
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Memory Event Clocks

Ortiz, James; Legay, Axel; Schobbens, Pierre-Yves

Published in:
Formal Modeling and Analysis of Timed Systems

DOI:
10.1007/978-3-642-15297-9_16

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Ortiz, J, Legay, A & Schobbens, P-Y 2010, Memory Event Clocks. in Formal Modeling and Analysis of Timed
Systems. vol. 6246, Formal Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science,
Springer, pp. 198. https://doi.org/10.1007/978-3-642-15297-9_16

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/198272924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-15297-9_16
https://researchportal.unamur.be/en/publications/memory-event-clocks(bf7d8103-47b5-4b6f-9e81-e8747562798c).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

PAPER March, 2011

AUTHORS J. Ortiz, A. Legay, P-Y. Schobbens
EMAIL jor@info.fundp.ac.be, alegay@irisia.fr,

pierre-yves.schobbens@fundp.ac.be
VENUE FORMATS’10
STATUS Extended version of the paper accepted in the proceed-

ings of the 8th International Conference on Formal Mod-
eling and Analysis of Timed Systems (FORMATS’10), IST
Austria, Klosterneuburg, Austria

PROJECT MoVES
FUNDING Interuniversity Attraction Poles Programme (IAP) of the

Belgian State, Belgian Science Policy (MoVES project),
by the Belgian Science Foundation (FNRS) under FRFC
project CFV, and by the European Science Foundation
(ESF) under EUROCORES project LogiCCC/GASICS

Memory Event Clocks

Copyright c© University of Namur. All rights reserved.

Memory Event Clocks
Extended Abstract

James Ortiz1, Axel Legay2 3, and Pierre-Yves Schobbens1

1 Computer Science Faculty, University of Namur
2 INRIA/IRISA, Rennes

3 Institut Montefiore, University of Liège
james.ortizvega@fundp.ac.be

alegay@irisa.fr
pierre-yves.schobbens@fundp.ac.be

Abstract. We introduce logics and automata based on memory event clocks. A
memory clock is not really reset: instead, a new clock is created, while the old one
is still accessible by indexing. We can thus constrain not only the time since the
last reset (which was the main limitation in event clocks), but also since previous
resets. When we introduce these clocks in the linear temporal logic of the reals,
we create Recursive Memory Event Clocks Temporal Logic (RMECTL). It turns
out to have the same expressiveness as the Temporal Logic with Counting (TLC)
of Hirshfeld and Rabinovich. We then examine automata with recursive memory
event clocks (RMECA). Recursive event clocks are reset by simpler RMECA,
hence the name “recursive”. In contrast, we show that for RMECA, memory
clocks do not add expressiveness, but only concision. The original RECA define
thus a fully decidable, robust and expressive level of real-time expressiveness.

1 Introduction

Finite automata is a widely used computational model to capture and analyse the behav-
ior of possibly concurrent systems. The main question is checking whether an automa-
ton satisfies a given specification, which can be represented either by some temporal
logic formula or by another automaton. The first case, called model checking, is usu-
ally reduced to the second. In the second case, the problem is called language inclusion
between automata, which models step-wise refinement.

Nowadays, real-time plays a crucial role in system design, especially in the area of
embedded systems. To capture the behavior of a real-time system, one needs to aug-
ment the computational model with a notion of time. An important model is timed au-
tomata (TA) [1], that are automata augmented with clocks used to monitor the evolution
of time. Timed automata offer tools [21, 9, 6] for many real-time problems. Unfortu-
nately, TA have an undecidable language inclusion problem [1]. Around the same time,
the satisfiability of natural real-time logics such as Metric Temporal Logic (MTL) and
Temporal Propositional Timed Logic (TPTL) were also proved undecidable [5]. In fact,
one of the central problems is that TA are not closed under determinization (see [16,
15, 7] for discussions). The situation contrasts strongly with the one of automata with-
out real time, where the problems of complementation, language inclusion, emptiness,

union and intersection are decidable, as well as the satisfiability and validity of propo-
sitional linear temporal logic (LTL). When all these problems are decidable, we call the
formalism (automata or logic) fully decidable. These negative results spurred a quest
for expressive but still fully decidable formalisms.

To overcome the problem, [3] proposed to restrict the behavior of TA clocks in such
a way that language inclusion becomes decidable. The key idea is that the problem-
atic clocks of TA are reset by non-deterministic, internal transitions, that prevent deter-
minization. In contrast, an event clock (EC) xp is reset when the atomic proposition p
occurs. The event clock resets and values are determined by the input and thus Event
Clock Automata (ECA) are determinizable, making language inclusion decidable and
thus enabling step-wise refinement.

Event clocks can also be introduced in temporal logics [20]. An event clock con-
straint is naturally translated into a proposition CIp, that means “the last time that a
p occurred was a time d ago, where d lies in I”. However, the expressiveness of ECA
is rather weak. Indeed, events are just the last or next occurrence of an atomic propo-
sition. For instance, the property “p is continuously true in interval (0, 1)” cannot be
expressed by such an event clock formula: any model where the distances between p’s
are below 1 will see the clocks always below 1, whether or not it satisfies this property.
Therefore [11] introduced the notion of “recursive” event. In a recursive event model,
the reset of a clock is decided by a lower-level automaton or formula. This automaton
cannot read the clock that it is resetting. Clock resets are thus still deterministic, but the
concept of “event” is now much more expressive. For instance, the property above can
be expressed as ¬ B(0,1) ¬p: BI is now a modality that can contain any subformula,
and can be nested. The temporal logic of recursive event clocks (variously called SCL
[20] or EventClockTL [11]) has the same expressiveness as Metric Interval Temporal
Logic MITL [2] (a decidable fragment of MTL where punctual constraints are forbid-
den) in the interval semantics. First-and second-order monadic logics with matching
expressiveness have been provided [11], yielding a natural, robust, fully decidable level
of real-time expressiveness. However, the expressiveness of event clock models has still
been criticized, because event clocks can only constrain the time since the last (or next)
event. For instance, EventClockTL cannot express the assumption that no more than 3
requests per second will arrive, or the requirement that these all requests will be treated
within the next second, when the treatment requires several steps.

