analytically link the surface susceptibility
of the single sheet to the ordinary and extraordinary optical
constants of the equivalent thin film. We then focus our atten-
tion on the determination of the surface conductivity of the 2D
materials based on the interpretation of optical transmission,
ellipsometry, and optical contrast measurements.

II. MODELIZATION OF 2D MATERIALS

In this section, we perform a comparison between the
single-sheet and thin-film approaches within the framework
of transfer matrix formalism for stratified media [29]. As a
first step, we build the transfer matrix of a single sheet at the
interface of two surrounding media (a and b), as depicted
in Fig. 1 (left). In a second step, we calculate the transfer
matrix of a thin film with finite thickness df (Fig. 1, right). We
then analytically compare the two approaches and highlight
the consequences for quantities that can be easily determined
experimentally (transmittance, ellipsometric data, optical con-
trast). Importantly, we insist here on the consequences of the
intrinsic anisotropy of 2D materials.

The single sheet is described by a surface susceptibility
tensor χs that is diagonal in our reference frame (Fig. 1). The
in-plane components of χs are directly related to its surface
conductivity by

σ s
α = −iε0ωχs

α, (1)

where α = x, y. The out-of-plane component χs
z is also con-

sidered here, but an out-of-plane conductivity has no physical
meaning for a single sheet.

The thin-film material is described by a dielectric tensor εf

related to the bulk conductivity components by

ε
f

αβ =
(

ε0 + iσα

ω

)
δαβ. (2)

The in-plane and bulk conductivities are related by σ s
α =

df σα [19]. The incident and substrate materials (a and b) can
be anisotropic but with their optical axes aligned with those
of the 2D material, i.e., ε

a,b
αβ = ε0ε

a,b
α δαβ , which is the case

TABLE I. Definition of the coefficients in TE and TM config-
urations to first order in ϕx, ϕy, ϕz. In these expressions, m and n

will be replaced by a, b, and f to denote, respectively, the incidence
medium, the substrate, and the thin film. The forward (backward)
component Fm (Bm) is defined in each medium m with respect to the
forward (backward) component of the electric field parallel to the
interface [Em

x,y]F ([Em
x,y]B ), with y for TE and x for TM.

TE (s polarization) TM (p polarization)

k0 ω/c

kx in-plane component of input �k
km

z

√
εm

y k2
0 − k2

x

√
εm

x (k2
0 − k2

x/ε
m
z )

Fm [Em
y ]F εm

x /km
z [Em

x ]F
Bm [Em

y ]B −εm
x /km

z [Em
x ]B

t Fb/Fa

r Ba/Fa

αmn kn
z /km

z (εm
x kn

z )/(εn
xk

m
z )

tmn 2/(1 + αmn)

rmn tmn − 1

ϕx 0 ka
z kb

z

εb
x ka

z +εa
x kb

z
χs

x

ϕy
k2

0
ka
z +kb

z
χs

y 0

ϕz 0 k2
x

εb
x ka

z +εa
x kb

z

εa
x εb

x

εab
χs

z

εab
2

(1/εa
z +1/εb

z )

ϕ± ϕx ± (ϕy + ϕz )

χs
jj iσ s

jj /(ε0ω)

in most (if not all) of the systems studied experimentally so
far. This hypothesis avoids the coupling between transverse-
electric (TE) and transverse-magnetic (TM) modes. We allow
those surrounding materials to have a complex permittivity
and express the dependence on the angle of incidence via
the wave vector �k = (kx, ky, kz). If the incident medium is a
perfect dielectric characterized by the real isotropic permittiv-
ity ε0εa = ε0n

2
a and ky = 0, we have kx = k0 na sin αi , with

k0 being the wave number of the light in vacuum, na being
the refractive index of medium a, and αi being the angle of
incidence.

A. Two-dimensional material as a single sheet

In order to describe the out-of-plane component in the
single-sheet model, we use the approach described in Ref. [26]
based on Refs. [30,31]. In particular, the transmission coef-
ficient t and the reflection coefficient r of the electric field
in TE and TM configurations can be written as (see the
Supplemental Material [32])

t = tab[1 + i(ϕx + ϕy + ϕz)], (3)

r = t − 1 − 2iϕx, (4)

with the parameters defined in Table I. We note that tab,
which is the transmission coefficient in the absence of a 2D
material, depends on the propagation direction and is therefore

125419-2



ELECTRODYNAMICS OF TWO-DIMENSIONAL MATERIALS: … PHYSICAL REVIEW B 98, 125419 (2018)

not symmetrical, i.e., tba = 2 − tab, while ϕx, ϕy, ϕz do not
depend on the propagation direction.

