
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

State Machine Flattening

Devroey, Xavier; Perrouin, Gilles; Cordy, Maxime; Legay, Axel; Schobbens, Pierre-Yves;
Heymans, Patrick
Published in:
2015 IEEE Eighth International Conference on Software Testing, Verification and Validation Workshops

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Devroey, X, Perrouin, G, Cordy, M, Legay, A, Schobbens, P-Y & Heymans, P 2014, State Machine Flattening:
Mapping Study and Assessment. in 2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops: ICSTW. IEEE.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198272925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/state-machine-flattening(8de86461-0570-4abe-9915-ff4188bb9415).html

State Machine Flattening: Mapping Study and Assessment

Xavier Devroey, Gilles Perrouin∗, Maxime Cordy†,
Pierre-Yves Schobbens, Patrick Heymans

PReCISE, UNamur, Belgium

Axel Legay
INRIA Rennes, Bretagne Atlantique, France

March 24, 2014

Abstract

State machine formalisms equipped with hierarchy
and parallelism allow to compactly model complex
system behaviours. Such models can then be trans-
formed into executable code or inputs for model-
based testing and verification techniques. Gener-
ated artifacts are mostly flat descriptions of system
behaviour. Flattening is thus an essential step of
these transformations. To assess the importance
of flattening, we have defined and applied a sys-
tematic mapping process and 30 publications were
finally selected. However, it appeared that flatten-
ing is rarely the sole focus of the publications and
that care devoted to the description and validation
of flattening techniques varies greatly. Preliminary
assessment of associated tool support indicated lim-
ited tool availability and scalability on challenging
models. We see this initial investigation as a first
step towards generic flattening techniques and scal-
able tool support, cornerstones of reliable model-
based behavioural development.
Keywords: State machine, Flattening, System-
atic mapping study, Tools experimentation

1 Introduction

State machines are popular models of system be-
haviour. By providing them with a formal seman-
tics, one can perform automated behavioural analy-
sis (e.g. by model checkingor model-based testing)

∗FNRS Postdoctoral Researcher
†FNRS Research Fellow

and code generation. In order to model complex
systems in a concise and comprehensible manner,
state machines have been equipped with various
abstraction constructs such as hierarchy and par-
allelism [22]. Yet, abstraction comes with the cost
of more elaborated semantics and potential ambi-
guities (e.g. in UML), thus preventing the direct
use of automated analysis and generation tools.

Flattening [22] – a procedure that systematically
transforms hierarchical state machines into state
machines where all states are atomic – was pro-
posed as an answer. It bridges succinct modelling
with formal semantics and automated analysis, al-
lowing to envision end-to-end model-driven valida-
tion chains for complex systems [17]. Flattening
plays a pivotal role in behavioural analysis of soft-
ware systems. Hence, its role in model-basel devel-
opment and validation should be fully understood.

In spite of its importance and widespread use,
there has been no systematic effort to categorize
flattening approaches and their applicability. This
paper is a first step in this direction. We examine
almost 20 years of scientific literature and perform
a systematic mapping study [35]. We follow the
systematic approach used in the medical field [30],
which is more appropriate for categorization pur-
pose than systematic literature reviews [30,35]. We
nevertheless incorporated some relevant elements of
systematic literature reviews as suggested by Pe-
tersen et al. [35]. After an initial search that re-
turned 167 publications, 30 of them were finally
considered as relevant for the mapping. Our map-
ping relies on 4 dimensions (also called facets) cov-
ering research purpose, input/output models or the

1

ar
X

iv
:1

40
3.

53
98

v1
 [

cs
.S

E
]

 2
1

M
ar

 2
01

4

type of publication where the flattening techniques
are applied or described. Our findings exhibit a bal-
anced distribution of flattening use cases between
validation and code generation purposes. We also
demonstrate that flattening techniques are gener-
ally not described thoroughly, for these are often
but a minor step of a larger process. Finally, the
validation of the flattening technique, although es-
sential to gain confidence in the engulfing approach,
is insufficiently addressed. This latter point is sup-
ported by preliminary experimentation indicating
that only a small number hierarchy and parallelism
levels may be supported.

The remainder of this paper is organised as fol-
lows. Section 2 presents our mapping study pro-
cess. Section 3 presents the systematic map and
discusses the results. Section 4 describes our tool
assessment and Section 5 covers threats to our em-
pirical evaluation. Section 6 wraps up with con-
clusions and future research directions. A compan-
ion webpage including all details of the mapping is
available: https://staff.info.unamur.be/xde/

mappingstudy/.

2 Systematic Mapping Pro-
cess

The definition of our systematic mapping process
is inspired by [14,20,35]. However, as suggested by
Petersen et al. [35], the process presented in Fig-
ure 1 and detailed hereafter does not strictly follow
the classical systematic mapping review process. It
incorporates practices of systematic literature re-
views methods: the depth of reading is not lim-
ited to the abstract of the publications but rather
adapted according to the importance of flattening
in the publication; a quality assessment phase (see
Section 3) has been added to evaluate the quality
of the flattening description in the publications.