In this paper, we address the above limitation and introduce memory clocks, already
sketched in [3]. A memory clock x is not really reset: instead, a new clock is created,
while the old one is still accessible by indexing: x1 will be the usual value of the clock
x, i.e. the time since last reset, while x2 will be the time since the last but one reset. In
general, xi will be the time since the last but i reset. Said otherwise, a reset will save
a copy of the clock of index i in the clock of index i + 1. It can be seen as a series of
clock updates: x3 := x2;x2 := x1;x1 := 0. Here, we will study the recursive variant,
as explained above.

Our first contribution is to extend the EventClockTL logic with memory clocks.
This gives us the memory event clocks logic (RMECTL), which we show to be PSPACE-
complete if the indices of the clocks are encoded in unary and EXPSPACE-complete
for the binary case. RMECTL is strictly more expressive than EventClockTL. To ob-

3

tain these results, we show that the expressiveness of RMECTL is equivalent to the
one of the Temporal Logic with Counting (TLC) [13]. It is worth observing that TLC
was inspired by a TPTL formula (see Section 3.3). TPTL is a “really temporal” but
highly undecidable logic [5]. We isolate a decidable fragment of TPTL, which we call
TPTL1R. It also has the same expressive power, showing the robustness of this level of
expressiveness. Our second contribution is to extend RECA with memory clocks. Sur-
prisingly, RMECA are as expressive as the original Recursive Event Clock Automata
RECA [11]. However, in the binary case, they may be exponentially more succinct.

Structure of the paper. The rest of the paper is organized as follows. Sections 2 recalls
preliminary notions. Section 3 examines real-time temporal logics. First, it recalls TLC
[18], then introduce RMECTL and shows its equivalence with TLC. Then, it defines a
fragment of TPTL that also has the same expressiveness. Section 4 defines Recursive
Memory Event Clock Automata (RMECA), studies their properties, and concludes that
they can be reduced to good old RECA [11].

2 Preliminaries

We briefly recall the various models of time that are used in the literature [4]. We present
our results in the interval semantics, that is the richest and most natural (but also most
difficult) model. We also recall clocks and their constraints.

2.1 Models of time

Models of time can be linear, considering a single future, or branching, considering sev-
eral alternative futures. We only consider linear time in this paper. Classical automata
and LTL also use a linear discrete model of time. The point semantics adds a time stamp
to each event of this discrete model.

Our goal here is to model real-time reactive systems, and thus we will use the real
numbers as our model of time. This avoid a premature commitment to a discretization of
time: even if computer systems are often discrete, their discretization grain (e.g. clock
speed) should not appear at requirements level.

Let P be a set of propositional symbols. A state over P is an element of 2P. Let N the
set of nonnegative integers, R denote the set of reals, R+ the set of nonnegative reals.

In this paper, we use the interval semantics. An interval is a convex subset of R+.
An interval is singular if it is a singleton. Two intervals I and I ′ are said to be adjacent
when I ∩ I ′ = ∅ and I ∪ I ′ is an interval. We denote by IR+ the set of intervals whose
bounds are in R+. An interval sequence over R+ is an infinite sequence I = I0I1 · · ·
of non-empty intervals of IR+ where

1. successive intervals Ij and Ij+1 are adjacent and Ij < Ij+1, for all j ≥ 0
2. I is covering, i.e., for every t ∈ R+, there exists j ∈ N such that t ∈ Ij .

An interval state sequence (ISS) is a pair ρ = (σ, I) where σ = σ0σ1 · · · is an
infinite sequence of states and I = I0I1 · · · is an interval sequence. A interval state
sequence ρ can equivalently be seen as an sequence of elements in 2P×IR+ . It can also

4

be seen as a signal, i.e. a function from R+ to states: Let ρ = (σ, I) be a interval state
sequence and given t ∈ R+, let i ∈ N be the interval such that t ∈ Ii. We define ρ(t) as
the state σi. A signal derived from an ISS will always have finite variability. Below, our
automata will consider two ISS that define the same signal as equivalent, even if the
intervals might be split differently. Our automata assume finite variability. In contrast,
our logics will admit infinite variability.

Given two intervals I1, I2, we define the interval between I1 and I2 by BetwI (I1, I2) =
{x | I1 < x < I2}.

Given a set S and an interval I , we define S Begins During I by ∃t ∈ (S ∩ I), and
@t′ ∈ S such that t′ < I . Symmetrically, we define S Ends During I iff ∃ t, t ∈ (S∩ I),
and @ t′ ∈ S such that t′ > I .

2.2 Clocks

The value of a clock is the time elapsed since its last reset. When we use real numbers,
there is not always a “last” reset but just a limit, e.g. when the reset holds in an open
interval. For this case, we will use non-standard clock values of the form υ+. The set
of non-standard reals, noted R+

ns, is the set of {υ, υ+ | υ ∈ R+}, ordered by <ns as
following: υ1 <ns υ

+
2 iff υ1 ≤ υ2. R+

⊥ is R+
ns plus a special value⊥ for uninitialized

clocks. ⊥ is not comparable to other values.
Let X be a finite set of clock names. A clock valuation over X is a mapping ν : X→

R+
⊥. The constraints over X, noted Φ(X), are defined by the following grammar, where

φ ranges over Φ(X), x ∈ X, c ∈ N, and ∼ ∈ {<, ≤, =, >, ≥}:
φ ::= true | x ∼ c | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

We write ν |= φ when the valuation ν satisfies the constraint φ. By convention, the
value ⊥ does not satisfy any constraint except true.