In these notations the transfer matrix between the incident
medium a and the outgoing medium (substrate) b can be
written as (see the Supplemental Material [32])

Sab = 1

tab

(
1 − iϕ+ rab + iϕ−

rab − iϕ− 1 + iϕ+

)
, (5)

so that the forward (F ) and backward (B) field components in
media a and b at the single-sheet interface are linked by(

Fa

Ba

)
= Sab

(
Fb

Bb

)
. (6)

The expressions for TE and TM modes have a similar form
if the forward and backward components are defined as in
Table I. The matrix Sab includes the out-of-plane response of
the current sheet χs

z through ϕz and can therefore be compared
to the thin-film model.

B. Two-dimensional material as a thin film

The transfer matrix Tab that describes the propagation of
EM waves in the effective thin-film system of thickness df

with the diagonal permittivity tensor εf of components ε
f
x , εf

y ,
and ε

f
z involves the transfer matrix at the two interfaces (Iaf

and If b) and the propagation matrix Pf in the homogeneous
film f over a distance df . Then

Tab = IafPf If b, (7)

with

Pm =
(

e−i�m 0
0 ei�m

)
, (8)

Imn = 1

tmn

(
1 rmn

rmn 1

)
, (9)

where �m = km
z dm, dm is the thickness of layer m, and km

z ,
rmn, and tmn are defined in Table I. The anisotropy of the
media is accounted for through the diagonal components of
the dielectric tensors.

C. Analytical comparison

The two models are considered equivalent if their transfer
matrices are identical. However, we cannot directly compare
Sab and Tab since the propagation in the slab of thickness df =
da + db is not considered in Sab. The correct equality is then

Tab = PaSabPb. (10)

In the limit of small phase shift, we can develop (10) to
first order in k0df for the bulk parameters (�a,�b,�f � 1)
and to first order in k0χ

s for the single-sheet parameters
(ϕx, ϕy, ϕz � 1). A lengthy but straightforward calculation
provides the effective dielectric function of the thin film as

εf
x = χs

x/df + ηaε
a
x + ηbε

b
x, (11)

εf
y = χs

y/df + ηaε
a
y + ηbε

b
y, (12)

1

ε
f
z

= ηa

εa
z

+ ηb

εb
z

− χs
z

εab df

, (13)

where ηa = da/df and ηb = db/df and then ηa + ηb = 1
(Fig. 1). As expected, the effective dielectric tensor compo-
nents do not depend on the angle of incidence. Nevertheless,
those quantities depend on the 2D material through χs and
on the geometry of the thin film defined by da and db. More
surprisingly, the components of the dielectric tensor of the
surrounding materials εa and εb also appear in (11)–(13). In
the frequent case where the incident medium is air and a thin
film of thickness df is lying on top of the substrate b, we have
da = df , db = 0, and εa

i = 1, so that

εf
x = χs

x/df + 1, (14)

εf
y = χs

y/df + 1, (15)

1

ε
f
z

= 1 − 1 + εb
z

2εb
z df

χs
z . (16)

Equations (14) and (15) are commonly used for 2D mate-
rials and are perfectly valid under the assumptions reported
above. The relation (16) for the out-of-plane components still
includes εb

z and is far from being intuitive but is important
to understand the link between the isotropic thin film and
the anisotropic single-sheet models. Indeed, it explains some
discrepancies between the two approaches reported in the
literature, as we will discuss later. In the absence of out-
of-plane susceptibility (χs

z = 0), (16) gives ε
f
z = 1, and the

effective thin film is anisotropic.

III. DISCUSSION

In this section we compare the results of the two ap-
proaches for quantities that are easily obtained experimen-
tally: transmittance, ellipsometry, and optical contrast. A per-
fect planar interface between the different media is consid-
ered. In cases where the surface roughness of the substrate is
important, it can be taken into account in the transfer matrix
calculation, i.e., by considering an intermediate thin layer with
an effective dielectric response [33].