Phase 1: Research questions. The first
phase is the definition of the research questions.
They help delimiting the scope of the considered
publications and allow to derive the search strings
for publications exploration in phase 2. There are
two points covered in this mapping study: the first
one examines flattening techniques suited to elimi-
nate hierarchy and parallelism (orthogonality) from
a state machine-like model while the second one

looks at the application contexts of such transfor-
mations. To cover flattening techniques, 2 research
questions with a practical perspective are defined:
(RQ1) What are the input and output models used
in the different flattening approaches? (RQ2) Do
the different approaches support hierarchy (compos-
ite states) and parallelism (orthogonal states) in the
input model? Flattening application context is cov-
ered by our last research question: (RQ3) In which
context are the different flattening approaches per-
formed (e.g., code generation, test-case generation,
semantic definition, etc.)?

Phase 2: Search of publications. In the
second phase of the process, we gather relevant
publications used to build the systematic map. To
that aim, we follow the strategy presented in Fig-
ure 1. First, we explore electronic databases and
gather a raw set of publications. Next, we filter
this raw set, and consequently obtain an initial set
of relevant publications. From this initial set, we
search for related (i.e. cited) work. The discov-
ered papers are filtered and then added to the set
of considered publications. We repeat the process
until no new publication is added. To perform the
exploratory search in the electronic databases, we
defined search strings designed to answer our re-
search questions and inspired from four publica-
tions known by the team and experts of the do-
main [21,24,27,43]. The considered databases with
the different search strings are:

1. Google Scholar (http://scholar.google.
be/):
(computer science) AND (intitle:(

state AND (machine OR machines OR chart

OR charts))) AND (flattening) AND

(orthogonal OR parallel)

2. Science Direct (http://www.sciencedirect.
com):
pub-date > 2004 and (("state machine"

OR "state charts") AND (flat) AND

(orthogonal OR parallel)) and

TITLE(state)[All Sources(Computer

Science)]

3. Computer Science Bibliographies (http:
//liinwww.ira.uka.de/bibliography/):
+(flat flattening) +state +(diagram?

chart?)

2

https://staff.info.unamur.be/xde/mappingstudy/
https://staff.info.unamur.be/xde/mappingstudy/
http://scholar.google.be/
http://scholar.google.be/
http://www.sciencedirect.com
http://www.sciencedirect.com
http://liinwww.ira.uka.de/bibliography/
http://liinwww.ira.uka.de/bibliography/

Phase 1:
Definition of

RQs

Scope of
the search

Set of
publications

Phase 3:
Keywording

Classif.
scheme

Phase 4:
Mapping

Systematic
Map

Phase 3 bis:
Quality

assessment
Measures

Phase 2: Search of publications

Step 1: Exploratory seach

Step 2: Filtering using
incl/excl criteria

Step 3: Extension by
related works

[new studies
found] [no more new

studies found]

Figure 1: Systematic mapping process

The initial search string used for Google Scholar did
not contain the computer science keywords which
lead to a lot of irrelevant results, most of them re-
lated to chemistry. We initially restricted ourselves
to the [2005-2012] period to gather approaches com-
patible with the current version of UML.1 We found
167 publications in Google Scholar, 9 in Science
Direct and 39 in Computer Science Bibliographies.
The four publications known by the team and do-
main experts were contained in the 167 results re-
turned by Google Scholar. This tends to indicate
the relevancy of our search strings. In the second
step, we filter the result according to the following
inclusion and exclusion criteria:

Inclusion criteria. Books, articles, proceedings,
technical reports and grey literature presenting a
flattening technique with a hierarchical and / or or-
thogonal state machine or similar input (e.g., Harel
Statecharts [22], etc.) and a flat state machine
or assimilate as output (e.g., Finite State Machine
(FSM), etc.) are included. We also consider the
publications where the produced output is source
code, as source code may be used for testing and
verification as well.

Exclusion criteria. Literature only available in
the form of presentation slides, publications where
a flattening technique is only mentioned without
details and publications citing a flattening tech-
nique described in another paper is excluded. In
this last case, the cited papers are nonetheless con-

1UML2 was released in 2005. Please note that only the
initial scope of the publications is limited to the period 2005-
2012. Our search process iteratively expands that period
and eventually allows to consider “non UML” papers, e.g.
[21, 28,29,31,43].

sidered according to the same inclusion and exclu-
sion rules.

Once filtered, our set was extended in the third
step by including papers cited in the publications.
If the publication is focused on flattening, the refer-
ences are picked up by screening the introduction,
the background and related work parts. If not, only
the “flattening related part”, found by performing a
word search in the documents, is considered for the
references search. The considered regular expres-
sions for the word search were: flat.∗; hierarch.∗;
orthogonal.∗. We repeat Steps 2 and 3 until our
set of publications does not change.

After an initial filtering, we obtained an initial
set of 24 publications [4, 5, 8, 11, 12, 15, 16, 21, 24,
26–29, 31, 32, 36, 39–41, 43–47]. A first execution of
Step 3 gave us 28 new papers. Among those, only
12 met the inclusion and exclusion criteria [1–3, 6,
9, 10, 18, 19, 25, 34, 37, 38]. A second application of
Step 3 gave us only one new publication, which did
not match the inclusion and exclusion criteria. We
eventually obtained a total of 36 publications.

Phase 3: Keywording and Mapping. The
classification scheme follows a two-step keywording
process inspired by that of Petersen et al. [35]. In
the first step, each paper is screened and tagged
with keywords representing its contribution. In
the second step, the classification scheme is built
by grouping and combining the different keywords
in higher level categories. Contrary to [35], where
the considered publications are focused on the sub-
ject of the mapping study, we also consider pa-
pers where hierarchical / orthogonal models flat-
tening is not the main aspect of the publication
but only a step in a more general process. To deal

3

Table 1: Research Focus Facet (RQ3)

Category Description
Code gen-
eration

A model-driven approach generate
or annotate source code from a flat
state machine.