3 Temporal Logics

As we said in the Introduction, the goal of our quest is to construct two levels of ex-
pressiveness: (i) fully decidable real-time logics to specify requirements on systems;
we examine them in this section; (ii) fully decidable real-time automata, that can ex-
press these logics, and model systems (see Section 4). In this way, specifications and
systems can be handled uniformly, and verification can be automated. We first recall
Temporal Logic with Counting (TLC) [13], since our new logics will turn out have the
same expressiveness. Then we define the new logics: RMECTL, that includes mem-
ory event clocks, and TPTL1R, a decidable fragment of the logic TPTL with the same
expressiveness.

3.1 Temporal Logic with Counting

The Temporal Logic with Counting [13] is an extension of the Temporal Logic of the
Reals with Past by counting modalities. Here we use a slight variant, called TLCI0
[18], where the counting modalities areC(0,b)

k (φ) and
←−
C

(0,b)
k (φ). The modalityC(0,b)

k (φ)

5

says that φ will be true at least at k points in the interval (t, t+ b), and its symmetrical←−
C

(0,b)
k (φ) says that φ has happened k times in the interval (t − b, t). The syntax of

TLCI0 formulae is given by:

φ ::= p | φ1 ∧ φ2 | ¬ φ | φ1 U φ2 | φ1 S φ2 | C(0,b)
k (φ) | ←−C (0,b)

k (φ)

where p is a propositional symbol, k ∈ N, b ∈ N and φ1, φ2 ∈ TLCI0.
Formally, the semantics is as follows:

(ρ, t0) |= C
(0,b)
k (φ) iff ∃t1 · · · ∃tk, t0 < t1 < · · · < tk < t0 + b ∧

∧

0<i≤k
φ(ti)

(ρ, t0) |=
←−
C

(0,b)
k (φ) iff ∃t1 · · · ∃tk, t0 − b < t1 < · · · < tk < t0 ∧

∧

0<i≤k
φ(ti)

Let us also recall the classical semantics, that we will use throughout the paper:

(ρ, t) |= p iff p ∈ ρ(t)
(ρ, t) |= ¬φ iff (ρ, t) 6|= φ

(ρ, t) |= φ1 ∧ φ2 iff (ρ, t) |= φ1 and (ρ, t) |= φ2

(ρ, t) |= φ1Uφ2 iff ∃t′ > t.(ρ, t′) |= φ2 ∧ ∀t′′ ∈ (t, t′), (ρ, t′′) |= φ1

(ρ, t) |= φ1Sφ2 iff ∃t′ < t.(ρ, t′) |= φ2 ∧ ∀t′′ ∈ (t′, t), (ρ, t′′) |= φ1

The satisfiability problem for TLCI0 is PSPACE-complete when the indices k
of C(0,b)

k is coded in unary, and EXPSPACE-complete when the indices are coded in
binary [18]. TLC is the special case where the upper bound b is 1.

Real-time logics are usually required to be scalable, in the sense that a change of
the time scale (e.g. from second to minutes), or said otherwise the multiplication by
a rational number, should not affect their definition. The logics presented here are not
scalable, but their scalable version can be obtained by replacing the integers by rationals
in the definition. This may change the expressiveness results below.

TLC was shown to be strictly more expressive than MITL with past with a simple
non-scalable example [14]: It uses a single proposition p, that is true exactly at multiples
of 2/3. Every MITL formula with past will eventually behave like p,¬p, true, or false.
In contrast, C(0,1)

2 (p) will be true on {((1 + 2i)/3, (2 + 2i)/3)|i ∈ N} indefinitely.
Similarly, we see that the event clock yp for p will always be between 0 and 1, but the
memory event clock y2p will periodically go above 1. In general, memory clocks bring
the same supplementary expressive power, as we will see in the next section.

From [8] we can show that future TLC can be translated to the scalable MTL. To
the best of our knowledge, the question whether TLC is more expressive than scalable
MITL with past is open.

3.2 Recursive Memory Event Clocks Temporal Logic

In this section we introduce the Recursive Memory Event Clocks Temporal Logic
(RMECTL). RMECTL extends EventClockTL of [20, 11]. We generalise its modal-
ities by adding an index k: the recording modality CkIφmeans that the kth last time that

6

φ was true is in interval t− I , and symmetrically the predicting modality BkIφ says the
kth next occurrence of φ will occur within I . We count only one occurrence for an in-
terval where φ is continuously true. Such a modality in fact introduces a memory event
clock: CkIφ means that we reset a memory clock each time φ is true, and we constrain
the kth clock value at the time of evaluation. We denote the temporal logic where k ≤ n
by RMECTLn, for n ∈ N. If we allow only index 1, we find back EventClockTL.

Definition 1. The formulas of Recursive Memory Event Clock Temporal Logic (RMECTL)
are built from propositional symbols P, boolean connectives, the temporal operators
until and since and two symmetric real-time modalities, the recording modality and
predicting modality. The formulas φ of RMECTL are defined by the grammar:

φ ::= p | BnI φ | CnI φ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | φ1 S φ2
where p is a propositional symbol, I ∈ IN is an interval, and n ∈ N+. Let φ be a
RMECTL formula and let ρ be a signal whose propositional symbols contain all propo-
sitions that occur in φ. The semantics of the new modalities are:

(ρ, t) |= CnI φ iff the set {tn | ∃t1, . . . , tn−1, s1, . . . , sn−1 : tn < sn−1 < tn−1 <
· · · < t1 < t,

∧
i≤n(ρ, ti) |= φ,

∧
i<n(ρ, si) 6|= φ} Ends During t− I

(ρ, t) |= BnI φ iff the set {tn | ∃t1, . . . , tn−1, s1, . . . , sn−1 : tn > sn−1 > tn−1 >
· · · > t1 > t,

∧
i≤n(ρ, ti) |= φ,

∧
i<n(ρ, si) 6|= φ} Begins During t+ I

where “Begins During” and “Ends During” have been defined in Section 2.1. The in-
tuition is that each ti is a witness of an interval where φ was true, that caused a reset
of the clock. They must be distinct intervals, i.e. they must be separated by an interval
where φ is false, as witnessed by si. Intuitively, the nth previous reset is the maximum
of the candidates tn, but this maximum might not exist. Hence the indirect definition
using “Begins During”.