A. Transmittance

We consider a sample with the geometry depicted in Fig. 1.
In the TM configuration, from (3) and Table I, the change in
transmittance induced by the 2D material in the small-phase-
shift hypothesis (first order in k0df ∼ k0χ

s) and for real εa

and εb is

∣∣∣∣ t

tab

∣∣∣∣
2

− 1 = −tab

kb
z

εb
x

Imχs
x

[
1 + k2

x

ka
z k

b
z

εa
xε

b
x

εab

(
Imχs

z

Imχs
x

)]
(17)

= −tab

kb
z

εb
x

Imεf
x df

[
1 + k2

x

ka
z k

b
z

εa
xε

b
x∣∣εf

z

∣∣2

(
Imε

f
z

Imε
f
x

)]
. (18)

The change in transmittance (17) is then related only to Im χs

and, via (1), to Re σ s . Simple transmittance measurements
can therefore not provide information on Re χs or Im σ s . In
contrast, both the real and imaginary parts of ε

f
z are present

in (18) through |εf
z |2. Similar conclusions are drawn for the

reflectance (see Appendix A 2).
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FIG. 2. Relative difference �T between the transmittance computed in the single sheet and in the anisotropic thin-film models, with respect
to the real and imaginary parts of the single-sheet susceptibility, related to the conductivity by k0χ

s
x = iσ s

x /(ε0c). The system considered is
air/2D material/glass. The refractive index of glass is taken to be 1.5. (a) Infrared EM radiation (λ = 1550 nm). (b) Visible light (λ = 700 nm).

To understand the impact of using the thin-film model
instead of the single-sheet approach and to test the validity
range of (11)–(13) with respect to k0χ

s , we have performed
extensive numerical simulations. All the numerical results
presented here are for a TM wave incident on an air/2D
material/glass (nb = 1.5) system with an angle θ = 75◦ and
a thickness df = 0.34 nm, unless otherwise specified.

Figure 2 displays the relative difference of transmittance
defined as

�T = Tsh − Ttf

Tsh
× 100, (19)

where the thin-film transmittance Ttf is computed from (7)
without performing the small-phase-shift approximation and
the single-sheet transmittance Tsh is calculated using (17).

We compare results for two incident wavelengths (in the IR,
λ = 1550 nm, and in the visible, λ = 700 nm) obtained with
the single-sheet model with no out-of-plane susceptibility
(χs

z = 0) and with the anisotropic thin film with εf from
(11)–(13). The transmittances computed in the anisotropic
thin-film model and in the single-sheet model are obviously
in very good agreement. Therefore, in the following, we will
consider that the single-sheet model and the anisotropic thin-
film model give equivalent results. This rationalizes also the
fact that the small-phase-shift condition is satisfied for a large
range of 2D susceptibilities.

When the small-phase-shift condition is relaxed
(|Re[k0χ

s]| � 1), larger �T is obtained, corresponding
to the yellow bands on the left and right sides of Figs. 2(a)
and 2(b). The difference is larger at smaller wavelengths.

For an isotropic thin-film model more important discrepan-
cies are observed, as illustrated in Fig. 3. Note that the scale of
�T is different in Figs. 2 and 3. For Fig. 3, εx and εy are equal

FIG. 3. Same as Fig. 2, but for the isotropic thin-film model. The circled areas indicate graphene’s adimensional parameter k0χ
s . To

determine it we use the Kubo formula at a fixed wavelength of (a) 700 nm or (b) 1550 nm over a range of Fermi levels from 0.05 to 1 eV and
a range of relaxation times from 10 to 200 fs. Within this range of parameters, an artificial plasmonic resonance appears in the left panel.
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FIG. 4. Difference of transmittance �T between the
isotropic and anisotropic thin films of graphene for a system
of air/graphene/glass. The refractive index of glass is taken to be 1.5.
Graphene is modeled using the Kubo formula with EF = 0.4 eV,
τ = 100 fs. The red dashed line represents a thickness equal to
1/1000 of the wavelength.

and obtained from (11) and (12), and εx = εy = εz. For a
better interpretation of the data, we identify in Fig. 3 the range
of values for the susceptibility of graphene at each wavelength
based on the Kubo formula [12] for a range of Fermi levels
from 0.05 to 1 eV and a range of relaxation times from 10
to 200 fs. Note that for the anisotropic case, we observe a
particularly small �T with a maximum of 2 × 10−3% in this
range.

Notably, a high value of �T is observed in a vertical line
corresponding to Re[χs] = −df , for which the real part of
the permittivity ε = 1 + χs/df vanishes. This shows, similar
to what was reported in Ref. [21], that an artificial plasmonic
resonance is predicted by an isotropic thin-film model due
to the artificial metallic nature of the out-of-plane compo-
nent of the permittivity tensor. This unphysical resonance
could have dramatic effects on the prediction of the optical
properties.