Model
checking

A model to check is first flattened
and the result is used as input of
the model checker.

Formal se-
mantics

The semantics of a state machine
language is given as a transforma-
tion of which flattening is a step.

Model-
based
testing

Test-cases are generated from a
flat state machine.

Flattening Flattening is studied outside the
scope of a specific application.

Example Flattening illustrates the use of
a particular transformation frame-
work.

with such cases, we propose to: (1) read only sec-
tions (adaptive reading depth [35]) of publications
where the model flattening aspect is explained and
(2) guide the keywording process by our research
questions: a) The purpose of the research (RQ3).
b) The input model of the transformation (RQ1).
c) The output model of the transformation (RQ1).
d) Does the transformation support hierarchy / or-
thogonality in the input model? (RQ2). e) The
implementation of the transformation (RQ3). In
order to reduce bias, the first step of the keyword-
ing process has been done in parallel by two review-
ers. The reviewers associate keywords with each
publication, compare their results and discuss the
differences. If they cannot agree on a given paper,
a third reviewer solved the conflict. In our case,
this happened for two papers: [34, 44].

Next, the classification scheme is built by clus-
tering the keywords into different categories. Simi-
lar categories are grouped to form what is called
a facet. This is an iterative process where the
classification scheme is enriched with each newly
considered publication. In our case, four facets
compose the classification scheme. The first facet
(see Table 1) is concerned with the focus of the
research described in the publication. This char-
acterizes the broader context in which the flatten-
ing transformation is used. The second and third

Table 2: Input Model Facet (RQ1, RQ2)

Category Description
UML
state
machine

State machines built according to
(any version of) the UML stan-
dard.

Hierarchical
Finite
State
Machine

Hierarchical models based on state
machines (e.g., Harel statechart
[22]).

Hierarchical
Timed
Automata

Hierarchical state machines en-
riched with time information.

facets (see Tables 2 and 3, respectively) describe
the formalisms of the input and output models (re-
spectively) employed by the flattening techniques
described in the different publications. The last
facet (see Table 4) classifies publications according
to their type. These types range from problem-
oriented papers (opinion, philosophical paper) to
solution-oriented papers at various stages of their
maturity.

Once the classification scheme is defined, all the
publications are classified. Despite our inclusion /
exclusion criteria, we still found publications which,
after complete review, were irrelevant with regards
to our research questions: Brajnik [11] presents the
flattening proposed by Wasowski [43]; Briand et
al. [12] briefly discuss flattening in the related work
part; Masiero and Maldonado [32] present a way
to produce a reachability tree for hierarchical state
machines which can not be considered as a flatten-
ing; in [36] Posse preserves the hierarchical aspect
of state machine in its target model; Zoubeyr et
al. [47] do not describe any flattening technique;
Engels et al. [19] describe a flattening of UML class
hierarchy. All those publications match the ex-
clusion criteria (flattening technique is only men-
tioned or comes from another paper) but were not
detected earlier because of seemingly “too broad”
regular expressions. Irrelevant papers have been re-
moved. Our final selection consists of 30 classified
publications.

Phase 3 bis: Quality Assessment. In par-
allel with Phase 3, we propose, as suggested by da
Mota Silveira Neto et al. [14] to assess the qual-
ity of the selected publications using two groups of
quality criteria. Our evaluation does not focus on

4

Table 3: Output Model Facet (RQ1, RQ2)

Category Description
Flat UML
state ma-
chine

Flat state machines based on any
version of UML.

Source
code

Code issued from a programming
language or a textual specifica-
tions with a formal executable se-
mantics.

Model
checker
specifica-
tion

Any model checker specification,
e.g., UPPAAL automata [7] or
Mealy machines [33].

Finite
State
Machine
(FSM)

This facet regroups the publica-
tions where the flattening transfor-
mation produces a flat FSM which
is not a UML state machine. For
instance: EFSM, Harel statechart,
Symbolic transition system.

Graph Any kind of graph that other than
finite state machine, e.g., petri net
or testing flow graph [28].

the quality of the transformations themselves but
rather on the quality of its description in the pub-
lications. The first group evaluates the usability of
the flattening technique in the publication: G 1.1
Is there a tool implementation? G 1.2 Is there a
small example? G 1.3 Is there a more significant
case study (even if not fully detailed)? G 1.4 Are
the input and output models described? G 1.5 Does
the publication present the limitations of the trans-
formation?

The second group evaluates the degree of gen-
erality of the flattening process in the publication:
G 2.1 Are there guidelines for the transformation
separated from the example of the transformation
(if any)? G 2.2 Does it detail the transformation
process for all the constructs of the input model?
G 2.3 Does the flattening technique support hierar-
chy? G 2.4 Does the flattening technique support
orthogonality? A seemingly more objective metric
is the ratio of text lines dedicated to the flattening
process. Yet, it is rather cumbersome to perform
and may be irrelevant since (1) longer descriptions
are not necessarily more precise and complete, and
(2) the exact value of this ratio may vary upon the
reviewers.

Table 4: Research Type Facet (RQ3) [35]

Category Description
Validation
Research

Techniques investigated are novel
and have not yet been imple-
mented in practice. Techniques
used are for example experiments,
i.e., work done in the lab.