RMECTL turned out to be very close to TLCI0:

Theorem 1. RMECTL and TLCI0 are intertranslatable linearly.

Proof. From RMECTL to TLCI0 We first simplify formulas of RMECTL. First note
that the left bound can always be set to 0 as follows: Define the downward closure of
an interval I as ↓ I = {t > 0 | ∃t′ ∈ I.t ≤ t′}. We use BnI φ ≡ ¬Bn↓I\I φ ∧Bn↓Iφ.
For instance, Bn(a,b]φ ≡ ¬ Bn(0,a] φ ∧ Bn(0,b]φ. Second, if the right bound of the
interval is closed, we can open it. Define J φ as φU true. Intuitively, it means that
φ will be true for some time just after the current point of time. Its dual K+ [10],
i.e. ¬(¬φU true), means that φ will be true arbitrarily close after the current point
of time. Symmetrically, Bφ, defined as φS true, means that φ was true for some
time just before now, and K− [10], that φ will be true arbitrarily close before now.
Then we use Bn(0,b]φ = J Bn(0,b) φ if φ is left-closed, which is expressed by ¬φUφ.
This gives Bn(0,b]φ = (¬φUφ∧J Bn(0,b)φ)∨(¬(¬φUφ)∧Bn(0,b)φ). We are only left
with operators of the form Bn(0,b)φ, which mean that n resets occur within interval
(0, b). A reset for a predicting clock is a rising edge, i.e. φ becomes true, and can
be described by the formula: (K−¬φ∧φ)∨ (¬φ∧K+φ), that we abbreviateRφ. A

7

special case is when φ is true just after now (K+φ), then B1
(0,b] is true, even without

a rising edge.Thus we translate Bn(0,b)φ by

(¬K+φ′ ∧ C(0,b)
n (Rφ′)) ∨ (K+φ′ ∧ C(0,b)

n−1 (Rφ′))

which is a formula of TLCI0. Cn(0,b)φ is translated symmetrically. All other op-
erators appear in both logics, and are translated trivially. This translation is linear
in the number of subformulas, i.e. in DAG size which is the relevant measure for
logics. It preserves or decreases the indices.

From TLCI0 to RMECTL Let I be (0, b). C(0,b)
n (φ) means that there are at least n

points satisfying φ in t+(0, b), while Bn(0,b)φmeans that t+(0, b) comprises at least
n rising edges (or n− 1 if it begins with a φ). This is different as soon as φ is true
on a non-singular φ-interval. But then, this interval comprises an infinite number
of φ points, and thus makes C(0,b)

n (φ) true. Otherwise, all φ-intervals are singular,
erasing the difference. Thus we translate C(0,b)

n (φ) by (B(0,b)J φ′) ∨ (Bn(0,b)φ′).←−
C

(0,b)
n (φ) is translated symmetrically. All other operators appear in both logics,

and are translated trivially. This translation is linear in the number of subformulas
(DAG size).

Corollary 1. RMECTL and TLCI0 have the same expressiveness.

Corollary 2. RMECTL is more expressive than MITL and EventClockTL.

Note that MITL, TLC1, and EventClockTL have the same expressiveness in interval or
signal semantics [11].

Corollary 3. Satisfiability and validity of RMECTL is PSPACE-complete if indices are
in unary, EXPSPACE-complete if indices are in binary.

3.3 The Temporal Logic of One Clock with Right Constraint

In this section, we introduce a fragment of the Timed Propositional Temporal Logic
(TPTL) [5] that is expressively equivalent to TLC, but offers a more convenient syntax.
TPTL is a temporal logic based on clock variables declared by “freeze quantifiers”;
these clock variables can then be used in explicit real-time constraints. It is very natural
and expressive, in particular more than MTL; hence it was dubbed “a really temporal
logic” by its authors. Alas, satisfiability of full TPTL in most semantics isΣ1

1 -complete,
i.e. highly undecidable [5]. The example TPTL formula below, borrowed from [4]:

Gx.(p→ F (q ∧ F (r ∧ x < 1)))

where Fφ is true Uφ, and G its dual, expresses quite naturally that each time we have
p (a request), we will have q then r (it will be processed) within 1 second. This formula
spurred further research [12, 18, 8] to express it in more decidable logics. Here, we
propose instead a decidable fragment of TPTL that contains this example. Recently,
another fragment was shown decidable, but only for the point semantics [17].

8

We use an adapted version of TPTL, called Clock Temporal Logic [19, p.46]: We
interpret it with a continuous semantics on the non-negative reals (rather than a point
semantics on the natural numbers [5]); we add the past modalities; we interpret the
quantifiers as clock resets (rather than as a freezed copy of absolute time [5]).

Our fragment is called the One Clock Temporal Logic with constraints on the Right,
abbreviated TPTL1R to evoke its link with TPTL. In this logic, only one clock can
be active at a time. Furthermore, inside the scope of a clock, the formulae must be
positive and until/since can only contain a constraint in the right side. The syntax is
rather natural:

φ ::= p | x.φx | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2
φx ::= φ | x ∈ I | φx ∨ φx | φ ∧ φx | φ1Uφx | φ1Sφx

where φx means “a formula with clock variable x free”, p ∈ AP, I is an interval with
integer bounds.