To investigate further the influence of the anisotropy, we
present in Fig. 4 the difference between the transmittance
obtained with the isotropic and anisotropic thin-film mod-
els in the TM configuration for graphene as a function of
the incident wavelength and of the thin-film thickness. The
two models give very similar results for the ratio λ/df >

1000, i.e., for very small k0df (under the dashed line).
This validates the fact that the anisotropy of graphene has
often been disregarded without consequences for the valid-
ity of the conclusions if the chosen thickness of the thin
film is at least three orders of magnitude lower than the
wavelength.

This surprisingly good prediction within the isotropic thin-
film model for intrinsically anisotropic 2D material is ex-
plained as follows. The isotropic thin-film model does not
correspond to the assumption χs

z = χs
x but to ε

f
z = ε

f
x . By

means of (13), this is equivalent to setting

Imχsz = εab∣∣εf
z

∣∣2 df Imεf
z = εab∣∣1 + χs

x/df

∣∣2 Imχs
x , (20)

χs
z = 0

χs
z = χs

x

f
z = f

x, df = 0.34

f
z = f

x, df = 5

FIG. 5. Reduced transmittance [brackets in (17) and (18)] for
an air/graphene/glass structure: na = 1, nb = 1.5, χs

x = (1.50 +
2.29i ) nm at a wavelength of 634 nm [15]. Curves are for the
anisotropic single sheet with no out-of-plane response (χs

z = 0), the
isotropic thin-film model (εf

z = εf
x ) with df = 0.34 nm and df =

5 nm, and isotropic current sheet model (χs
z = χs

x ).

which shows that the isotropic thin-film model tends to the
anisotropic single-sheet one with χs

z = 0 when |χs
x |2 � d2

f ,
as in this case (20) provides χs

z ≈ 0.
This explains that the isotropic thin-film model can be used

with good results to model graphene with Im[χs
z ] = 0 and

df = 0.34 nm. In particular, it confirms that in the limit df =
0, both models agree, as reported in Ref. [34]. More impor-
tantly, this also resolves the apparent contradiction between
the conclusions of Ref. [34] and those of Refs. [18,19,21] on
the equivalence (or not) of both models for df → 0. Indeed,
(20) shows that, if we model graphene by means of a thicker
layer so that χs

x � df � 1/k0, the isotropic thin-film model
corresponds to the isotropic single-sheet one (χs

x = χs
z in the

particular case where na = nb = 1) and not to the anisotropic
single sheet with χs

z = 0. We illustrate this analytical obser-
vation in Fig. 5, where we plot the terms in brackets in (17)
and (18) for an air/graphene/glass system at 634 nm as a
function of the angle of incidence for different approaches:
the single sheet for χs

z = 0 (solid black line) and with χs
x =

χs
z (dashed blue line) and the isotropic thin film for df =

0.34 nm (dot-dashed red line) and df = 5 nm (green crosses).
The results for the anisotropic thin film cannot be distin-
guished from those of the anisotropic single sheet and are
therefore not plotted. The thickness df = 5 nm is commonly
used in discrete numerical simulations to avoid prohibitive
numerical cost [21]. As expected, at normal incidence, all
curves are superimposed, and the anisotropy does not play a
role. As the angle of incidence increases, the z component
of the response functions becomes more important, and the
exact value of the thickness of the thin film influences the
computed optical properties. Surprisingly, isotropic thin-film
calculations correspond to either an isotropic or anisotropic
single-sheet model depending on the considered effective
thickness.

To conclude on the physical quantities that can be deduced
from transmittance measurements, we note that, although
transmittance measurements at different angles allow us, in
principle, to separate the in-plane and out-of-plane responses

125419-5



BRUNO MAJÉRUS et al. PHYSICAL REVIEW B 98, 125419 (2018)

of the imaginary part of the susceptibility (the real part
of the conductivity), these measurements are usually per-
formed at normal incidence, for which the TE and TM cases
coincide.

B. Ellipsometry

Ellipsometry records the ratio of the reflection or transmis-
sion of a sample in TM and TE configurations at different
angles. Considering again a sample with the geometry de-
picted in Fig. 1, from Eqs. (3) and (4), still in the small-phase
approximation (i.e., to first order in k0χ

s), we get

ρt

ρt
0

= tTM

tTM
ab

tTE
ab

tTE
= [

1 + i
(
ϕTM

x − ϕTE
y + ϕTM

z

)]
, (21)

with ρt being the ellipsometric ratio with the 2D material
and ρt

0 being the same ratio for the interface without the 2D
material. Under the assumption that χs

x = χs
y , using Table I,

we can write

ρt

ρt
0

− 1 = − ik2
x

εa
xk

b
z + εb

xk
a
z

(
χs

x − εa
xε

b
x

εab

χs
z

)
. (22)

The in-plane χs
x and out-of-plane χs

z susceptibilities then can-
not be separated by means of standard transmission ellipsom-
etry as the coefficient (εa

xε
b
x/εab) in front of χs

z is independent
of kx and kz and therefore the angle of incidence.