Evaluation
Research

Techniques are implemented in
practice and an evaluation of the
techniques is conducted. That
means, it is shown how the tech-
nique is implemented in prac-
tice (solution implementation) and
what are the consequences of the
implementation in terms of ben-
efits and drawbacks (implementa-
tion evaluation). This also in-
cludes identifying problems in in-
dustry.

Solution
Proposal

A solution for a problem is pro-
posed, the solution can be either
novel or a significant extension of
an existing technique. The poten-
tial benefits and the applicability
of the solution is shown by a small
example or a good line of argumen-
tation.

Philosophical
Papers

These papers sketch a new way of
looking at existing things by struc-
turing the field in form of a taxon-
omy or conceptual framework.

Opinion
Papers

These papers express the personal
opinion of somebody whether a
certain technique is good or bad,
or how things should been done.
They do not rely on related work
and research methodologies.

Experience
Papers

Experience papers explain on what
and how something has been done
in practice. It has to be the per-
sonal experience of the author.

5

Table 5: Quality assessment results

Study ref.* G1.1 G1.2 G1.3 G1.4 G1.5 G2.1 G2.2 G2.3 G2.4 Type
Initial set
Auer [4] X X X X X X X X T. rep.
Badreddin [5] X X X X X X X X X Thesis
Binder [8] X X X X X X X Book
David [15] X X X X X X X X X T. rep.
David [16] X X X X X X X X X Art.
Gogolla [21] X X X X X X Art.
Holt [24] X X X X X X X X T. rep.
Ipate [26] X X X X Art.
Kalnins [27] X X X X X X X X Art.
Kansomkeat [28] X X X X X X Proc.
Kim [29] X X X X X X X Art.
Kuske [31] X X X X X X X Art.
Sacha [39] X X X X X X X Art.
Schattkowsky [40] X X X X X Art.
Schwarzl [41] X X Proc.
Wasowski [43] X X X X X X X X X Art.
Wasowski [44] X X X X X X X Art.
Weißleder [45] X X X Proc.
Yao [46] X X X X X X X X X Proc.
Added after iteration 1
Agrawal [1] X X X X X X T. rep.
Ali [2] X X X X X X X Proc.
Andrea [3] X X X X X X X Proc.
Baresi [6] X X X X B. sect.
Bjorklund [9] X X X X X Proc.
Bond [10] X X X Proc.
Diethers [18] X X B. sect.
Hong [25] X X X X X X X Art.
Minas [34] X X X X X X X X Art.
Riebisch [37] X X X X Proc.
Roubtsova [38] X X X X X X Proc.
Ratio of X 50% 90% 27% 90% 67% 80% 60% 97% 70%

6

Results of quality assessment are presented in
Table 5. It turns out that the huge majority (all
but [6]) of the publications agree to define “flatten-
ing” as the “removal of hierarchy” in a state ma-
chine. In 97% of the cases (Q.2.3), the input model
supports hierarchy of states, and 70% also supports
orthogonality in sub-states. The only publication
present in the mapping without supporting hier-
archical states is [6]. We believe this publication
should have been discarded by the protocol. Baresi
and Pezzé [6] define the semantics of state machines
as high-level Petri-nets, but the notion of hierarchy
is applied to classes (although not as explicitly as
in [19]) and not states. Yet, the method may be ap-
plicable on hierarchical state machines (see [26]).

Only 60% of the publications thoroughly explain
which constructs of the input model are supported
(Q.2.2). These publications include: three techni-
cal reports (T. rep.) [4, 15, 24], one PhD thesis [5]
and one book [8]. Those kinds of publications typ-
ically allow for more space to provide details than
articles (Art.), book sections (B. sect.) or proceed-
ings (Proc.). Two of the three publications belong-
ing to the “Example of transformation framework”
facet, [27,34], are also included. The third publica-
tion [1] does not explain the complete transforma-
tion in detail but rather focuses on its performance.
In most other cases [2,3,16,21,28,29,31,34,39,46],
the input model is a simplified version of UML
state machine (except for [3] which uses Harel stat-
echarts as input) where most of the pseudo-states
have not been taken into account. In all those cases,
the limitations of the transformation are presented
in the publication (Q.1.5: 67%). The only flat-
tening techniques which takes history pseudo-state
into account is the one presented by Wasowski et
al. [43,44]. Finally, the transformation proposed by
David and Möller [15] uses Hierarchical Timed Au-
tomata as input. This formalism has a well-defined
semantics, contrary to UML state machines.

We observe that only a very low percentage of
techniques are validated on real or consequent case
studies (Q.1.3: 27%). It is not surprising since most
of the publications are solution proposals. Only
half of the publications have a tool implementa-
tion (Q.1.1). 90% of the publications illustrate
the transformation with examples (Q.1.2), 90% de-
scribe the input and output models (Q.1.4), and
80% provide more detailed guidelines. Only [41]
and [18] give no example nor guideline. The former

Research
Focus Facet

Solution
Proposal

Evaluation
Research

Validation
Research

Philosophical
Paper

Opinion
Paper

Code
Generation

Model
Checking

Formal
Semantics

Model-Based
Testing

State Machine
Flattening

Example of
Transformation

Framework

8

7

4

6

2

3

1

1

1

Research
Type Facet

Figure 2: Systematic Map: Research type and fo-
cus facets

describes very briefly the transformation in terms
of input and output models. The latter presents the
specifications and an overview of a model-checking
tool without discussing the flattening transforma-
tion or the input model.