The semantics, (ρ, t) |= φ, is defined as usual, plus for the reset quantifier:

(ρ, t) |= x.φx iff (ρ, t) |=t φx

For formulae φx, the real value v below is the time of the reset.

(ρ, t) |=v φ iff (ρ, t) |= φ

(ρ, t) |=v x ∈ I iff t− v ∈ I
(ρ, t) |=v φ′x ∨ φx iff (ρ, t) |=v φ′x or (ρ, t) |=v φx
(ρ, t) |=v φ′ ∧ φx iff (ρ, t) |= φ′ and (ρ, t) |=v φx
(ρ, t) |=v φ1Uφx iff ∃t′ > t.(ρ, t′) |=v φx ∧ ∀t′′ ∈ (t′, t).(ρ, t′′) |= φ1

(ρ, t) |=v φ1Sφx iff ∃t′ < t.(ρ, t′) |=v φx ∧ ∀t′′ ∈ (t′, t), (ρ, t′′) |= φ1

In the proof below, we use the fact that Q2MLO (called L2 in [12]) and TLCI0
have the same expressiveness [13]. Let us recall that Q2MLO is a first-order monadic
logic of order. It contains first-order logic, plus a metric quantifier:

φ ::= ∀t. φ1 | ¬φ1 | φ1 ∧ φ2 | t1 = t2 | t1 < t2 | ∃t ∈ t0 + I. φ(t, t0)

where I is a non-singular interval with integer bounds. Only two free variables t, t0 are
allowed in the quantified formula φ(t, t0).

Theorem 2. TPTL1R is as expressive as TLC, TLCI0, and Q2MLO.

Proof. It suffices to translate TLCI0 to TPTL1R, and then TPTL1R to Q2MLO.

1. TPTL1R can express C(0,b)
n :

C(0,b)
n (φ) = x.(F (φ ∧ F (φ ∧ . . . F (φ ∧ x < b))))

And symmetrically for the past operator.

9

2. The semantics of TPTL1R translates any φx appearing in x.φx into a first-order
formula φx(v). We note that: (i) disjunctions are in the scope of existential quanti-
fiers only, so that we can move the disjunctions out; (ii) each constraint tk − v ∈ I
is also in the scope of existential quantifiers only, and in particular ∃tk. Therefore
the order of these existential quantifications is irrelevant, and we move in front ∃tk
(the quantification whose variable appears in the constraint) then the other vari-
ables. The constraints are now part of a conjunction. We move each constraint just
after its quantification. We obtain a formula of the form ∃tk.tk − v ∈ I ∧ φ(v, tk),
that we can express in Q2MLO as ∃tk ∈ v + I.φ(v, tk).

4 Recursive Memory Event Clocks Automata

As explained in the introduction, our goal is to extend in the realm of real-time the suc-
cess of classical automata, that can express both specifications and programs uniformly,
and are thus the internal data structure used by most model-checkers. Automata can deal
with real-time by adding clocks that can be reset or tested. Timed automata allow lib-
eral use of their clocks, making their inclusion problem undecidable. A more disciplined
use of clocks is needed. Our proposal follows the idea of ECA. Since ECA reset clocks
only on the occurrence of their atomic proposition, which is not very expressive, we
proposed Recursive Event Clock Automata (RECA) [11]. “Recursive” refers to the fact
that the resets of each clock of an automaton are controlled by a lower-level automa-
ton. When this automaton visits a monitored location, it resets the associated clocks:
An event-recording clock xA and an event-predicting clock yA can be associated with
each monitored automaton. Thus no automaton can reset its own clocks. In particular,
an automaton of level 0 has no subautomata, hence no clock.

Here, we examine whether introducing Memory Event Clocks (MEC) will fur-
ther increase their power. This leads to Recursive Memory Event Clock Automata
(RMECA). Event-recording memory clocks xiA record the time that has expired since
the ith last time at which the automaton A could pass through a monitored location,
and the event-predicting memory clock yiA always records the amount of time that will
expire until the ith next time at which the automatonA could pass through a monitored
location. Equivalently, a reset does not destroy the previous values of a memory clock:
instead, a new clock with value 0 is created, and earlier clocks are still accessible by the
indexed notation. We have already used MEC to define RMECTL in Section 3.2.

MEC are determined by the ISS (and not by the run as for TA). To deal with MEC,
it is easier to consider them as supplementary propositions. We have then to make
them mutually exclusive, so we consider atomic constraints. For a given clock c, let
Rc = {r1, . . . , rn} be the constants to which it is compared in A, in increasing order.
The atomic constraints for c are c = ⊥, c < r1, c = ri, c ∈ (ri, ri+1), c > rn. An
atomic constraint for A is a conjunction of atomic constraints for each clock. No clock
valuation can satisfy two different atomic constraints, and each constraint of A can be
expressed as a disjunction of atomic constraints. This latter property allows us to use
only atomic constraints, using more locations if needed.

We now examine the complexities due to continuous time. We want these automata
to consider ISS that define the same signal as equivalent, even if the intervals might be

10

split differently. This goal will force the definition of deterministic automata below. To
simplify it, we label our locations not only with atomic propositions but also with “lim-
its”. Intuitively, a past (resp. future) limit describes what happened just before (resp. just
after) the current time. Locations where some limit is different from the current label
are called singular: only a single instant can be spent there. From a singular location,
we can only make a transition to a non-singular location, where the labelling must be as
predicted by the limit of the singular location. The past limit of > is false only in initial
locations.

Given a set propositions P, the limit closure (Limit(P)) is the set {p,−→p ,←−p | p ∈
P ∪ {>}}. −→p is the future limit of p and←−p is the past limit of p.