In order to analyze these results further, it is convenient to
define the term in parentheses in (22) as

χ ell = χs
x − εa

xε
b
x

εab

χs
z , (23)

which contains all the dependence on the susceptibility. We
note that the same dependence is found for reflection ellip-
sometry (see Appendix A 3).

We can here provide a simple explanation for the difference
reported in Ref. [20] between the susceptibilities extracted
from ellipsometric data using different models for MoS2 on a
glass substrate. We denote [χs

x ]i as the in-plane susceptibility
deduced from the isotropic thin-film model with df = 0.615
nm (Fig. 6, blue curve with crosses) and [χs

x ]a as the one found
with the anisotropic single-sheet model [Fig. 6 (χs

z = 0), red
curve with squares].

For the isotropic thin film, using (16),

χ ell = [
χs

x

]
i

(
1 − εb

x

1 + [
χs

x

]
i
/df

)
, (24)

while for the anisotropic sheet, we simply get

χ ell = [
χs

x

]
a
. (25)

Comparing the last two equations, we obtain

[
χs

x

]
a

= [
χs

x

]
i
− εb

xdf + εb
xdf

1 + [
χs

x

]
i
/df

. (26)

The inset of Fig. 6 displays the difference between [χs
x ]i

and [χs
x ]a and compares it with −εb

xdf . The small discrepancy
between the two curves shows that the last term in (26) is
very small, as the main difference between [χs

x ]a and [χs
x ]i

comes from the real quantity −εb
xdf . This occurs because

df � |χs
x | over the whole spectral range. As a result, (26)

R
e[

χ
s x
] 
(n

m
)

λ

R
e[

Δ
χ

s x
]

FIG. 6. Values of Re[χs
x ] for a MoS2 single layer retrieved with

the isotropic thin-film model ([χs
x ]i , blue curve and crosses) and the

anisotropic current sheet model ([χs
x ]a , black curve and squares).

Data are from Ref. [20]. The red curve (diamonds) is calculated from
[χs

x ]i shifted by −εb
xdf and is almost superimposed on the black

curve. The inset displays the difference [χs
x ]i − [χs

x ]a (green curve
with pluses) and −εb

xdf (cyan curve with circles). The dielectric
function of N-BK7 glass (substrate used in Ref. [20]) is taken from
Sellmeier’s equation provided by Schott [35].

predicts that, for MoS2, the imaginary part of χs
x does not

depend significantly on the anisotropy of the model. This is
in agreement with what was reported in Ref. [20], where the
curves for the conductivity (imaginary part of the complex
susceptibility) are very similar in the two approaches. This
good agreement between experimental data and the analytical
predictions again confirms the validity of the small-phase-
shift approximation (k0χ

s � 1).
We conclude that standard ellipsometry provides no in-

formation on the x-z anisotropy of the 2D sample. It is,
however, important to note that the single-sheet approach
imposes implicitly χs

z = 0, while the isotropic thin-film ap-

proach assumes χs
z = εabχ

s
x/ε

f
x , which explains the differ-

ences reported in the literature for the retrieval of χs
x from

ellipsometric data. Equation (23) allows us to introduce in the
fitting procedure a value for χs

z based on theoretical assump-
tions or obtained experimentally, for example, by means of
contrast ratio measurements.

C. Optical contrast

The optical contrast of 2D materials on a thick substrate
is often very small and hardly measurable. However, reflec-
tion microscopy and optical contrast are commonly used to
determine the presence of 2D materials (or the number of
layers) if a thin dielectric film is lying on top of the substrate,
most often SiO2 on Si [5,6,36]. This additional layer creates
interferences that depend on the 2D susceptibility and allow
us to tune the total reflectance of the system. Measurements
are usually performed at normal incidence, so that only the
in-plane susceptibility is probed. To take into account the
additional layer, we should simply multiply Tab in (10) by
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a propagation matrix accounting for the propagation in the
additional layer and an interface matrix between this layer
and the substrate. As the matrix Tab is the same in the cur-
rent sheet and thin-film approaches, the final result does not
depend on the chosen model, especially at normal incidence
for which the isotropic and anisotropic thin-film models are
equivalent.