3 Phase 4: Mapping

The complete mapping is not presented here due
to space constraints. Figures 2 and 3 present a
view of the mapping in the form of a bubble plot.
The numbers in the bubbles represents the numbers
of studies belonging to a particular combination of
facets. In Figure 2, the number of studies is equal
to 33. This is due to the classification of [5], [15]
and [16]. [5] is a PhD thesis classified as a valida-
tion research and a solution proposal in the research
type facet. In [15] and [16] David et al. uses flatten-
ing in order to generate code for a model checker,
the reviewers agree to classify those two studies in
both code generation and model checking in the
research focus facets.

Research Type (RQ3). Regarding the type
of contributions where flattening considerations ap-
pear, the vast majority of them (93%) are solution
papers (see Figure 2). This is to be expected since
flattening is a transformation used to bridge high-

7

UML
State

Machine

Hierarchical
Timed

Automata

Hierarchical
Finite State

Machine

Flat UML
State Machine

Source
Code

Graph

Model
Checker

Specification

Finite State
Machine

7

4

2

3

1

1

Output
Model
Facet

3

3 4

2

Input
Model
Facet

Figure 3: Systematic Map: Input and output facets

level models with existing lower level analysis tools
and execution frameworks. We also note the poor
level of validation and evaluation of the flattening
algorithms (only 2 papers belong to the evaluation
and validation research facets). Among these two
publications, only [45] evaluated the effects of flat-
tening on test case generation in practice. Finally,
one paper [44] considers a formal framework to dis-
cuss flattening algorithms complexity.
Research Focus (RQ3). The research fo-

cus facet illustrates a balanced distribution of the
applications of flattening. The most common appli-
cation of flattening is code generation (27%). How-
ever this has to be mitigated by the fact that two
publications [15,16] are producing code to be used
with a model checker (UPPAAL). Other kinds of
generated code are dedicated to the synthesis of
embedded systems [9, 39, 43] or are instances of
general purpose languages like JAVA [2]. Model
checking uses are related to consistency manage-
ment [18, 38, 41, 46] or IP telephony [10]. Model
checking exploits the fact that flattening is also a
way to provide a formal semantics to hierarchical
state machines [3, 21, 31, 44]. Three of these pub-
lications focus on UML state machines to make
them analyzable. Model-based testing also exten-
sively uses flattening approaches (23% of the pub-
lications). Unsurprisingly, most of the applica-
tions are centred on test case generation and selec-
tion [25, 26, 28, 29, 37, 45]. Rather than generating
test cases over a flattened state machine, Ipate [26]
and Binder [8] propose to refine test cases grad-
ually as states are decomposed. They argue that

this incremental approach better copes with com-
plexity. Riebisch et al. [37] use state diagrams to
refine UML use cases and subsequently generate
tests at the system level. As for the other ap-
proaches, the generation algorithm requires a flat
state machine. Two publications ([25, 29]) flat-
ten Harel’s statecharts and UML state machines
(respectively) in order to generate flow graphs on
which test-case generation and selection techniques
are applied. Kansomkeat et al. [28] flatten UML
state machines to testing flow graphs in order to
generate test-cases. Weißleder [45] flatten UML
2 state machines and uses coverage criteria to se-
lect and generate test-cases. The two last cate-
gories (covering 17% of the publications) concern
the flattening transformation by itself. Holt et
al. [24] describe in details a flattening algorithm
implemented as a model transformation embedded
in an Eclipse plug-in. As opposed to other publi-
cations [3, 31, 40] based on graph transformations,
the algorithm is given in an imperative manner. Fi-
nally, state machine flattening transformations are
sometimes given as illustrative examples of model
transformation frameworks [1, 27,34].

Input and Output Facets (RQ1, RQ2).
UML models are the most common input to flatten-
ing algorithms (67%). There are, however, dispari-
ties in the supported UML constructs. The output
of a flattening algorithm mainly depends on the
goal for which the techniques is used. Graphs are
preferred for providing formal semantics whereas
verification-related work generally provides speci-
fications for a model checker. If we match inputs
with outputs, we infer that flattening is essentially
an exogenous transformation (i.e. where the tar-
get language is different from the source language):
UML state machines are both input and output in
only 20% of the publications.

4 Preliminary Tool Assesse-
ment

Our mapping study revealed a certain interest of
the community for the flattening problem. A sig-
nificant number of solutions have also been pro-
vided. Yet, tools are available in only 50% of the
publications and validation remains rare. Practi-
cal questions concerning existing tool support nat-

8

Table 6: Results: Average execution time

Depth UMPLE SM2LIME SCOPE
0 0,306 sec. 0,038 sec. < 0,001 sec.
1 0,384 sec. 0,040 sec. 0,012 sec.
2 0,510 sec. 0,050 sec. 0,012 sec.
3 Error 2,726 sec. Error
4 Error > 24 hrs Error

urally arise. Thus, we decided to conduct an ad-
ditional assessment of available tool support in the
form of experiments. In particular we focused on
one particular question: How do the proposed tech-
niques scale to models of increasing complexity?

Selection. Amongst the 15 publications that
include an implementation [1,4,5,9,10,15,16,18,24,
25, 27, 37, 43, 45, 46] only 5 tools could be found on
the Internet [1, 4, 5, 43, 45]. We picked the three of
them that have a command-line interface: SCOPE
[43], UMPLE [5] and SM2LIME [4]. To evalu-
ate their performance, we fed them with a state
machine example that we successively extend with
an increasing number of composite and orthogo-
nal states. Since we are interested in reusable flat-
tening techniques and we want our experiments to
be reproducible, we considered only publicly avail-
able tools and did not contact the authors to obtain
their implementation. Moreover, we are aware that
our evaluation does not cover every existing tool as
some are not presented in an elicited publication.