Definition 2. A Recursive Memory Event Clock Automaton (RMECA) is a tuple A =
(P, S, S0,→, C, γ,M,F), such that:

1. P is a set finite set of propositional symbols.
2. S is a finite set of locations and S0 ⊆ S is the set of starting locations.
3. →⊆ S× S are the transitions.
4. A finite set of atomic constraints C, containing clocks xiB or yiB , with B a lower-

level RMECA.
5. γ : S → 2Limit(P∪C) is a function which labels each location s ∈ S with the set of

limits of propositions and constraints that are true in that location.
6. M ⊆ S is the set of monitored locations: when the automaton visits such a location,

it resets the associated clock.
7. F ⊆ S is a set of Büchi accepting locations.

We now define when a RMECA accepts an ISS ρ, thanks to a timed run. This is the
time t when the automaton can visit a monitored location.

Definition 3. A RMECA A accepts a signal ρ at time t, if there exist an infinite timed
run θ = (s, I) such that following conditions holds:

1. the run starts in a starting location s0 ∈ S0.
2. for all i > 0, the run either follows a transition: si−1 → si or stutters: si−1 = si.
3. It is in a monitored location at time t: θ(t) ∈M .
4. The labelling of the location corresponds to the ISS and satisfies the limits and

clock constraints: ∀t′ ∈ R+, (ρ, t) |= γ(θ(t)).
5. It visits infinitely often a Büchi location.

The clock valuation function over a lower-level RMECA at A and time t at ρ, is
noted νρt : CA → R+

⊥. It assigns a (non-standard) positive real, or undefined, to each
clock variable. The resets are done when A can visit a monitored location. Given t and
ρ, the reset interval of ynA is the interval In such that there are non-empty intervals
I1, · · · , In−1 where:

1. t < I1 < · · · < In,
2. ∀i ≤ n, ∀r ∈ Ii,A accepts ρ in r
3. ∀i < n,BetwI (Ii, Ii+1) is not empty and ∀r ∈ BetwI (Ii, Ii+1),A does not

accept ρ in r

11

4. ∀r ∈ BetwI ({t}, I1),A does not accept ρ in r.

Note that I1 might begin just after t, in which case the last condition is vacuously true.
The reset interval for a recording clock is symmetric. The value of a clock is:

νρt (x
n
A) =

t− r if the reset interval of xnA is (l, r] or [l, r]
(t− r)+ if the reset interval of xnA is (l, r) or [l, r)
⊥ if xnA has no reset interval

Symmetrically,

νρt (y
n
A) =

l − t if the reset interval of ynA is [l, r) or [l, r]
(l − t)+ if the reset interval of ynA is (l, r) or (l, r]
⊥ if ynA has no reset interval

The logic RMECTL and RMECA in fact use the same memory clocks:

!"

#$" #%"

The clock valuation function over a lower-level RMECA at A and time t at ρ,
is noted νρt : CA → R+

⊥. It assigns a (non-standard) positive real, or undefined, to
each clock variable. The resets are done when A can visit a monitored location.
Given t and ρ, the reset interval of yn

A is the interval In such that there are
non-empty intervals I1, · · · , In−1 where:

1. t < I1 < · · · < In,
2. ∀i ≤ n, ∀r ∈ Ii, A accepts ρ in r
3. ∀i < n,BetwI (Ii, Ii+1) is not empty and ∀r ∈ BetwI (Ii, Ii+1), A does not

accept ρ in r
4. ∀r ∈ BetwI ({t}, I1), A does not accept ρ in r.

Note that I1 might begin just after t, in which case the last condition is vacuously
true. The reset interval for a recording clock is symmetric. The value of a clock
is:

νρt (xn
A) =

t− r if the reset interval of xn
A is (l, r] or [l, r]

(t− r)+ if the reset interval of xn
A is (l, r) or [l, r)

⊥ if xn
A has no reset interval

Symmetrically,

νρt (yn
A) =

l − t if the reset interval of yn
A is [l, r) or [l, r]

(l − t)+ if the reset interval of yn
A is (l, r) or (l, r]

⊥ if yn
A has no reset interval

The logic RMECTL and RMECA in fact use the same memory clocks:

Theorem 3. νρt (xn
A) ∈ I iff (ρ, t) |= �n

I p
where p is a proposition such that (ρ, t) |= p iff A accepts ρ at time t.

4.1 Properties of RMECA

We now show here that RMECA inherit all good properties of RECA and ECA:
they are determinizable and closed over all boolean operations. The proofs are
the same as for RECA [19], replacing clocks by memory clocks. In view of the fact
that we later show that they are expressively equivalent, this seems obvious, but
(i) we need those properties to prove the equivalence, and (ii) the direct proofs
give algorithms that are more efficient, since the translation of the next section
is exponential.

We first adapt the definition of determinism to cater for continuous time [19]:

Definition 4. A RMECA A = (P,S,S0,→, C, γ, M,F), is deterministic iff:

1. Distinct initial locations s1 �= s2 ∈ S0 have distinct labellings: γ(s1) �= γ(s2)
2. Successive locations s1 → s2 have distinct labellings.
3. Distinct successor locations s2 �= s3, s1 → s2, s1 → s3 have distinct labellings.

Fig. 1. The value of yn
A and its reset interval In.

Theorem 3. νρt (xnA) ∈ I iff (ρ, t) |= CnI p
where p is a proposition such that (ρ, t) |= p iff A accepts ρ at time t.

4.1 Properties of RMECA

We now show here that RMECA inherit all good properties of RECA and ECA: they
are determinizable and closed over all boolean operations. The proofs are the same as
for RECA [19], replacing clocks by memory clocks. In view of the fact that we later
show that they are expressively equivalent, this seems obvious, but (i) we need those
properties to prove the equivalence, and (ii) the direct proofs give algorithms that are
more efficient, since the translation of the next section is exponential.

We first adapt the definition of determinism to cater for continuous time [19]:

Definition 4. A RMECA A = (P, S, S0,→, C, γ,M,F), is deterministic iff:

1. Distinct initial locations s1 6= s2 ∈ S0 have distinct labellings: γ(s1) 6= γ(s2)
2. Successive locations s1 → s2 have distinct labellings.
3. Distinct successor locations s2 6= s3, s1 → s2, s1 → s3 have distinct labellings.