The optical contrast then depends on the real and imagi-
nary parts of the in-plane susceptibility of the 2D material.
However, this measurement is strongly dependent on the
parameters of the top layer, including their thickness and
permittivity. This probably explains the differences in fitting
experimental data that were reported in Ref. [18].

IV. CONCLUSIONS

We have explored analytically and numerically the link
between the description of a 2D material with a current sheet
and a thin-film model. We have focused our analysis on
the description of the intrinsic anisotropy of the layers, i.e.,
the effect of the out-of-plane component of the single-sheet
susceptibility or the out-of-plane component of the dielectric
tensor of the thin film. The analytical equivalence in the
small-phase-shift condition shows that most discrepancies
between these two approaches do not come from the finite
thickness of the thin film, but from an incorrect description
of the anisotropy, mainly for TM polarization and oblique
incidence. In particular, we have shown that considering an
isotropic dielectric function of a thin film is not equivalent
to assuming an isotropic single-sheet susceptibility. We have
also commented on the fact that a single sheet with a van-
ishing out-of-plane response (as graphene) corresponds to an
isotropic or anisotropic effective thin film depending on the
effective thickness of the film.

The application of the transfer matrix approach to classical
measurement schemes provides evidence that a combination
of different techniques is needed to fully characterize a 2D
material on a substrate, as depicted on Fig. 1: (1) transmittance
measurements on a dielectric substrate provide Im[χs

x ] at nor-
mal incidence and could provide Im[χs

z ] at other incidences,
and (2) standard ellipsometry, in transmission or reflection,
cannot separate the in-plane and out-of-plane contributions.
However, combined with transmittance changes, it could pro-
vide Im[χs

z ]. Another way to retrieve χs
x and χs

z separately
would be to perform ellipsometry experiments on different
substrates. Optical contrast on a multilayer substrate com-
bined with the previous methods can also provide information
about Re[χs

x ] or even Re[χs
z ] at oblique incidence. We hope

that the present single-sheet transfer matrix approach and the
analytical connection with the thin-film model will help us to
efficiently perform the analysis of stratified media involving
2D materials either for the characterization of 2D materials or
for their use in various applications.
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APPENDIX: DETAILED EXPRESSIONS FOR FITTING
EXPERIMENTAL PARAMETERS

In this appendix, we collect the detailed expressions of
the reflectance, transmittance, and ellipsometric ratios that
can be used for fitting experimental data and separate the
different components of the susceptibility tensor. Surrounding
media are assumed to be perfect isotropic dielectrics with real
susceptibilities.

1. Transmittance

In the TM configuration, the ratio of the transmittance of
the substrate with the 2D material T to the transmittance of
the bare substrate T0 is given by[

T

T0

]
TM

= 1 − 2 Im[χx]

εa
x/ka

z + εb
x/kb

z

− k2
x

εab

2 Im[χz]

ka
z /ε

a
x + kb

z /ε
b
x

,

(A1)

In TE configuration, we find[
T

T0

]
TE

= 1 − 2k2
0

Im[χy]

ka
z + kb

z

. (A2)

2. Reflectance

Similarly, for the reflectance ratio, we find

[
R

R0

]
TM

= 1 − 4
ka
z ε

a
x(

εa
xk

b
z

)2 − (
εb
xk

a
z

)2

×
[(

kb
z

)2
Im[χx] − k2

x

εab

(
εb
x

)2
Im[χz]

]
, (A3)[

R

R0

]
TE

= 1 − 4ka
z k

2
0

Im[χy](
ka
z

)2 − (
kb
z

)2 . (A4)

3. Ellipsometric ratios

Here, we provide the quotient of the ellipsometric ratios ρ

and ρ0 obtained, respectively, on a substrate with and without
a 2D material. This is a complex quantity. In the transmission
configuration, we get (22), reproduced here for completeness,

ρt

ρt
0

= 1 − ik2
x

εa
xk

b
z + εb

xk
a
z

(
χs

x − εa
xε

b
x

εab

χs
z

)
, (A5)

while the reflection configuration provides

ρr

ρr
0

= 1 + 2i
εb
xk

a
z k

2
x(

εa
xk

b
z

)2 − (
εb
xk

a
z

)2

(
χs

x − εa
xε

b
x

εab

χs
z

)
. (A6)
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