Experiment Design. Input models of vary-
ing complexity were automatically generated as fol-
lows. We started from a simple state machine sm0

as base model with an initial state i, a simple state
s and a final state f and two transitions: one
from i to s and one from s to f triggered by an
event with zero parameters. This machine with no
composite state has a depth equal to 0. To pro-
duce state machine smk with a depth equal to k
(k ∈ {0, 1, 2, . . . , 10}), we replaced the simple states
in smk−1 by a composite state with two orthogonal
regions containing each one a sm0 state machine.
We run each tool on the ten input models and
measure their execution time using the Unix time
(/usr/bin/time) command available on a Linux
machine (kernel version: #61-Ubuntu SMP Tue
Feb 19 12:39:51 UTC 2013) with a Intel Core i3
(3.10GHz) processor and 4GB of memory. To min-
imize effects due to other running processes, we re-

peated each experiment five times.

Results & Discussion. Table 6 presents the
average execution time of each tool. None of the
three selected tools could achieve more than 3 lev-
els of depth: UMPLE exits with a syntax error al-
though sm3 is generated using the same procedure
as sm2; SCOPE exits with a memory corruption
error at sm3; SM2LIME could process a sm3 state
machine but with an execution time jumping from
0,050 to 2,726 and has an (extrapolated) execution
time greater than 24 hours for a sm4 input model.
Although the input models look simple, they be-
come increasingly challenging due to an exponen-
tial blow-up in the numbers of parallel regions and
interleaving transitions. Moreover, the structure of
our models impedes the use of various optimization
(e.g. eliminating superfluous state/transitions us-
ing guard analysis [43]) and thus yield a sharper
growth in complexity. Thus, these models are not
intended to reflect any real system; they are meant
to measure the scalability of the proposed tools.
Additionally, they are agnostic of semantic varia-
tions of the different formalisms [13, 42]. This al-
lows for fair comparisons between the tools.

State explosion did not allow for fine-grained
trend analysis as models grow. However, our exper-
iments confirm conclusions drawn on the mapping
study regarding limited availability (overall only
33% of the tools are freely available) and suggest
that hierarchy and parallelism threaten scalability.
This further motivates the need for new efficient
techniques.

5 Threats to validity

Publication bias. We cannot guarantee that all
relevant publications were selected, especially since
the state machine flattening is rarely the main fo-
cus of the publications but rather a way to achieve
a more general purpose. We tried to mitigate this
threat by adopting an approach were the set of pub-
lications is built iteratively by including cited pa-
pers. The publication dates of the papers added at
each step of publications search (Phase 2) shows a
good coverage for a period from 1994 to 2012: in
the initial set the oldest publication ([32]) was pub-
lished in 1994 and the most recent ([5]) was pub-
lished in 2012; the publications added in iteration
1 were less recent (from 1994 [3] to 2008 [34]) and

9

the publication found during iteration 2 (and ex-
cluded from the set of publications) was published
in 1996 ([23]). Moreover, the selected papers orig-
inate from different research areas, thus indicating
that our selection procedure covers a large scope
of publication. Finally, the cited documents of re-
jected publications were still included in the set at
step 3 of the “search of publications” phase.
Research strings. The search strings used for

database mining may have many synonyms. Rel-
evant publications may thus remain undetected.
Still, the used strings allowed us to successfully de-
tect the four initial papers known by the domain
experts. As for publication bias, the distribution of
the publication dates from 1994 to 2012 shows that
the initial publication period is no major threat to
completeness.
Keywording. As the considered publications

are not all focused on flattening, the keywording
process may be influenced by the reviewer. To
avoid bias, the keywording process is performed in
parallel by two different readers. Once the key-
words have been associated with the publications,
the readers compare their results and discuss the
differences between associated keywords. If con-
flicts between the associated keywords remain, a
third party acts as an arbitrator.
Quality assessment. As for the keywording

process, the point of view of the reviewer may in-
fluence the answers to the different questions. To
overcome this as much as possible, only yes/no an-
swers are allowed. Since the quality assessment was
performed in parallel with the keywording phase,
the two reviewers have assessed the quality of the
different publications. Again, divergences were
solved by a third party.
Tool Selection. The rationale behind tool se-

lection was to assess whether tools mentioned in the
publications were publicly available and ready for
practical use. While our answer is negative to these
questions, efficient tools may have been missed be-
cause of our focus on scientific publications. This
threat can be mitigated by the fact that proper doc-
umentation is necessary to understand the tool’s
input model formalism and thus generate models
for experimentation. However, conducting a wider
assessment on a larger set of tools is part of our
research agenda.
Model Complexity. We created and system-

atically extended challenging models. Such an ap-

proach is relevant to compare tools on a fair basis.
To the best of our knowledge, there exists no sur-
vey about the size and complexity of state machines
designed in industry. It is thus possible that such
a high level of complexity never occurs in practice.