The determinism ensures that, at each time t during a run, the choice of the next
location is uniquely determined by the current location of the automaton and (ρ, t).
Condition (2) ensures that the time at which to leave a location is uniquely given by the
signal ρ. Therefore there is at most one (signal) run for each ρ.

12

Theorem 4. For any RMECA A, we construct a deterministic Rabin RMECA A′ that
accepts the same language. If A has n locations, A′ has 2O(nlogn) locations and the
same clocks and subautomata.

Note that the time of acceptance also preserved by determinization.

Theorem 5. The class of RMECA-recognizable timed languages is closed under union,
intersection and complementation.

This differs from RECA and ECA, where those problems are PSPACE-complete.
The higher complexity is only due to the indices n of the clocks, that can be expressed
compactly (in log n) in binary notation, while their implementation requires n clocks.
If the indices are expressed in unary notation, these problems are PSPACE-complete.

Theorem 6. The inclusion problem for RMECA are EXPSPACE-Complete.

Proof. Consider two RMECA A and B such that each automaton has at most n lo-
cations, let m be the number of the clocks, let k be the highest index of a memory
clocks. Let c be the largest integer constant that appears in the clock constraints. To
check whether L(A) ⊆ L(B), we first to determinize B to B1, after we complement B1
to B2. The automata B2 has 2(n·k)·log(n·k) location since it is a Büchi automaton and
the integer constants that appear in the clock constraints of B2 are bounded by c. Let D
be the product of A and B2. The RMECA D has n · 2(n·k)·log(n·k) locations, where the
integer constants that appear in the clock constraints of D are also bounded by c. Now,
we can use the MRECA D, and check for its emptiness. Since checking emptiness of
RMECA is exponential-sized finite state machine, it follows that emptiness of D can
be checked in EXPSPACE. The proof of hardness is the same as the proof for RECA
[19].

Theorem 7. The emptiness, universality, and language inclusion problems for RMECA
are EXPSPACE-Complete.

4.2 From RMECA to RECA

Memory clocks allow to measure distances from several resets. But do they really in-
crease the power of when placed inside automata? The answer is positive for ECA, but
negative for RECA and TA. Intuitively, automata can already count resets (though less
concisely). For an example, consider again the formula [4]:

Gx.(p→ F (q ∧ F (r ∧ x < 1)))

Assuming that p and q do not occur together on a non-singular interval (which is
always the case in point semantics), this formula can be translated to the RECA of
Fig. 2, that counts modulo 2. To save space, we have drawn the main automaton and
its two subautomata A1, A2 with the same transitions. All states are accepting. A1 is a
copy of the figure where clocks constraints are removed, and the location marked MA1

is the only monitored location, and similarly for A2. The main automaton has the clock
constraints, but no monitored locations. Although the formula conceptually starts an
infinite number of clocks x, this automaton shows that two clocks suffice.

More generally, we can use counting to eliminate memory event clocks:

13

-p

r
MA1

-r q -q p
yA1<1

r
MA2

-r q -q p
yA2<1

-p

Fig. 2. A RECA for Gx.(p → F (q ∧ F (r ∧ x < 1)))

Theorem 8. For any RMECA, we can construct a RECA that accepts the same lan-
guage.

Proof. Let A be the initial RMECA. To simulate a memory clock xnC where C is a
subautomaton of A, we must keep track of the last n events and thus use n clocks. The
clocks must be used in a rotating manner, since we cannot copy them. We can assume
that C is deterministic, since RMECA are determinizable. To reset them, we augment
C to count modulo n, and make n copies C′(i) with monitored states that differ by the
count only.

Let C′(i) (with i < n) be the automaton:

1. Its symbols are the same: P′ = P
2. Its states S′ = S × [0..n) are pairs (s, j) where s is a state of C, and j < n counts

the number of times we entered a monitored region, modulo n;
3. S′0 = S0 × {0};
4. The copy C′(i) monitors states of count i: S′m = Sm × {i};
5. The transitions update the count when entering a monitored region: (s, j)→ (s′, j′)

iff s→ s′, j = j′, (s ∈ Sm if s′ ∈ Sm) or s→ s′, j′ = j+1 mod n, s 6∈ Sm, s′ ∈
Sm;

6. The labellings are unchanged: γ′((s, j)) = γ(s);
7. The accepting states are unchanged: F ′ = F × {0..n− 1}.

Each C′(i) is bisimilar with C. C visits a monitored state iff (exactly) one of the C′(i)
does. Therefore the set of values of the clocks is the same:

{νρt (xC′(i)) | i < n} = {νρt (xjC) | 0 < j ≤ n}

Now we translate the constraints that appear in the upper level automaton: the value
of xnC is the maximal value of this set. Thus a constraint xnC < c is translated by∧
i<n xC′(i) < c (idem for ≤), symmetrically xnC > c by

∨
i<n xC′(i) > c (idem for

≥), and xnC = ⊥ by
∨
i<n xC′(i) = ⊥. x = c is considered as an abbreviation for

x ≥ c ∧ x ≤ c.

14

4.3 From RMECTL to RMECA

We briefly present the construction of a RMECA from a RMECTL formula.

Theorem 9. For every RMECTL formula φ, we can construct a RMECA Aφ that
accepts ρ at time t iff (ρ, t) |= φ.

The construction is as in [19], with memory clocks instead of clocks. The trans-
formation is done level by level, where the level of a formula is the nesting depth of
real-time modalities. A formula BnI φ is translated as constraint xnAφ

∈ I . The formula
φ is recursively transformed in a tableau automaton for continuous time, where the
monitored states are the states containing φ. The construction is exponential in the size
of the non-real time part of the formula, but linear in the real-time part.

4.4 Region construction

The principles of the called region automaton which transforms a timed automaton
A (R(A)) into an untimed finite automaton can be applied to RMECA[3][19]. The
following theorem is the basis for an algorithmic analysis de RMECA automata:

Construction 1 LetM be a RECA and letm the number of clocks, n is the number of
locations. Let c be the largest integer constant that appears in the clock constraints.
From [19], it follows that the number of locations in the region automaton is n ·2n ·
2O(m·log(m·c)). The inclusion problem for RECA is in fact PSPACE-complete. In
case of RMECA, we will use theorem 7, we first construct a RECA that accepts
the same language of RMECA. In this case, as the number of clocks are increased
and hence the number of clock regions increases to n · 2n · 2O((m·k)·log((m·k)·c)),
where k is the highest index of a memory clocks.

Theorem 10. The number of location in the region automaton R(A) of a RMECA
automata A is finite n · 2O((m·k)·log((m·k)·c)), where n is the number of locations in A,
m is the number of clocks, k is the highest index of a memory clock and c is the largest
constant appearing in A.

Theorem 11. The language of R(A) corresponds to Untimed(L(A)). Consequently,
the timed language of A is empty iff the language ofR(A) is empty.

5 Conclusions

Recursive event clocks have been criticized to be too weak as they only record the
time to next/previous event. In this paper, we have introduced memory event clocks
that are designed to overcome this limitation. We presented them in the interval-based
semantics, both to ease comparison with related work and since this setting is more
general and more difficult than point semantics.

When we introduce such clocks in a temporal logic, we obtain RMECTL. RMECTL
allows punctuality constraints and allows constraints on the nth next (nth last) time a

15

formula will be (was) true. Still, we have shown that RMECTL has the same expres-
siveness and complexity as TLCI0.

We also identified a fragment of TPTL that is expressively equivalent and decidable.
We conjecture that a larger fragment of TPTL is decidable.

The operational nature of these clocks blends nicely with automata, giving RMECA.
They keep all the nice properties of the original event clock automata. They are as ex-
pressive as our RECA [11], showing that TLC was already included in RECA, under
finite variability. The increase of expressive power is thus modest enough to disappear
at automata level. In other words, the criticism was not founded with respect to RECA.

Automata are known to be equivalent to second-order quantification, and this opens
the corresponding logical question, whether Q-MITL and Q-TLC, (i.e. with second-
order quantification that does not to cross scope with real-time operators) are equivalent.
Our results settles this question only under finite variability. Another open question is
to characterize the strongest first-order real-time temporal logic included in RECA,
beyond TLC perhaps. It is also open, whether TLC is more expressive than scalable
MITL with past.

Acknowledgements This work was funded by the Interuniversity Attraction Poles Pro-
gramme (IAP) of the Belgian State, Belgian Science Policy (MoVES project), by the
Belgian Science Foundation (FNRS) under FRFC project CFV, and by the European
Science Foundation (ESF) under EUROCORES project LogiCCC/GASICS.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,
1994.

2. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. ACM,
43(1):116–146, 1996.

3. R. Alur, L. Fix, and T. A. Henzinger. A determinizable class of timed automata. In CAV,
volume 818 of LNCS, pages 1–13. Springer, 1994.

4. R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In REX Workshop,
volume 600 of LNCS, pages 74–106. Springer, 1991.

5. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Inf. Comput.,
104(1):35–77, 1994.

6. A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for reachability analysis of
complex systems. In Proc. 13th Int. Conference on Computer Aided Verification (CAV),
volume 2102 of LNCS, pages 368–372. Springer, 2001.

7. C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When are timed automata determinizable?
In ICALP (2), volume 5556 of LNCS, pages 43–54. Springer, 2009.

8. P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of tptl and mtl. In R. Ra-
manujam and S. Sen, editors, FSTTCS, volume 3821 of LNCS, pages 432–443. Springer,
2005.

9. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-
checking tool for real-time systems. In Proc. 10th Int. Conference on Computer Aided Veri-
fication (CAV), volume 1427 of LNCS, pages 546–550. Springer, 1998.

10. D. M. Gabbay and I. M. Hodkinson. An axiomatization of the temporal logic with until and
since over the real numbers. J. Log. Comput., 1(2):229–259, 1990.

16

11. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages. In
ICALP, volume 1443 of LNCS, pages 580–591. Springer, 1998.

12. Y. Hirshfeld and A. M. Rabinovich. A framework for decidable metrical logics. In ICALP,
volume 1644 of LNCS, pages 422–432. Springer, 1999.

13. Y. Hirshfeld and A. M. Rabinovich. An expressive temporal logic for real time. In MFCS,
volume 4162 of LNCS, pages 492–504. Springer, 2006.

14. Y. Hirshfeld and A. M. Rabinovich. Expressiveness of metric modalities for continuous time.
In CSR, volume 3967 of LNCS, pages 211–220. Springer, 2006.

15. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata: Closing
a decidability gap. In LICS, pages 54–63. IEEE, 2004.

16. J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In FORMATS,
volume 5215 of LNCS, pages 1–13. Springer, 2008.

17. P. Parys and I. Walukiewicz. Weak alternating timed automata. In ICALP (2), volume 5556
of LNCS, pages 273–284. Springer, 2009.

18. A. Rabinovich. Complexity of metric temporal logics with counting and the Pnueli modali-
ties. In FORMATS, volume 5215 of LNCS, pages 93–108. Springer, 2008.

19. J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real Time. Phd thesis,
FUNDP University, Belgium, 1999.

20. J.-F. Raskin and P.-Y. Schobbens. State clock logic: A decidable real-time logic. In HART,
volume 1201 of LNCS, pages 33–47. Springer, 1997.

21. The UPPAAL tool. Available at http://www.uppaal.com/.

17