6 Conclusion

Due to their compactness and formal semantics,
state machines are a powerful means of modelling,
verifying and validating the behaviour of complex
systems. However, abstraction mechanisms such
as composite and parallel states impede the use of
automated analysis and generation techniques, of-
ten requiring flat structures. Flattening is called
to play a crucial role in bridging abstract models
with analysable and executable ones. Recognising
the lack of overall cartographies of flattening ap-
proaches, this systematic mapping study is a first
step in this direction. In particular, we outlined a
balanced status were flattening is used equally for
model-based validation (testing, verification) and
code generation. Flattening also barely appears to
be an object of interest in itself but rather a step
towards a more general objective. This has impacts
on the quality of the description of flattening algo-
rithms. First, precise constructs supported by the
flattening transformation are not always provided,
making the applicability of a given technique to a
specific context difficult to evaluate. Second, the
validity of the flattening transformation is barely
addressed, which is necessary to gain confidence
in the quality of the bridge. Mapping study con-
clusions are supported by our preliminary assess-
ment of flattening tools that exhibited reliability
and scalability issues on small but challenging mod-
els.

In the future, we would like to provide a complete
(including syntax and semantics concerns) taxon-
omy of flattening approaches. This will enable the
design of generic flattening techniques and tools.
We will also offer a sound evaluation framework to
compare flattening techniques and thus will help
understanding in which situation(s) a given flat-
tening approach is the most appropriate. These
are mandatory steps towards reliable, end-to-end,
model-based behavioural development.

10

References

[1] Aditya Agrawal, Gabor Karsai, and Feng Shi.
Graph Transformations on Domain-Specific
Models. Technical Report Mic, ISIS, Vander-
bilt University, USA, 2003.

[2] Jauhar Ali and Jiro Tanaka. Converting Stat-
echarts into Java Code. In IDPT, page 42,
Dallas,Texas, 1999.

[3] Maggiolo-Schettini Andrea and Adriano
Peron. Semantics of full statecharts based on
graph rewriting. In Graph Transformations in
Computer Science, pages 265–279. Springer,
Berlin, 1994.

[4] Emil Auer and Ivan Porres. SM2LIME : A
Translation Tool From UML State Machines
to LIME Specifications. Technical report, IT
Dpt. Abo Akademi University, 2009.

[5] Omar Badreddin. A Manifestation of Model-
Code Duality : Facilitating the Representa-
tion of State Machines in the Umple Model-
Oriented Programming Language. PhD thesis,
University of Ottawa, 2012.

[6] Luciano Baresi and Mauro Pezzé. On For-
malizing UML with High-Level Petri Nets. In
Concurrent object-oriented programming and
petri nets, pages 276–304. Springer, 2001.

[7] Johan Bengtsson, Kim Guldstrand Larsen,
Fredrik Larsson, Paul Pettersson, and Wang
Yi. Uppaal - a tool suite for automatic veri-
fication of real-time systems. In Hybrid Sys-
tems III, volume 1066 of LNCS, pages 232–
243, 1995.

[8] Robert V. Binder. Testing object-oriented sys-
tems: models, patterns, and tools. Addison-
Wesley, USA, 1999.

[9] Dag Björklund, Johan Lilius, and Ivan Porres.
Towards Efficient Code Synthesis from State-
charts. In pUML-Group@UML ’01, pages 29–
41, 2001.

[10] Gregory W. Bond, Franjo Ivancic, Nils Klar-
lund, and Richard Trefler. ECLIPSE Feature
Logic Analysis. In 2nd IP-Telephony Work-
shop, pages 100–107, New York City, USA,
2001.

[11] Giorgio Brajnik. Using UML State Machines
for Interaction Design and Usability Evalua-
tion: An Extensive Literature Review. Techni-
cal Report September, Web Ergonomics Lab,
School of Computer Science, University of
Manchester, UK, 2011.

[12] L.C. Briand, Y. Labiche, and Q. Lin. Improv-
ing Statechart Testing Criteria Using Data
Flow Information. ISSRE, pages 95–104, 2005.

[13] Michelle Crane and Juergen Dingel. Uml vs.
classical vs. RHAPSODY statecharts: Not all
models are created equal. In MDE Languages
and Systems, pages 97–112. Springer, 2005.

[14] Paulo Anselmo da Mota Silveira Neto, Ivan
do Carmo Machado, John D McGregor, Ed-
uardo Santana de Almeida, and Silvio Romero
de Lemos Meira. A systematic mapping
study of software product lines testing. IST,
53(5):407–423, 2011.

[15] Alexandre David and M. Oliver Möller. From
HUppaal to Uppaal : A translation from hi-
erarchical timed automata to flat timed au-
tomata. Technical Report March, BRICS,
University of Aarhus, Denmark, 2001.

[16] Alexandre David, M. Oliver Möller, and Wang
Yi. Formal Verification of UML Statecharts
with Real-Time Extensions. In FASE ’02,
pages 218–232, 2002.

[17] Xavier Devroey, Maxime Cordy, Gilles
Perrouin, Eun-Young Kang, Pierre-Yves
Schobbens, Patrick Heymans, Axel Legay, and
Benoit Baudry. A Vision for Behavioural
Model-Driven Validation of Software Product
Lines. In ISoLA ’12, pages 208–222, 2012.

[18] Karsten Diethers and Michaela Huhn. Vooduu
: Verification of Object-Oriented Designs Us-
ing UPPAAL. In TACAS ’04, LNCS 2988,
pages 139–143. Springer, 2004.

[19] Gregor Engels, Jan Hendrik Hausmann, Reiko
Heckel, and Stefan Sauer. Dynamic Meta
Modeling : A Graphical Approach to the Op-
erational Semantics of Behavioral Diagrams in
UML. In UML, pages 323–337, York, UK,
2000. Springer-Verlag.

11

[20] Emelie Engström and Per Runeson. Soft-
ware product line testing-a systematic map-
ping study. IST, 53(1):2–13, 2010.

[21] Martin Gogolla and Francesco Parisi Presicce.
State diagrams in UML: A formal semantics
using graph transformations. In PSMT, 1998.

[22] David Harel. Statecharts: a visual formalism
for complex systems. SCP, 8(3):231–274, June
1987.

[23] David Harel and Eran Gery. Executable ob-
ject modeling with statecharts. In ICSE, pages
246–257, Berlin, Germany, 1996. IEEE.

[24] N E Holt, E Arisholm, and L C Briand. An
Eclipse Plug-in for the Flattening of Concur-
rency and Hierarchy in UML State. Technical
Report 2009-06, Simula Research Laboratory,
Norway, 2010.

[25] Hyoung Seok Hong, Young Gon Kim,
Sung Deok Cha, Doo Hwan Bae, and Hasan
Ural. A test sequence selection method for
statecharts. STVR, 10(4):203–227, December
2000.

[26] Florentin Ipate. Test Selection for Hierar-
chical and Communicating Finite State Ma-
chines. The Computer Journal, 52(3):334–347,
May 2008.

[27] Audris Kalnins, Janis Barzdins, and Edgars
Celms. Model transformation language
MOLA. Model Driven Architecture, LNCS
3599:62–76, 2005.

[28] Supaporn Kansomkeat and Wanchai Rivepi-
boon. Automated-Generating Test Case Using
UML Statechart Diagrams. In SAICSIT ’03,
pages 296–300, South Africa, 2003.

[29] Y. G. Kim, H. S. Hong, D. H. Bae, and
S. D. Cha. Test cases generation from UML
state diagrams. IEE Proceedings - Software,
146(4):187, 1999.

[30] Barbara Kitchenham. Guidelines for perform-
ing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE-2007-01,
EBSE, 2007.

[31] Sabine Kuske. A Formal Semantics of UML
State Machines Based on Structured Graph
Transformation. In UML ’01, LNCS 2185,
pages 241–256. Springer-Verlag, 2001.

[32] PC Masiero, JC Maldonado, and IG Boaven-
tura. A reachability tree for statecharts and
analysis of some properties. IST, 36(10):615 –
624, 1994.

[33] George H. Mealy. A method for synthesiz-
ing sequential circuits. Bell System Technical
Journal, 34:1045–1079, 1955.

[34] Mark Minas and Berthold Hoffmann. An Ex-
ample of Cloning Graph Transformation Rules
for Programming. ENTCS, 211:241–250, April
2008.

[35] Kai Petersen, Robert Feldt, Shahid Mujtaba,
and Michael Mattsson. Systematic Mapping
Studies in Software Engineering. In EASE,
pages 71–80, Bari, Italy, 2008.

[36] Ernesto Posse. Mapping UML-RT State Ma-
chines to kiltera. Technical Report 2010-569,
Applied Formal Methods, Group School of
Computing, Queen’s University, 2010.

[37] Matthias Riebisch, Ilka Philippow, and Marco
Götze. UML-Based Statistical Test Case Gen-
eration. In NODe ’02, pages 394–411, Erfurt,
Germany, 2003. Springer-Verlag.

[38] Ella E. Roubtsova, Jan van Katwijk, Ruud
C. M. de Rooij, and Hans Toetenel. Trans-
formation of UML Specification to XTG. In
PSI ’02, pages 247–254, 2001.

[39] Krzysztof Sacha. Translatable Finite State
Time Machine. In SDL Forum, pages 117–132,
Paris, France, 2007. Springer-Verlag.

[40] Tim Schattkowsky and Wolfgang Müller.
Transformation of UML State Machines for
Direct Execution. In VLHCC, pages 117–124.
IEEE Computer Society, 2005.

[41] Christian Schwarzl and Bernhard Peischl.
Static and Dynamic Consistency Analysis of
UML State Chart Models. In MODELS, pages
151–165, Oslo, Norway, 2010. Springer-Verlag.

12

[42] Ali Taleghani and Joanne Atlee. Semantic
variations among uml statemachines. In MOD-
ELS’06, LNCS 4199, pages 245–259. Springer,
2006.

[43] Andrzej Wasowski. Flattening statecharts
without explosions. ACM Sigplan Notices,
39(7):257–266, 2004.

[44] Andrzej Wasowski. On Succinctness of Hierar-
chical State Diagrams in Absence of Message
Passing. ENTCS, 115:89–97, 2005.

[45] Stephan Weißleder. Influencing Factors in
Model-Based Testing with UML State Ma-
chines : Report on an Industrial Coopera-
tion. In MODELS, pages 211–225, Denver,
CO, 2009. Springer-Verlag.

[46] Shuzhen Yao and Sol Shatz. Consistency
Checking of UML Dynamic Models Based on
Petri Net Techniques. In CIC, pages 289–297,
Washington, DC, USA, November 2006. IEEE.

[47] Farah Zoubeyr, Abdelkamel Tari, and Aris M.
Ouksel. Backward validation of communi-
cating complex state machines in web ser-
vices environments. Distributed and Parallel
Databases, 27(3):255–270, March 2010.

13

	1 Introduction
	2 Systematic Mapping Process
	3 Phase 4: Mapping
	4 Preliminary Tool Assessement
	5 Threats to validity
	6 Conclusion

